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Linear Inverse Problem

• Solve
K x = y

in discrete setting

• x ∈ Rp = vector of coefficients describing the unknown object

• y ∈ Rn = vector of (noisy) data

• K = linear operator (n×p matrix) modelling the link between the
two



Regularization

Noisy data → solve approximately by minimizing contrast
(discrepancy) function, e.g. ‖K x − y‖2

2

Ill-conditioning → regularize by adding constraints/penalties on the
unknown vector x e.g.

• on its squared L2-norm ‖x‖2
2 = ∑i |x i |2

(classical quadratic regularization)

• on its L1-norm of (‖x‖1 = ∑i |x i |)
(sparsity-enforcing or “lasso” regularization, favoring the recovery
of sparse solutions, i.e. the presence of many zero components
in x)

• on a linear combination of both ‖x‖1 and ‖x‖2
2 norms

(“elastic-net” regularization, favoring the recovery of sparse
groups of possibly correlated components)



Positivity and multiplicative iterative algorithms

• Poisson noise → minimize (log-likelihood) cost function subject to
x ≥ 0 (assuming K ≥ 0 and y ≥ 0)

F(x) = KL(y ,K x)≡
n

∑
i=1

[
y i ln

(
y i

(K x)i

)
− y i +(K x)i

]
(Kullback-Leibler – generalized – divergence)

• Richardson (1972) - Lucy (1974) (an astronomer’s favorite) =
EM(ML)in medical imaging

• Algorithm: x(k+1) =
x(k)

K T 1
◦ K T y

K x(k)
(k = 0,1, . . .)

(using the Hadamard (entrywise) product ◦ and division;
1 is a vector of ones)

• Positivity automatically preserved if x(0) > 0

• Unregularized → semi-convergence → usually early stopping

• Can be easily derived through separable surrogates



Surrogating

Figure: The function in red and his surrogate in green



Surrogating

• Surrogate cost function G(x ;a) for F(x):

G(x ;a)≥ F(x) and G(a;a) = F(a)

for all x ,a

• MM-algorithm (Majorization-Minimization):

x(k+1) = argmin
x

G(x ;x(k))

• Monotonic decrease of the cost function is then ensured:

F(x(k+1))≤ F(x(k))

(Lange, Hunter and Yang 2000)



Surrogate for Kullback-Leibler

Cost function (K ≥ 0 and y ≥ 0)

F(x) =
n

∑
i=1

[
y i ln

(
y i

(K x)i

)
− y i +(K x)i

]
Surrogate cost function (for x ≥ 0)

G(x ;a) =
n

∑
i=1

[
y i lny i − y i +(K x)i +

− y i

(K a)i

p

∑
j=1

K i,jaj ln

(
x j

aj
(K a)i

)]

NB. This surrogate is separable, i.e. it can be written as a sum of
terms, where each term depends only on a single unknown
component x j .



Positivity and multiplicative iterative algorithms

• Gaussian noise → minimize (log-likelihood) cost function subject
to x ≥ 0

F(x) =
1
2
‖K x − y‖2

2

assuming K ≥ 0 and y ≥ 0

• ISRA (Image Space Reconstruction Algorithm)
(Daube-Witherspoon and Muehllehner 1986; De Pierro 1987)

• Iterative updates

x(k+1) = x(k) ◦ K T y

K T K x(k)

• Positivity automatically preserved if x(0) > 0

• Unregularized → semi-convergence → usually early stopping

• Easily derived through separable surrogates



Surrogate for Least Squares

Cost function (K ≥ 0 and y ≥ 0)

F(x) =
1
2
‖K x − y‖2

2

Surrogate cost function (for x ≥ 0)

G(x ;a) =
1
2

n

∑
i=1

1
(K a)i

p

∑
j=1

K i,jaj

[
y i −

x j

aj
(K a)i

]2

NB. This surrogate is separable, i.e. it can be written as a sum of
terms, where each term depends only on a single unknown
component x j



Blind Inverse Imaging

• In many instances, the operator is unknown (“blind”) or only
partially known (“myopic” imaging/deconvolution)

• The resulting functional is convex w.r.t. x or K separately but is
not jointly convex → possibility of local minima

• Usual strategy: alternate minimization on x (with K fixed)
and K (with x fixed)

• The problem can be easily generalized to include multiple
inputs/unknowns (x becomes a p×m matrix X ) and multiple
outputs/measurements (y becomes a n×m matrix Y ) e.g. for
Hyperspectral Imaging

−→ solve K X = Y



Special case: Blind Deconvolution

• When the imaging operator K in translation-invariant, the problem
is also referred to as “Blind Deconvolution”

• Alternating minimization approaches using (regularized)
least-squares (Ayers and Dainty 1988; You and Kaveh 1996;
Chan and Wong 1998, 2000) or Richardson-Lucy (Fish,
Brinicombe, Pike and Walker 1996)

• Bayesian approaches are also available

• An interesting non-iterative and nonlinear inversion method has
been proposed by Justen and Ramlau (2006) with a uniqueness
result. Unfortunately, their solution has been shown to be
unrealistic from a physical point of view by Carasso (2009)



Blind Inverse Imaging, Positivity and NMF

• Blind imaging is difficult → use as much a priori information and
constraints as you can

• In particular, positivity constraints have proved very powerful
when available, e.g. in incoherent imaging as for astronomical
images

• The special case where all elements of K , X (and Y ) are
nonnegative (K ≥ 0, X ≥ 0) is also referred to as
“Nonnegative Matrix Factorization” (NMF)

• There is a lot of recent activity on NMF, as an alternative to
SVD/PCA for dimension reduction

• Alternating (ISRA or RL) multiplicative algorithms have been
popularized by Lee and Seung (1999, 2000).
See also Donoho and Stodden (2004)



Our goal

• Develop a general and versatile framework for

• blind deconvolution/inverse imaging with positivity,

• equivalently for Nonnegative Matrix Factorization,

• with convergence proofs to control not only the decay of the cost
function but also the convergence of the iterates

• with algorithms simple to implement

• and reasonably fast...
Work in progress!



Regularized least-squares (Gaussian noise)

• Minimize the cost function, for K , X nonnegative (assuming Y
nonnegative too),

F(K ,X) =
1
2
‖Y −K X‖2

F +
µ
2
‖K‖2

F +λ‖X‖1 +
ν

2
‖X‖2

F

where ‖ · ‖2
F denotes the Frobenius norm ‖K‖2

F = ∑i,j K 2
i,j

• The minimization can be done column by column on X and line
by line on K



Regularized least-squares (Gaussian noise)

• Alternating multiplicative algorithm (O is a matrix of ones)

K (k+1) = K (k) ◦ Y (X (k))T

K (k)X (k)(X (k))T +µK (k)

X (k+1) = X (k) ◦ (K (k+1))T Y

(K (k+1))T K (k+1)X (k) +νX (k) +λO

• to be initialized with arbitrary but strictly positive K (0) and X (0)

• Can be derived through surrogates → provides a monotonic
decrease of the cost function at each iteration

• Special cases:
• a blind algorithm proposed by Hoyer (2002, 2004) for
µ = 0,ν = 0
• ISRA for K fixed and λ = µ = ν = 0



Regularized least-squares (Gaussian noise)

• Assume µ and either ν or λ strictly positive

• Monotonicity is strict iff (K (k+1),X (k+1)) 6= (K (k),X (k))

• The iterates (K (k),X (k)) converge to a stationary point (K ∗,X ∗)
(satisfying the first-order KKT conditions)

• If (K ∗,X ∗) is a stationary point then

µ‖K ∗‖2
F = λ‖X ∗‖1 +ν ‖X ∗‖2

F

• The ambiguity due to rescaling of (K ∗,X ∗) is frozen by the
penalty as well as the ambiguity due to rotation (provided λ 6= 0)

• The algorithm can be accelerated using an Armijo rule along the
“projection arc”



Application (Gaussian noise)

• X : 256×256 positive image

• K : Convolution with Airy function (circular low-pass filter)

= ∗

Y = K X



Application (Gaussian noise): no noise added

Figure: K (0) Unif, X (0) = Blurred Image; µ = 0, λ = 0, ν = 0, 1000 it



Application (Gaussian noise): no noise added

K (0) Uniform K (0) Gaussian



Application (Gaussian noise): 2.5% noise added

Figure: K (0) Gaussian, X (0) = Noisy Image; µ = 2.25 ·108, λ = 0.03, ν = 0.008;
200 it



Application (Gaussian noise): 2.5% noise added

Figure: Point Spread Function



Application (Gaussian noise): 2.5% noise added

λ = 0.03, ν = 0.008 λ = 0.03, ν = 0 λ = 0, ν = 0.008



Regularized Kullback-Leibler (Poisson noise)

• Minimize the cost function, for K , X nonnegative (assuming Y
nonnegative too),

F(K ,X) = KL(Y ,K X)+
µ
2
‖K‖2

F +λ‖X‖1 +
ν

2
‖X‖2

F

with

KL(Y ,K X) =
n

∑
i=1

m

∑
j=1

[
(Y )i,j ln

(
(Y )i,j

(K X)i,j

)
− (Y )i,j +(K X)i,j

]



Regularized Kullback-Leibler (Poisson noise)

• Alternating multiplicative algorithm

K (k+1) =
2A(k)

B(k) +
√

B(k) ◦B(k) +4µA(k)

where

A(k) = K (k) ◦ Y

K (k)X (k)
(X (k))T

B(k) = 1n×m (X (k))T

(1n×m is a n×m matrix of ones)



Regularized Kullback-Leibler (Poisson noise)

X (k+1) =
2C(k+1)

D(k+1) +
√

D(k+1) ◦D(k+1) +4νC(k+1)

where

C(k+1) = X (k) ◦ (K (k+1))T Y

K (k+1)X (k)

D(k+1) = λ1p×m +(K (k+1))T 1n×m

to be initialized with arbitrary but strictly positive K (0) and X (0)



Regularized Kullback-Leibler (Poisson noise)

• Can be derived through surrogates → provides a monotonic
decrease of the cost function at each iteration

• Special case for λ = µ = ν = 0: the blind algorithm proposed by
Lee and Seung (1999) which reduces to the EM/Richardson-Lucy
algorithm for K fixed

• Properties as above for the least-squares case



Normalization constraint

• At each iteration, one can enforce a normalization constraint on
the PSF, imposing that its values sum to one

• To do this a Lagrange multiplier is introduced and its value is
determined by means of a few Newton-Raphson iterations

• The convergence proof can be adapted to cope with this case



Application (Poisson noise)

• X : 256×256 image
• K : convolution with the Airy function (circular low-pass filter)

= ∗ +

Y = K X + E



Application : 1% (equiv. rmse) Poisson Noise; PSF normalized

Noisy Image Original Reconstructed

Figure: K (0) = Unif, X (0) = Noisy Image, µ = 109, λ = 10−7, ν = 6 ·10−8,
2000 it in 12m37s



Extension to TV regularization

• Total Variation: use discrete differentiable approximation

‖X‖TV = ∑
i,j

√
ε2 +(X i+1,j −X i,j)2 +(X i,j+1−X i,j)2

for 2D images

• Use penalty λ‖X‖TV instead of λ‖X‖1

• Use separable surrogate proposed by
(Defrise, Vanhove and Liu 2011) to derive explicit update rules
both for gaussian and Poisson noise



Application KL-TV: 1% (equiv. rmse) Poisson Noise; PSF normalized

Noisy Image Original Reconstructed

Figure: K (0) = Unif, X (0) = Noisy Image, µ = 1.5 ·106, λ = 0.0485,
ε = 6 ·10−7, 200 it in 1m46s



Application KL-TV: 2.5% (equiv. rmse) Poisson Noise; normalized PSF

Noisy Image Original Reconstructed

Figure: K (0) = Unif, X (0) = Noisy Image, µ = 107, λ = 0.03, ε =
√

10, 2000
it in 54m30s



Application of NMF to Hyperspectral Imaging

Example: Urban HYDICE HyperCube: 307×307×162
containing the images of an urban zone recorded for 162 different
wavelength/frequencies

• Factorize the Y : 3072×162 data matrix as Y = KX where K is a
3072×p (relative) abundances matrix of some basis elements to
be determined and X is a p×162 matrix containing the spectra
of those basis elements

• Penalized Kullback-Leibler divergence used as cost function

• The sum of the relative abundances is normalized to one



Hyperspectral Imaging

Dirt Grass Trees

Roofs Roads Metals

Figure:
Abundances with p = 6, µ = 10−10, λ = 0, ν = 1.1,

random K (0) and X (0), 1000 it in 1h19min12s



Hyperspectral Imaging

Dirt Grass Trees

Roofs Roads Metals

Figure: Spectra



Hyperspectral Imaging

Dirt Grass Trees

Roofs Roads Metals Shadows

Figure:
Abundances with p = 7, µ = 10−10, λ = 0, ν = 1.1,

uniform K (0), random X (0), 500 it in 39min10s



Hyperspectral Imaging

Dirt Grass Trees

Roofs Roads Metals

Shadows

Figure: Spectra



Hyperspectral Imaging

Example: San Diego Airport HYDICE Hypercube 400×400×158

• Y : 4002×158 data matrix

• K : 4002×p abundance matrix

• X : p×158 matrix containing the spectra of the basis elements



Hyperspectral Imaging with TV penalty

Road type 2 Grass Road type 1

Roofs Trees Road type 2

Figure:
Abundances with p = 6, λTV = 0.001, ε =

√
10−7,λ = 0, ν = 0.05,

uniform K (0), random X (0), 1000 it in 3h36min59s



Hyperspectral Imaging with TV penalty

Road type 2 Grass Road type 1

Roofs Tree Road type 2

Figure: Spectra



Hyperspectral Imaging with TV penalty

Road type 1 Road type 2 Grass Other 1

Roof Road type 3 Tree Other 2

Figure:
Abundances with p = 8, λTV = 0.001, ε =

√
10−7,λ = 0, ν = 0.05

uniform K (0), random X (0), 500 it in 2h17min39s



Hyperspectral Imaging with TV penalty

Road type 1 Road type 2 Grass

Roof Road type 3 Tree

Other 1 Other 2

Figure: Spectra



Generalization to the β-divergence

• Some of our convergence results can be extended to the case of the
β-divergence considered by Févotte and Idier (2011)

Dβ(Y ,HX) =
n

∑
i=1

m

∑
j=1

dβ

(
Yi,j ,(HX)i,j

)
with

dβ(y ,x) =



y ln
(y

x

)
− y + x if β = 1

y
x
− ln

(y
x

)
−1 if β = 0

1
β(β−1)

(
yβ +(β−1)xβ−βyxβ−1

)
if β 6= 0,β 6= 1

·

• Special cases (NB. The β-divergence is convex iff 1≤ β≤ 2)
β = 0: Itakura-Saito divergence ; β = 1: Kullback-Leibler divergence
β = 2: least-squares



Recent related (methodological) work

(with convergence proofs)

• Algorithms based on the SGP algorithm by Bonettini, Zanella,
Zanni 2009
(Prato, La Camera, Bonettini, Bertero 2013;
Ben Hadj, Blanc-Féraud and Aubert 2012)

• Inexact block coordinate descent
(Bonettini 2011)

• Underapproximations for Sparse Nonnegative Matrix
Factorization
(Gillis and Glineur 2010)

• Proximal Alternating Minimization and Projection Methods for
Nonconvex Problems
(Attouch, Bolte, Redont, Soubeyran 2010; Bolte, Combettes and
Pesquet 2010)

• Others?


