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Hyperspectral imaging (and mixing)  
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Linear mixing model (LMM) 

Incident radiation interacts only  

with one component 

(checkerboard type scenes) 

Hyperspectral linear  

unmixing 
Estimate  
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Hyperspectral unmixing 

Alunite Kaolinite Kaolinite #2 

VCA  [Nascimento, B-D, 2005] 

AVIRIS of Cuprite,  

Nevada, USA 

 R – ch. 183 (2.10 m) 

 G – ch. 193 (2.20 m) 

 B – ch. 207 (2.34 m) 
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NIR tablet imaging 

6 
[Lopes et al., 2010] 



Spectral linear unmixing (SLU) 

Subject to the LMM: 

ANC: abundance 

          nonnegative 

          constraint 
ASC: abundance 

          sum-to-one 

          constraint 

 SLU is a blind source separation problem (BSS) ) 

Given N spectral vectors of dimension  m: 

Determine: 

 The mixing matrix M (endmember spectra) 

 The fractional abundance vectors  
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Geometrical view of SLU 

 probability simplex   (    ) 

(p-1) - simplex 

Inferring  M       inferring the vertices of the simplex 
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Pure pixels   

Minimum volume simplex (MVS) 

MVS works MVS works MVS does not work 

No pure pixels   No pure pixels   
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[B-D et al., IEEE JSTATRS, 2012] 



Sparse regression-based SLU 

 Unmixing: given y and A, find the sparsest solution of 

 Advantage: sidesteps endmember estimation 

 Disadvantage: Combinatorial  problem !!! 

  Key observation: Spectral vectors can be expressed as linear   

     combinations  of a few pure spectral signatures obtained from a    

     (potentially very large) spectral  library 

[Iordache, B-D, Plaza, 11, 12] 
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Sparse reconstruction/compressive sensing 

Key result: a sparse signal is exactly recoverable from an  

underdetermined linear system of equations in a computationally  

efficient manner via convex/nonconvex programming 

 [Candes, Romberg, Tao, 06], [Candes,Tao, 06], [Donoho, Tao, 06], [Blumensath, Davies, 09] 

  is the unique solution of                 if  

  is the solution of the optimization problem 

NP-hard 
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Bayesian CS 

 

CoSaMP – Compressive Sampling 

Matching Pursuit 

 

IHT – Iterative Hard Thresholding 

 

 

GDS - Gradient Descent  Sparsification 

 

 

HTP – Hard Thresholding Pursuit 

  

 

MP - Message Passing 

 

[Blumensath, Davies, 09] 

[Foucart, 10] 

[Villa Schniter, 2012] 

[Ji et al., 2008] 

[Needell, Tropp, 2009] 

[Garg Khandekar, 2009] 

  Optimization strategies to cope with P0 NP-hardness 

(BP – Basis Pursuit)                        [Chen et al., 2001] 

Sparse reconstruction/compressive sensing 

Convex relaxation  Approximation algorithms 

(BPDN – BP denoising)                        

(LASSO)                        [Tibshirani, 1996] 
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Exact recovery of sparse vectors 

  Many SR algorithms ensure exact recovery provided that: 

This condition is satisfied for random matrices provided that 

Algorithm BP HTP CoSaMP GDP IHT 

Ratio 9.243 9 27.08 18 12 

Recovery guarantees: linked with the restricted isometric property (RIP)  

Restricted isometric constant:  

[Foucart, 10] (from                  ) 
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Example: Gaussian matrices; signed signals 
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BPDN

EM-GM-AMP

SNR = 25 dB

SNR = 100 dB

EM-GM-AMP   

                      [Villa Schniter, 2012] 

Algorithms: (BPDN – SUnSAL)                        [B-D, Figueiredo, 2010] EM-BG-AMP 
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Example: Gaussian matrices; non-negative signals 
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Hyperspectral libraries 
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Hyperspectral libraries  exhibit poor RI constants 

 

(Mutal coherence close to 1                                         )       [Iordache, B-D, Plaza, 11, 12]  
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Example: Hyperspectral library; non-negative signals 
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USGS 

Phase transition curves  

21 

   undersamplig factor fractional sparsity 

Gaussian  

matrices 

BPDN 

EM-BG-AMP 

(enough for many  hyperspectral applications) 

[Donoho, Tanner, 2005] 

Results linked with the  

k-neighborliness property of 

polytopes 

SNR = 1 

SNR = 30 dB 
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Real data – AVIRIS Cuprite  

[Iordache, B-D, Plaza, 11, 12]  
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Sparse reconstruction of hyperspectral data: Summary 

Bad news: Hyperspectral libraries have poor RI constants   

Surprising fact: Convex programs (BP, BPDN, LASSO, …) yield  much  

better empirical performance than non-convex state-of-the-art  

competitors 

Good news: Hyperspectral mixtures are highly sparse, very often p · 5  

Directions to improve hyperspectral sparse reconstruction 

 

 Structured sparsity + subspace structure 

     (pixels in a give data set share the same support) 

 

  Spatial contextual information  

      (pixels belong to an image) 
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Beyond l1 pixelwise regularization 

Rationale:  introduce  new sparsity-inducing regularizers to  

counter the sparse regression limits imposed  by the high  

coherence of the hyperspectral libraries.  

Let’s rewrite the LMM as    

image band 

regression coefficients 

of pixel j  
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total Variation of  

i-th band 

Constrained total variation  sparse regression (CTVSR) 

[Iordache, B-D, Plaza, 11] 

[Zhao, Wang, Huang, Ng, Plemmons, 12] Related work 



Ilustrative examples with simulated data : SUnSAL-TV 

Original data cube 

Original abundance of EM5 

SUnSAL estimate  

SUnSAL-TV estimate  
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multiple measurements 
share the same support 
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[Turlach, Venables, Wright, 2004] [Iordache, B-D, Plaza, 11, 12] 

Constrained colaborative sparse regression (CCSR) 

Theoretical guaranties (superiority of multichanel) :  the probability of recovery 

failure decays exponentially in the number of channels. [Eldar, Rauhut, 11] 
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If                              , the above bound is achieved using 

the  multiple sinal classification (MUSIC) algorithm  

  

Multiple measurements 
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The multiple measurement  vector (MMV) problem 

- number of non-null rows of   

[Feng, 1997], [Chen, Huo, 2006],  

[Davies, Eldar, 2012] 

MMV has a unique solution iff 

MMV gain 
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Endemember identification with MUSIC 

(noiseless measurements) Y=AX

2) Compute                                           and set 

with 

1) Compute                        , the first p eigenvalues of 
                                  

MUSIC algorithm 



detected endmembers 

A – USGS (¸ 3±) p = 10, N=5000, X - uniform over the simplex, SNR = 1,   
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Examples (simulated data) 
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Examples (simulated data) 

colored  noise, SNR = 25 dB 

cause of the large projection errors:  poor identification of the 

subspace signal   

cure: identify the signal subspace 
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Signal subspace identification 

colored  noise, SNR = 25 dB (incorrect signal subspace) 
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colored  noise, SNR = 25 dB (signal subspace identified  

with HySime, [BD, Nascimento, 2008]) 
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2) Compute                                           and define 
  
      the index set 

Proposed MUSIC – Colaborative SR algorithm  

[Kim, Lee, Ye, 2012] Related work: CS-MUSIC 

(N < k and iid noise) 

3) Solve the colaborative sparse regression optimization  

[B-D, Figueiredo, 2012] 

1) Estimate  the signal subspace                  using, e.g. 
     the HySime algorithm.                        

MUSIC-CSR algorithm [B-D, 2012] 



acummulated  

abundances 
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MUSIC – CSR results  

A – USGS (¸ 3±), Gaussian shaped  noise, SNR = 25 dB, k = 5, m = 300,  

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

50

100

150

200

250

300

true  

endmembers 

SNR = 11.7 dB  

computation time ' 10 sec 
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• size: 350x350 pixels 

• spectral library: 302 materials  

(minerals) from the USGS library 

• spectral bands: 188 out of 224  

        (noisy bands were removed) 

• spectral range: 0.4 – 2.5 um 

• spectral resolution: 10 nm 

• “validation” map: Tetracorder*** 

Results with CUPRITE 

0 50 100 150 200 250 300 350 400 450
0
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0.15

0.2
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Note: Good spatial distribution of the endmembers 

Processing times: 2.6 ms/pixel using the full library; 0.22ms/pixels using the 

pruned library with 40 members 

Results with real data  



Convex optimization problems in SLU 

Constrained least squares (CLS) 

Constrained sparse regression (CSR) 

Fully constrained least squares (FCLS) 
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ANC ASC 
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CBP denoising  (CBPDN) 

Convex optimization problems in SLU 

Constrained basis pursuit (CBP) 

Constrained total variation (CTV) 

Constrained colaborative sparse regression (CCSR) 
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Convex optimization problems in SLU 

Structure of the optimization problems:  

convex functions  

convex set 

Source of difficulties:  large scale (                     );   nonsmoothness  
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Line of attack: alternating direction method of multiplies (ADMM) 

 [Glowinski, Marrocco, 75], [Gabay, Mercier, 76] 



Alternating Direction Method of Multipliers (ADMM) 

Unconstrained (convex) optimization problem: 

ADMM  [Glowinski, Marrocco, 75], [Gabay, Mercier, 76] 

Interpretations:  variable splitting + augmented Lagrangian + NLBGS; 

                          Douglas-Rachford splitting on the dual  [Eckstein, Bertsekas, 92]; 

                          split-Bregman approach [Goldstein, Osher, 08] 
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A Cornerstone Result on ADMM   [Eckstein, Bertsekas, 1992] 

Consider  the problem  

Let      and        be closed, proper, and convex and     have full column rank. 

The theorem also allows for inexact  minimizations, as long as the  

errors are absolutely summable. 

Let                                      be the sequence produced by ADMM, with             ;  

           , then, if the problem has a solution, say      ,  then 

   

[He, Yuan, 2011] Convergence rate:  
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Proper, closed, convex functions Arbitrary matrices 

We adopt: 

Consider  a more general problem  

There are many ways to write          as 

ADMM for two or more functions 
[Figueiredo, B-D, 09] 

Another approach in  [Goldfarb, Ma, 09, 11] 
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Applying ADMM to more than two functions 

Conditions for easy applicability: 

inexpensive  matrix  inversion 

inexpensive proximity operators 
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Constrained sparse regression (CSR) 

Problem  

Equivalent formulation   

indicator of the first 

orthant Template: 

Spectral unmixing by split augmented Lagrangian (SUnSAL) [B-D, Figueiredo, 2010] 

Related algorithm (split-Bregman view)  in [Szlam, Guo, Osher, 2010] 

Matrix inversion can be precomputed  

(typical sizes  200~300  x  500~1000) 

Proximity operators:      Mapping:       

        45 



Concluding remarks 

 Sparse regression framework, used with care, yields effective 

     hyperspectral  unmixing results. 

  Critical  factors 
 High mutual coherence of the hyperspectral libraries 

 Non-linear mixing and noise 

 Acquisition and calibration of hyperspectral libraries 

  Favorable factors 
 Hyperspectral mixtures are highly sparse 

 ADMM is a very flexible and efficient tool  solving the hyperspectral 

     sparse regression optimization problems 
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