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Nonnegative Matrix Factorization (NMF)
Given a matrix M ∈ Rp×n+ and a factorization rank r � min(p, n), find

U ∈ Rp×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij . (NMF)

NMF is a linear dimensionality reduction technique for nonnegative data :

M(:, i)︸ ︷︷ ︸
≥0

≈
r∑

k=1

U(:, k)︸ ︷︷ ︸
≥0

V (k, i)︸ ︷︷ ︸
≥0

for all i.

Why nonnegativity?

→ Interpretability: Nonnegativity constraints lead to easily interpretable
factors (and a sparse and part-based representation).
→ Many applications. image processing, text mining, hyperspectral
unmixing, community detection, clustering, etc.
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Example 1: Blind hyperspectral unmixing

Figure : Urban hyperspectral image with 162 spectral bands and 307-by-307
pixels.
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Example 1: Blind hyperspectral unmixing with NMF

� Basis elements allow to recover the different endmembers: U ≥ 0;

� Abundances of the endmembers in each pixel: V ≥ 0.
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Urban hyperspectral image
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Urban hyperspectral image

Figure : Decomposition of the Urban dataset.

MAHI ’14 Preconditioning for Pure-Pixel Identification 7



Urban hyperspectral image

Figure : Decomposition of the Urban dataset.

MAHI ’14 Preconditioning for Pure-Pixel Identification 7



Urban hyperspectral image

Figure : Decomposition of the Urban dataset.

MAHI ’14 Preconditioning for Pure-Pixel Identification 7



Example 2: topic recovery and document
classification

� Basis elements allow to recover the different topics;
� Weights allow to assign each text to its corresponding topics.

MAHI ’14 Preconditioning for Pure-Pixel Identification 8



Example 2: topic recovery and document
classification

� Basis elements allow to recover the different topics;
� Weights allow to assign each text to its corresponding topics.

MAHI ’14 Preconditioning for Pure-Pixel Identification 8



Example 2: topic recovery and document
classification

� Basis elements allow to recover the different topics;
� Weights allow to assign each text to its corresponding topics.

MAHI ’14 Preconditioning for Pure-Pixel Identification 8



Exemple 3: feature extraction and classification

U ≥ 0 constraints the basis elements to be nonnegative.

Moreover V ≥ 0 imposes an additive reconstruction.

The basis elements extract facial features such as eyes, nose and lips.
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Can we only solve NMF problems?
Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find

U ∈ Rm×rand V ∈ Rr×n such that

min
U≥0,V≥0

||M − UV ||2F =
∑
i,j

(M − UV )2ij . (NMF)

� NMF is NP-hard [V09], and highly ill-posed [G12].

� In practice, it is often satisfactory to use regularization along with
locally optimal solutions for further analysis of the data.

� However, under the pure-pixel assumption, the problem becomes
tractable.

[V09] Vavasis, On the Complexity of Nonnegative Matrix Factorization, SIAM J. on
Optimization, 2009.
[G12] G., Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing, J.
of Machine Learning Research, 2012.
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Pure-Pixel Assumption a.k.a. Separability

Separability of M = there exists an NMF (U, V ) ≥ 0 with M = UV where
each column of U is equal to a column of M . [AGKM12]

This is the pure-pixel assumption: columns of U are the spectral
signatures of the endmembers present in the hyperspectral image.

[AGKM12] Arora, Ge, Kannan, Moitra, Computing a Nonnegative Matrix Factorization –
Provably, STOC 2012.

Another important application. In document classification: for each
topic, there is a ‘pure’ word used only by that topic (an ‘anchor’ word).
[KSK13] Kumar, Sindhwani, Kambadur, Fast Conical Hull Algorithms for Near-separable
Non-Negative Matrix Factorization, ICML 2013.
[A+13] Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu, A Practical Algorithm for Topic
Modeling with Provable Guarantees, ICML 2013.
[DRIS13] Ding, Rohban, Ishwar, Saligrama, Topic Discovery through Data Dependent and
Random Projections, ICML 2013.
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Geometric Interpretation
The columns of U are the vertices of the convex hull of the columns of M :

M(:, j) =

r∑
k=1

U(:, k)V (k, j) ∀j, where
r∑

k=1

V (k, j) = 1, V ≥ 0.
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Geometric Interpretation with Noise
The columns of U are the vertices of the convex hull of the columns of M :

M(:, j) ≈
r∑

k=1

U(:, k)V (k, j) ∀j, where
r∑

k=1

V (k, j) = 1, V ≥ 0.

Goal: theoretical analysis of the robustness to noise of pure-pixel
search algorithms
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Key Parameters: Noise and Conditioning
We assume

M = U [Ir, V
′]Π +N,

where Π is a permutation and N is the noise.

We will assume that the noise is bounded (but otherwise arbitrary):

||N(:, j)||2 ≤ ε, for all j,

and some dependence on the conditioning κ(U) = σmax(U)
σmin(U) is unavoidable:
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Successive Projection Algorithm (SPA)

0: Initially K = ∅.
For i = 1 : r
1: Find j∗ = argmaxj ||M(:, j)||.
2: K = K ∪ {j∗}.
3: M ←

(
I − uuT

)
M where u = M(:,j∗)

||M(:,j∗)||2 .
end
∼modified Gram-Schmidt with column pivoting.

Theorem. If ε ≤ O
(
σmin(U)√
rκ2(U)

)
, SPA satisfies

||U−M(:,K)|| = max
1≤k≤r

||U(:, k)−M(:,K(k))|| ≤ O
(
εκ2(U)

)
.

Advantages. Extremely fast, no parameter.

Drawbacks. Requires U to be full rank; bound is weak.
[GV14] G., Vavasis, Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix
Factorization, IEEE Trans. Patt. Anal. Mach. Intell. 36 (4), pp. 698-714, 2014.
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Pre-conditioning for More Robust SPA
Observation. Pre-multiplying M preserves separability:

P M = P (U [Ir, V
′]Π +N) = (PU) [Ir, V

′]Π + PN.

Ideally, P = U−1 so that κ(PU) = 1 (assuming m = r).
Solving the minimum volume ellipsoid centered at the origin and
containing all the columns of M (which is SDP representable)

min
A∈Sr+

log det(A)−1 s.t. mj
TAmj ≤ 1 ∀ j,

allows to approximate U−1: in fact, A∗ ≈ (UUT )−1.

Theorem. If ε ≤ O
(
σmin(U)
r
√
r

)
, preconditioned SPA satisfies

||U −M(:,K)|| ≤ O (εκ(U)).

[GV13] G., Vavasis, SDP-based Preconditioning for More Robust Near-Separable NMF,
arXiv:1310.2273.
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Geometric Interpretation

Figure : Geometric Interpretation of the SDP-based Preconditioning.

See also Mizutani, Ellipsoidal Rounding for Nonnegative Matrix
Factorization Under Noisy Separability, JMLR, 2014.
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Computational Cost

Solving the minimum volume ellipsoid centered at the origin and
containing all the columns of M is SDP representable:

min
A∈Sr+

log det(A)−1 s.t. mj
TAmj ≤ 1 ∀ j.

There are O(r2) variables and n constraints. Using an active-set method
(only O(r2) constraints active at optimality), one can solve the problem
for r ∼ 50 on a standard laptop.

Can we do something faster?
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Faster Preconditioning 1: Pre-whitening

M = U [Ir V
′]Π
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Faster Preconditioning 1: Pre-whitening

M = U [Ir V
′]Π +N ≈ UrΣrV

T
r

Prewhitening: P = Σ−1r UTr (noise filtering + whitening).
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Pre-whitening - Robustness

Computational cost. Compute the truncated SVD of M in O(mnr2) +
SPA in O(nr2). This is much cheaper.

Theorem. If ε ≤ O
(
σmin(U)√
rn3/2

)
, SPA satisfies

||U −M(:,K)|| ≤ O
(
εn3/2κ(U)

)
.

Worst-case scenario is extremely bad as, in practice, n ∼ 106.

The model does not rule out one endmember being present in a very small
proportion (e.g., only present in one pixel, the pure one).
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Pre-whitening - Generative Model
Model: U full rank, V (:, j) Dirichlet (α ∈ Rr+), Gaussian Noise, n→∞.
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Pre-whitening - Generative Model

Let β =
(
αmax+||α||22

αmin

)3/2
. If ε ≤ O

(
σmin(U)√

rβ

)
, SPA satisfies

||U −M(:,K)|| ≤ O (εκ(U)β).

The parameter β is large when αmax � αmin.

If endmembers are present in similar proportions: γ ≈ αi ∀i, we have

β ≈ (1 + rγ)3/2.

→ This makes sense: robustness decreases (β increases) when r and γ
increase.
→ If γ ≈ O(1): slightly less robust than SDP (r2 vs. r3/2).

→ If γ ≈ 1
r : slightly more robust than SDP (r vs. r3/2).

Conclusion: pre-whitening is effective when endmembers are present in
similar proportions.
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Faster Preconditioning 2: SPA-based

M = U [Ir V
′]Π
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Faster Preconditioning 2: SPA-based

M = U [Ir V
′]Π +N ≈M(:,K)Ṽ

SPA-based: P = M(:,K)† (pinv), where K = SPA(M, r).
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SPA-based Preconditioning: Robustness

Computational cost. Compute SPA twice in O(mnr) + SVD of an
r-by-r matrix in O(r3). This is extremely cheap, like SPA.

Theorem. If ε ≤ O
(
σmin(U)√
rκ2(U)

)
, SPA satisfies

||U −M(:,K)|| ≤ O (εκ(U)).

The noise level ε allowed is the same as SPA.

The error on U is decreased by a factor κ(U) and matches the SDP
preconditioning.
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Summary – Faster Preconditionings

1. Pre-whitening. Given the truncated SVD M ≈ UrΣrV
T
r , premultiply

with UTr (noise filtering) and then Σ−1r (whitening) to keep V T
r :

I sensitive to important differences between abundances of endmembers,
I provably behaves similarly as the SDP under a standard generative

model [GM14].

2. SPA-based Preconditioning. Identify r columns of M using SPA:
Ũ = M(:,K) and then premultiply M with Ũ † (left-inverse of Ũ):

I not sensitive to important differences between abundances of
endmembers,

I is provably more robust than SPA [GM14],
I is extremely fast (essentially, cost of running SPA twice).

[GM14] G., Ma, Enhancing Pure-Pixel Identification Performance via Preconditioning,
arXiv:1406.5286.
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arXiv:1406.5286.
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Summary – Preconditionings

Noise level (ε) Error Computational

= O
(
σmin(U)√

r

)
· = O (εκ(U)) · Cost

SPA κ−2(U) κ(U) O(mnr)
SDP-SPA r−1 1 Ω(mnr2)

PW-SPA n−3/2 n3/2 O(mnr2)
PW-SPA + Model β−1 β O(mnr2)

SPA-SPA κ−2(U) 1 O(mnr)

Table : Robustness of Preconditionings
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Two-by-Three Toy Example

Let k ≥ 0 and

U =

(
k + 1 k
k k + 1

)
.

We have σmin(U) = 1 and σmax(U) = 2k + 1 hence κ(U) = 2k + 1. Let

V =

(
1 0 0.5
0 1 0.5

)
, M = UV +N,

with N = δ [−UV (:, 1), −UV (:, 2), UV (:, 3)] for some small δ > 0.
Hence

M = (1− δ)

 k + 1 k
(
1+δ
1−δ

)
(k + 1

2)

k k + 1
(
1+δ
1−δ

)
(k + 1

2)

 .
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Two-by-Three Toy Example

For δ ≥ 1
8k2

, SPA fails: first extracted column is M(:, 3).
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For δ ≥ 1
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, SPA fails: first extracted column is M(:, 3).

For any k and δ ≤ O(1), all preconditioned variants succeed.
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Synthetic data sets

� Each entry of U ∈ R40×20
+ uniform in [0, 1]; each column normalized.

� The other columns of M are the middle points of the columns of U
(hence there are

(
20
2

)
= 190).

� The noise moves the middle points toward the outside of the convex
hull of the column of U .
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Results for the synthetic data sets

Figure : Average of the fraction of columns correctly extracted depending on the
noise level (for each noise level, 25 matrices are generated).
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Hubble telescope hyperspectral image

Figure : Sample of images for the Hubble telescope hyperspectral image with
100 spectral bands and 128× 128 pixels.
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Hubble telescope hyperspectral image

Figure : Spectral signatures extracted by SPA, corresponding to constitutive
materials (matrix U with κ(U) = 115).
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Hubble telescope hyperspectral image

Figure : Reconstructed abundance maps (matrix V ).

MAHI ’14 Preconditioning for Pure-Pixel Identification 31



Hubble telescope with blur and noise

Figure : Sample of images for the Hubble telescope.
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Hubble telescope with blur and noise

Figure : Spectral signatures extracted by SPA, corresponding to constitutive
materials (matrix U).
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Hubble telescope with blur and noise

Figure : Reconstructed abundance maps (matrix V ). With the blur and noise,
SPA fails to identify good columns (two correspond to the same material).
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Hubble telescope with blur and noise

Figure : Spectral signatures extracted by preconditioned SPA, corresponding
to constitutive materials (matrix U).
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Hubble telescope with blur and noise

Figure : Reconstructed abundance maps (matrix V ). With the blur and
noise, preconditioned SPA is able to identify the right columns.
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Hubble telescope with blur and noise

SPA SDP-SPA PW-SPA SPA-SPA

Hon. side 6.51 6.94 6.94 6.15
Cop. Strip. 26.83 7.46 7.44 7.44
Green glue 2.09 2.03 2.03 2.03
Aluminum 1.71 1.80 1.80 1.80
Solar cell 4.96 5.48 5.48 4.96
Hon. top 2.34 2.30 2.30 2.30

Black edge 27.09 13.16 13.16 13.13
Bolts 2.65 2.65 2.65 2.70

Average 9.27 5.23 5.23 5.06

Time (s.) 0.05 4.74 2.18 0.37

Table : MRSA of the identified endmembers with the true endmembers, and
running time in seconds of the different preconditioned SPA algorithms.
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Conclusion

1. Blind hyperspectral unmixing

I Challenging but important problem
I Under the pure-pixel assumption, it is tractable even in the

presence of noise

2. Pure-Pixel Identification

I SPA is simple, fast and robust to noise
I Its robustness can be significantly improved using preconditioning

I SDP: ideal preconditioning but computationally rather expensive
I Pre-whitening: faster but sensitive to different proportions of

endmembers.
I SPA-based: extremely fast, provably more robust than SPA.

3. Future Work

I Apply and analyze the effect of preconditionings on other
algorithms, and on real-world data sets.
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Thank you for your attention!

Code and papers available on
https://sites.google.com/site/nicolasgillis/
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