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Fitting a Straight Line Through n Points

Theorem 0
One can pass a straight line through any n points on a sheet of
paper.

Proof
Use a thick enough pencil.
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Fitting a Straight Line Through n Points (cont’d)

Model
Assume each point is a noisy observation (with additive zero-mean
white noise with known variance) of the true points which lie on a
straight line

z(i) = ay(i) + b + w(i) i = 1, . . . , n (1)

with the noises

E [w(i)] = 0 E [w(i)w(k)] = σ2δik (2)

This is the simplest linear regression problem with known error
statistics.

Solution
The solution is obtained with LS and is the same as with the ML
criterion under the (additional) Gaussian assumption on the noises.
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The Cramer-Rao Lower Bound

For an unbiased estimate x̂ the error covariance is bounded from
below

E[(x − x̂)(x− x̂)′] ≥ J−1 (3)

where J is the Fisher information matrix.

Under the Gaussian assumption, the MLE of the parameter vector
[a, b] in the above problem is efficient — it meets the CRLB.

There is an implicit assumption in the above problem formulation: No
measurement origin uncertainty, i.e., for each y(i) there is a single
z(i) that obeys the (linear-Gaussian) model.

Mathematically this amounts to

(1) No extraneous measurements (no false alarms or clutter): PFA = 0

(2) Correct measurement always available (target detected): PD = 1.
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The Real World

In remote sensing problems (with radar, sonar or EO sensors),
for low observable (LO) targets — with low SNR — the two
assumptions

PFA = 0 (4)

PD = 1 (5)

do not hold.

The detection threshold must be low enough to detect low SNR
targets and this causes unavoidable FAs (clutter) that look like
the correct measurements.
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Generalized LS Fitting with PD < 1 and PFA > 0
ML Parameter Estimation with Measurement Origin Uncertainty

Problem 1
Estimate the parameter vector x of the (possibly nonlinear)
relationship

zj(i) =

{
f(x, ti) + wj(i) if origin is “target"
uj(i) if origin is “false"

(6)

where i = 1, . . . , n, j = 1, . . . ,mi, and

i is the index of time ti

mi is the number of measurements at ti with at most one of
them being from the “target", with probability PD (and with a
Gaussian error w)

the remaining measurements (a priori, a random number) are
false (clutter), with their values u uniformly distributed in the
measurement space

all the random variables and detection events are mutually
independent.
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Generalized LS Fitting with PD < 1 and PFA > 0

(cont’d)

Problem 2

Find the CRLB for this problem accounting for the
measurement origin uncertainty

Determine if the estimator is statistically efficient — it
meets the CRLB, i.e., it extracts all the information from the
data

Find the lowest SNR for which one can have efficiency.
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Motivation — Target Motion Analysis with Passive
Sonar

TMA: Estimation of a target’s initial position and its constant
velocity from bearings-only measurements (and possibly
Doppler) corrupted by noise, in the presence of clutter/FA.
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Applicability

This constant velocity motion model is widely used in underwater
passive target tracking since it is a good approximation for actual
scenarios, at least for a while.

TMA is an example of parameter estimation — initial condition
estimation — for an object with deterministic motion.

Another example: exoatmospheric motion of ballistic objects — this
motion is fully determined by the initial position and velocity.

For motion affected by randomness, state estimation is needed.
Similar results are available for state estimation in presence of
measurement origin uncertainty.
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Motivation for Using Feature Information

In addition to kinematic measurements (position, Doppler) the
estimation algorithm can also use feature measurements to help
reduce the data (measurement) association uncertainty.

In all systems Amplitude Information (AI) is used implicitly to
determine whether there is a valid measurement — thresholding (a
minimal use).

If fully taken advantage of, i.e., with statistical models (e.g., Swerling
fluctuation models) AI can be used in the estimation process itself to
enhance the performance:

Tracking under very low SNR conditions becomes more accurate

The algorithm with AI is efficient (meets the CRLB) for lower
SNR than the one without AI.
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Target Model for Passive Narrowband Sonar

The target parameter is the 5-dimensional vector (includes
emitted frquency)

x
Δ
=
[
ξ(t0) η(t0) ξ̇ η̇ γ

]′
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Measurement Model for Passive Narrowband Sonar

The (noisy) measurements are bearing (DOA), frequency and
amplitude

zj(i)
Δ
=
[
βij fij aij

]′
, j = 1, . . . ,mi; i = 1, . . . , n

i.e., n scans, with mi measurements in scan i.

The following assumptions are made:

A target-originated measurement is received by the sensor only
once during a scan with known probability PD, independently
across scans

Target-originated angle and frequency measurements are
corrupted by independent additive zero-mean white Gaussian
noise sequences

False measurements occur according to a spatial Poisson
process with known spatial density λ

The fluctuating amplitudes are independent from scan to scan
and have a known pdf for the target and the false measurements
(Swerling model with known average SNR = d).
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The ML-PDA Parameter Estimation Approach

The Maximum Likelihood (ML) estimator combined with the
Probabilistic Data Association (PDA) technique is obtained as follows:

The exact joint pdf of the entire set of measurements is obtained
using the PDA approach — (without approximations)

The total log-likelihood ratio (LLR) of the target parameter vector
is derived

The maximization of the LLR is done numerically using a
quasi-Newton (variable metric) method to yield the maximum
likelihood estimate x̂ of the parameter x

The LLR may have many local maxima — to overcome this, a
multi-pass approach is used.
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The ML-PDA Estimator

If there are mi detections at ti we have the following mutually
exclusive and exhaustive events (PDA approach):

εj(i)
Δ
=

{ {measurement zj(i) is from the target} j = 1, . . . ,mi

{all measurements are false} j = 0

The pdf of the measurements in scan i conditioned on the above
events can be written as

p [Z(i)|εj(i), x] =
⎧⎨
⎩

V 1−mip(βij)p(fij)ρij
∏mi

k=1 p
τ
0(aik) j = 1, . . . ,mi

V −mi
∏mi

k=1 p
τ
0(aik) j = 0

where V is the volume of the surveillance region and

ρij = pτ1(aij)/p
τ
0(aij)

is the amplitude likelihood ratio — a ratio of two truncated Rayleigh
pdfs.
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The ML-PDA Estimator (cont’d)

Using the total probability theorem one can write the likelihood
function (LF) of the set of measurements at ti as a
uniform-Gaussian-Rayleigh mixture.

After some lengthy manipulations, the total log-likelihood ratio (LLR)
of the parameter x based on the entire data set Zn without knowing
the origin of the measurements is obtained as

�[Zn, x] =

n∑
i=1

�i[Z(i), x] =

n∑
i=1

ln

⎡
⎣(1− PD) +

PD

λ

mi∑
j=1

ρij
2πσθσγ

· exp
(
−1

2

[
βij − θi(x)

σθ

]2
− 1

2

[
fij − γi(x)

σγ

]2)]

The LLR � is preferable to the LF since it is a (physically)
dimensionless quantity.

The maximum likelihood estimate is obtained by finding the
parameter x̂ that maximizes the above total log-likelihood ratio.
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Cramer-Rao Lower Bound in the Presence of False
Measurements

Theorem 1. For an unbiased estimate, from measurements with
Gaussian errors in the presence of Poisson distributed false
measurements, the estimation error covariance is bounded from
below as follows

E {(x− x̂)(x− x̂)′} ≥ J−1

with the Fisher information matrix (FIM) in clutter, J , given by

J = q2J0

where

J0 is the FIM in the absence of clutter (PFA = 0, PD = 1)

q2, a scalar, is the information reduction factor (IRF) that
accounts for the loss of information due to false measurements
(PFA > 0) and imperfect target detection (PD < 1)
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The Information Reduction Factor

The information reduction factor q2 involves a multi-dimensional
integration (evaluated numerically).

For narrowband passive sonar (bearing and frequency
measurements) with amplitude information (modeled by Rayleigh
fluctuations with SNR=d), the factor q2 is given by

q2 (PD, λvg, g) =
1

1 + d

∞∑
m=1

2m−1μf (m− 1)

(g2PFA)m−1
I2 (m,PD, g)

where

I2 (m,PD, g) is an m-fold integral

μf is the Poisson pmf of the number of false alarms

g is the “number of sigmas” of the “validation gate” (region in the
measurement space where the true measurement will be with
high probability if detected; typically, g = 5).
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Track Acceptance Test

Each track estimate is tested whether it can be used as an
acceptable track — we should reject noise-only tracks.

This is also necessary due to the multimodal nature of the
log-likelihood ratio since the numerical maximization might converge
to a wrong peak.

The test is formulated as a Neyman-Pearson hypothesis testing
problem where the false track rejection power of the test is maximized
for a given true track miss probability:

The test statistic is � (the LLR) for which the first two moments
can be calculated under the “target present” hypothesis (H1)
with a certain SNR.

Since the statistic is the sum of (typically) tens of independent
random variables, the test threshold τ� is obtained assuming the
test statistic obeys the CLT, i.e., it is Gaussian with the above
moments

Gaussian model for p(�): For 5% miss (false rejection) probability
it yields 3–6 misses per 100 runs.
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False Track Acceptance

We also want to evaluate the false track rejection power of the test.

The false track acceptance probability P{� > τ�|H0} under the “target
absent” hypothesis (H0)should be (very) small — the tail of p(�|H0).

The first model used was a Gaussian for p(�|H0) — very inaccurate
for the tail.

Under H0 the LLR surface has thousands of peaks, from which we
want the pdf of the highest (the global maximum) — the tail of the tail.

Approach

Use extreme value theory, specifically a Gumbel distribution;

Use ML estimation to obtain the parameters of the Gumbel
distribution from a set of samples;

Results: ≈ 10−3 verified by simulations (Gaussian model yields
≈ 10−5).
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Simulation Scenario
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Simulation Scenario (cont’d)

Scenario Parameters:

The SNR in a resolution cell (3o × 0.25Hz) is 6dB (0dB/Hz)
— average power of target signal at detector is 4× the
power of noise

The probability of target signal detection is 0.5 per scan

These values give, on average, 10 false alarms in the
entire surveillance region per scan.
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The Measurements
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The Measurements (cont’d)
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The Measurements (cont’d)
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Estimated Tracks
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Estimated Tracks (cont’d)

In 94–97 runs out of 100 the estimated trajectory endpoints
fall in the corresponding 95% uncertainty ellipses based on
the CRLB — s.d. from 100 MC runs is√

0.95 · 0.05/100 ≈ 2%

The normalized estimation error squared is 5.37, which lies
within the 95% probability region [4.4, 5.64] — the estimator
is efficient

The track acceptance test was carried out with a
theoretical miss probability of 5% (In 1000 runs no false
track was ever accepted)

Coarse search — grid — is used to start the fine search.
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Accuracy of Estimates with AI

Unit xtrue xinit x σCRLB σ̂

m 5000 –12000 to 12000 4991 667 821
m 35000 49000 to 50000 35423 5576 5588

m/s –10 –16 to 5 –9.96 0.85 0.96
m/s 5 –4 to 9 4.87 4.73 4.99
Hz 750 747 to 751 749.52 2.371 2.531

Results of 100 Monte Carlo runs with AI (SNR = 6.1dB)
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Accuracy of Estimates without AI

Unit xtrue xinit x σCRLB σ̂

m 5000 –12000 to 12000 6395 689 8653
m 35000 49000 to 50000 41370 5759 23094

m/s –10 –17 to 5 –9.86 0.88 1.21
m/s 5 –5 to 10 3.55 4.89 7.36
Hz 750 747 to 751 749.03 2.448 2.751

Results of 100 Monte Carlo runs without AI (SNR = 6.1dB)
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Computation Times

with AI without AI
accepted average time accepted average time

K tracks taken (s) tracks taken (s)

3 95 3.19 71 3.57
2 91 2.68 60 2.63
1 82 1.97 18 1.69

Performances of estimators for different number of passes (K)
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Conclusions

The CRLB in clutter is characterized by the scalar information
reduction factor (IRF).

The use of AI gives a moderate increase in the information
reduction factor (reduction in the CRLB), which is significant
under low SNR conditions (13% at 6dB cell SNR — 0.45 vs.
0.4).

The cell SNR limit down to which the estimator with AI is efficient
is 6dB. This is 3–4dB lower than the limit without AI.

The percentage of accepted tracks with AI is substantially higher
than that without AI (95% vs. 70%).

This technique is (probably) the most powerful for detecting LO
tracks for nonmaneuvering targets (via parameter estimation).

Recent result: In nonlinear dynamic systems the Bayesian
CRLB for state estimation (Tichavsky-Muravchik-Nehorai), the
effect of the clutter is quantified by a similar (scalar) IRF
(Zhang-Willett-BarShalom).
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