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Due to the explosion in size and complexity of modern datasets
(Big Data), it is increasingly important to be able to solve prob-
lems with a very large number of features or training examples.
Hence, it is either necessary or at least highly desirable to have

• decentralized collection or storage of these datasets

• distributed solution for the problems
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Example: Ax = b ) x = A

�1
b

• Centralized computing

• Not well scalable

• Sensitive to sensor failures

• Single point of failure
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New sensor concepts:

• connecting a large number of small and inexpensive sensors

in a sensor network

• building blocks have a sensing component and limited data-

processing and communication power

• de-centralized (distributed ) processing



Signal and Information Processing Lab 

Introduction 

October 14, 2013 5 

How to compute x = A

�1
b?

• Well scalable

• Robust against sensor failures

• Independent of network topology
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Possible solutions:

• convex optimization (alternating direction method of mul-

tipliers (ADMM)

• probabilistic inference (maximum a posteriori (MAP) prob-

abilities)
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PART I:

• Convex optimization

• Dual ascent/method of multipliers

• Alternating direction method of multipliers (ADMM)

PART II:

• Graphical models

• Probabilistic inference

• Message passing
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Convex Optimization
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minimize f0(x)

subject to fi(x)  0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

optimal value:

p

⇤ = inf{f0(x) | fi(x)  0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

x is feasible if x 2 domf0 and it satisfies the constraints.

x is optimal if f0(x) = p

⇤
.
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Lagrangian:

L(x,�, ⌫) = f0(x) +
mX

i=1

�

i

f

i

(x) +
pX

i=1

⌫

i

h

i

(x)

Lagrange dual function:

g(�, ⌫) = inf
x2D

L(x,�, ⌫)  p

⇤

proof: (x̃ feasible)

f0(x̃) � L(x̃,�, ⌫) � inf
x2D

L(x,�, ⌫) = g(�, ⌫)
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Lagrange dual problem:

maximize g(�, ⌫)

subject to � ⌫ 0

strong duality: (d⇤ = sup{g(�, ⌫)|� ⌫ 0})

For convex functions we (usually) have d⇤ = p⇤
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Source coding problem:

Let R denote the rate (number of bits) to represent X 2 X by

X̂ 2 X̂ . Given a distortion measure d : X ⇥ X̂ 7! R+
:

minimize d(R)

subject to R  Rt
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(R1, d1)

(R2, d2)

(R⇤, d⇤)

R

d(R)

Rt

L(R,�) = d(R) + �(R�Rt)

rRL(R,�) = 0 ) � = �d0(R)

Hence

g(�i) = d(Ri)� d0(Ri)(Ri �Rt)

g(�1)
g(�2)
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Consider the equality-constrained convex optimization problem

minimize f(x)

subject to Ax = b

The Lagrangian is given by

L(x, ⌫) = f(x) + ⌫

t(Ax� b)

We can recover a primal optimal point x

⇤
from a dual optimal

point ⌫

⇤
as

x

⇤ = argmin
x

L(x, ⌫⇤)
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In the dual ascent method, we solve the dual problem using gradi-

ent ascent. If x

+ = argmin
x

L(x, ⌫), and thus g(⌫) = L(x+
, ⌫),

we have

rg(⌫) = Ax

+ � b

Dual ascent algorithm:

x

k+1 := argmin
x

L(x, ⌫k)

⌫

k+1 := ⌫

k + ↵

k(Axk+1 � b)

where ↵

k

> 0 is a step size.
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Suppose f is separable:

f(x) = f1(x1) + f2(x2) + · · ·+ f

N

(x
N

), x = (x1, x2, . . . , xN

)

then L(x, ⌫) is separable and the dual ascent splits into N sepa-

rate minimization

x

k+1
i

:= argmin
xi

L

i

(x
i

, ⌫

k)

which can be carried out in parallel!
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1
2 3

x

k+1
1

x

k+1
2

x

k+1
i

i

step 1 (gather):

⌫k+1
⌫k+1

⌫k+1

step 2 (broadcast):
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Augmented Lagrangian;

L⇢(x, ⌫) = f(x) + ⌫

t(Ax� b) + ⇢/2kAx� bk22

where the penalty function (⇢ > 0) is introduced to bring robust-

ness to the dual ascent method.

The augmented Lagrangian can be viewed as the (unaugmented)

Lagrangian associated with

minimize f(x) + ⇢/2kAx� bk22
subject to Ax = b
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Method of multipliers:

x

k+1 := argmin
x

L

⇢

(x, ⌫k)

⌫

k+1 := ⌫

k + ⇢(Axk+1 � b)

Since 0 = r
x

L

⇢

(xk+1
, ⌫

k)

= r
x

f(xk+1) +A

t(⌫k + ⇢(Ax

k+1 � b))

= r
x

f(xk+1) +A

t

⌫

k+1

= r
x

L0(x
k+1

, ⌫

k+1)

the iterate (xk+1
, ⌫

k+1) is dual feasible!
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+ convergence under much more relaxed conditions (f can be

non di↵erentiable, take on value +1, ...)

� but the quadratic penalty function destroys splitting of the

x-update

L⇢(x, ⌫) = f(x) + ⌫

t(Ax� b) + ⇢/2kAx� bk22

idea: decouple the primal constraints by introducing a new vari-

able
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ADMM problem:

minimize f(x) + g(z)

subject to Ax+Bz = c

The augmented Lagrangian is given by

L

⇢

(x, z, ⌫) = f(x)+g(z)+⌫

t(Ax+Bz�c)+⇢/2kAx+Bz�ck22

ADMM
x

k+1 := argmin
x

L

⇢

(x, zk, ⌫k)

z

k+1 := argmin
z

L

⇢

(xk+1
, z, ⌫

k)

⌫

k+1 := ⌫

k + ⇢(Axk+1 +Bz

k+1 � c)
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• f closed, proper, and convex

• L0 has a saddle point

Under these assumptions, the ADMM iterates satisfy:

• Residual convergence: Ax

k +Bz

k � c ! 0

• Objective convergence: f(xk) + g(zk) ! p

⇤

• Dual variable convergence: ⌫

k ! ⌫

⇤
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Consider the problem

minimize f(x) =
PN

i=1 fi(x)

subject to xi = xj for all (i, j)

This problem can be rewritten with local variables xi and a com-

mon global variable z

minimize

PN
i=1 fi(xi)

subject to xi = z, i� 1, . . . , N

+ g(z)
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ADMM

x

k+1
i

:= argmin
xi

⇣
f

i

(x
i

) + ⌫

k

i

t

(x
i

� z

k) + ⇢/2kx
i

� z

kk22
⌘

z

k+1 := argmin
z

NX

i=1

⇣
⌫

k

i

t

(xk+1
i

� z) + ⇢/2kxk+1
i

� zk22
⌘

=
1

N

NX

i=1

�
1/⇢⌫k

i

+ x

k+1
i

�

⌫

k+1
i

:= ⌫

k

i

+ ⇢(xk+1
i

� z

k+1)
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1
2 3

x

k+1
1

x

k+1
2

x

k+1
i

i

step 1 (gather):step 2 (broadcast):

zk+1

zk+1zk+1

⌫k+1
i

⌫k+1
1 ⌫k+1

2

step 3 (gather):
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Probabilistic Inference
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Graphical Models 

• E�ciently represent a joint distribution over a set of random

variables, each represented by a node in a graph

• Even in the simplest case where these variables are binary-

valued, a joint distribution requires the specification of 2n

numbers

• If there is some structure in the distribution, we can factor

the distribution into modular components.

• The structure that graphical models exploit is the indepen-

dence properties that exist in many real-world phenomena.
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Graphical Models 

• Typically, a graph G = (V,E) is depicted in diagrammatic

form as a set of dots for the vertices, joined by lines for the

edges.

• A graph is said to be acyclic if it is a graph without cycles.

• A tree is a graph in which there is one, and only one, path

between any pair of nodes. As a consequence, trees are

acyclic.



Signal and Information Processing Lab 

October 14, 2013 29 

Graphical Models 

clique 

maximal clique 

• A node i has neighbors N (i) = {j 2 V : (i, j) 2 E}.

• A clique is defined as a subset which is fully connected.

• A maximal clique is a clique such that it is not possible to

include any other node from the graph in the set without it

ceasing to be a clique.
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Graphical Models 

The joint distribution factorizes as a product of potential functions

over all, say m, maximal cliques of the graph

p(x1, . . . , xn) =
1

Z

mY

i=1

 i(xCi),

where  i(xCi) � 0 and

Z =
X

X1,...,Xn

p(x1, . . . , xn).
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Markov Random Field 

Example:

Consider the random variable X1, X2 and X3 and assume that

we know that X1 is conditionally independent of X3 given X2.

We then have

p(x1, x2, x3) =
1

Z

 1(x1, x2) 2(x2, x3).

) p(x1|x2, x3) = p(x1|x2)

Graph:
x1

x2

x3
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Probabilistic Inference 

There are two basic kinds of inference problems that often arise:

• marginal probabilities:

p(x

F

) =

X

xG

p(x

F

, x

G

).

• maximum a posteriori (MAP) probabilities;

p

⇤
(x

F

) = max

xG

p(x

F

, x

G

).



Signal and Information Processing Lab 

October 14, 2013 33 

Probabilistic Inference 

Suppose we want to solve Ax = b for a symmetric matrix A

(e.g. a correlation matrix). We then can construct the quadratic

function

q(x) =
1

2
x

t
Ax� b

t
x.

Then equating @q/@x = 0 gives the stationary point x

⇤
which is

the solution to Ax = b.

Why are we interested in computing, e.g., MAP probabilities?
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Probabilistic Inference 

Let us define the joint Gaussian distribution

p(x) =

1

Z

e

� 1
2x

t
Ax+b

t
x

= N
�
A

�1
b, A

�1
�
,

which we can factorize into a product of potential functions.

Hence we have
x

⇤
= argmax

x

p(x)
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Probabilistic Inference 

Similarly, we can solve

min
x

kAx� bk2

for A 2 Cn⇥k

, n � k, of full rank. The optimal solution is given

by

x

⇤ = (At

A)�1
A

t

b = J

�1
h
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Markov Random Field 

Assume we want tot compute the MAP distribution p

⇤
(x2). Di-

rect computation yields

p

⇤
(x2) = max

x1

max

x3

p(x1, x2, x3)

Using the factorization over maximal cliques, we obtain

p

⇤
(x2) =

1

Z

max

x1

 1(x1, x2)max

x3

 2(x2, x3)

Example (con’t)

x1

x2

x3

O(ns2)

O(sn)
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Probabilistic Inference 

In practice, products of small probabilities can lead to numerical

problems, and so it is convenient to work with the logarithm of

the joint distribution. Taking the logarithm simply has the e↵ect

of replacing products by sums

ln p(x1, . . . , xn) =
mX

i=1

ln i(xCi)

=
mX

i=1

fi(xCi)
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Probabilistic Inference 

Consider the quadratic optimization problem

min
x2Rn

f(x) = min
x2Rn

✓
1

2
x

t

Jx� h

t

x

◆

To achieve this goal, we decompose f(x) in a pairwise fashion

according to a graph G = (V,E), so that

f(x) =
X

i2V

f

i

(x
i

) +
X

(i,j)2E

f

i,j

(x
i

, x

j

)
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Probabilistic Inference 

The local functions are given by (assuming J has unit diagonal

elements)

fi(xi) =
1

2
x

2
i � hixi, i 2 V

fi,j(xi, xj) = Jijxixj , (i, j) 2 E
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A message passing algorithm exchanges information between nodes

iteratively until reaching consensus.

In particular, at time t, each node i collects incoming messages

{m(t)
u!i(xi)|u 2 N (i)} from all neighboring nodes. These mes-

sages are then combined to produce new outgoing messages, one

for each neighbor u 2 N (i).

x1

x2

x3 x1

x2

x3

time t: time t+ 1:
m

(t)
1!2(x2)

m

(t)
3!2(x2)

m

(t+1)
2!1 (x1)

m

(t+1)
2!3 (x3)
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Message Passing 

At each time t each node i computes an estimate x̂

(t)
i

of the

optimal solution x

⇤
i

by minimizing the self potential

x̂

(t)
i

= argmin
xi

0

@
f

i

(x
i

) +
X

u2N (i)

m

(t)
u!i

(x
i

)

1

A
, i 2 V

If the algorithm converges to the optimal solution, we have

lim
t!1

x̂

(t) = x

⇤
.



Signal and Information Processing Lab 

Min-Sum Algorithm 

October 14, 2013 42 

The key problem in message-passing algorithms is how to define

the updating expressions for m

(t)
j!i

(x
i

)

min-sum algorithm:

m

(t)
i!j

(x
j

) = min
xi

0

@
f

i

(x
i

) + f

ij

(x
i

, x

j

) +
X

u2N (i)\j

m

(t�1)
u!i

(x
i

)

1

A

= �

(t)
ij

x

2
j

+ z

(t)
ij

x

j
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(generalized) linear coordinate-descent (LiCD) algorithm:

m

(t)
i!j(xj) = z

(t)
ij xj

[1]

[2]

G. Zhang and R. Heusdens. Linear Coordinate-Descent
Message-Passing for Quadratic Optimization. Neural Com-

putation. 2012.

G. Zhang and R. Heusdens. Generalized Linear Coordinate-
Descent Message-Passing for Convex Optimization. Inter-
national Conference on Acoustics, Speech and Signal Pro-

cessing. pp. 2009-2012, 2012.
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Conclusions (1) 

• Distributed optimization through convex optimization or

probabilistic inference

• Alternating direction method of multipliers combines the

decomposability of dual ascent and the robustness of the

method of multipliers

• key problem is to re-formulate the original problem into one

that matches ADMM
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• Graphical models can be used to exploit structure in the

problem

• Key problem in message passing is the design of the mes-

sages (convergence, computational complexity, transmis-

sion power, etc.)


