Bayesian Nonparametrics for Speech and Signal Processing

Michael I. Jordan University of California, Berkeley

June 28, 2011

Acknowledgments: Emily Fox, Erik Sudderth, Yee Whye Teh, and Romain Thibaux

Computer Science and Statistics

- Separated in the 40's and 50's, but merging in the 90's and 00's
- What computer science has done well: data structures and algorithms for manipulating data structures
- What statistics has done well: managing uncertainty and justification of algorithms for making decisions under uncertainty
- Bayesian nonparametrics brings the two threads together
 - stochastic processes for representing flexible data structures

Combinatorial Stochastic Processes

- Examples of stochastic processes we'll mention today include distributions on:
 - directed trees of unbounded depth and unbounded fanout
 - partitions
 - grammars
 - sparse binary infinite-dimensional matrices
 - copulae
 - distributions
- General mathematical tool: completely random measures

Bayesian Nonparametrics

• At the core of Bayesian inference is Bayes theorem:

```
posterior \propto likelihood \times prior
```

- For parametric models, we let $\boldsymbol{\theta}$ denote a Euclidean parameter and write:

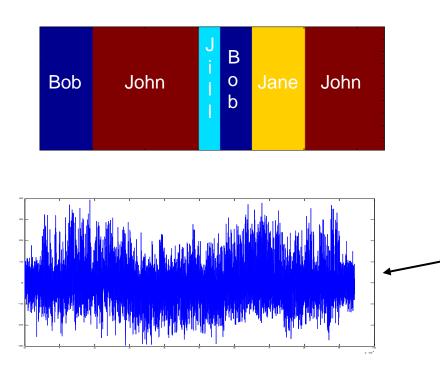
 $p(\theta \mid x) \propto p(x \mid \theta) p(\theta)$

• For Bayesian nonparametric models, we let G be a general stochastic process (an "infinite-dimensional random variable") and write (non-rigorously):

 $P(G \mid x) \propto p(x \mid G)P(G)$

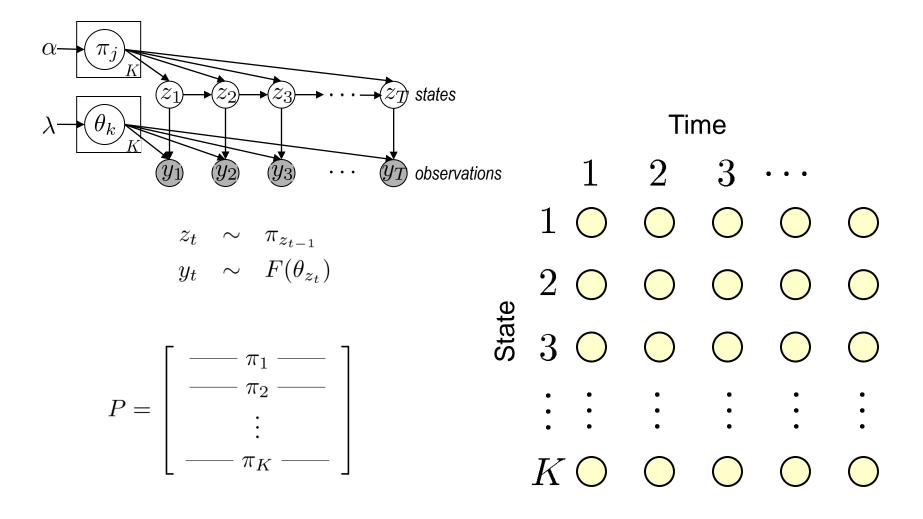
• This frees us to work with flexible data structures

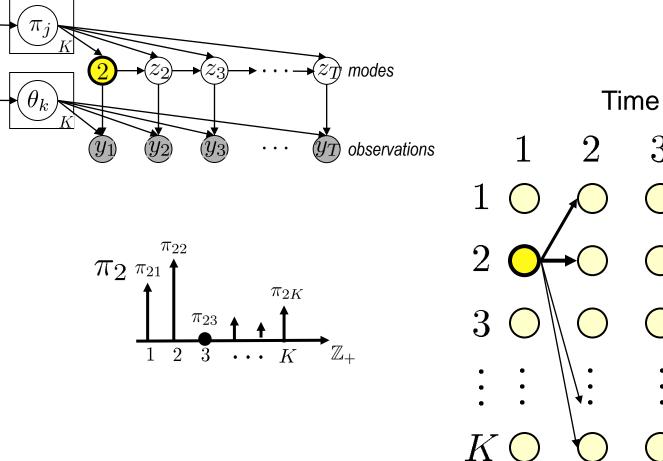
Speaker Diarization



Motion Capture Analysis

 Goal: Find coherent "behaviors" in the time series that transfer to other time series (e.g., jumping, reaching)

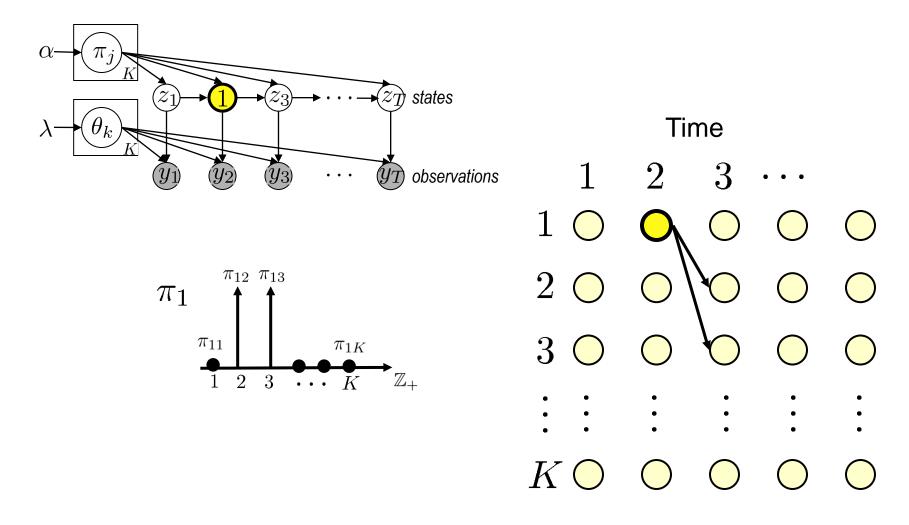


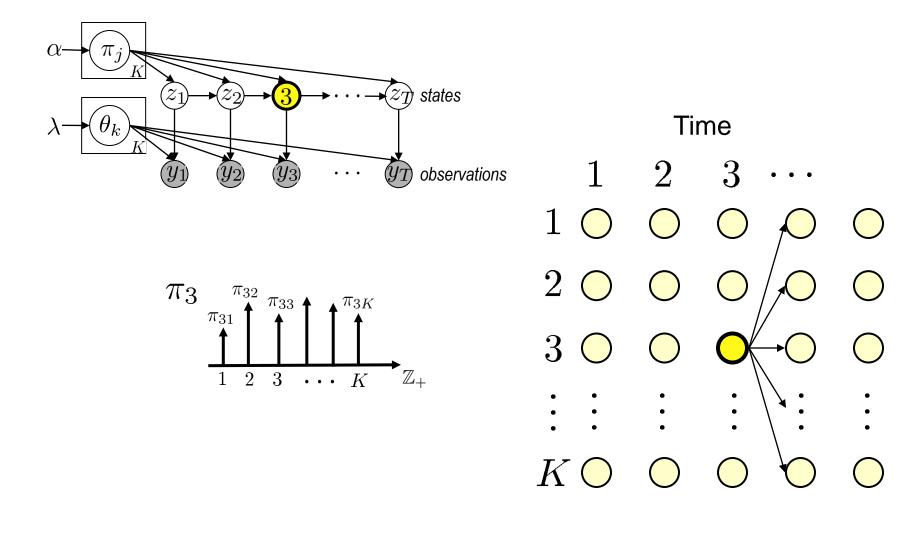


 α

 λ

3 () \bigcirc ()()





Issues with HMMs

- How many states should we use?
 - we don't know the number of speakers a priori
 - we don't know the number of behaviors a priori
- How can we structure the state space?
 - how to encode the notion that a particular time series makes use of a particular subset of the states?
 - how to share states among time series?
- We'll develop a Bayesian nonparametric approach to HMMs that solves these problems in a simple and general way

Stick-Breaking

- A general way to obtain distributions on countably infinite spaces
- *The classical example*: Define an infinite sequence of beta random variables:

 $\beta_k \sim \text{Beta}(1, \alpha_0)$

$$k=1,2,\ldots$$

• And then define an infinite random sequence as follows:

$$\pi_1 = \beta_1, \qquad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \qquad k = 2, 3, \dots$$

- This can be viewed as breaking off portions of a stick: $\beta_1 = \beta_2 (1-\beta_1) = \dots$

Constructing Random Measures

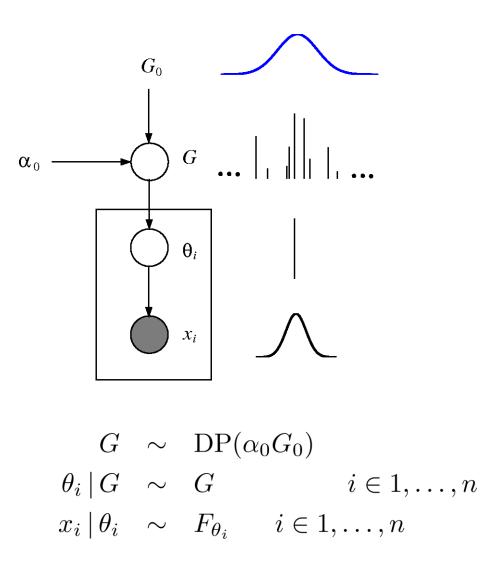
- It's not hard to see that $\sum_{k=1}^{\infty} \pi_k = 1$ (wp1)
- Now define the following object:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k},$$

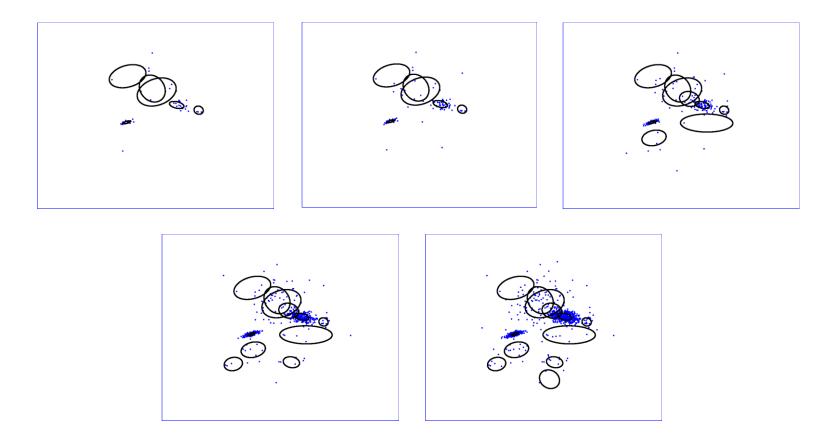
- where ϕ_k are independent draws from a distribution G_0 on some space
- Because $\sum_{k=1}^{\infty} \pi_k = 1$, G is a probability measure---it is a random measure
- The distribution of G is known as a Dirichlet process:

 $G \sim \mathrm{D}P(\alpha_0, G_0)$

Dirichlet Process Mixture Models



CRP Prior, Gaussian Likelihood, Conjugate Prior



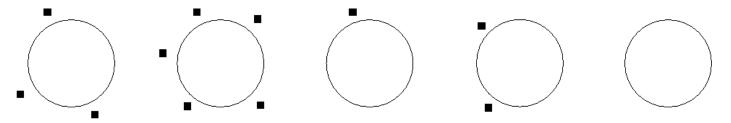
 $\begin{array}{lll} \phi_k &=& (\mu_k, \Sigma_k) \sim N(a, b) \otimes IW(\alpha, \beta) \\ x_i &\sim& N(\phi_k) & \quad \text{for a data point } i \text{ sitting at table } k \end{array}$

Chinese Restaurant Process (CRP)

- A random process in which *n* customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - mth subsequent customer sits at a table drawn from the following distribution:

 $P(\text{previously occupied table } i | \mathcal{F}_{m-1}) \propto n_i$ $P(\text{the next unoccupied table } | \mathcal{F}_{m-1}) \propto \alpha_0$

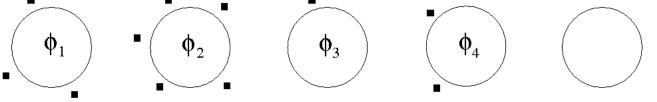
– where n_i is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after m-1 customers have been seated



The CRP and Clustering

- Data points are customers; tables are mixture components
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood---e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters---the ϕ_k st customer to sit at table G_0 chooses the parameter vector, , for that table from a prior

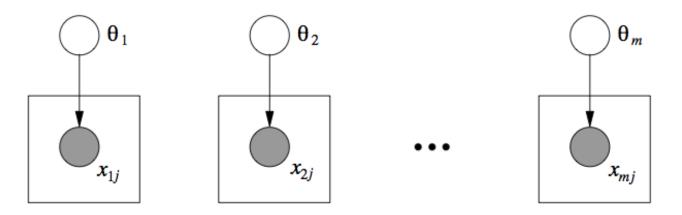
k



• So we now have defined a full Bayesian posterior for a mixture model of unbounded cardinality

Multiple Estimation Problems

- We often face multiple, related estimation problems
- E.g., multiple Gaussian means: $x_{ij} \sim N(\theta_i, \sigma_i^2)$

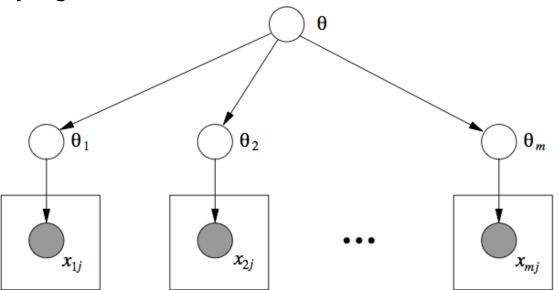


- Maximum likelihood: $\hat{\theta}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$
- Maximum likelihood often doesn't work very well

- want to "share statistical strength"

Hierarchical Bayesian Approach

• The Bayesian or empirical Bayesian solution is to view the parameters θ_i as random variables, related via an underlying variable θ

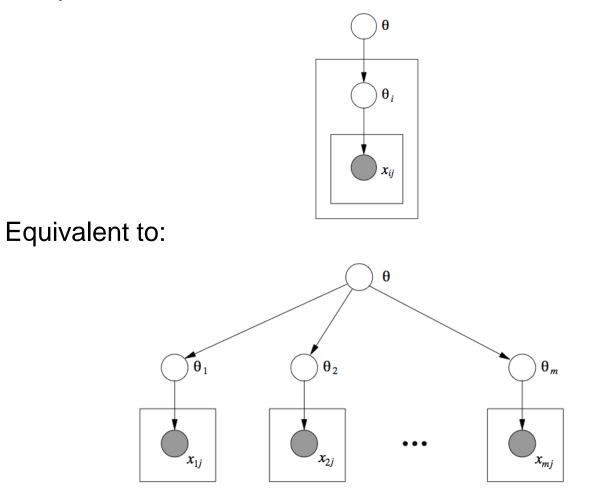


• Given this overall model, posterior inference yields shrinkage---the posterior mean for each θ_i combines data from all of the groups

Hierarchical Modeling

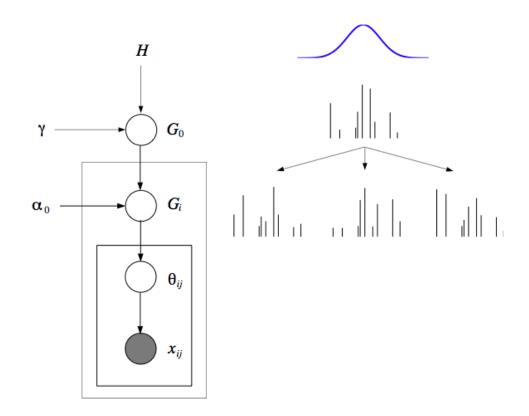
• The plate notation:

٠



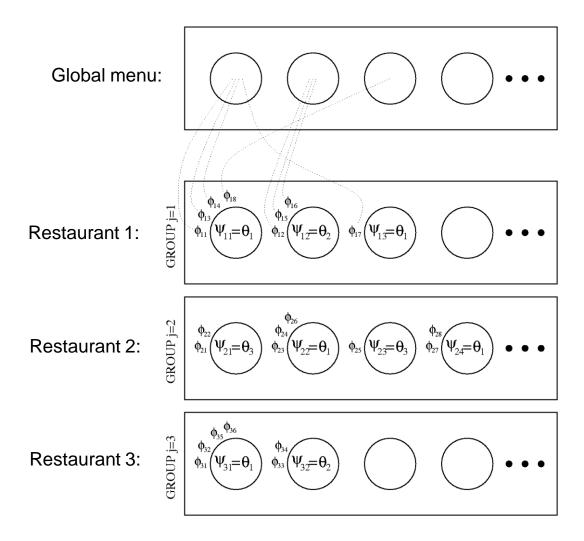
Hierarchical Dirichlet Process Mixtures

(Teh, Jordan, Beal, & Blei, JASA 2006)



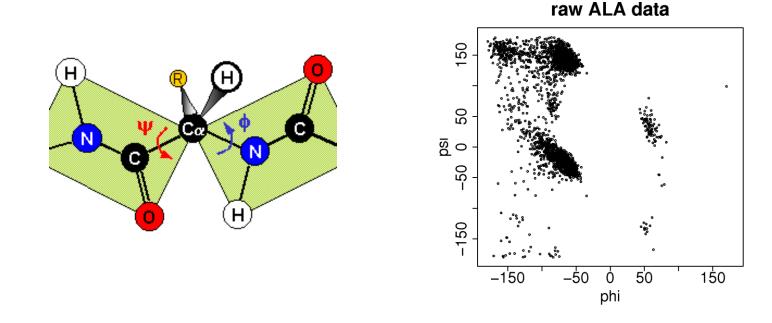
 $G_{0}|\gamma, H \sim DP(\gamma H)$ $G_{i}|\alpha, G_{0} \sim DP(\alpha_{0}G_{0})$ $\theta_{ij}|G_{i} \sim G_{i}$ $x_{ij}|\theta_{ij} \sim F(x_{ij}|\theta_{ij})$

Chinese Restaurant Franchise (CRF)



Application: Protein Modeling

- A protein is a folded chain of amino acids
- The backbone of the chain has two degrees of freedom per amino acid (phi and psi angles)
- Empirical plots of phi and psi angles are called *Ramachandran diagrams*

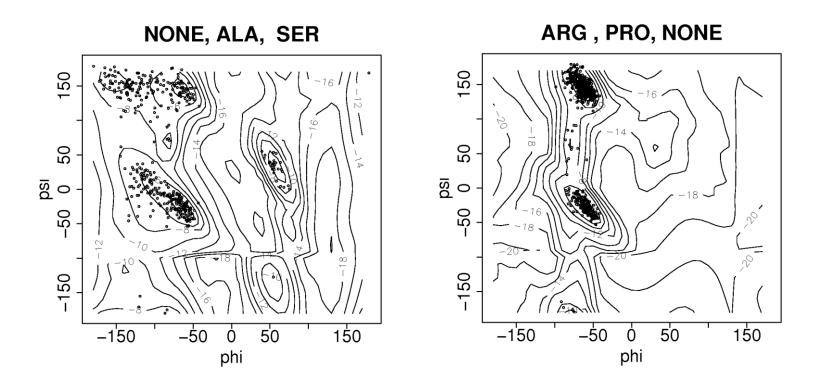


Application: Protein Modeling

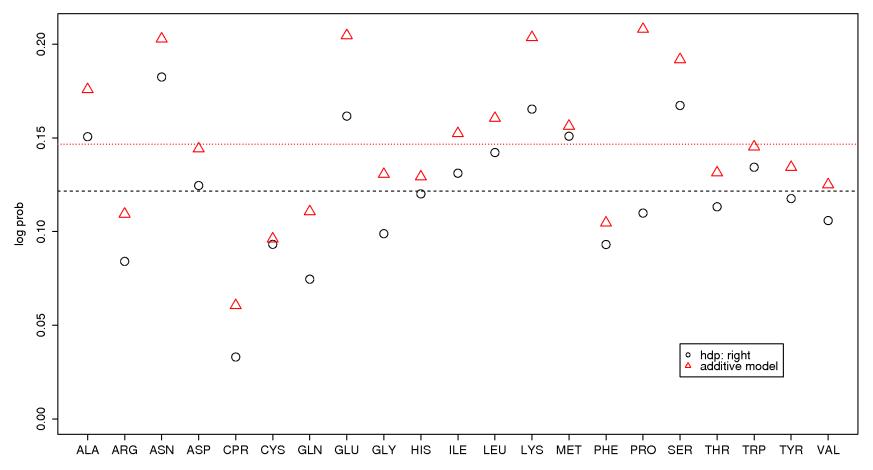
- We want to model the density in the Ramachandran diagram to provide an energy term for protein folding algorithms
- We actually have a linked set of Ramachandran diagrams, one for each amino acid neighborhood
- We thus have a *linked set* of density estimation problems

Protein Folding (cont.)

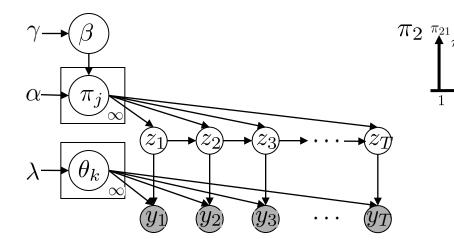
 We have a linked set of Ramachandran diagrams, one for each amino acid neighborhood



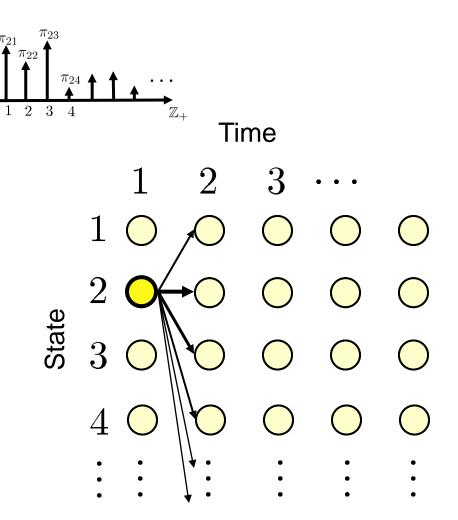
Protein Folding (cont.)



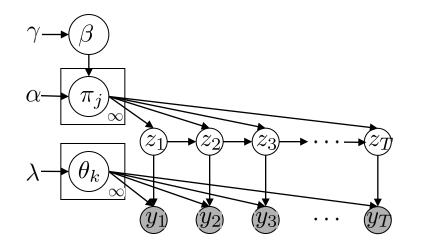
HDP-HMM

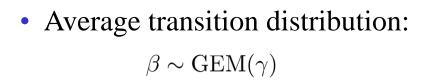


- Dirichlet process:
 - state space of unbounded cardinality
- Hierarchical DP:
 - ties state transition distributions



HDP-HMM

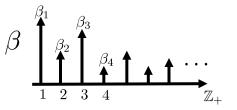




• State-specific transition distributions:

$$\pi_{j} \sim \mathrm{DP}(\alpha\beta) \quad j = 1, 2, 3, \dots$$

sparsity of β is shared $\longrightarrow E[\pi_{jk}] = \beta_{k}$



 π_{31}

 π_{32}

 $1 \ 2 \ 3 \ 4$

 π_{42}

 $1 \ 2 \ 3$

 π_{43}

 π_{34}

 π_{44}

4

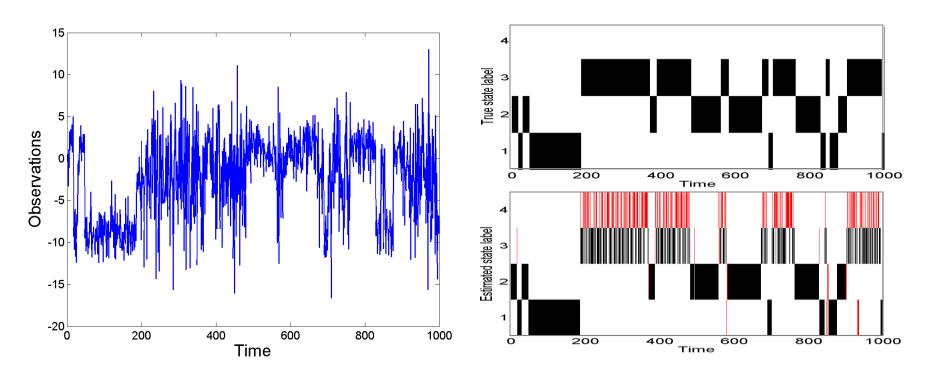
 \mathbb{Z}_+

 \mathbb{Z}_+

 π_3 '

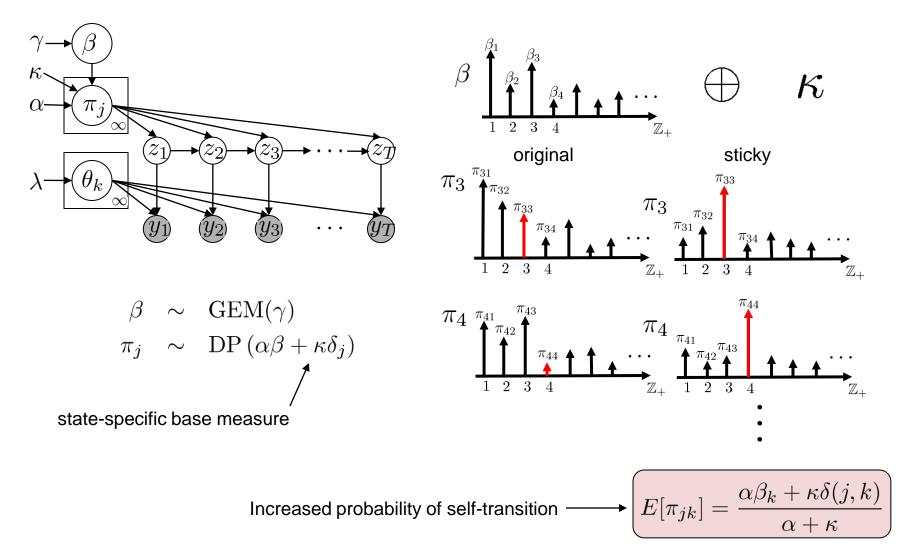
 π_4 π_{41}

State Splitting

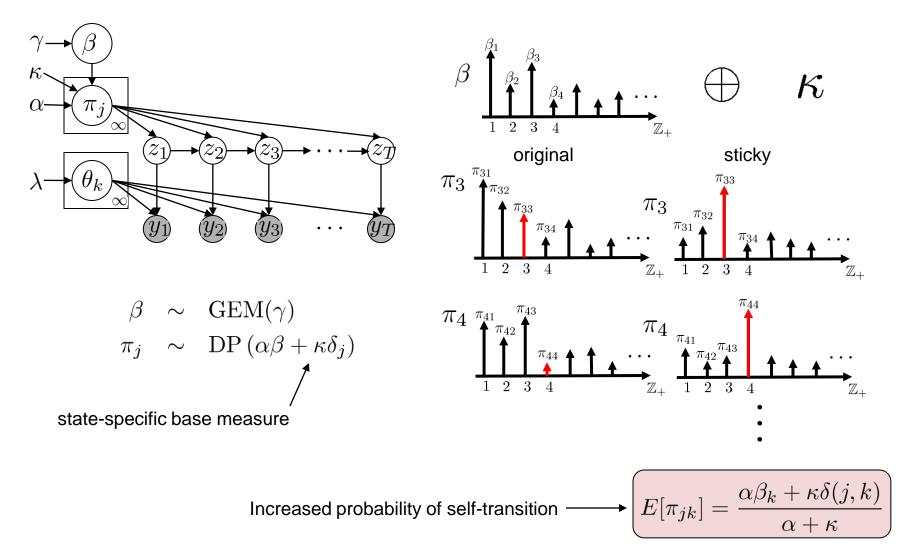


- HDP-HMM inadequately models temporal persistence of states
- DP bias insufficient to prevent unrealistically rapid dynamics
- Reduces predictive performance

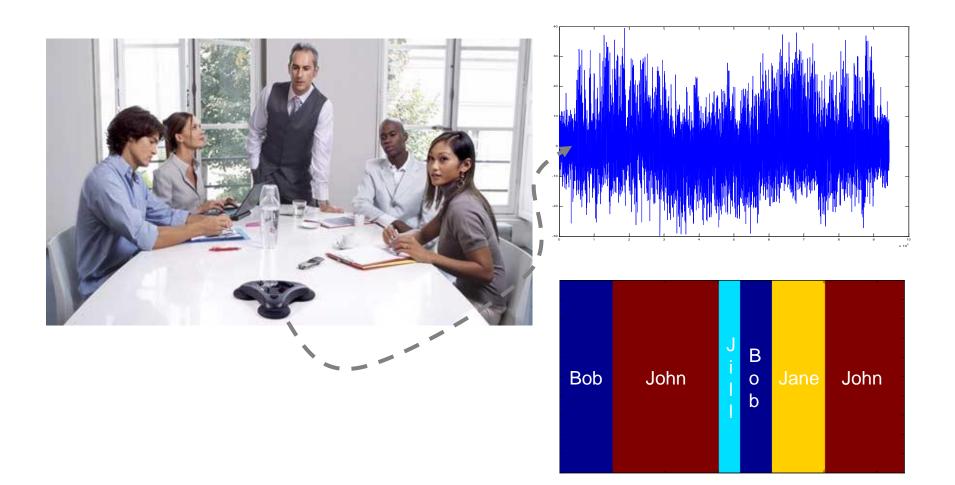
"Sticky" HDP-HMM



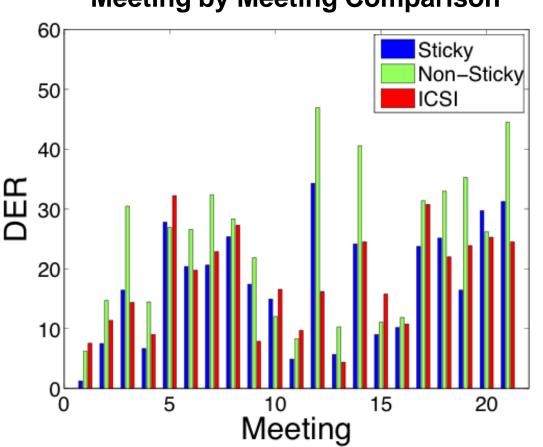
"Sticky" HDP-HMM



Speaker Diarization



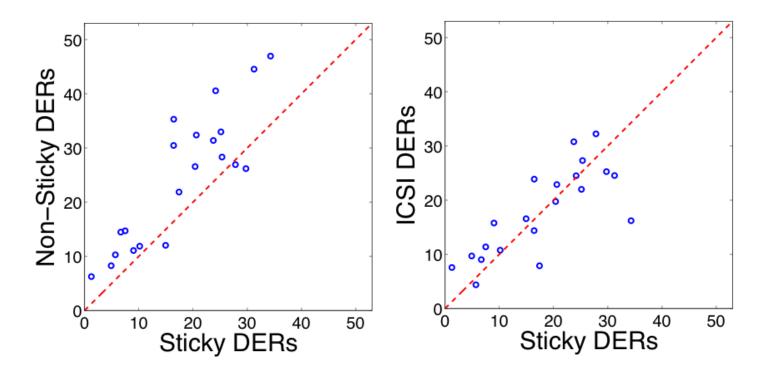
NIST Evaluations



Meeting by Meeting Comparison

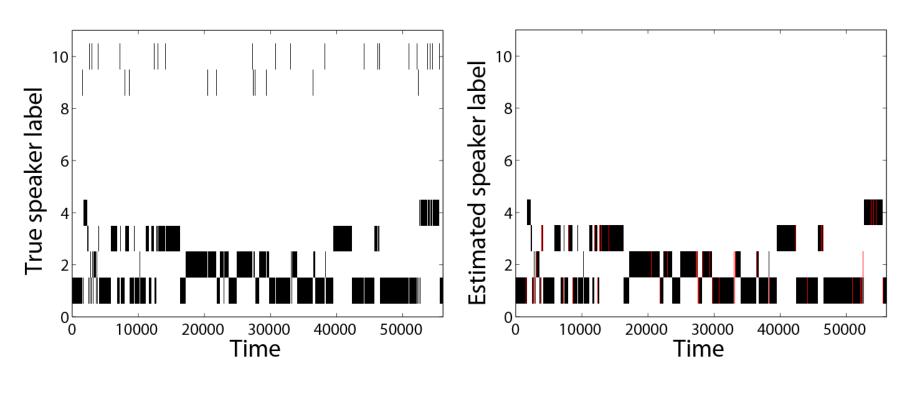
- NIST Rich Transcription 2004-2007 meeting recognition evaluations
- 21 meetings
- ICSI results have been the current state-of-the-art

Results: 21 meetings



	Overall DER	Best DER	Worst DER
Sticky HDP-HMM	17.84%	1.26%	34.29%
Non-Sticky HDP-HMM	23.91%	6.26%	46.95%
ICSI	18.37%	4.39%	32.23%

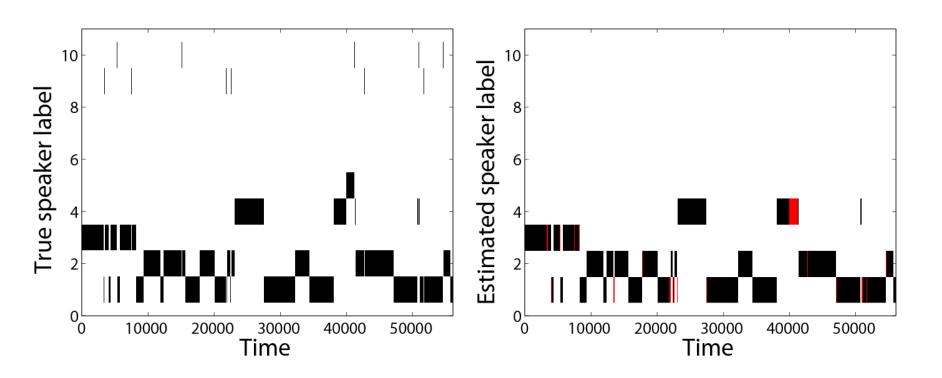
Results: Meeting 1 (AMI_20041210-1052)



Sticky DER = 1.26%

ICSI DER = 7.56%

Results: Meeting 18 (VT_20050304-1300)

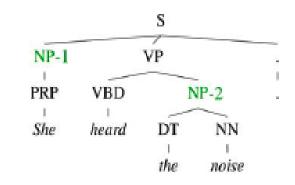


Sticky DER = 4.81%

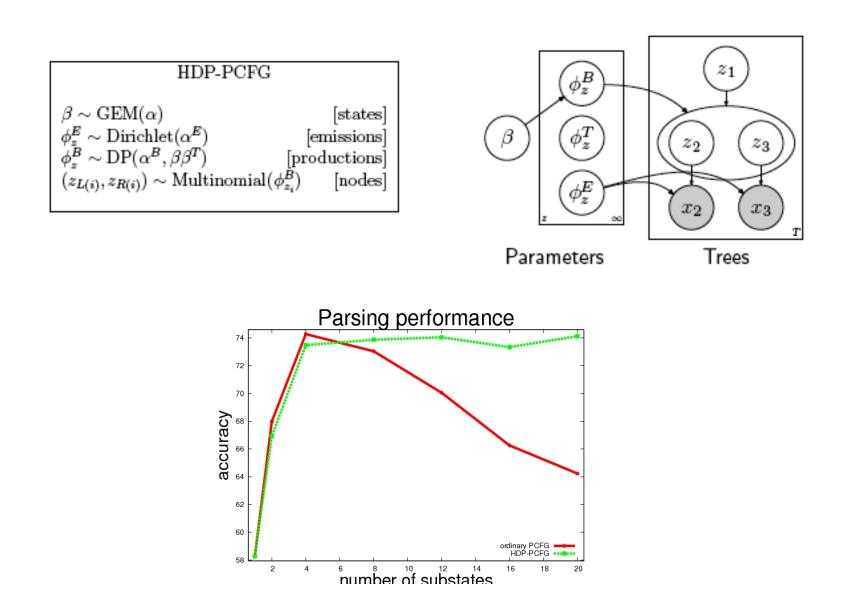
ICSI DER = 22.00%

HDP-PCFG

- The most successful parsers of natural language are based on *lexicalized* probabilistic context-free grammars (PCFGs)
- We want to learn PCFGs from data without handtuning of the number or kind of lexical categories



HDP-PCFG



The Beta Process

- The Dirichlet process naturally yields a multinomial random variable (which table is the customer sitting at?)
- *Problem*: in many problem domains we have a very large (combinatorial) number of possible tables
 - using the Dirichlet process means having a large number of parameters, which may overfit
 - perhaps instead want to characterize objects as collections of attributes ("sparse features")?
 - i.e., binary matrices with more than one 1 in each row

Completely Random Measures

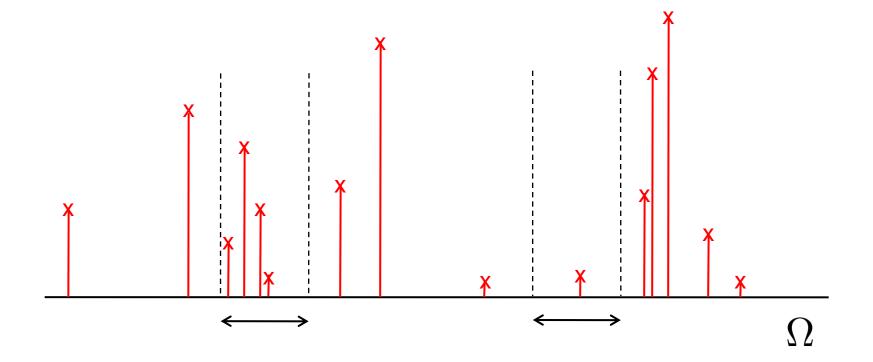
(Kingman, 1968)

- Completely random measures are measures on a set Ω that assign independent mass to nonintersecting subsets of Ω
 - e.g., Brownian motion, gamma processes, beta processes, compound Poisson processes and limits thereof
- (The Dirichlet process is not a completely random process

 but it's a normalized gamma process)
- Completely random processes are discrete wp1 (up to a possible deterministic continuous component)
- Completely random processes are random *measures*, not necessarily random *probability measures*

Completely Random Measures

(Kingman, 1968)

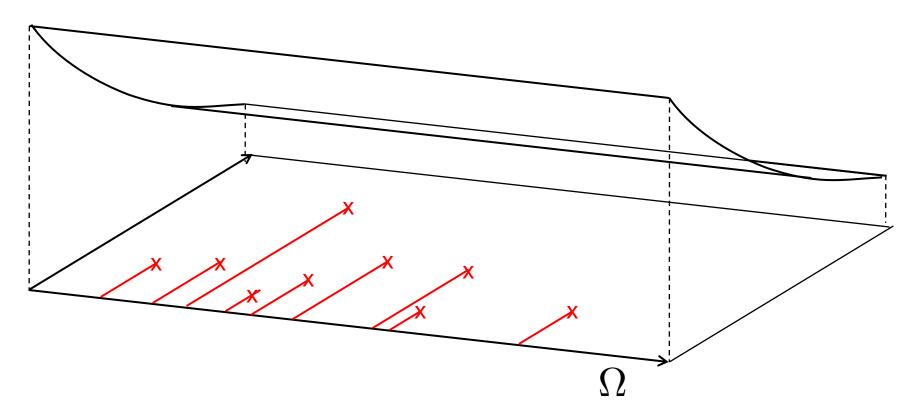


- Assigns independent mass to nonintersecting subsets of Ω

Completely Random Measures

(Kingman, 1968)

- Consider a non-homogeneous Poisson process on $\ \Omega \otimes R$ with rate function obtained from some product measure
- Sample from this Poisson process and connect the samples vertically to their coordinates in Ω



Beta Processes

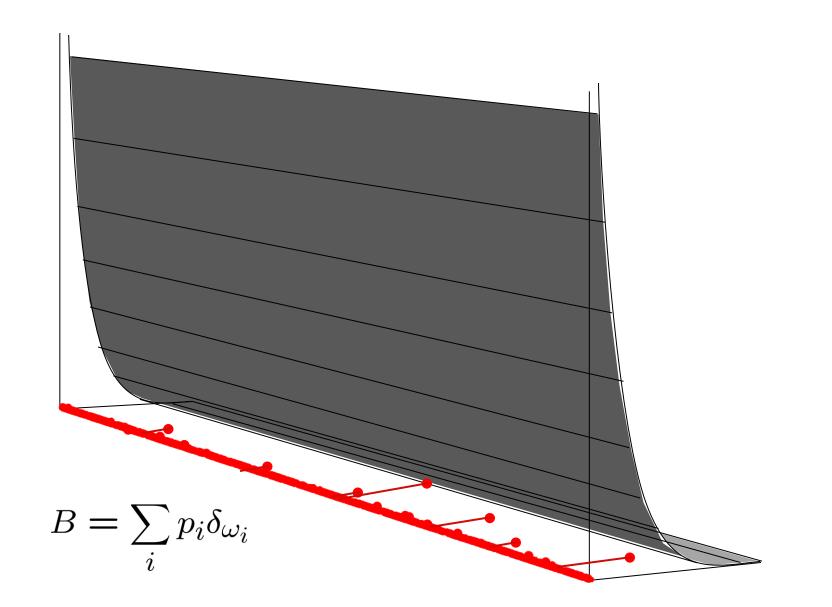
- The product measure is called a *Levy measure*
- For the beta process, this measure lives on $\Omega \otimes (0,1)$ and is given as follows:

$$\nu(d\omega, dp) = cp^{-1}(1-p)^{c-1}dp B_0(d\omega)$$
degenerate Beta(0,c) distribution Base measure

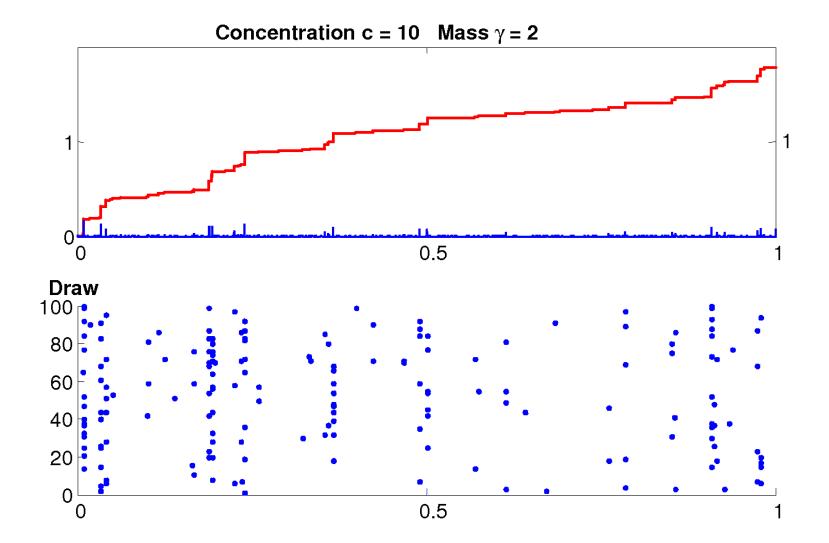
• And the resulting random measure can be written simply as:

$$B = \sum_{i} p_i \delta_{\omega_i}$$

Beta Processes



Beta Process and Bernoulli Process



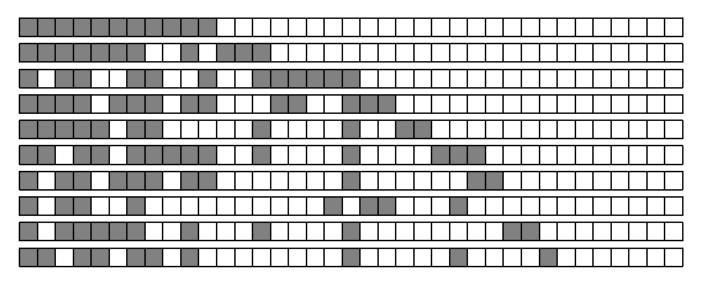
BP and BeP Sample Paths



Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2002)

- Indian restaurant with infinitely many dishes in a buffet line
- Customers $1 \ {\rm through} \ n$ enter the restaurant
 - the first customer samples $\mathrm{Poiss}(\alpha)$ dishes
 - the *i*th customer samples a previously sampled dish with probability $m_k/(i+1)$ then samples $Poiss(\alpha/i)$ new dishes



Beta Process Marginals

(Thibaux & Jordan, 2007)

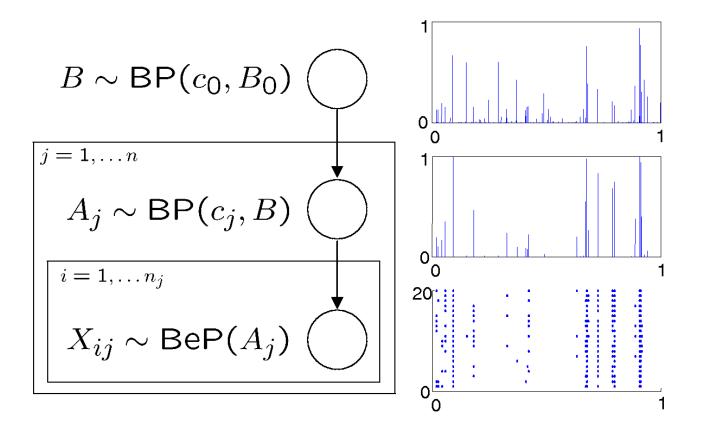
• *Theorem*: The beta process is the De Finetti mixing measure underlying the Indian buffet process (IBP)

Beta Process Point of View

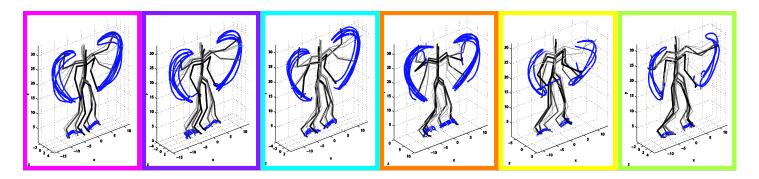
- The IBP is usually derived by taking a finite limit of a process on a finite matrix
- But this leaves some issues somewhat obscured:
 - is the IBP exchangeable?
 - why the Poisson number of dishes in each row?
 - is the IBP conjugate to some stochastic process?
- These issues are clarified from the beta process point of view
- A draw from a beta process yields a countably infinite set of coin-tossing probabilities, and each draw from the Bernoulli process tosses these coins independently

Hierarchical Beta Processes

• A hierarchical beta process is a beta process whose base measure is itself random and drawn from a beta process

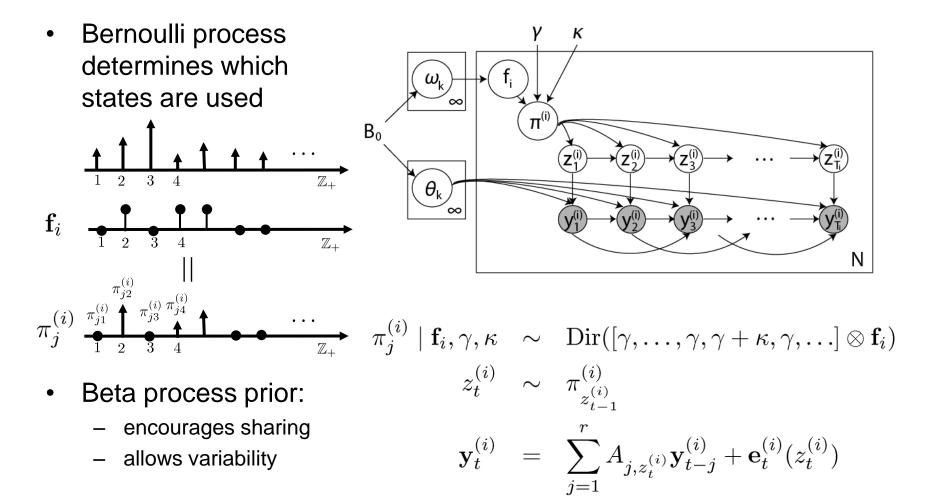


Multiple Time Series

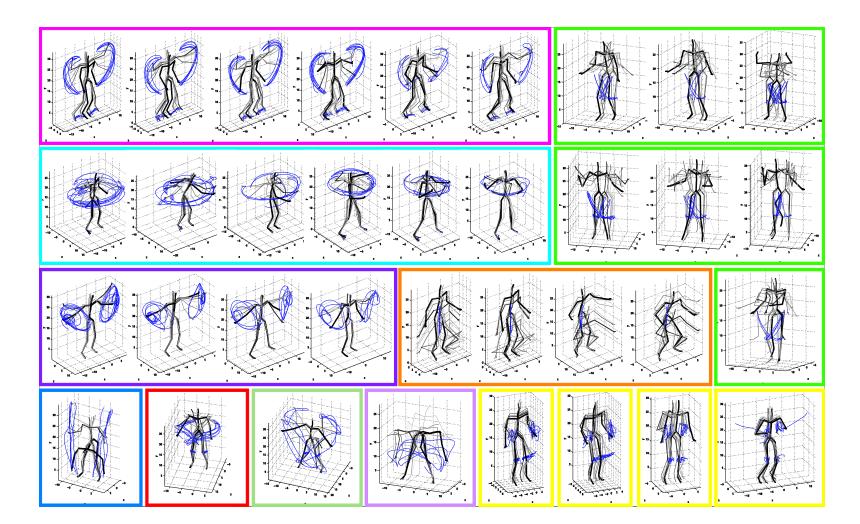


- Goals:
 - transfer knowledge among related time series in the form of a library of "behaviors"
 - allow each time series model to make use of an arbitrary subset of the behaviors
- Method:
 - represent behaviors as states in a nonparametric HMM
 - use the beta/Bernoulli process to pick out subsets of states

BP-AR-HMM

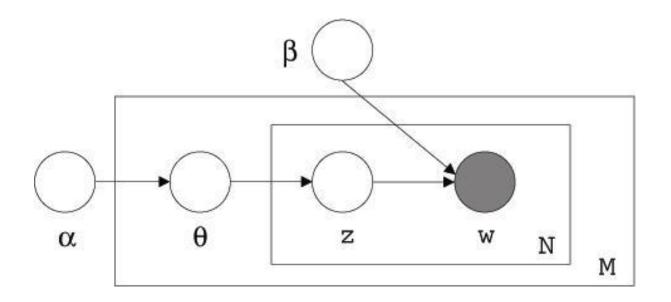


Motion Capture Results



Latent Dirichlet Allocation

(Blei, Ng, and Jordan, 2003)



- A word is represented as a *multinomial* random variable w
- A topic allocation is represented as a multinomial random variable z
- A *document* is modeled as a *Dirichlet* random variable θ
- The variables α and β are hyperparameters

Finite Mixture Models

- The mixture components are distributions on individual words in some vocabulary (e.g., for text documents, a multinomial over lexical items)
 - often referred to as "topics"
- The generative model of a document:
 - select a mixture component
 - repeatedly draw words from this mixture component
- The mixing proportions are corpora-specific, not document-specific
- Major drawback: each document can express only a single topic

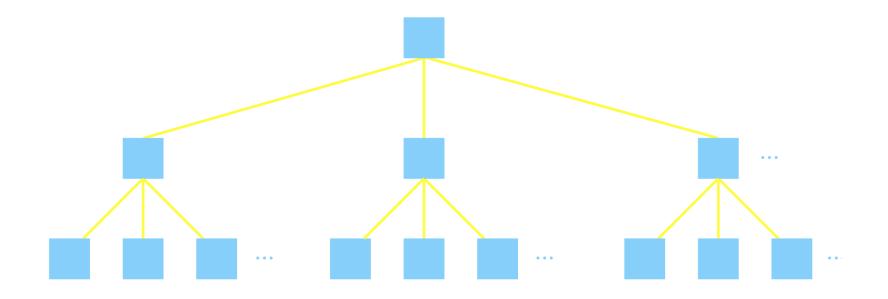
Finite Admixture Models

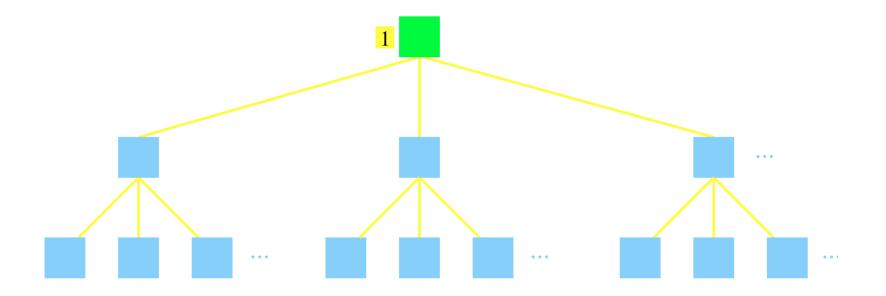
- The mixture components are distributions on individual words in some vocabulary (e.g., for text documents, a multinomial over lexical items)
 - often referred to as "topics"
- The generative model of a document:
 - repeatedly select a mixture component
 - draw a word from this mixture component
- The mixing proportions are document-specific
- Now each document can express multiple topics

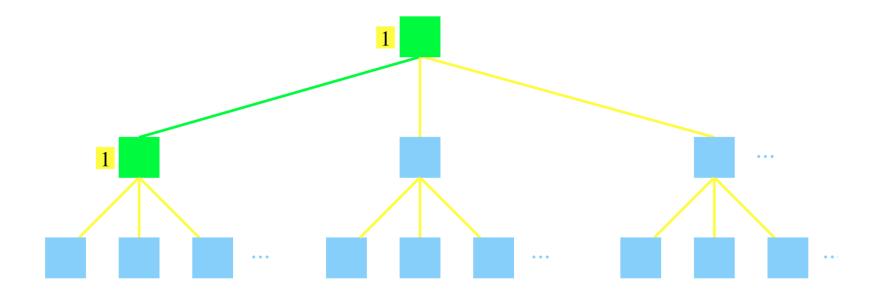
Abstraction Hierarchies

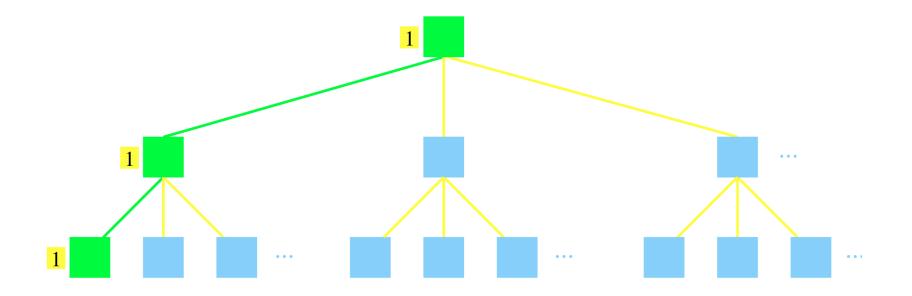
- Words in documents are organized not only by topics but also by level of abstraction
- Models such as LDA and the HDP don't capture this notion; common words often appear repeatedly across many topics
- Idea: Let documents be represented as paths down a tree of topics, placing topics focused on common words near the top of the tree

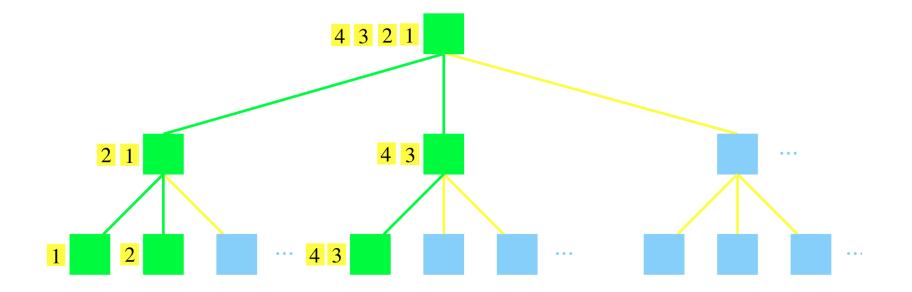
(Blei, Griffiths and Jordan, JACM, 2010)

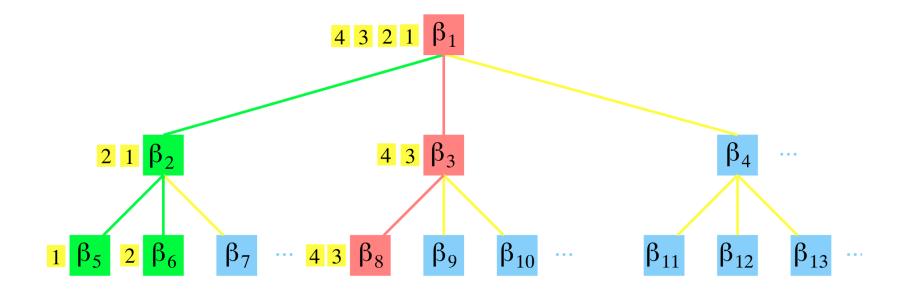








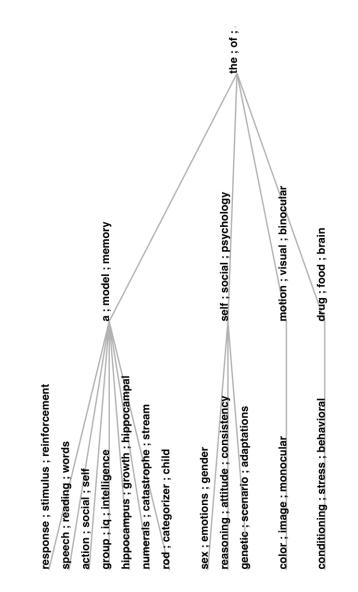




Hierarchical Latent Dirichlet Allocation

- The generative model for a document is as follows:
 - use the nested CRP to select a path down the infinite tree
 - draw $~\lambda \sim {\rm GEM}(\lambda_0)$ to obtain a distribution on levels along the path
 - repeatedly draw a level from λ and draw a word from the topic distribution at that level

Psychological Review Abstracts



Conclusions

• For papers, software, tutorials and more details:

www.cs.berkeley.edu/~jordan/publications.html

- See, in particular, the papers:
 - "Hierarchical Models, Nested Models and Completely Random Measures"
 - "Bayesian Nonparametric Learning: Expressive Priors for Intelligent Systems"