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Sensor-Adaptive signal processing: Dynamically adapt sensor behavior.

Sensor-Adaptive Signal Processing

Statistical signal processing: Extract signal from noise

Noise

Signal

Sensor
Signal Processing

Estimate

Sensor-Adaptive Signal Processing: Dynamically manage sensor

resources.

Noise

Signal

Sensor
Signal Processing

Estimate

Feedback (Stochastic Control)
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Stochastic control of multi-function radar

Part 1: Global Game Formulation
Topic 3: Global Game for 

Sensor Activation

! Gives a communication free 

deployment protocol.

! Simple threshold policies are in Nash 

equilibrium. 

! If uncertainty is high or congestion is low. 

! Compare with other approaches:

! Local communication & self-organization 

[Biswas & Phoba 06, Clare & Pottie 99, 

Aroraa et. al. 04]

! Flocking

!"#$%&'$()*"+(),-.

/*)&

!-#,01#&

Main result: Nash equilibrium

is threshold policy

1. Large number (continuum of sensors):

y (i)
= x + w (i), x ∼ π0, w (i) ∼ pW

2. Sensor chooses action u = µ(y (i)
)

u = sleep reward = 0

u = active reward h(x , α) = cx + f (α)

α(µ): frac of sensors choosing u = active.

3. Sensors are rational. (I know that you

know). What is optimal policy

µ : y (i) → { sleep, active} to max E{reward}

Ex: x : measurement quality (dB, pH)

y : estimate at sensor

f (α) =
Network throughput

Global MSE

Today’s talk: Decentralized sensor 
management

Key tool: game theory
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Example 1. Unattended Ground Sensor Network: Mass produced sensors; 
battery life constraints
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Sentry Unattended

Ground Sensor Node

Weight 0.6 Kg

Onboard IR Motion, GPS

Sensors Low-res Imagery
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Power AA
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1 Autonomous Sensor Activation: Can simple local behavior

(mass-produced) yield useful global behavior?

2 How can sensors learn from other sensors to make local

decisions? How do local decisions affect global decisions?

3 If each sensor deploys a simple adaptive filter, is the global

behavior rational?
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Sensor Network: Mass-produced sensors; battery life constraints.
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Ground Sensor Node

Weight 0.6 Kg
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IR motion

acoustic, seismic
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RF Range ≥ 300 m

Power AA
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1 Autonomous Sensor Activation: Can simple local behavior

(mass-produced) yield useful global behavior?

2 How can sensors learn from other sensors to make local

decisions? How do local decisions affect global decisions?

3 If each sensor deploys a simple adaptive filter, is the global

behavior rational?

Example 2. Economic Systems: Speculative currency attacks Crashes, 
Bubbles and Booms, Information Delays in Financial markets

Econometrica, Vol. 73, No. 5 (September, 2005), 1401–1430

ADAPTIVE HEURISTICS

BY SERGIU HART1

We exhibit a large class of simple rules of behavior, which we call adaptive heuristics,
and show that they generate rational behavior in the long run. These adaptive heuris-
tics are based on natural regret measures, and may be viewed as a bridge between ra-
tional and behavioral viewpoints. Taken together, the results presented here establish
a solid connection between the dynamic approach of adaptive heuristics and the static
approach of correlated equilibria.

KEYWORDS: Dynamics, heuristics, adaptive, correlated equilibrium, regret, regret-
matching, uncoupled dynamics, joint distribution of play, bounded rationality, behav-
ioral, calibration, fictitious play, approachability.

1. INTRODUCTION

CONSIDER DYNAMIC SETTINGS where a number of decision-makers interact
repeatedly. We call a rule of behavior in such situations an adaptive heuristic
if, on the one hand, it is simple, unsophisticated, simplistic, and myopic (a so-
called “rule of thumb”), and, on the other, it leads to movement in seemingly
“good” directions (like stimulus-response or reinforcement). One example of
adaptive heuristic is to always choose a best reply to the actions of the other
players in the previous period—or, for that matter, to the frequency of their
actions in the past (essentially, the well-known “fictitious play”).

Adaptive heuristics are boundedly rational strategies (in fact, highly
“bounded away” from full rationality). The main question of interest is whether
such simple strategies may in the long run yield behavior that is nevertheless
highly sophisticated and rational.

This paper is based mainly on the work of Hart and Mas-Colell (2000, 2001a,
2001b, 2003a, 2003b), which we try to present here in a simple and elementary
form (see Section 10 and the pointers there for the more general results). Sig-
nificantly, when the results are viewed together new insights emerge—in par-
ticular, into the relations of adaptive heuristics to rationality on the one hand,
and to behavioral approaches on the other. See Section 9, which may well be
read immediately.

The paper is organized as follows. In Section 2 we provide a rough classifica-
tion of dynamic models. The setting and notations are introduced in Section 3,

1Walras–Bowley Lecture 2003, delivered at the North American Meeting of the Economet-
ric Society in Evanston, Illinois. A presentation is available at http://www.ma.huji.ac.il/hart/abs/
adaptdyn.html. It is a great pleasure to acknowledge the joint work with Andreu Mas-Colell over
the years, upon which this paper is based. I also thank Ken Arrow, Bob Aumann, Maya Bar-Hillel,
Avraham Beja, Elchanan Ben-Porath, Gary Bornstein, Toni Bosch, Ido Erev, Drew Fudenberg,
Josef Hofbauer, Danny Kahneman, Yaakov Kareev, Aniol Llorente, Yishay Mansour, Eric
Maskin, Abraham Neyman, Bezalel Peleg, Motty Perry, Avi Shmida, Sorin Solomon, Menahem
Yaari, and Peyton Young, as well as the editor and the anonymous referees, for useful discussions,
suggestions, and comments. Research partially supported by the Israel Science Foundation.
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Global game
From Wikipedia, the free encyclopedia

In economics and game theory, global games are games of incomplete information where
players receive possibly-correlated signals of the underlying state of the world. Global games
were originally defined by Carlsson and van Damme (1993). The most important practical
application of global games has been the study of crises in financial markets such as bank
runs, currency crises, and bubbles.

Global games in models of currency crises
Stephen Morris and Hyun Song Shin (1998) considered a stylized currency crises model, in
which traders observe the relevant fundamentals with small noise, and show that this leads to
the selection of a unique equilibrium. This result overturns the result in models of complete
information, which feature multiple equilibria.

One concern with the robustness of this result is that the introduction of a theory of prices in
global coordination games may reintroduce multiplicity of equilibria (Atkeson, 2001). This
concern was addressed in Angeletos and Werning (2006) and Hellwig et. al.(2006). They
show that equilibrium multiplicity may be restored by the existence of prices acting as an
endogenous public signal, provided that private information is sufficiently precise.

References
George-Marios Angeletos and Ivan Werning (2006), "Crises and Prices: Information
Aggregation, Multiplicity, and Volatility," American Economic Review, 96 (5): 1720–
36.
Andrew G. Atkeson, (2001), "Rethinking Multiple Equilibria in Macroeconomic
Modeling: Comment." In NBER Macroeconomics Annual 2000, ed. Ben S. Bernanke
and Kenneth Rogoff, 162–71. Cambridge, MA: MIT Press.
Christian Hellwig, Arijit Mukherji and Aleh Tsyvinski (2006), "Self-Fulfilling
Currency Crises: The Role of Interest Rates," American Economic Review, 96 (5):
1769-1787.
Stephen Morris and Hyun Song Shin (1998), "Unique Equilibrium in a Model of Self-
Fulfilling Currency Attacks," American Economic Review, 88 (3): 587–97.
Stephen Morris & Hyun S Shin, 2001. "Global Games: Theory and Applications."
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Decentralized Sensor Management

Sensor Network: Mass-produced sensors; battery life constraints.

Sentry Unattended

Ground Sensor Node

Weight 0.6 Kg

Onboard IR Motion, GPS

Sensors Low-res Imagery

IR motion

acoustic, seismic

magnetic

RF Range ≥ 300 m

Power AA

battery

1 Autonomous Sensor Activation: Can simple local behavior

(mass-produced) yield useful global behavior?

2 How can sensors learn from other sensors to make local

decisions? How do local decisions affect global decisions?

3 If each sensor deploys a simple adaptive filter, is the global

behavior rational?

Example 3. Social Networks: How to achieve consensus in decision making?
Blogs... 

game theoretic analysis

social learning

game theoretic learning

•Group behavior may 
not be as wise as we 
think.
•Crowds reduce diversity 
of responses
•Crowd opinion can be 
misleading.
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1. Global Games and Dynamic Sensor Activation:  
How can agents decide autonomously when to 
turn ON by predicting the actions of other agents?

Game Theory as an analysis tool

2. Social Learning and Rational Herds:  
•  How can agents learn from actions of other agents?
•  How do local decisions affect global decisions?

Game Theory as a synthesis tool

3. Adaptive Filtering Games: 
Each agent deploys an adaptive filter to optimize its decision.  
Can the global system achieve consensus in policy space?
Game theory in adaptive learning.

Outline

1 Global Games and Dynamic Sensor Acti-

vation: Suppose each sensor deploys a simple
algorithm. What can you say about global

performance?

Game Theory as an analysis tool.

Why Game Theory?
! Perspective on decentralized control problems:

! Analysis tool: What can be said about performance of  simple protocols?

! Synthesis tool: How to achieve cooperation among adaptive, decentralized sensors?

! What has been done – Answer: Lots! 

! Some highlights (for this talk):
! Stochastic Games [Shapley 53, Filar & Vrieze 97, Bertsekas 01].

! Learning Algorithms [Hart & Mas-Colell, Fudenberg & Levine]

! Global Games [Carlsson & van Damme 93, Karp et. al. 04].

! Applications in networks, defence, etc.

! What is new:
! Applications: 

! Stochastic shortest path games for Missile deflection.

! Sensor deployment and spectrum sharing games.

! Correlated Equilibrium:

! Formulation for stochastic games.

! Adaptive learning-based tracking for slow varying games.

! Structure in global games with diversity: threshold policies.
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Unifying theme: Local to global behavior for dynamical system
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Part 1: Global Game Formulation
Topic 3: Global Game for 

Sensor Activation

! Gives a communication free 

deployment protocol.

! Simple threshold policies are in Nash 

equilibrium. 

! If uncertainty is high or congestion is low. 

! Compare with other approaches:

! Local communication & self-organization 

[Biswas & Phoba 06, Clare & Pottie 99, 

Aroraa et. al. 04]

! Flocking
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Main result: Nash equilibrium

is threshold policy

1. Large number (continuum of sensors):

y (i)
= x + w (i), x ∼ π0, w (i) ∼ pW

2. Sensor chooses action u = µ(y (i)
)

u = sleep reward = 0

u = active reward h(x , α) = cx + f (α)

α(µ): frac of sensors choosing u = active.

3. Sensors are rational. (I know that you

know). What is optimal policy

µ : y (i) → { sleep, active} to max E{reward}

Ex: x : measurement quality (dB, pH)

y : estimate at sensor

f (α) =
Network throughput

Global MSE
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too crowdedno social
 interaction

Example from Karp, Lee and Mason, A global 
game with strategic substitutes and complements, 
Games and Economic Behavior, 2007. 
Univariate uniform distributed noise
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Main result: Nash equilibrium

is threshold policy

1. Large number (continuum of agents):

y (i)
= x + w (i), x ∼ π0, w (i) ∼ pW

2. Agent chooses action u = µ(y (i)
)

u = sleep reward = 0

u = active reward h(x , α) = cx + f (α)

α(µ): frac of sensors choosing u = active.

3. Agents are rational. (I know that you

know). They predict and act.

What is optimal policy?

µ : y (i) → { sleep, active} to max E{reward}

Ex: x : measurement quality (dB, pH)

y : estimate at sensor

f (α) =
Network throughput

Global MSE
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Aroraa et. al. 04]
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Main result: Nash equilibrium

is threshold policy

1. Large number (continuum of sensors):

y (i)
= x + w (i), x ∼ π0, w (i) ∼ pW

2. Sensor chooses action u = µ(y (i)
)

u = sleep reward = 0

u = active reward h(x , α) = cx + f (α)

α(µ): frac of sensors choosing u = active.

3. Sensors are rational. (I know that you

know). What is optimal policy

µ : y (i) → { sleep, active} to max E{reward}

Ex: x : measurement quality (dB, pH)

y : estimate at sensor

f (α) =
Network throughput

Global MSE
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Morris & Shin, 2000: speculative 
currency attacks. 

Why Global Games

Mackenzie & Wicker, 2001. Game Theory and Design of Self
Configuring Adaptive Wireless Networks
Game theory: Ideal for decentralized coordination of
self-interested interacting dynamical agents.

y (i)

y (i)

P(’go’)

P(’go’)

Key Paradigm: Sensors act by learning
from data and predicting other sensors!
Sophisticated opportunistic scheduling.
Result: Threshold Nash equilibrium!

Nightclub analogy: Karp, Lee, Mason, A Global Game with strategic
substitutes and complements, 2007 (uni-variate uniform noise).

Morris & Shin, 2000: monotone f (α); Speculative currency attacks.

Chamley, Rational herds, Cambridge Univ Press, 2004:

Krishnamurthy [IEEE Signal Proc 2008 & 2009], multiple classes of
sensors, Gaussian noise, stochastic orders; multiple night clubs
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Angeletos, Hellwig, Econometrica, 2007: 
Dynamic global games of Regime change
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Under what conditions is optimal policy (Bayesian Nash 
equilibrium) a threshold?

Why Global Games

Mackenzie & Wicker, 2001. Game Theory and Design of Self
Configuring Adaptive Wireless Networks
Game theory: Ideal for decentralized coordination of
self-interested interacting dynamical agents.

y (i)

y (i)

P(’go’)

P(’go’)

Key Paradigm: Sensors act by learning
from data and predicting other sensors!
Sophisticated opportunistic scheduling.
Result: Threshold Nash equilibrium!

Nightclub analogy: Karp, Lee, Mason, A Global Game with strategic
substitutes and complements, 2007 (uni-variate uniform noise).

Morris & Shin, 2000: monotone f (α); Speculative currency attacks.

Chamley, Rational herds, Cambridge Univ Press, 2004:

Krishnamurthy [IEEE Signal Proc 2008 & 2009], multiple classes of
sensors, Gaussian noise, stochastic orders; multiple night clubs

BNE: EY −i [ui(π∗i (Y
i), π∗−i(Y

−i)|Y i] ≥ EY −i [ui(πi(Y i), π∗−i(Y
−i)|Y i]

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

yk ∼
�

B1(·) k ≤ τ 0

B2(·) k > τ 0
, change time τ 0 ∼ geometric distribution

Minimize Eµ
π0
{d|τ − τ 0|+� �� �

delay

+ f I(τ < τ 0
)� �� �

false-alarm

}, τ = announce change time

Classical: Agents k = 1, 2, . . . share observations {yk}
or posterior P (τ 0 ≤ k|y1, . . . , yk).

Aim: Agents k = 1, 2, . . . act sequentially To estimate x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Takes action greedily to minimize cost ak = arg mina Eπk−1,yk
{c(x, a)}

• Other agents update public belief πk = P (x|a1, . . . , ak).

How to compute social welfare optimal policy µ∗(π, y)?

Averaging theory: Dynamics of agents are a differential inclusion

drl

dt
∈

�

x−l

πl
(i,x−l

)[ul
(j,x−l

)− ul
(i,x−l

)− r
l

Converges to set of correlated equilibria Ce – Blackwell approachability.

1
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•IEEE Trans SP 2008 & 2009: Multiple classes of sensors; multiple night clubs; 

•Gaussian noise; Proof via lattice programming and stochastic orders.
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MAIN RESULT

7

Result: If network congestion df
dα ≥ −M, there is unique threshold y∗

such that Bayesian Nash Equilibrium of each sensor is a threshold policy:

µ(Y ) =

�
active if Y > y∗

sleep if Y ≤ y∗

y∗ satisfies E [cX + f (α(X ))|Y = y∗] = 0.

Rationality: α(x) = P(u = active|x)

=

� ∞

y∗
pY |X (y |x)dy = 1− ΦW (y∗ − x).

0

E [h(X , α)|Y (i) = y ]

y

optimal policy

1

When is Nash: µ(i)(Y ) = argmax{ 0����
sleep

,E [cX + f (α(X ))|Y ]� �� �
active

} monotone ↑ Y

Reasonable conditions :
df

dα
>

−c

max pW (·) and
pW (y − x)

pW (y − x �)
↑ y , x > x �

(i) Supermodularity [Topkis] E [cX + f (X , α(X ) |Y ] ↑ Y .
(ii) Stochastic dominance: Whitt [1984]: pX |Y (x |y1) ≥

r
pX |Y (x |y2) iff

pW (y − x) ≥
r

pW (y − x �) =⇒ conditions on noise density pW (w).

cX + f (α(X )) ↑ X and pW (w) MLR orderable (Gaussian, uniform).

Part 1: Global Game Formulation
Topic 3: Global Game for 

Sensor Activation

! Gives a communication free 

deployment protocol.

! Simple threshold policies are in Nash 

equilibrium. 

! If uncertainty is high or congestion is low. 

! Compare with other approaches:

! Local communication & self-organization 

[Biswas & Phoba 06, Clare & Pottie 99, 

Aroraa et. al. 04]

! Flocking

!"#$%&'$()*"+(),-.
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is threshold policy

1. Large number (continuum of sensors):

y (i)
= x + w (i), x ∼ π0, w (i) ∼ pW

2. Sensor chooses action u = µ(y (i)
)

u = sleep reward = 0

u = active reward h(x , α) = cx + f (α)

α(µ): frac of sensors choosing u = active.

3. Sensors are rational. (I know that you

know). What is optimal policy

µ : y (i) → { sleep, active} to max E{reward}

Ex: x : measurement quality (dB, pH)

y : estimate at sensor

f (α) =
Network throughput

Global MSE
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Under what conditions does µ∗(y) = arg max
u

{h(y, u)} ↑ y?

When is Nash µ(i)(Y ) = arg max{ 0
︸︷︷︸

(sleep) u = 1

, E[cX + f(α(X)|Y ]
︸ ︷︷ ︸

(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ(i)(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y if h(y, 2) − h(y, 1) ↑ y
︸ ︷︷ ︸

supermodular function

Structure of solution without brute force computation. Useful in game theory,
stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...
Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk

{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action

provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies montone
likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

1
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Monotone comparative statics:

•Single crossing condition: Milgrom & Shannon, Econometrica, 1994 

•Supermodularity: Topkis (1978,1998).

Under what conditions does µ(y) = arg max
u

{H(y, u)} ↑ y?

When is Nash µ(i)(Y ) = arg max{ 0
︸︷︷︸

(sleep) u = 1

, E[cX + f(α(X)|Y ]
︸ ︷︷ ︸

(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ(i)(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y if h(y, 2) − h(y, 1) ↑ y
︸ ︷︷ ︸

supermodular function

Structure of solution without brute force computation. Useful in game theory,
stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...
Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk

{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action

provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies montone
likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

1

Under what conditions does µ(y) = arg max
u

{H(y, u)} ↑ y?

When is Nash µ(i)(Y ) = arg max{ 0
︸︷︷︸

(sleep) u = 1

, E[cX + f(α(X)|Y ]
︸ ︷︷ ︸

(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ(i)(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y If H(y, 2) − H(y, 1) ↑ y
︸ ︷︷ ︸

supermodular function

Structure of solution without brute force computation. Useful in game theory,
stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...
Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk

{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.
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I choose my local decision to sacrifice my local ultility so that my action
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Benevolent agents choose local decision by minimizing social welfare cost:
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Result: If network congestion df
dα ≥ −M, there is unique threshold y∗

such that symmetric BNE of each sensor is a threshold policy:

µ(Y ) =

�
active if Y > y∗

sleep if Y ≤ y∗

y∗ satisfies E [cX + f (α(X ))|Y = y∗] = 0.

Rationality: α(x) = P(u = active|x)

=

� ∞

y∗
pY |X (y |x)dy = 1− ΦW (y∗ − x).

0

E [h(X , α)|Y (i) = y ]

y

optimal policy

1

When is Nash: µ(i)(Y ) = argmax{0,E [cX + f (α(X ))|Y ]} monotone ↑ Y

Existence: Glicksberg fixed pt theorem - sup-norm metric

Reasonable conditions :
df

dα
>

−c

max pW (·) and
pW (y − x)

pW (y − x �)
↑ y , x > x �

(i) Supermodularity [Topkis] E [cX + f (X , α(X ) |Y ] ↑ Y .
(ii) Stochastic dominance: Whitt [1984]: pX |Y (x |y1) ≥

r
pX |Y (x |y2) iff

pW (y − x) ≥
r

pW (y − x �) =⇒ conditions on noise density pW (w).

cX + f (α(X )) ↑ X and pW (w) MLR orderable (Gaussian, uniform).

Gaussian, uniform,..
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Summary for Part 1

Sensors predicting behavior of other sensors in a global game yields:

1
Simple intuitive optimal activation policy:
y < y∗ =⇒ sleep, otherwise awaken.

Topic 3: Global Game for 

Sensor Activation

! Gives a communication free 

deployment protocol.

! Simple threshold policies are in Nash 

equilibrium. 

! If uncertainty is high or congestion is low. 

! Compare with other approaches:

! Local communication & self-organization 

[Biswas & Phoba 06, Clare & Pottie 99, 

Aroraa et. al. 04]

! Flocking

!"#$%&'$()*"+(),-.

/*)&

!-#,01#&

2 Each sensor can estimate threshold y∗ indept of others.
E [cX + f (α(X )) |Y = y∗] = 0 via simulation based stochastic
approximation algorithm

3 The network exhibits complex behavior.

No one goes there anymore ... it is always too
crowded (Yogi Berra)

For single class of sensors: y∗(σ1) ↑ σ
But for 2 classes of sensors, y∗(σ1, σ2) not necessarily ↑ σ1, σ2.
So sensors decision is a non-monotone function of other
sensor classes.
E.g. stochastic observability based on angle measurements:
closest sensors to target are not necessarily the best sensors.
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Main result: Nash equilibrium

is threshold policy

1. Large number (continuum of sensors):

y (i)
= x + w (i), x ∼ π0, w (i) ∼ pW

2. Sensor chooses action u = µ(y (i)
)

u = sleep reward = 0

u = active reward h(x , α) = cx + f (α)

α(µ): frac of sensors choosing u = active.

3. Sensors are rational. (I know that you

know). What is optimal policy

µ : y (i) → { sleep, active} to max E{reward}

Ex: x : measurement quality (dB, pH)

y : estimate at sensor

f (α) =
Network throughput

Global MSE
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Multivariate Generalizations and Cognitive Radios
How to autonomously choose spectrum gap?
• Too many users in spectrum gap = excess interference. 
•Too few users in spectrum gap = under-utilization. 
[IEEE TSP 2009]: multi-variate opportunistic scheduling

Extensions for Part 1

1. Multivariate generalizations and Cognitive-Radios

go

Y−l

Yl

Yl = g(Y−l)
stay Example: Dynamic Spectrum Access with DCF

utility for IEEE 802.11.

Optimal policy is opportunistic wrt partial order

2. Correlated Equilibria form convex polytope. Unlike

Nash eq: easy to compute; allows for correlated learning.

Nobel Prize press release, October 2005: “Aumann also in-

troduced a new equilibrium concept, correlated equilibrium, which

is more general than Nash equilibrium, the solution concept devel-

oped by John Nash, an economics laureate in 1994”

Karp, Lee Mason, 2007. Journal of Game theory

Krishnamurthy, Self-Configuration in Dense Sensor Networks via Global
Games, IEEE Trans SP, 2008.

Krishnamurthy, Decentralized Spectrum Access amongst Cognitive
Agents, IEEE Trans SP, Oct 2009.

e.g. high congestion
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1. Global Games and Sensor Activation:  Act simultaneously by 
predicting actions of other agents.
2. Social Learning and Rational Herds:  Agents act sequentially.
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Herding - rational agents end up blindly following previous agents.

Q1:  How can agents learn by observing actions of other agents?
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predicting actions of other agents.
2. Social Learning and Rational Herds:  Agents act sequentially.

Herding - rational agents end up blindly following previous agents.

Q1:  How can agents learn by observing actions of other agents?

Outline

1 Global Games and Dynamic Sensor Activation (rationality

to predict other agent’s actions)

2 Social Learning and Rational Herding:

1 How can agents learn from actions of other agents?

Herds occur – rational agents end up blindly following

previous agents.

2 How can a global decision maker optimize social

learning?

xk � ,
k < τ 0

xk ,
k ≥ τ 0.

In 1995, management gurus Treacy & Wiersema secretly bought

50,000 copies of their own book. Made NY times best seller list.

How to cope with malicious agents?

Rational Herds, Chamely, 2004
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1. Global Games and Sensor Activation:  Act simultaneously by 
predicting actions of other agents.
2. Social Learning and Rational Herds:  Agents act sequentially.

Herding - rational agents end up blindly following previous agents.

Q1:  How can agents learn by observing actions of other agents?

•When I see others taking umbrellas, I take an umbrella without checking the 
weather forecast. I assume their private info is accurate.

Chamley, 2004. Rational Herds
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1. Global Games and Sensor Activation:  Act simultaneously by 
predicting actions of other agents.
2. Social Learning and Rational Herds:  Agents act sequentially.

Q2:  How do local decisions affect global decisions?  Social learning 
with quickest time change detection

Herding - rational agents end up blindly following previous agents.

Q1:  How can agents learn by observing actions of other agents?

How to build a sophisticated protocol that delays herding?
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Q1: How do agents learn from decisions of 
other agents?

Restaurant problem.
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The Tale of Two Restaurants
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The Tale of Two Restaurants

Model 1: Laissez Faire (Selfish) Social Learning

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.
Protocol: Given public belief
πk−1 = P(x |a1, . . . , ak−1)

Agent k observes yk ∼ p(y |x)

Takes action to greedily minimize cost
ak = argmina Eπk−1,yk{c(x , a)}

Using action ak , other agents update
belief πk = P(x |a1, . . . , ak)

Social learning: learn
from actions of others

Theorem: [Bikchandani, J. Political Economy, 1992] Agents
eventually herd, i.e. take the same action. (Social learning stops).
This is bad news for sensor networks where sensors make local
decisions! We need a more sophisticated protocol!
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The Tale of Two Restaurants

Model 1: Laissez Faire (Selfish) Social Learning

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.
Protocol: Given public belief
πk−1 = P(x |a1, . . . , ak−1)

Agent k observes yk ∼ p(y |x)

Takes action to greedily minimize cost
ak = argmina Eπk−1,yk{c(x , a)}

Using action ak , other agents update
belief πk = P(x |a1, . . . , ak)

Social learning: learn
from actions of others

Theorem: [Bikchandani, J. Political Economy, 1992] Agents
eventually herd, i.e. take the same action. (Social learning stops).
This is bad news for sensor networks where sensors make local
decisions! We need a more sophisticated protocol!

Key point: Agents learn from the actions of previous agents.
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This is bad news for sensor networks where agents make local 
greedy decisions. We need a more sophisticated protocol.

E.g. pay agents to sit in restaurant 2

The Tale of Two Restaurants

Model 1: Laissez Faire (Selfish) Social Learning
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• Herding is caused by agents making greedy 
(capitalistic) local decisions.

• How to delay herding?
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Q2: HOW TO OPTIMIZE SOCIAL LEARNING?

13

π(1)

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1
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π(1)
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1

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

yk ∼
�

B1(·) k ≤ τ 0

B2(·) k > τ 0
, change time τ 0 ∼ geometric distribution

Minimize Eµ
π0
{d|τ − τ 0|+� �� �

delay

+ f I(τ < τ 0
)� �� �

false-alarm

}, τ = announce change time

Classical: Agents k = 1, 2, . . . share observations {yk}
or posterior P (τ 0 ≤ k|y1, . . . , yk).

Aim: Agents k = 1, 2, . . . act sequentially To estimate x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Takes action greedily to minimize cost ak = arg mina Eπk−1,yk
{c(x, a)}

• Other agents update public belief πk = P (x|a1, . . . , ak).

How to compute social welfare optimal policy µ∗(π, y)?

Averaging theory: Dynamics of agents are a differential inclusion

drl

dt
∈

�

x−l

πl
(i,x−l

)[ul
(j,x−l

)− ul
(i,x−l

)− r
l

Converges to set of correlated equilibria Ce – Blackwell approachability.

1
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Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Each agent chooses action by minimizing social welfare cost:

ak = µ∗(πk−1, yk) where µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.
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action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}
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, where τ 0 = change time (usually geometric)
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+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

π(1)

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

yk ∼
�

B1(·) k ≤ τ 0

B2(·) k > τ 0
, change time τ 0 ∼ geometric distribution

Minimize Eµ
π0
{d|τ − τ 0|+� �� �

delay

+ f I(τ < τ 0
)� �� �

false-alarm

}, τ = announce change time

Classical: Agents k = 1, 2, . . . share observations {yk}
or posterior P (τ 0 ≤ k|y1, . . . , yk).

Aim: Agents k = 1, 2, . . . act sequentially To estimate x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Takes action greedily to minimize cost ak = arg mina Eπk−1,yk
{c(x, a)}

• Other agents update public belief πk = P (x|a1, . . . , ak).

How to compute social welfare optimal policy µ∗(π, y)?

Averaging theory: Dynamics of agents are a differential inclusion

drl

dt
∈

�

x−l

πl
(i,x−l

)[ul
(j,x−l

)− ul
(i,x−l

)− r
l

Converges to set of correlated equilibria Ce – Blackwell approachability.

1
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Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.
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action provides useful information to subsequent agents
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ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
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Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

π(1)

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

posterior probability of state 1

herd
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π(1)

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1

• Global decision policy: Initially socialistic then capitalistic.

 Can show: [IEEE Trans. Info. Theory, 2011]

• Under supermodular assumptions global decision policy is threshold.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

yk ∼
�

B1(·) k ≤ τ 0

B2(·) k > τ 0
, change time τ 0 ∼ geometric distribution

Minimize Eµ
π0
{d|τ − τ 0|+� �� �

delay

+ f I(τ < τ 0
)� �� �

false-alarm

}, τ = announce change time

Classical: Agents k = 1, 2, . . . share observations {yk}
or posterior P (τ 0 ≤ k|y1, . . . , yk).

Aim: Agents k = 1, 2, . . . act sequentially To estimate x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Takes action greedily to minimize cost ak = arg mina Eπk−1,yk
{c(x, a)}

• Other agents update public belief πk = P (x|a1, . . . , ak).

How to compute social welfare optimal policy µ∗(π, y)?

Averaging theory: Dynamics of agents are a differential inclusion

drl

dt
∈

�

x−l

πl
(i,x−l

)[ul
(j,x−l

)− ul
(i,x−l

)− r
l

Converges to set of correlated equilibria Ce – Blackwell approachability.

1
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Example: Multi-agent Quickest Time Change Detection

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.

1

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
{d|τ − τ 0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.

1

decision

posterior probability of change

declare change

no change
policydecision

posterior probability of change

declare change

no change
policy

decision

posterior probability of change

declare change

no change
policy

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ0

B2(·) k > τ0
, where τ0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize E
µ
π0
{d|τ − τ0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

Classical: Given posterior πk = P (change|y1, . . . , yk):
Optimal decision policy is threshold.

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Take action greedily to minimize cost
ak = argmina Eπ,y(c(x, a)}

• Update public belief πk = P (x|a1, . . . , ak)

Posterior πk−1 = P (τ0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)

At what time τ it optimal to declare change?
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• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.

• Broadcasts action ak.
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P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}

Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ 0

B2(·) k > τ 0
, where τ 0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize Eµ
π0
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︸ ︷︷ ︸

delay

+ f I(τ < τ 0)
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Classical: Given posterior πk−1 = P (τ 0 ≤ k − 1|y1, . . . , yk−1)

• Agent k receives observation yk

• Updates πk = P (τ 0 ≤ k|y1, . . . , yk−1, yk)

• Broadcasts πk (or yk)
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Social Learning: Given posterior πk−1 = P (τ 0 ≤ k − 1|a1, . . . , ak−1)

• Agent k receives observation yk.

• Chooses local decision ak = mina E{c(I(τ 0 ≤ k), a)|a1, . . . , ak−1, yk}.
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Bayesian Quickest-Time Change Detection:

Observations yk ∼

{

B1(·) k ≤ τ0

B2(·) k > τ0
, where τ0 = change time (usually geometric)

Aim: Compute time τ to annouce change: Minimize E
µ
π0
{d|τ − τ0|+
︸ ︷︷ ︸

delay

+ f I(τ < τ0)
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false-alarm

},

Classical: Given posterior πk = P (τ0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

Classical: Given posterior πk = P (change|y1, . . . , yk):
Optimal decision policy is threshold.

Aim: Agents k = 1, 2, . . . act sequentially
to estimate state x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)

• Take action greedily to minimize cost
ak = argmina Eπ,y(c(x, a)}
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3

multi-threshold
Non-standard Partially Observed Markov 
Decision Process Likelihood: P (ak|πk−1, xk)

BNE: EY −i [ui(π∗i (Y
i), π∗−i(Y

−i)|Y i] ≥ EY −i [ui(πi(Y i), π∗−i(Y
−i)|Y i]

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}
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yk ∼
�

B1(·) k ≤ τ 0

B2(·) k > τ 0
, change time τ 0 ∼ geometric distribution

Minimize Eµ
π0
{d|τ − τ 0|+� �� �

delay

+ f I(τ < τ 0
)� �� �

false-alarm

}, τ = announce change time

Classical: Agents k = 1, 2, . . . share observations {yk}
or posterior P (τ 0 ≤ k|y1, . . . , yk).

Aim: Agents k = 1, 2, . . . act sequentially To estimate x ∼ π0.

Protocol: Given public belief πk−1 = P (x|a1, . . . , ak−1)

• Agent k observes yk ∼ p(y|x)
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How to compute social welfare optimal policy µ∗(π, y)?

Averaging theory: Dynamics of agents are a differential inclusion

drl

dt
∈

�

x−l

πl
(i,x−l

)[ul
(j,x−l

)− ul
(i,x−l

)− r
l

Converges to set of correlated equilibria Ce – Blackwell approachability.
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•Model 1. Greedy social learning from local 
decisions causes herding - information cascade.  
Individuals imitate actions of others.

x = 1

P (x = 1|y1) =
P (y1|x = 1)π0(1)

P (y1|x = 1)π0(1) + P (y1|x = 2)π0(2)

action a1 = arg min {cleftP (x = 1|y1), crightP (x = 1|y1)}

P (x = 1|a1, y2) = P (y2|x)P (x|a1)

1

x = 1

x = 2

P (x = 1|y1) =
P (y1|x = 1)π0(1)

P (y1|x = 1)π0(1) + P (y1|x = 2)π0(2)

action a1 = arg min {cleftP (x = 1|y1), crightP (x = 1|y1)}

P (x = 1|a1, y2) = P (y2|x)P (x|a1)

1

•Model 3. Making global decision (quickest time 
change detection) using local decisions has multi-
threshold behavior.

Sequential Social Learning and Herding

•Model 2. Social learning with benevolent agents. 
Global decision specifies local decision (micromanagement)
Stochastic control problem

 Threshold policy is optimal (supermodularity)
 Simulation-based stochastic optimization to estimate 

threshold. 
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Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk
{c(x, a)}.

Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ∗(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ∗ = arg min
µ

E
µ
π0
{

N
∑

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming in-
tractable.

Stochastic dynamic programming to compute µ∗ is PSPACE hard.
Lattice programming: If c(x, a) is submodular; noise distribution satisfies
montone likelihood ratio dominance, then µ∗(π, y) is threshold in π.

P (x = 1|a1, a2, y3) ∝ P (y3|x = 1)P (x = 1|a1, a2)

action a3 = arg max{P (x = 1|a1, a2, y3), P (x = 2|a1, a2, y3)}
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Observations yk ∼
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, where τ 0 = change time (usually geometric)
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π0
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delay

+ f I(τ < τ 0)
︸ ︷︷ ︸

false-alarm

},

Classical: Given posterior πk = P (τ 0 ≤ k|y1, . . . , yk):
Optimal decision policy is threshold.

1
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How to extend to more general communication 
graphs?
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Optimal decision policy is threshold.

1
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1. Global Games and Dynamic Sensor Activation:  
Suppose each sensor deploys a simple algorithm. 
What can you say about global performance?
Game Theory as an analysis tool

2. Social Learning and Rational Herds:  
•  How can agents learn from actions of other agents?
•  How do local decisions affect global decisions?

Game Theory as a synthesis tool

3. Adaptive Filtering Games: 
Each node deploys an adaptive filter to optimize its decision.  
Can the global system achieve consensus in policy space?
Game theory in adaptive learning.

Outline
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vation: Suppose each sensor deploys a simple
algorithm. What can you say about global

performance?

Game Theory as an analysis tool.

Why Game Theory?
! Perspective on decentralized control problems:

! Analysis tool: What can be said about performance of  simple protocols?

! Synthesis tool: How to achieve cooperation among adaptive, decentralized sensors?

! What has been done – Answer: Lots! 

! Some highlights (for this talk):
! Stochastic Games [Shapley 53, Filar & Vrieze 97, Bertsekas 01].

! Learning Algorithms [Hart & Mas-Colell, Fudenberg & Levine]

! Global Games [Carlsson & van Damme 93, Karp et. al. 04].

! Applications in networks, defence, etc.

! What is new:
! Applications: 

! Stochastic shortest path games for Missile deflection.

! Sensor deployment and spectrum sharing games.

! Correlated Equilibrium:

! Formulation for stochastic games.

! Adaptive learning-based tracking for slow varying games.

! Structure in global games with diversity: threshold policies.
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ADAPTIVE FILTERING GAME
! Each agent l:

1. Selects action xl
n+1 ∼ P (rl

n)

2. Receives stage utility ul(xl
n+1,x−l

n+1)

r
l
n+1 = r

l
n+εn·(Regret(xl

n+1)−r
l
n)

! Global Performance: Empirical frequency of
joint agents’ actions.
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;

<

!3"#$ 4!

Main Result:
Can this simple local behavior lead to rational global behavior?
Global behavior converges to correlated equilibrium set (weakly or wp1).

! CORRELATED EQUILIBRIUM (CE) [Aumann, 1987]: a generalization of Nash equilibrium

Ce = {π :
X

x
−l∈A−l

πl(i, x−l)[ul(j, x−l) − ul(i, x−l)] ≤ 0, ∀i, j ∈ Al, l ∈ L}

! Why ? 1) Correlation device: common history of actions, 2) Structural Simplicity: convex
polytope, 3) Provably convergent learning algorithms

! Non-Bayesian approach.

[1] Hart, S. and Mas-Collel, A (2000) A simple procedure leading to correlated equilibrium, Econometrica.
[2] Hart, S (2005) Adaptive Heuristics, Econometrica.

Non-Bayesian - game theory in adaptive learning
• Each agent l:

1. Chooses action randomly {xl
n+1 = i} ∼ P (rl

n)

2. Receives stage utility ul(i,x−l
n+1)

3. Regretn+1(i, j) = ul(j,x−l
n+1)− ul(i,x−l

n+1)

4. Adaptive filter rl
n+1 = rl

n + �
ˆ
Regretn+1 − rl

n

˜

dr(i, j)
dt

=

�

x−l

πl
(i,x−l

)[u
l
(j,x−l

n+1)− u
l
(i,x−l

n+1)]

Under what conditions does µ(y) = arg max
u

{H(y, u)} ↑ y?

When is Nash µ
(i)(Y ) = arg max{ 0����

(sleep) u = 1

, E[cX + f(α(X)|Y ]� �� �
(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ
(i)

(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y If H(y, 2)−H(y, 1) ↑ y� �� �
supermodular function

Structure of solution without brute force computation. Useful in game theory,

stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action
provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ
∗
(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ

∗
= arg min

µ
Eµ

π0
{

N�

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.

1
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(Y ) = arg max
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{h(y, u)} ↑ y If H(y, 2)−H(y, 1) ↑ y� �� �
supermodular function

Structure of solution without brute force computation. Useful in game theory,

stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action
provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ
∗
(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ

∗
= arg min

µ
Eµ

π0
{
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c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.
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Main Result:
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polytope, 3) Provably convergent learning algorithms

! Non-Bayesian approach.

[1] Hart, S. and Mas-Collel, A (2000) A simple procedure leading to correlated equilibrium, Econometrica.
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Non-Bayesian - game theory in adaptive learning

Blackwell 
approachability

• Each agent l:

1. Chooses action randomly {xl
n+1 = i} ∼ P (rl

n)

2. Receives stage utility ul(i,x−l
n+1)

3. Regretn+1(i, j) = ul(j,x−l
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Under what conditions does µ(y) = arg max
u

{H(y, u)} ↑ y?

When is Nash µ
(i)(Y ) = arg max{ 0����

(sleep) u = 1

, E[cX + f(α(X)|Y ]� �� �
(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ
(i)

(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y If H(y, 2)−H(y, 1) ↑ y� �� �
supermodular function

Structure of solution without brute force computation. Useful in game theory,

stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action
provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ
∗
(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ

∗
= arg min

µ
Eµ

π0
{

N�

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.
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Non-Bayesian - game theory in adaptive learning

Blackwell 
approachability

• Each agent l:

1. Chooses action randomly {xl
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2. Receives stage utility ul(i,x−l
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Under what conditions does µ(y) = arg max
u

{H(y, u)} ↑ y?

When is Nash µ
(i)(Y ) = arg max{ 0����

(sleep) u = 1

, E[cX + f(α(X)|Y ]� �� �
(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ
(i)

(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y If H(y, 2)−H(y, 1) ↑ y� �� �
supermodular function

Structure of solution without brute force computation. Useful in game theory,

stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action
provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ
∗
(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ

∗
= arg min

µ
Eµ

π0
{

N�

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.

1

Application: Any problem where multiple agents need to establish 
consensus in decision making: 
•autonomous sensor activation
•spectrum allocation in cognitive radio
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Non-Bayesian - game theory in adaptive learning

Blackwell 
approachability

• Each agent l:

1. Chooses action randomly {xl
n+1 = i} ∼ P (rl

n)

2. Receives stage utility ul(i,x−l
n+1)

3. Regretn+1(i, j) = ul(j,x−l
n+1)− ul(i,x−l
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4. Adaptive filter rl
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Under what conditions does µ(y) = arg max
u

{H(y, u)} ↑ y?

When is Nash µ
(i)(Y ) = arg max{ 0����

(sleep) u = 1

, E[cX + f(α(X)|Y ]� �� �
(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ
(i)

(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y If H(y, 2)−H(y, 1) ↑ y� �� �
supermodular function

Structure of solution without brute force computation. Useful in game theory,

stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action
provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ
∗
(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ

∗
= arg min

µ
Eµ

π0
{
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k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.

1

• Each agent l:

1. Chooses action randomly {xl
n+1 = i} ∼ P (rl

n)

2. Receives stage utility ul(i,x−l
n+1)

3. Regretn+1(i, j) = ul(j,x−l
n+1)− ul(i,x−l

n+1)

4. Adaptive filter rl
n+1 = rl

n + �
ˆ
Regretn+1 − rl

n

˜

Key tool: Stochastic averaging theory (Kushner & Yin)

dr(i, j)
dt

∈
�

x−l

πl
(i,x−l

)[u
l
(j,x−l

n+1)− u
l
(i,x−l

n+1)]

Under what conditions does µ(y) = arg max
u

{H(y, u)} ↑ y?

When is Nash µ
(i)(Y ) = arg max{ 0����

(sleep) u = 1

, E[cX + f(α(X)|Y ]� �� �
(active) u = 2

} ↑ in Y ?

π(1)

(i) Supermodularity [Topkis]: µ
(i)

(Y ) = arg max
u∈{1,2}

{h(y, u)} ↑ y If H(y, 2)−H(y, 1) ↑ y� �� �
supermodular function

Structure of solution without brute force computation. Useful in game theory,

stochastic control (dynamic programming) where computing optimal policy is intractable.

Stochastic dominance condition on noise [Whitt 1984]: Gaussian, uniform ...

Social Learning: Choose local decision greedily: ak = mina Eπk−1,yk{c(x, a)}.
Results in herding. Posterior πk = P (x|a1, . . . , ak) freezes.

Socialistic Learning: [More Sophisticated Protocol]

I choose my local decision to sacrifice my local ultility so that my action
provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

ak = µ
∗
(πk−1, yk) ∈ {yk(reveal), ak−1(herd)}, µ

∗
= arg min

µ
Eµ

π0
{

N�

k=1

c(x, ak)}

Partially Observed Stochastic Control Problem. Dynamic Programming intractable.

1

Benaim, Math OR, 2006
Differential inclusion
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time n

sn ∼ I + εQ Ce(sn)

1

•Track time varying correlated 
equilibria -- dynamic spectrum 
allocation in cognitive radio.
•Asynchronous updates
Krishnamurthy, Yin, SIAM J.Opt [2004], 
Kushner & Yin [2003], 
Krishnamurthy, Yin, SIAM J. Multiscale  [2009].
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Learning evolving Correlated Equlibria

Summary: Global history of play πn converges weakly to algebraically
constrained differential inclusion dπt

dt ∈ ν(πt)− πt , Aπt = 0.
The limit set is Ce . [Benaim, SIAM 2005, Math OR 2006]

Learning of Evolving Correlated equlibria: Utilities u(X l ,X−l , sk)
evolve where Markovian target sk ∼ I + ρQ, where ρ = O(�)
Can algorithm track time varying correlated equilibrium set Ce ?

Theorem (Switched inclusion, Krishnamurthy, Yin, SIAM 2004, 2009.)

dπ
dt ∈ ν(πt , st)− πt , A(st)πt = 0 where st ∼ Q

time n

sn ∼ I + �Q Ce(sn)

1

Non-standard stochastic averaging –
requires use of ”Martingale problem”
of Strook and Varadhan. [Kushner &
Yin 2003], [Ethier & Kurtz]
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Each node deploys simple algorithm - global 
performance achieves consensus in decision space

time n

sn ∼ I + εQ Ce(sn)

1

•Track time varying correlated 
equilibria -- dynamic spectrum 
allocation in cognitive radio.
•Asynchronous updates
Krishnamurthy, Yin, SIAM J.Opt [2004], 
Kushner & Yin [2003], 
Krishnamurthy, Yin, SIAM J. Multiscale  [2009].
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ADAPTIVE HEURISTICS

BY SERGIU HART1

We exhibit a large class of simple rules of behavior, which we call adaptive heuristics,
and show that they generate rational behavior in the long run. These adaptive heuris-
tics are based on natural regret measures, and may be viewed as a bridge between ra-
tional and behavioral viewpoints. Taken together, the results presented here establish
a solid connection between the dynamic approach of adaptive heuristics and the static
approach of correlated equilibria.

KEYWORDS: Dynamics, heuristics, adaptive, correlated equilibrium, regret, regret-
matching, uncoupled dynamics, joint distribution of play, bounded rationality, behav-
ioral, calibration, fictitious play, approachability.

1. INTRODUCTION

CONSIDER DYNAMIC SETTINGS where a number of decision-makers interact
repeatedly. We call a rule of behavior in such situations an adaptive heuristic
if, on the one hand, it is simple, unsophisticated, simplistic, and myopic (a so-
called “rule of thumb”), and, on the other, it leads to movement in seemingly
“good” directions (like stimulus-response or reinforcement). One example of
adaptive heuristic is to always choose a best reply to the actions of the other
players in the previous period—or, for that matter, to the frequency of their
actions in the past (essentially, the well-known “fictitious play”).

Adaptive heuristics are boundedly rational strategies (in fact, highly
“bounded away” from full rationality). The main question of interest is whether
such simple strategies may in the long run yield behavior that is nevertheless
highly sophisticated and rational.

This paper is based mainly on the work of Hart and Mas-Colell (2000, 2001a,
2001b, 2003a, 2003b), which we try to present here in a simple and elementary
form (see Section 10 and the pointers there for the more general results). Sig-
nificantly, when the results are viewed together new insights emerge—in par-
ticular, into the relations of adaptive heuristics to rationality on the one hand,
and to behavioral approaches on the other. See Section 9, which may well be
read immediately.

The paper is organized as follows. In Section 2 we provide a rough classifica-
tion of dynamic models. The setting and notations are introduced in Section 3,

1Walras–Bowley Lecture 2003, delivered at the North American Meeting of the Economet-
ric Society in Evanston, Illinois. A presentation is available at http://www.ma.huji.ac.il/hart/abs/
adaptdyn.html. It is a great pleasure to acknowledge the joint work with Andreu Mas-Colell over
the years, upon which this paper is based. I also thank Ken Arrow, Bob Aumann, Maya Bar-Hillel,
Avraham Beja, Elchanan Ben-Porath, Gary Bornstein, Toni Bosch, Ido Erev, Drew Fudenberg,
Josef Hofbauer, Danny Kahneman, Yaakov Kareev, Aniol Llorente, Yishay Mansour, Eric
Maskin, Abraham Neyman, Bezalel Peleg, Motty Perry, Avi Shmida, Sorin Solomon, Menahem
Yaari, and Peyton Young, as well as the editor and the anonymous referees, for useful discussions,
suggestions, and comments. Research partially supported by the Israel Science Foundation.
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Hart, Econometrica, 2005
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Vision:  Analysis/design of interacting stochastic dynamical systems. 
Given simple local behavior, game theory/social learning is useful for 
anlaysis/synthesis of global behavior.

Part 1: Bayesian Global Game: Agents act simultaneously. 
Learn from data and predict other agents actions.

Part 2: Social Learning. Agents learn sequentially from 
actions of previous agents.
•Pure capitalism causes herding.  Socialism delays herding.
•Global decisions from local decisions: multi-threshold 

Summary for Part 1

Sensors predicting behavior of other sensors in a global game yields:

1
Simple intuitive optimal activation policy:
y < y∗ =⇒ sleep, otherwise awaken.

Topic 3: Global Game for 

Sensor Activation

! Gives a communication free 

deployment protocol.

! Simple threshold policies are in Nash 

equilibrium. 

! If uncertainty is high or congestion is low. 

! Compare with other approaches:

! Local communication & self-organization 

[Biswas & Phoba 06, Clare & Pottie 99, 

Aroraa et. al. 04]

! Flocking

!"#$%&'$()*"+(),-.

/*)&

!-#,01#&

2 Each sensor can estimate threshold y∗ indept of others.
E [cX + f (α(X )) |Y = y∗] = 0 via simulation based stochastic
approximation algorithm

3 The network exhibits complex behavior.

No one goes there anymore ... it is always too
crowded (Yogi Berra)

For single class of sensors: y∗(σ1) ↑ σ
But for 2 classes of sensors, y∗(σ1, σ2) not necessarily ↑ σ1, σ2.
So sensors decision is a non-monotone function of other
sensor classes.
E.g. stochastic observability based on angle measurements:
closest sensors to target are not necessarily the best sensors.

decision

posterior probability of change

declare change

no change
policy

Part 3: Adaptive filtering games: Global behavior achieves 
consensus in action space - correlated equilibrium.
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