

Journées du GREX, Nice, Octobre 2004

INTERFEROMETRIE ATOMIQUE COHERENTE POUR MESURES DE PRECISION DANS L'ESPACE

Yann LE COQ
Institut d'Optique, Orsay, France

I) Interférométrie atomique et sources ultra-froides

- → Métrologie avec des atomes froids
- → Nécessite de la chute libre
- → Sources ultra-froides, CBE et lasers à atomes

II) Spectroscopie de Bragg d'un condensat de Bose-Einstein

- → Principe de la diffraction de Bragg
- → Implémentation expérimentale
- → Mesures

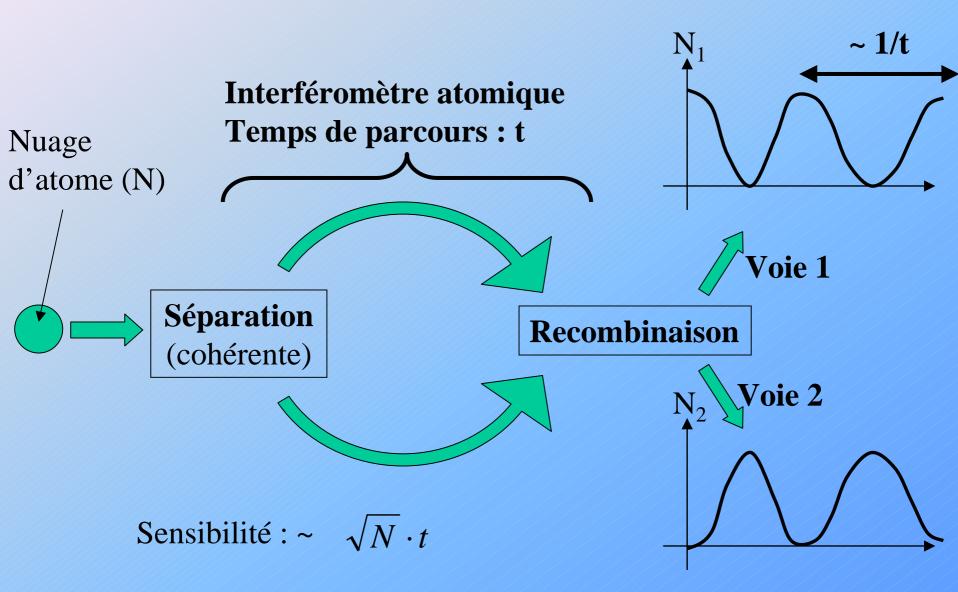
III) Limites dues aux interactions

- → Erreurs systématiques et élargissements
- → Perte de cohérence
- → Expansion rapide en chute libre

I) Interférométrie atomique et sources ultra-froides

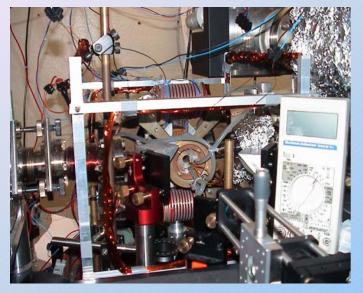
- → Métrologie avec des atomes froids
- → Nécessite de la chute libre
- → Sources ultra-froides, CBE et lasers à atomes

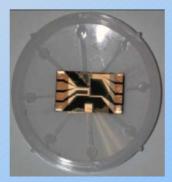
II) Spectroscopie de Bragg d'un condensat de Bose-Einstein

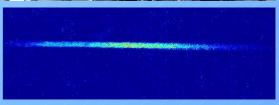

- → Principe de la diffraction de Bragg
- → Implémentation expérimentale
- → Mesures

III) Limites dues aux interactions

- → Erreurs systématiques et élargissements
- → Perte de cohérence
- → Expansion rapide en chute libre


Métrologie avec des atomes froids




Intérêt de la chute libre

On sait piéger les atomes dans des pièges non-dissipatifs

Pièges magnétiques

Pièges optiques

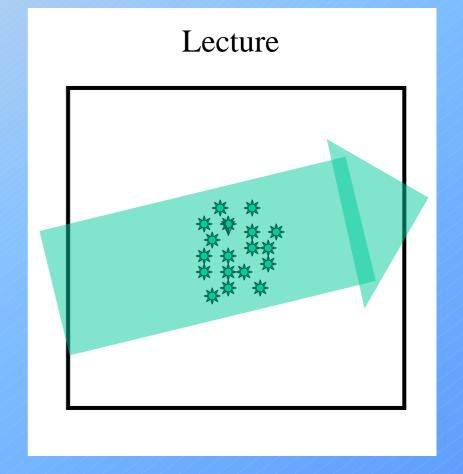
→ Interférométres guidés ?

MAIS

Perturbation mal maîtrisée
Perte de cohérence (diffusion de phase)

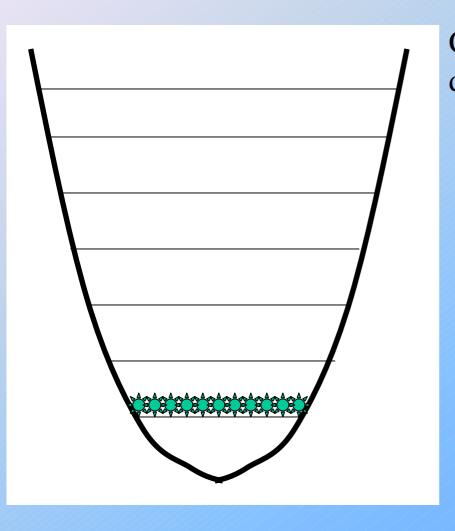
→ exactitude

> sensibilité



Intérêt des sources ultra froides pour la métrologie en micro-gravité

Sources froides « classiques »


Lecture

Sources Ultra-froides

Le condensat de Bose-Einstein : Source ultra froide ultime

CBE = étape ultime du refroidissement d'un gaz d'atomes piégés

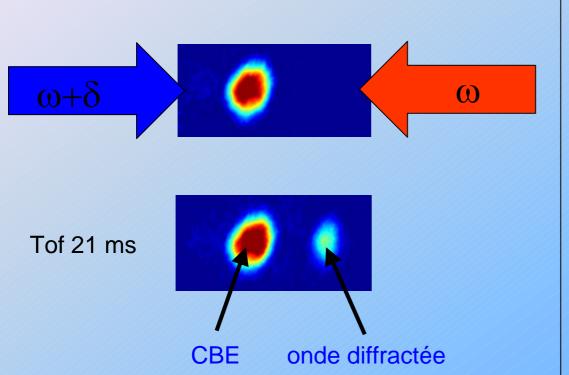
Intérêts:

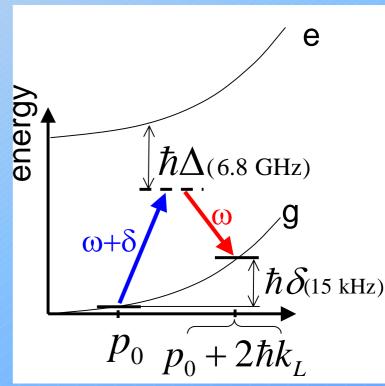
- ➤T= 0 K, fortes densités => temps d'interractions interféromètre **7** à RSB constant
- ➤ Cohérence (1 seul état peuplé) → quelles utilisations possibles ?
- Mesure directe l'interférogramme
- squeezing en phase, ...?

I) Interférométrie atomique et sources ultra-froides

- → Métrologie avec des atomes froids
- → Nécessite de la chute libre
- → Sources ultra-froides, CBE et lasers à atomes

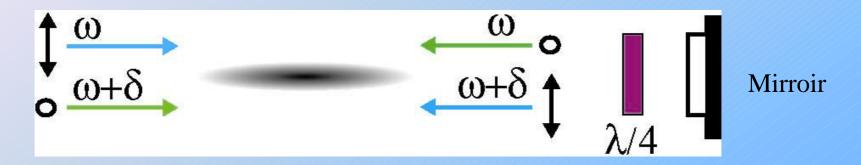
II) Spectroscopie de Bragg d'un condensat de Bose-Einstein


- → Principe de la diffraction de Bragg
- → Implémentation expérimentale
- → Mesures


III) Limites dues aux interactions

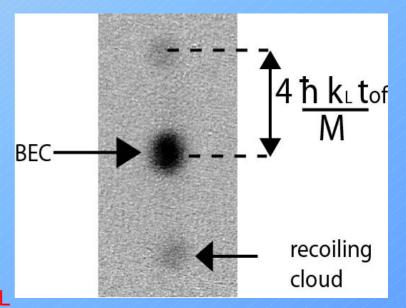
- → Erreurs systématiques et élargissements
- → Perte de cohérence
- → Expansion rapide en chute libre

Principe de la diffraction de Bragg



M. Kozuma et al., PRL 82, 871 (1999) J. Stenger et al., PRL 82, 4569 (1999)

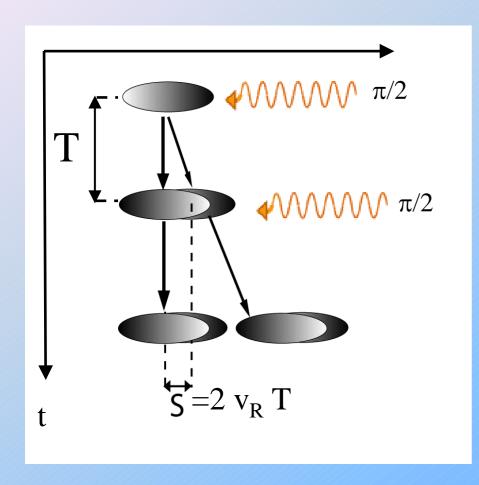
Mise en oeuvre expérimentale

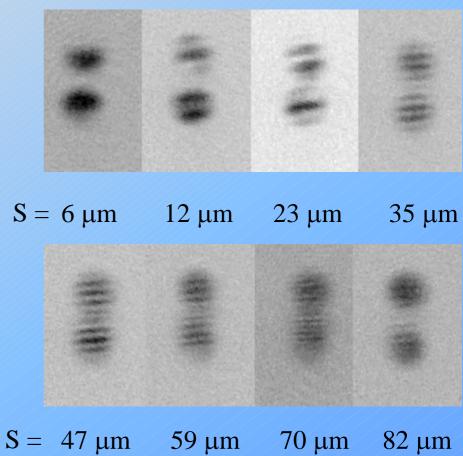


2 AOM's indépendents (80 MHz) avec driver très stables

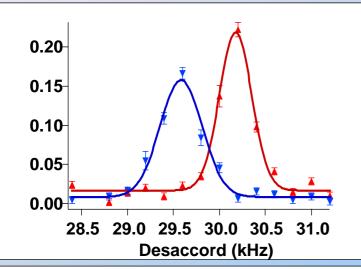
Faisceaux co-propageants
Réjection de mode commun
Un seul miroir à stabiliser

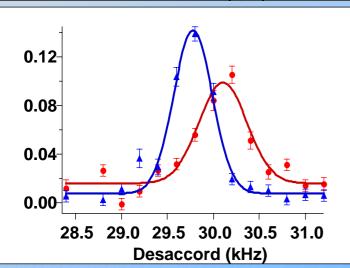
Deux réseaux optiques


→ 2 ordres diffractés +/- 4 k_L



Bragg à 4 photons pour plus grand transfert d'impulsion


Un exemple d'interféromètre à CBE



Mesure de la vitesse recul

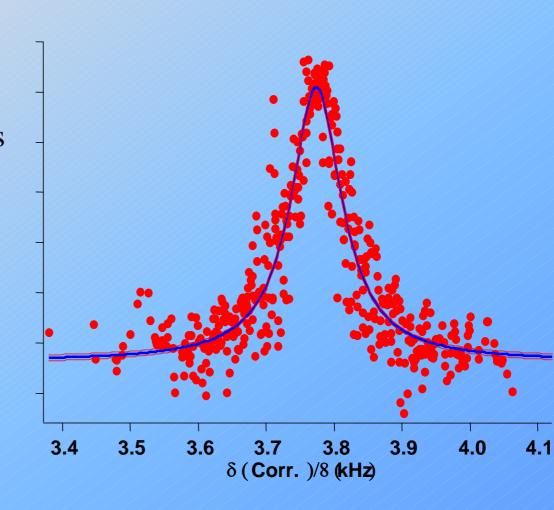
2 spectres provenant des deux réseaux opposés

Rejection de mode commun de l'effet Doppler (vitesse initiale du CBE)

Valeur centrale = 4x énergie de recul

Mesure de la vitesse recul

Moyennage sur 3000 points donne : $h/m = \lambda^2/4 \times \delta v$


Valeur moyenne:

 4.59468 ± 0.00006

nJ.s/kg

Valeur attendue (CODATA)

4.591359.10⁻⁹ nJ.s/kg

I) Interférométrie atomique et sources ultra-froides

- → Métrologie avec des atomes froids
- → Nécessite de la chute libre
- → Sources ultra-froides, CBE et lasers à atomes

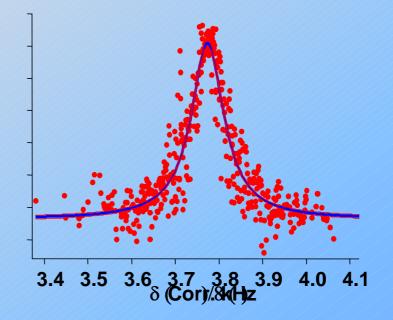
II) Spectroscopie de Bragg d'un condensat de Bose-Einstein

- → Principe de la diffraction de Bragg
- → Implémentation expérimentale
- → Mesures

III) Limites dues aux interactions

- → Erreurs systématiques et élargissements
- → Perte de cohérence
- → Expansion rapide en chute libre

Mesure de la vitesse recul : effet des interactions


Moyennage sur 3000 points donne : $h/m = \lambda^2/4 \times \delta v$

Valeur moyenne:

4.59468 ± 0.00006 nJ.s/kg

Valeur attendue (CODATA)

4.591359... nJ.s/kg

Condition de résonance locale :

$$E_i = p_i^2 / 2m + U \cdot \vec{n(r)}$$

$$E_f = p_f^2 / 2m + 2 \cdot \vec{U \cdot n(r)}$$

$$h/m = \lambda^2/4 \cdot \left(\delta \nu - 1/2 \cdot U \cdot n(\vec{r})\right)$$

Ecart à la théorie :

Mesuré:

0.00332 nJ.s/kg

Effet des interactions (calculé)

 $0.0033 \pm 0.0003 \text{ nJ.s/kg}$

Les limites due aux interactions

- → Biais résiduels difficiles à connaître avec grande précision (mesure de U, mesure de N ?)
- → Diminution de la cohérence (inhomogénéité des effets des interactions)
- → Expansion balistique dominé par l'effet des intéractions

Solution: diminuer les densités atomiques?

(mais refroidissement inefficace à faible densité)

(comment atteindre l'équilibre thermodynamique?)

I) Interférométrie atomique et sources ultra-froides

- → Métrologie avec des atomes froids
- → Nécessite de la chute libre
- → Sources ultra-froides, CBE et lasers à atomes

II) Spectroscopie de Bragg d'un condensat de Bose-Einstein

- → Principe de la diffraction de Bragg
- → Implémentation expérimentale
- → Mesures

III) Limites dues aux interactions

- → Erreurs systématiques et élargissements
- → Perte de cohérence
- → Expansion rapide en chute libre

Conclusion, perspectives

Sources ultra froides dans l'espace

→ longs temps d'intérogation, bon RSB

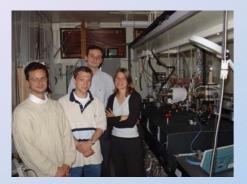
Applications

- → Mesures de constantes fondamentales
- → horloges atomiques
- → senseurs de champs gravito-inertiels

Limites des intéractions : Fermions dégénérés ?

Principe de Pauli → pas de collisions ondes paires (s,d, etc...)

Très basse T → énergies collisionnelles faibles (seulement onde s)



Gaz de fermions ultra froid sans intéractions !!!

(Problème : cohérence limitée en n-1/3)

Collaborations

P. Bouyer (CNRS)

A. Aspect (CNRS)

M. Fauquembergue (DGA)

J.F. Rioux

W. Guérin (DGA)

S. Schwartz (Thalès)

F. Gerbier (Mainz - I. Bloch)

S. Richard (DGA)

JH. Thywissen (U. Toronto)

M. Hugbart (IXSEA)

J. Retter (U.E.)

A. Varon

P. Touboul (ONERA)

A. Bresson (ONERA)

S. Boussen (ONERA)

A. Landragin (SYRTHE)

C. Bordé (LPL)

