Texte de la 177e conférence de lUniversité de tous les savoirs donnée le 25 juin 2000.
La turbulence
par Uriel Frisch
Comme ma conférence se situe dans le cadre du thème " Perspectives sur les mathématiques actuelles ", je vais bien entendu vous parler aussi des aspects de la turbulence qui relèvent des mathématiques. Toutefois, le sujet est très interdisciplinaire et touche, comme vous le verrez, aussi à la physique, à la mécanique des fluides, à la météorologie et à l'astrophysique. Apres une brève introduction, je vous dirai deux mots de la formulation du problème, puis je vous parlerai de transition, de chaos, d'effet papillon, de mouvement Brownien, de chou-fleur et enfin du million de dollars que M. Clay nous a promis.
Le mot " turbulence " signifiait a l'origine " mouvements désordonnés d'une foule " (en latin turba signifie foule). Au Moyen Âge " turbulences " était utilisé comme synonyme de " troubles ". C'est ainsi que, sur un manuscrit en vieux français exposé au musée J. Paul Getty à Los Angeles, j'ai trouvé récemment un " Seigneur, délivrez nous des turbulences ". Comme vous le voyez, le sens a ensuite évolué.
Tout d'abord, la turbulence fait partie de l'expérience quotidienne : nul besoin d'un microscope ou d'un télescope pour observer les volutes de la fumée d'une cigarette, les gracieuses arabesques de la crème versée dans le café, ou les enchevêtrements de tourbillons dans un torrent de montagne [figure 1]. Ce que nous voyons, c'est très complexe, c'est très désordonné mais c'est très loin d'être le désordre total. Quand on regarde un écoulement turbulent, même en instantané, sur une photo, ce que l'on voit est autrement plus fascinant que l'espèce de chaos total obtenu, par exemple, en projetant une poignée de sable sec sur une feuille de papier. La turbulence, quand vous l'observez, est pleine de structures, en particulier de " tourbillons ", entités connues depuis l'Antiquité, étudiées et peintes par Léonard de Vinci (qui fut sans doute le premier à utiliser le mot de turbulence turbolenza en Italien pour décrire les mouvements complexes de l'eau ou de l'air). Je crois que c'est ce mélange intime d'ordre et de désordre qui en fait a la fois le charme et, il faut bien le dire, une des principales difficultés.
Figure 1
Il est très facile d'obtenir de la turbulence. En fait, chaque fois qu'un fluide s'écoule autour d'un obstacle, par exemple dans le sillage d'un bateau, et si la vitesse est suffisante, eh bien, on aura de la turbulence. On trouve donc de la turbulence un peu partout : la circulation du sang à l'intérieur des vaisseaux sanguins, les écoulements de l'air autour d'une automobile ou d'un avion responsable des fameuses " turbulences " pour lesquelles on nous demande d'attacher nos ceintures , ou encore les mouvements de l'atmosphère en météorologie, les mouvements du gaz constituant les étoiles comme notre Soleil, et enfin les fluctuations de densité de l'Univers primitif donnant naissance ultérieurement aux grandes structures de l'Univers actuel, comme les amas de galaxies [figure 2]. Sans toute cette turbulence, la pollution urbaine persisterait pendant des millénaires, la chaleur produite par les réactions nucléaires dans les étoiles ne pourrait pas s'en échapper sur une échelle de temps acceptable et les phénomènes météorologiques deviendraient prévisibles à très long terme.
Figure 2 : Amas de galaxies simulé par la Collaboration Virgo en 1996. Il sagit dune simulation tri-dimensionnelle comportant 256X256X256 particules.
Les équations qui gouvernent les mouvements des fluides, qu'ils soient turbulents ou non, ont été écrites pour la première fois par Claude Navier en 1823. Elles sont souvent appelées équations de Navier-Stokes en raison des perfectionnements apportes ultérieurement par George Stokes. En fait il s'agit essentiellement des équations de Newton, qui relient la force et l'accélération, équations qu'il faut appliquer à chaque parcelle du fluide ce qui fut fait pour la première fois par Léonard Euler il y a trois siècles. L'apport crucial de Navier a été d'ajouter aux équations d'Euler un terme de friction entre les diverses couches de fluide proportionnel au coefficient de viscosité et aux variations de vitesse [figure 3]. Ces équations, que l'ont sait par exemple résoudre a l'ordinateur, comportent encore des défis majeurs sur lesquels je vais revenir.
Figure 3
La turbulence est devenue une science expérimentale vers la fin du XIXe siècle quand l'anglais Osborne Reynolds a pu observer la transition du régime laminaire au régime turbulent. Vous savez que, dans un tuyau, si l'eau passe lentement, on aura des filets bien réguliers, c'est-à-dire un écoulement laminaire. Si elle va trop vite, il apparaît un très grand nombre de tourbillons et les pertes de charges dans le tuyau vont être très différentes. Reynolds put mettre en évidence des lois assez simples relatives à n'importe quel tuyau pour cette transition vers la turbulence ; il introduisit un nombre, appelé depuis nombre de Reynolds, qui n'est autre que le produit du diamètre du tuyau D et de la vitesse moyenne de l'écoulement dans le tuyau V, le tout divisé par la viscosité du fluide n (viscosité de lair environ 0,1 cm2/S, viscosité de leau 0,01 cm2/S) soit R = DV/n . Reynolds a montré que lorsque ce nombre dépasse une certaine valeur critique, de l'ordre de quelques milliers, alors tout d'un coup, l'écoulement devient turbulent. Des transitions analogues mais plus spectaculaires s'observent dans des écoulements ouverts derrière un cylindre [figure 4]. Léonard avait déjà vu le phénomène d'allée tourbillonnaire et l'avait représente de façon presque correcte [figure 5].
Figure 4 : Lallée tourbillonnaire de von Kármán.
Figure 5 : Recirculations à laval dun élargissement brusque par Léonard de Vinci.
Une caractéristique très importante de ces écoulements turbulents, qui apparaît dès la transition, est leur caractère chaotique. De façon plus précise, les écoulements turbulents apparaissent comme non prédicibles. Qu'est-ce que cela veut dire, non prédicibles ? Supposons que l'on connaisse de façon détaillée la configuration de l'écoulement à un instant donné. Alors, bien que cet écoulement soit régi par des équations bien déterminées, déterministes comme on dit, dans la pratique, il n'est pas possible de prédire l'évolution ultérieure pour des temps longs. Cette théorie du chaos, qui doit beaucoup à Henri Poincaré, à David Ruelle, à Edward Lorenz et à l'École russe de Kolmogorov et de ses élèves Vladimir Arnold et Yacov Sinai, a des implications très importantes en météorologie. Imaginons que, pour prévoir le temps, on mesure, à un instant donné, le vent, la pression, la température en tous les points de la planète et que l'on essaie de prédire l'évolution ultérieure du temps par un calcul à l'ordinateur. En fait, au bout d'un temps relativement court, vous ne pourrez plus prédire de façon détaillée dans quel état se trouve l'atmosphère, et cela quelle que soit la puissance des ordinateurs. On dit que la turbulence atmosphérique est non prédicible, elle finit par être sensible au moindre éternuement ou à un battement d'aile d'un papillon, comme l'a suggère le météorologue américain E. Lorenz. Son " effet papillon " est illustré sur la figure 6 où les courbes représentent non pas la trajectoire d'un papillon mais de façon symbolique la trajectoire du point représentatif de l'ensemble du système étudié. La courbe noire correspond au cas sans papillon et la courbe rouge à la trajectoire modifiée par la présence initiale d'un battement d'aile d'un papillon. Les deux trajectoire restent d'abord proches (pour le montrer j'ai répété la trajectoire noire en pointillé) puis s'écartent assez vite. Dans la pratique il n'est pas possible de prédire en détail le temps qu'il fera au-delà d'environ une dizaine de jours. Toutefois des progrès récents, qui doivent beaucoup aux travaux de Michael Ghil, Bernard Legras et Robert Vautard, rendent concevables des prévisions un peu plus grossières à l'échelle de plusieurs semaines, voire de plusieurs mois dans les régions tropicales.
Figure 6 : Leffet papillon.
En géophysique et en astrophysique des nombres de Reynolds gigantesques de centaines de millions et bien au-delà sont monnaie courante. Un point très intéressant est que, lorsqu'on augmente le nombre de Reynolds, ce qui peut se faire par exemple en diminuant sa viscosité, il apparaît de plus en plus de tourbillons de petite taille comme vous le voyez sur la figure 7 qui présente un jet turbulent. Chaque tourbillon est un peu comme une espèce de molécule. C'est ce que l'on appelle des " degrés de liberté ". Donc un grand nombre de Reynolds, cela veut dire qu'il y a beaucoup de degrés de liberté; c'est ce que l'on appelle le régime de turbulence développée. Il est facile d'observer ce régime dans une soufflerie de grande taille comme celles où l'on teste les maquettes d'autos et d'avions. On peut aussi maintenant réaliser des souffleries sur table qui exploitent les propriétés très particulières de l'Hélium à basse température, comme l'ont montré les travaux de Bernard Castaing à Grenoble et de Patrick Tabeling à Paris. Si on examine le comportement en fonction du temps de la vitesse en un point d'un tel écoulement mesuré par une sonde, on est frappé de l'analogie avec la courbe du mouvement Brownien [figure 8]. Cette dernière peut être imaginée comme le relevé en fonction du temps de la position d'un ivrogne arpentant la grand rue d'un village aux innombrables bistrots, ivrogne qui déambulerait tantôt dans un sens tantôt dans l'autre sans jamais se souvenir du sens précédent de sa marche au hasard. Il est facile de voir que le déplacement typique d'un tel ivrogne pendant un certain intervalle de temps est proportionnel non pas au temps écoulé mais à sa racine carrée (la même loi que celle qui régit les erreurs dans les sondages d'opinion). Dans un écoulement turbulent développe on trouve que la variation de la vitesse pendant un certain intervalle de temps est proportionnelle, non à la racine carrée mais à la racine cubique du temps écoulé. Cette loi en racine cubique, obtenue en fait par un argument dimensionnel lié à la conservation de l'énergie, fut prédite en 1941 par le mathématicien russe Andrei Kolmogorov et a été assez largement validée par des expériences et des simulations à l'ordinateur. En fait, des 1922 l'anglais Lewis Fry Richardson, avait pressenti ce qui se passait en présentant sa vision de la cascade d'énergie des grandes vers les petites échelles d'un écoulement turbulent, vision directement inspirée d'un poème du poète anglais Jonathan Swift :
" So, nat'ralists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller yet to bite 'em,
And so proceed ad infinitum. "
Figure 7 : Jet deau turbulent (daprès Dimotakis, Lye et Papantoniou, 1981).
Figure 8 : Mouvement brownien.
Plutôt que de me hasarder à traduire, je vous demande d'imaginer une grosse puce en train de sucer le sang de votre chien, sang qui va ici jouer le rôle que l'énergie cinétique joue en turbulence. Maintenant, imaginez que la grosse puce est à son tour assaillie de puces plus petites qui lui sucent le sang et ainsi de suite jusqu'a atteindre des puces tellement petites que le sang y est décomposé par des processus moléculaires. Il est clair que le monstre ainsi sorti de l'imagination de Swift constitue ce que Benoît Mandelbrot a appelé une fractale. Ces fractales peuvent être caractérisées par une dimension qui n'est pas un nombre entier. Les objets de dimension entière 0, 1, 2, 3 sont, par exemple, des points, des lignes, des surfaces et des volumes. Pour imaginer un objet de dimension fractale entre 2 et 3 pensez par exemple à un chou-fleur. La dimension fractale de la turbulence plus précisément ce que les mathématiciens appellent la dimension de Hausdorff de la dissipation d'énergie est très proche de trois. Si c'était vraiment trois, la théorie proposée par Kolmogorov en 1941 serait exacte, ce qui explique le succès qu'a rencontré cette théorie dans l'élaboration de modèles empiriques pour les calculs des ingénieurs.
Le calcul de telles dimensions à partir des équations fondamentales de la mécanique des fluides reste un problème ouvert. Toutefois des progrès importants ont été faits ces dernières années en utilisant des outils mathématiques empruntés à la théorie quantique des champs, appliqués à un modèle simplifié dû à l'américain Robert Kraichnan. Dans ce modèle on suppose l'écoulement turbulent connu et l'on cherche à caractériser les propriétés d'un traceur transporté par cette turbulence, comme illustré par la figure 9 de Antonio Celani, Alain Noullez et Massimo Vergassola, représentant un instantané de la concentration d'un traceur obtenu par simulation a l'ordinateur. On peut imaginer par exemple qu'il s'agit de la concentration d'un polluant lâché dans l'océan, On sait maintenant calculer les propriétés fractales de tels polluants, mais il faudra sans doute des années avant de pouvoir mener à bien une entreprise comparable pour les propriétés fractales de la turbulence elle-même.
Figure 9 : Concentration dun scalaire passif (polluant) transporté par un écoulement turbulent bi-dimensionnel du type que lon trouve dans latmosphère et locéan, simulé numériquement sur une grille 2048x2048. Le scalaire est fortement intermittent et possède des propriétés déchelle " anomales " qui ne peuvent être prédites par lanalyse dimensionnelle. Concentrations les plus faibles en bleu et les plus fortes en jaune.
Figure de Celani (A.), Noullez (A.) et Vergassola (M.), Observatoire de la Côte dAzur, laboratoire G.-D. Cassini , UMR 6529 ; simulations à lIDRIS, CNRS.
Dans un écoulement turbulent, si la variation temporelle de la vitesse en un point est généralement bien donnée par la loi en racine cubique de Kolmogorov, on sait depuis longtemps que ce n'est pas toujours vrai. Déjà en 1843 Adhémar Barré de Saint Venant observe que " les écoulements dans les canaux de grande section, ceux dont nous dirions aujourd'hui qu'ils possèdent un grand nombre de Reynolds présentent des ruptures, des tourbillonnements et autres mouvements compliques ". Le point intéressant ce sont les ruptures. C'est un fait expérimental que la vitesse de l'écoulement peut, à l'occasion, varier de façon considérable entre deux points voisins. Si par hasard l'échelle de cette variation devenait comparable à la distance parcourue par les molécules du fluide entre deux collisions successives, alors il faudrait repenser les fondements mathématiques des équations de Navier-Stokes. La façon traditionnelle d'obtenir ces équations suppose en effet une forte séparation entre le monde microscopique des molécules et le monde, appelé " macroscopique " où le fluide est traite comme un milieu continu.
Cela m'amène au grand défi mathématique qui fait l'objet d'un des sept prix d'un montant d'un million de dollars annoncés récemment par la fondation Clay au Collège de France. Le problème est de montrer que les équations de Navier-Stokes conduisent à un problème " bien posé ". Cela veut dire que si l'on connaît le mouvement du fluide à un instant initial on veut pouvoir montrer qu'il y a une solution unique à tout instant ultérieur. Notez que cette fois le problème n'est pas celui des erreurs mais de l'unicité de la solution. Ce problème a été résolu dans les années trente par Jean Leray dans le cas de deux dimensions d'espace (ce qui est pertinent en météorologie et en océanographie). Le problème est beaucoup plus difficile en dimension trois. Je vais essayer maintenant de donner un tout petit aperçu de la difficulté, sans utiliser de formalisme mathématique. Tout d'abord il faut noter que dans un fluide qui n'est pas en mouvement uniforme les filets fluides frottent les uns contre les autres, en raison de la viscosité, ce qui tend à ralentir leur mouvement relatif. À faible vitesse, donc à faible nombre de Reynolds (ce dernier est proportionnel à la vitesse), les effets du frottement visqueux sont très importants pour tous les tourbillons présents dans l'écoulement. Ce frottement rabote tout et l'on sait démontrer ce n'est pas très difficile que le problème est bien posé. En revanche, à grand nombre de Reynolds, les effets du frottement visqueux sont limités aux plus petits tourbillons et le problème est proche du problème du fluide parfait dans lequel la viscosité est ignorée. On sait montrer que ce dernier problème est bien posé pendant un temps court mais pas au-delà. En gros, le mieux qu'on sait démontrer pour l'instant, c'est que le fluide parfait ne se comporte pas mieux qu'un mobile dont l'accélération serait proportionnelle au carré de la vitesse, hypothèse qui conduit à une augmentation catastrophique de la vitesse qui peut devenir infinie au bout d'un temps assez court [figure 10]. Certaines simulations numériques à l'ordinateur suggèrent que le fluide parfait est en réalité bien plus sage, n'explose pas, et conduit de ce fait à un problème bien posé pour des temps arbitrairement longs. Il est possible aussi que le fluide parfait explose rapidement mais que l'effet du frottement visqueux empêche cette explosion. C'est précisément ce qui se passe dans la théorie de 1941 de Kolmogorov, mais pas nécessairement dans la réalité.
Figure 10 : Laccélération est proportionnelle au carré de la vitesse : la vitesse explose au bout dun temps fini.
En conclusion, je voudrais souligner que la turbulence a un statut très particulier dans la physique contemporaine. Elle est souvent considérée comme un des grands problèmes ouverts de la physique, mais contrairement à d'autres problèmes frontières de la physique, les phénomènes auxquels on s'intéresse en turbulence ne se situent ni dans l'infiniment petit ni, en général, dans l'infiniment grand. Ces phénomènes sont parfaitement décrits par la mécanique de Newton, sans qu'il soit nécessaire de faire intervenir la mécanique quantique ou la mécanique relativiste, c'est-à-dire les idées modernes de la physique sur l'espace, le temps et la matière. Comme vous le voyez, la physique, dite " classique ", celle qui est enseignée au lycée, comporte encore quelques grands mystères.