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e Introduction:
1. The hyperspectral manifold

Hyperspectral image, N bands
N-dimensional spectral space = Euclidean space

All traditional processing and analysis is performed in spectral space, using Euclidean

distance geometry
- Dimensionality reduction, feature extraction (PCA, Fisher Discriminant analysis, ...)

- Classification (k-NN, LDA, ...)
- Spectral unmixing (Nfindr, FCLSU, ...)

Problem: Sparsity, Curse of dimensionality
Advantage: correlation: data manifold = very low dimensional subspace

Solution: dimensionality reduction
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Introduction:

1. The hyperspectral manifold

Secondary reflections

s Intricate mineral mixtures

Shallow water environments
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Scatter plot of band 10 (710 nm) and band 16 (884 nm) of
partly submerged grassland. The data manifold has a

highly nontrivial shape, indicating complex non-linea
interactions are present.
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Introduction:
1. The hyperspectral manifold

Estimating the data manifold

Many techniques are

- data-driven

- unsupervised

- geometrically oriented

Graph-based methods (Isomap, LLE, ...)
Kernel-based methods (kPCA, ...)
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® Introduction:
2. Geodesic distances on the manifold

Graph-based methods:
The data cloud forms a curved manifold in spectral space.

Capture structure via shortest-path distances over nearest-neighbor graph.

J.B. Tenenbaum, V. de Silva, J.C. Langford: A global geometric framework for nonlinear dimensionality
reduction. Science 290 (5500): 2319-2323 (2000)
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Introduction:
2. Geodesic distances on the manifold

ISOMAP Algorithm:
Calculate Euclidean distance between all pairs of N points
Construct a nearest-neighbor graph:
- connect every point to K nearest points
- weight of edge = Euclidean distance
- symmetrized and connected
Geodesic distance is approximated by shortest path along weighted graph (Dijkstra algorithm)
NxN matrix of geodesic distances

After which: dimensionality reduction (e.g. Multidimensional Scaling)
requires calculation of eigenvectors of NxN distance matrix

Problems:
- computational cost, memory requirements
- which dimension?
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Introduction:

® 2. Geodesic distances on the manifold

Our proposal: work directly on the nonlinear manifold, without having to unfold, or project on
Euclidean space.

Prerequisites:
- Certain curvature conditions of the data manifold: “zero curvature” (folding without stretching)
- Processing technique can be written in terms of distance geometry

Advantages:

- data-driven and unsupervised

- Can handle nonlinear manifolds

- no projection required: cost and memory efficient

- No need to know intrinsic dimensionality

- No need to calculate and store whole manifold structure
Geometric interpretation leads to new insights, even in linear case
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© Introduction:
3. The simplex paradigm

VISION LAB
The linear mixing model: The observed spectrum is a linear combination of endmember spectra.
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© Introduction:
3. The simplex paradigm

Unmixing: inversion of the mixing equation while respecting the constraints

m Easy without noise: Over-determined linear system
= Easy without constraints: Least-squares problem

s Difficult when noise and constraints present

= Many approaches exist: FCLSU, quadratic programming, Bayesian
techniques, source separation, fuzzy set theory, ...
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® Introduction:
3. The simplex paradigm

Geometric interpretation of linear unmixing:
Endmembers form linear basis for spectra with barycentric coordinates
Data manifold = simplex, spanned by p endmembers in spectral space

Many techniques exploit this geometric notion:
N-FINDR, PPI, Simplex growing, ...
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® Introduction:
3. The simplex paradigm

Nonlinear case: simplex notion fails?

Continuity conditions

Assume non-linear, continuous bijective mapping F between linear space of
abundance coefficients and spectral space:

P
&r; — F (Z (lijej')
Jj=1

F induces a manifold composed of the continuous projection of a linear simplex
Resembles nonlinearly transformed simplex.
Endmembers are vertices of data manifold
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® Introduction:
3. The simplex paradigm
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2. Geometric endmember extraction
(NFindR)
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®
2. Geometric endmember extraction (NFindR)

Traditional NfindR:
s Reduce dimensionality (potentially nonlinearly)
m Find simplex of largest volume

m [Calculate abundances]

Geometric NfindR:
m Work directly in spectral space. No dimensionality reduction !
s Transform the NfindR algorithm to work with distance geometry.

s Use geodesic distances in the resulting algorithm.
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2.1 Distance geometry-based NFindR

Core of NfindR: Simplex volume calculation

Can be written in terms of inter-vertex distances using Cayley-Menger determinant

) D, 1 2
Vy ~ det(C)p) = det ( lp 0) ; D, = [dij]«i,jzl,...,p

Computationally interesting equivalent:

V2~ (ac,ldh) det(Cpa), d=(d2,.
| —
vol p-1 simplex

- —
N

orth. dist.

Allows for very efficient way of searching for simplex of maximal volume
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®
2.2 Nonlinear (geodesic distance-based) NFindR

= Replace Euclidean distance by geodesic distance

= Then: volume as measured along manifold

= Relation volume-distance valid if manifold can be covered by Euclidean space
* Flat manifold with zero curvature

= Assumption: works with small curvature
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®
2.2 Nonlinear (geodesic distance-based) NFindR

The algorithm

= Construct weighted symmetrical and connected K-Nearest Neighbor graph

= Select p random points as initial vertices

= Calculate shortest-path distance from these points to all others: (pxN) distance matrix

= Determine simplex volume

= Replace 1 endmember by random point, if larger volume is found, recalculate row of (pXN)-distance
matrix

Advantages
» Independent of spectral dimension.
= No need for dimensionality reduction

= Only parts of the geodesic distance matrix required

= Requires less memory (e.g. Cuprite dataset:
(NxN)-distance matrix = 720 Gbyte
(pxN)-distance matrix = 24 Mbyte
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? 2.2 Nonlinear (geodesic distance-based) NFindR

[ ] [ ]
Abundance estimation
Abundance estimation via relative volumes

e, e,
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= All steps expressed in distance geometry.

s However: positivity constraint (points outside simplex)!
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® 2.2 Nonlinear (geodesic distance-based) NFindR

WSIONLAS Results on Artificial dataset

r; = a;sinf(ca;)+1
y; = a;cos(oa;)+1
2i = ap+1

Fig. 3. The antificial data set for o = 0.5 (keft) and ¢ = = (right), for 5000
randomly generated abundances, and color-coded by the value of aj.
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® 2.2 Nonlinear (geodesic distance-based) NFindR

ViSION LA Results on Artificial dataset
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® 2.2 Nonlinear (geodesic distance-based) NFindR

Results on real dataset: Cuprite
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Fig. 8. Three (out of p = 16) extracted endmembers (dots) as found with
the non-linear algorithm with K = 20, and the library spectra of smallest
spectral angle (solid line). Top: Kaolinite. Middle: Montmorrilonite. Bottom:
Alunite. The spectral angles are 0.070, 0.049 and 0.056 respectively.
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? 2.2 Nonlinear (geodesic distance-based) NFindR

Results on real dataset: Cuprite (Alunite)
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? 2.2 Nonlinear (geodesic distance-based) NFindR

VISION LAB Results on real dataset: Heathland
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3. Geometric Unmixing
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? 3.1 Simplex Projection Unmixing (SPU)

Spectral unmixing, viewed as a minimization problem

P

E &iei — &L

1=1

{a;} = argmin
{a:}i

Without constraints: Classical LS-problem
a=(E'EY"'E's = o =Fa=EE"E)'E'x
Geometric interpretation: projection operator
P.su = E(E'E)'E' = 2 =P(x)
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? 3.1 Simplex Projection Unmixing (SPU)

Geometric interpretation

m LS-solution corresponds to plane projection

s Including the constraints: Simplex projection
Simplex projection:

v €S w =P@) = YyeS:[z—yl> x|
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? 3.1 Simplex Projection Unmixing (SPU)

Some observations:

m Orthogonal projection onto the simplex plane leaves the
simplex projection invariant

m The simplex projection of a point outside the simplex, but in the
simplex plane, always lies on the boundary of the simplex
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? 3.1 Simplex Projection Unmixing (SPU)
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? 3.1 Simplex Projection Unmixing (SPU)

Universiteit
Antwerpen




? 3.1 Simplex Projection Unmixing (SPU)

Incenter:

Intersection of all (p-2)-dimensional planes that bisect the dihedral
angles between the simplex faces

Center of largest hyperspere within simplex
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? 3.1 Simplex Projection Unmixing (SPU)

Bissective cones: set of all points intersecting a simplex face

r=c+)_ bjlej—c)

: > 0:
CBGZz‘(:)’E]bl, ,bp_O{bz:O
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? 3.1 Simplex Projection Unmixing (SPU)

Can be used to estimate the abundance that has to be zero:

Not always correct (for p > 3), but can be used in practice
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? 3.1 Simplex Projection Unmixing (SPU)

Recursive simplex projection unmixing (SPU) algorithm:

1. Project the point onto the simplex plane.

2. If the point lies inside the simplex, finish.

;. Else, find which abundance has to be zero.

+.  Remove the endmember from the set of endmembers and go to step 1.

Finally, the projected point is a linear combination of the remaining endmembers,

which is an exactly solvable system of linear equations.
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? 3.1 Simplex Projection Unmixing (SPU)

Properties of the algorithm

m Highly parallelizable. Very fast compared to e.g. FCLSU.

» No optimization steps required.

a Can be written completely in distance geometry (DSPU)
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? 3.1 Simplex Projection Unmixing (SPU)

. Results: Cuprite data set
NfindR to extract endmembers

Unmixing via FCLSU (as reference) and SPU
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© 3.1 Simplex Projection Unmixing (SPU)

R Results: Cuprite data set
Typical situation: 99.7% of abundances differ by less than 10-.
E.g. for the alunite endmember:
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2 3.2 Distance-based SPU

2 —1 T , :
Vy o~ (dcp_ld ) \c_let (Cp—lz , d=(d5,...,d; 1)
\—\’—/ ~
orth. dist vol p-1 simplex

Universiteit
Antwerpen




2 3.2 Distance-based SPU

e The incenter

Vi

c _
(l 1 — p ‘/:?'

Distance from incenter to endmembers:

dP(z,y) = (az—ay)' (—éJDJ) (az — ay)
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3.2 Distance-based SPU

* The bissective cones

General property: given a p-dimensional simplex and 2 points.

* They are either on the same or opposite side of the simplex plane.
e Distance x between 2 points can be calculated by matrix completion.

0 1 1 1 1
L 0 x| df d;
L di di| Du Dy | =¥ ‘Y D':‘D‘}X_YD Y
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? 3.2 Distance-based SPU

* The bissective cones e,
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2 3.2 Distance-based SPU

e The abundance coefficients

Point x is inside simplex if for all i, both points x and e, are on same side
of (p-1)-dimensional simplex plane.

Abundance obtained by:
&1 e, V(A)
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2 3.2 Distance-based SPU

Runtimes on artificial data set (USGS library)

runtime (seconds)
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? 3.2 Distance-based SPU

Cuprite: Linear unmixing
ViSION LAB

Typical situation: 99.7% of abundances differ by less than 10-.
E.g. for the alunite endmember:
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? 3.3 Geodesic Distance Geometric Unmixing

A data driven, fully-constrained non-linear unmixing method:
s Endmember extraction by geodesic distance-based NFindR.

s Unmixing via DSPU, applied to the geodesic distances.
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® 3.3 Geodesic Distance Geometric Unmixing

WHENLAS Results: Cuprite data set

Linear unmixing via NFindR and FCLSU

Non-linear unmixing via the proposed method
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? 3.3 Geodesic Distance Geometric Unmixing

VISION LAB Cuprite: Non-linear unmixing
Alunite endmember:

NFindR + FCLSU Non-lin. NFIndR + DSPU
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? 3.3 Geodesic Distance Geometric Unmixing

B ————
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? 3.3 Geodesic Distance Geometric Unmixing
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4. Related, Applied and Future work
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® 4.1 Geometricintrinsic dimensionality
estimation

Popular ID estimation techniques:
e Virtual Dimensionality
e HySime

Manifold techniques:

Correlation dimension: count number of points inside small balls
around each data point as function of the radius.

Q. Du, *Virtual dimensionality estimation for hyperspectral imagery with

a fractal-based method,” Proc. WHISPERS, pp. 1-4, 2010
Inverse approach: Use nearest neighbor distances as estimators
for the radius.

A. M. Farahmand, C. Szepesvari and J.-Y. Audibert, “Manifold-adaptive
dimension estimation,” Proc. 24th intl. conf. Machine learning, pp. 265-
272, 2007
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® 4.1 Geometricintrinsic dimensionality
N\ estimation

Consider random data set of NV points with known ID ¢
Probability to find a point in a ball with radius ¢ around «:

P(y € B(x.,€)) ~ p(x)e!
Number of points expected inside this ball:

k= C(p)Np(x)e!
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® 4.1 Geometricintrinsic dimensionality
estimation

The HIDENN algorithm

Let 7 (x) be the distance to the k'th nearest neighbor of . There
are then k data points in B(x.r;(x)). On average:

k= [C(p)Np(@)] (r(z))?
For two different values & and %/, we find the relation

B log(k) — log(k')
aw) = log(r () — log(rp (x))

Hence for every data point «, we can generate an ID estimate,
dependent on two parameters £ and &’
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® 4.1 Geometricintrinsic dimensionality
estimation

|D estimation depends strongly on noise

A preliminary denoising step will improve the results drastically
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® 4.1 Geometricintrinsic dimensionality
estimation

Advantages:

e Simple

e Consistent results over different data sets

e Bot linearly and nonlinearly mixed datasets
* Independent on spectral dimensionality

NN distances are required anyway in geometric unmixing framework
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? 4.2 Application: Spectral unmixing

- of Adjacency effect
A
_ < E
MR : 1,3: = au(tgt) + ap(bkgd)
774
““““ d ,-' ,’ 1,3,4: 1T = B(tgt) + [Bp(bkgd)

5 + v (tgt - bkgd)

N

background
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4.2 Application: Spectral unmixing
of Adjacency effect
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? 4.2 Application: Spectral unmixing

- of Adjacency effect
P rP-1 P
GBM: 1 =) dje;+ Y Y  vrijire; ©ex+n
=1 7=1 k=4+1

P
a; >0, ) a5 =1, vx €[0,1]
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4.2 Application: Spectral unmixing
of Adjacency effect
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? 4.3 Future work:
Towards Streaming Unmixing

 No dimensionality reduction required
e Only local information of manifold required
e Distance-base formulation: time and memory efficient

 Challenge: streaming endmember extraction
 [nitialization
e Simplex growing/shrinking

e Possible applications:
* On-board unmixing, avoids downlink of image da
e Real-time spectral unmixing
e Domain adapti
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