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Social Learning In Sensor

Networks

Vikram Krishnamurthy
University of British Columbia,
Vancouver, Canada.

... from a statistical signal processing/stochastic control perspective...

We consider autonomous decision making systems:
How do local and global decisions interact?

Game theory and social learning will be used as analysis/synthesis
tools.
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SENSOR-ADAPTIVE SIGNAL PROCESSING

Statistical signal processing: Extract signal from noise
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SENSOR-ADAPTIVE SIGNAL PROCESSING

Sensor-Adaptive signal processing: Dynamically adapt sensor behavior.
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SENSOR-ADAPTIVE SIGNAL PROCESSING

Sensor-Adaptive signal processing: Dynamically adapt sensor behavior.
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SENSOR-ADAPTIVE SIGNAL PROCESSING

Sensor-Adaptive signal processing: Dynamically adapt sensor behavior.

\k

Noise

Signal Cl)

Estimate

Sensor

Signal Processing

Feedback (Stochastic Control)

Centralized Sensor Management  Today’s talk: Decentralized sensor

management
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DECENTRALIZED

battery life constraints

Sentrv Node
Overlapping Infrared and Acoustic detection sensor

A901LS

Coverage arcas used to detect movement and sound then alert
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Wireless Tactical Mesh Network
Land based Ad-Hoc Mesh Network
formed between Sentry Nodes and
lactical Gateway

Sentry sensors

Weight

0.6 Kg

Onboard
Sensors

IR Motion, GPS
Low-res Imagery
IR motion
acoustic, seismic
magnetic

RF Range

> 300 m

Power

AA
battery

AUTONOMOUS DECISION MAKING

Example |.Unattended Ground Sensor Network: Mass produced sensors;
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DECENTRALIZED

AUTONOMOUS DECISION MAKING

Example |.Unattended Ground Sensor Network: Mass produced sensors;

battery life constraints

Sentry Node
Overlapping Infrared and Acoustic detection sensors

Coverage arcas used to detect movement and sound then alert
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- S~ SATCOM, UAV and/or 2
Alternate Gateway i - ,

Se ntry Sensors Wireless Tactical Mesh Network
Land based Ad-Hoc Mesh Network
formed between Sentry Nodes and

[actical Gateway

Weight 0.6 Kg
Onboard IR Motion, GPS
Sensors Low-res Imagery
IR motion
acoustic, seismic
magnetic
RF Range > 300 m
Power AA
battery

© Autonomous Sensor Activation: Can simple local behavior

(mass-produced) yield useful global behavior? game theoretic analysis
© How can sensors learn from other sensors to make local
decisions? How do local decisions affect global decisions?

© If each sensor deploys a simple adaptive filter, is the global

behavior rational? game theoretic learning EBS
3
>/

social learning
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DECENTRALIZED AUTONOMOUS DECISION MAKING

Example 2. Economic Systems: Speculative currency attacks Crashes,
Bubbles and Booms, Information Delays in Financial markets

= George-Marios Angeletos and Ivan Werning (2006), "Crises and Prices: Information Ri*“(?f‘{'_ly HU""

Aggregation, Multiplicity, and Volatility," American Economic Review, 96 (5): 1720- of Social Learning
36.
= Andrew G. Atkeson, (2001), "Rethinking Multiple Equilibria in Macroeconomic
Modeling: Comment." In NBER Macroeconomics Annual 2000, ed. Ben S. Bernanke
and Kenneth Rogoff, 162—71. Cambridge, MA: MIT Press. Al ) WA
m Christian Hellwig, Arijit Mukherji and Aleh Tsyvinski (2006), "Self-Fulfilling M \Y‘ YR s
Currency Crises: The Role of Interest Rates," American Economic Review, 96 (5): 2=
1769-1787. - Chiistophe P. Chasi
Adaptive heuristics are boundedly rational strategies (in tact, highly
“bounded away” from full rationality). The main question of interest is whether

such simple strategies may in the long run yield behavior that is nevertheless
highly sophisticated and rational.

Econometrica, Vol. 73, No. 5 (September, 2005)

s N

© Autonomous Sensor Activation: Can simple local behavior
(mass-produced) yield useful global behavior? game theoretic analysis

© How can sensors learn from other sensors to make local
decisions? How do local decisions affect global decisions?

© If each sensor deploys a simple adaptive filter, is the global

social learning

behavior rational? game theoretic learning EBS
3 .“‘ /n
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DECENTRALIZED AUTONOMOUS DECISION MAKING

Example 3. Social Networks: How to achieve consensus in decision making?
Blogs...

When these friends comment,
we notify each commenter’s

friends of his/her comment % ° GrOUp behaVIOI” may

— not be as wise as we
— % — +% think.
% — % * Crowds reduce diversity

P »% of responses
* Crowd opinion can be

...their friends discover the content m|S|ead|ng.

and may comment themselves
When they do, we notify their friends
in turn.

© Autonomous Sensor Activation: Can simple local behavior
(mass-produced) yield useful global behavior? game theoretic analysis

© How can sensors learn from other sensors to make local
decisions? How do local decisions affect global decisions?

© If each sensor deploys a simple adaptive filter, is the global

behavior rational? game theoretic learning U‘BC
3

social learning
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OUTLINE

|. Global Games and Dynamic Sensor Activation:
How can agents decide autonomously when to
turn ON by predicting the actions of other agents!?

Action O

Game Theory as an analysis tool A threshold policy

2. Social Learning and Rational Herds:

* How can agents learn from actions of other agents!?
* How do local decisions affect global decisions?
Game Theory as a synthesis tool

3. Adaptive Filtering Games:

Each agent deploys an adaptive filter to optimize its decision. /., '

. . . . D \
Can the global system achieve consensus in policy space!? | <}~

Game theory in adaptive learning.

Action 1
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OUTLINE

|. Global Games and Dynamic Sensor Activation:
How can agents decide autonomously when to
turn ON by predicting the actions of other agents!?

Action O

Action 1

Game Theory as an analysis tool A threshold policy

2. Social Learning and Rational Herds:
* How can agents learn from actions of other agents!?
* How do local decisions affect global decisions?
Game Theory as a synthesis tool

3. Adaptive Filtering Games: /N
Each agent deploys an adaptive filter to optimize its decision. /. |,
Can the global system achieve consensus in policy space! .p
Game theory in adaptive learning.

Unifying theme: In autonomous decision making, how does local
behavior affect global behavior? e

Thursday, July 14, 2011



PART 1: GLOBAL

GAME FORMULATION

Example from Karp, Lee and Mason, A global
game with strategic substitutes and complements,
Games and Economic Behavior, 2007.
Univariate uniform distributed noise

1. Large number (continuum of agents):
y W =x+wl x~m, w)~py
2. Agent chooses action u = u(y()

u=sleep reward =0

u = active reward h(x,a) = cx + f(«)
a(p): frac of sensors choosing u = active.

3. Agents are rational. (I know that you
know). They predict and act.
What is optimal policy?

1y — { sleep, active} to max E{reward}

fla) ..
«s:NO social
... INteraction

too crowded
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PART 1: GLOBAL GAME FORMULATION

@ ; 1. Large number (continuum of agents):

Control } ™ y(i) = X + W(i)7 X ~ T, W(i) ~ Ppw
Control

Unit
Unit N 2. Agent chooses action u = u(y()
Target — ; u = Sleep reward = 0
rg ~
—~ v ~ - u = active reward h(x,a) = cx + f(«
B s (x, ) (@)
{"’ @ T a(p): frac of sensors choosing u = active.
{ @ Tx Control } 3. Agents are rational. (I know that you
\ onit know). They predict and act.
Control . . . 5
\\ D What is optimal policy?
1 1y — { sleep, active} to max E{reward}
Ex: x: measurement quality (dB, pH)
y: estimate at sensor f(a)
. t ded
(o) Network throughput “to SOCt',a' PO O
) = ez INLErACUION
Global MSE UBC
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PART 1: GLOBAL GAME FORMULATION
] 1. Large number (continuum of. agents):

il Control

Unit

2. Agent chooses action u = u(y()

Target LT~ u=sleep reward =0
P g T u = active reward h(x,a) = cx + ()

/
/ T’} a(p): frac of sensors choosing u = active.
/
T Control :
L )} Unit 3. Agents are rational. (I know that you
\ Control

know). They predict and act.
\ What is optimal policy?

1y — { sleep, active} to max E{reward}

Morris & Shin, 2000: speculative fla)
currency attacks.
monotone f(«) o
UBC
> \ 4
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PART 1: GLOBAL GAME FORMULATION
] 1. Large number (continuum of. agents):

Unit

Control

2. Agent chooses action u = u(y()

Unit

Target Lo~ ), u=sleep reward =0
P g T u = active reward h(x,a) = cx + ()

/
/ T’} a(p): frac of sensors choosing u = active.
/
T Control :
L )} Unit 3. Agents are rational. (I know that you
\ Control

know). They predict and act.
\ What is optimal policy?

1y — { sleep, active} to max E{reward}

fla)

Angeletos, Hellwig, Econometrica, 2007/:
Dynamic global games of Regime change

Thursday, July 14, 2011



Under what conditions is optimal policy (Bayesian Nash
equilibrium) a threshold?

Ey-i[u (7} (Y"), 7, (Y ™) |Y"] 2 Ey—i[u;(m(Y?), 7%, (Y )|V
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Under what conditions is optimal policy (Bayesian Nash
equilibrium) a threshold?

Ey-i[u (7} (Y"), 7, (Y ™) |Y"] 2 Ey—i[u;(m(Y?), 7%, (Y )|V

Why!?
*Simple autonomous decision making by each agent
* Threshold can be estimated easily.

Thursday, July 14, 2011



Under what conditions is optimal policy (Bayesian Nash
equilibrium) a threshold?

Ey-i[u (7} (Y"), 7, (Y ™) |Y"] 2 Ey—i[u;(m(Y?), 7%, (Y )|V

*|EEE Trans SP 2008 & 2009: Multiple classes of sensors; multiple night clubs;

*Gaussian noise; Proof via lattice programming and stochastic orders.

Thursday, July 14, 2011



MAIN RESULT

Result: If network congestion % > — M, there is unique threshold y*
such that Bayesian Nash Equilibrium of each sensor is a threshold policy:

active if Y > y*
u(Y) = . ,
sleep ifYy <y

y* satisfies E[cX + f(a(X))|Y = y*] =0.  f(a) ..
Rationality: a(x) = P(u = active|x)

o0 o
y

>k
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MAIN RESULT

Result: If network congestion % > — M, there is unique threshold y*
such that Bayesian Nash Equilibrium of each sensor is a threshold policy:

active if Y > y* ETA(X, )| YO = y]
u(Y) = - *
sleep ifYy <y

y* satisfies E[cX + f(a(X))|Y = y*| = 0.
Rationality: a(x) = P(u = active|x)

— [ prixrdy =1 Guly* ~ x).
’
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MAIN RESULT

Result: If network congestion % > — M, there is unique threshold y*
such that Bayesian Nash Equilibrium of each sensor is a threshold policy:

active if Y > y* ETA(X, )| YO = y]
u(Y) = - *
sleep ifYy <y

y* satisfies E[cX + f(a(X))|Y = y*| = 0.
Rationality: a(x) = P(u = active|x)

— [ prixrdy =1 Guly* ~ x).
’

Existence: Glicksberg fixed point theorem
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MAIN RESULT

Result: If network congestion % > — M, there is unique threshold y*
such that Bayesian Nash Equilibrium of each sensor is a threshold policy:

active if Y > y* ETA(X, )| YO = y]
u(Y) = - *
sleep ifYy <y

y* satisfies E[cX + f(a(X))|Y = y*| = 0.
Rationality: a(x) = P(u = active|x)

— [ prixrdy =1 Guly* ~ x).
’

When is Nash p()(Y) = arg max{ 0 , ElcX + f(a(X)|Y]} T in Y7

J

N

(sleep) u =1 (active) u = 2
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MAIN RESULT

Result: If network congestion % > — M, there is unique threshold y*
such that Bayesian Nash Equilibrium of each sensor is a threshold policy:

active if Y > y* ETA(X, )| YO = y]
u(Y) = - *
sleep ifYy <y

y* satisfies E[cX + f(a(X))|Y = y*| = 0.

Rationality: a(x) = P(u = active|x)

= / pyix(y|x)dy =1—®w(y™ — x).
y

%

When is Nash p()(Y) = arg max{ 0 , ElcX + f(a(X)|Y]} T in Y7

J

(sleep) u =1 ¢

Monotone comparative statics: (active) u =2

Under what conditions does u(y) = arg mgx{H(y, u) b T y?
*Single crossing condition: Milsrom & Shannon, Econometrica, 994
e Supermodularity: Topkis (1978,1998). H(y,2) — H(y,1) Ty
(if) Stochastic dominance: Whitt [1984]: px|y(x|y1) ? px|y (x|y2) iff

i i UBC
pw(y —x) > pw(y — x') = conditions on noise density py(w). el W e

oy ¥y ey
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SUMMARY FOR PART 1

Sensors predicting behavior of other sensors in a global game yields:
Simple intuitive optimal activation policy:
y < y* — sleep, otherwise awaken.

Activate

Idle

© Each sensor can estimate threshold y* indept of others.
ElcX + f(a(X))|Y = y*] = 0 via simulation based stochastic

approximation algorithm

© The network exhibits complex behavior. <& high congestion

No one goes there anymore ... it is always too f(a) .
crowded (Yogi Berra)
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SUMMARY FOR PART 1

Sensors predicting behavior of other sensors in a global game yields:
Simple intuitive optimal activation policy:
y < y* — sleep, otherwise awaken.

Activate

Idle

© Each sensor can estimate threshold y* indept of others.
ElcX + f(a(X))|Y = y*] = 0 via simulation based stochastic

approximation algorithm

© The network exhibits complex behavior. <& high congestion

No one goes there anymore ... it is always too f(a) .
crowded (Yogi Berra)

Multivariate Generalizations and Cognitive Radios

How to autonomously choose spectrum gap?

* Too many users in spectrum gap = excess interference.
*Too few users in spectrum gap = under-utilization.
[IEEE TSP 2009]: multi-variate opportunistic scheduling

8
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OUTLINE

|. Global Games and Sensor Activation: Act simultaneously by
predicting actions of other agents.

2. Social Learning and Rational Herds: Agents act sequentially.

Thursday, July 14, 2011



OUTLINE

|. Global Games and Sensor Activation: Act simultaneously by
predicting actions of other agents.

2. Social Learning and Rational Herds: Agents act sequentially.

QIl: How can agents learn by observing actions of other agents!?

Herding - rational agents end up blindly following previous agents.

Rational Herds
Economic Models

of Secial Learning

¥ \\ ¢':3 ‘,! :\A‘:ﬁ)
3 -
[ ==

S

Chastophe P. Chamiey

THE WISDOM
OF CROWDS

JAMES
SUROWIECKI

N8l SRS Ve,
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OUTLINE

|. Global Games and Sensor Activation: Act simultaneously by
predicting actions of other agents.

2. Social Learning and Rational Herds: Agents act sequentially.

QIl: How can agents learn by observing actions of other agents!?
Herding - rational agents end up blindly following previous agents.
In 1995, management gurus Treacy & Wiersema secretly bought
50,000 copies of their own book. Made NY times best seller list.
How to cope with malicious agents?

R'lthlH| Herds

Economic M‘u.».\
S 12l Le:

Chastophie P. Cha

&Q \] }')gt}‘

THE WISDOM
OF CROWDS

JAMES
SUROWIECKI

N8l SRS Ve,

Thursday, July 14, 2011

).




OUTLINE

|. Global Games and Sensor Activation: Act simultaneously by
predicting actions of other agents.

2. Social Learning and Rational Herds: Agents act sequentially.

QIl: How can agents learn by observing actions of other agents!?

Herding - rational agents end up blindly following previous agents.
*When | see others taking umbrellas, | take an umbrella without checking the
weather forecast. | assume their private info is accurate.

Chamley, 2004. Rational Herds

Rmoml Herds

Economic M‘n.». 3
of Secial Le:

THE WISDOM

OF CROWDS
Y i) JAMES
L SUROWIECK! LDt

®) s
Nty y
Chastophe P. Chamiey

= 9
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OUTLINE

|. Global Games and Sensor Activation: Act simultaneously by
predicting actions of other agents.

2. Social Learning and Rational Herds: Agents act sequentially.

QIl: How can agents learn by observing actions of other agents!?

Herding - rational agents end up blindly following previous agents.

How to build a sophisticated protocol that delays herding?

Rational Herds
Economic Models

of Secial Learnus Iy

THE WISDOM

OF CROWDS
AR LR JAMES e [
ES SUROWIECK]I ® o
S gy g ip 9 |
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OUTLINE

|. Global Games and Sensor Activation: Act simultaneously by
predicting actions of other agents.

2. Social Learning and Rational Herds: Agents act sequentially.

QIl: How can agents learn by observing actions of other agents!?

Herding - rational agents end up blindly following previous agents.
How to build a sophisticated protocol that delays herding?

Q2: How do local decisions affect global decisions? Social learning
with quickest time change detection

| THE WISDOM
OF CROWDS f\q
RN JAMES L e
= SUROWIECK] ®

Chastophe P. Chamiey

e N8l SRS Ve,
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QIl: How do agents learn from decisions of
other agents!

Thursday, July 14, 2011
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SOCIAL LEARNING PROTOCOL

The Tale of Iwo Restaurants
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SOCIAL LEARNING PROTOCOL

Aim: Agents k =1,2,... act sequentially

to estimate state x ~ .

Protocol: Given public belief

Tk—1 — P(X‘al, - .,ak_l)

@ Agent k observes yx ~ p(y|x)

@ Takes action to greedily minimize cost
dk = argmina Eﬂ'k—la)’k{C(X7 a)}

@ Using action ax, other agents update

belief 7, = P(x|ay, .

..,ak)

>{>|>|P>

The lale of Iwo Restaurants
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SOCIAL LEARNING PROTOCOL

Aim: Agents k =1,2,... act sequentially

to estimate state x ~ .

Protocol: Given public belief

Tk—1 — P(X‘al, - .,ak_l)

@ Agent k observes yx ~ p(y|x)

@ Takes action to greedily minimize cost
dk = argmina Eﬂ'k—la)’k{C(X7 a)}

@ Using action ay, other agents update

belief 7, = P(x|ay, .

..,ak)

D> > D>

The lale of Iwo Restaurants

Key point: Agents learn from the actions of previous agents.

-lc

B

)
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SOCIAL LEARNING PROTOCOL

Aim: Agents k =1,2,... act sequentially

to estimate state x ~ .

Protocol: Given public belief

Tk—1 — P(X‘al, - .,ak_l)

@ Agent k observes yx ~ p(y|x)

@ Takes action to greedily minimize cost
dk = argmina Eﬂ'k—la)’k{C(X7 a)}

@ Using action ax, other agents update

belief 7, = P(x|ay, .

..,ak)

>{>|>|P>

The lale of Iwo Restaurants

Theorem: [Bikchandani, J. Political Economy, 1992] Agents
eventually herd, i.e. take the same action. (Social learning stops).

-lC
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SOCIAL LEARNING PROTOCOL

Aim: Agents k =1,2,... act sequentially

to estimate state x ~ .

Protocol: Given public belief ‘

Tk—1 — P(X‘al, - .,ak_l)

@ Agent k observes yx ~ p(y|x)

D> > D>

@ Takes action to greedily minimize cost
dk = argmina Eﬂ'k—la)’k{C(X7 a)}

@ Using action ay, other agents update

elief 7 = P(x|ay. ... a) The lale of Iwo Restaurants

Theorem: [Bikchandani, J. Political Economy, 1992] Agents
eventually herd, i.e. take the same action. (Social learning stops).

This is bad news for sensor networks where agents make local

greedy decisions.VVe need a more sophisticated protocol.

E.g. pay agents to sit in restaurant 2 B

-lc
A

/<M

NS
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® Herding is caused by agents making greedy
(capitalistic) local decisions.
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Q2: HOW TO OPTIMIZE SOCIAL LEARNING?

Social Learning: Choose local decision greedily: a; = min, E;, ., {c(z,a)}.
Results in herding. Posterior m, = P(x|ay, ..., a;) freezes.

13
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Q2: HOW TO OPTIMIZE SOCIAL LEARNING?

Social Learning: Choose local decision greedily: a; = min, E;, ., {c(z,a)}.
Results in herding. Posterior m, = P(x|ay, ..., a;) freezes.

Socialistic Learning: [More Sophisticated Protocol] To estimate x ~ g

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

13
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Q2: HOW TO OPTIMIZE SOCIAL LEARNING?

Social Learning: Choose local decision greedily: a; = min, E;, ., {c(z,a)}.
Results in herding. Posterior m, = P(x|ay, ..., a;) freezes.

Socialistic Learning: [More Sophisticated Protocol] To estimate x ~ g

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

N
ar = 1 (mp_1,yx) € {yr(reveal), as_q(herd)}, p* = argmin Eﬁo{z c(x,ar)}
global H —

decision

13
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Q2: HOW TO OPTIMIZE SOCIAL LEARNING?

Social Learning: Choose local decision greedily: a; = min, E;, ., {c(z,a)}.
Results in herding. Posterior m, = P(x|ay, ..., a;) freezes.

Socialistic Learning: [More Sophisticated Protocol] To estimate x ~ g

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

N
ar = W (mp_1,yx) € {yxp(reveal), ar_q(herd)}, p* = arg mjn Eﬁo{z c(x,ar)}
Partially Observed Stochastic Control Problem. k=1

13
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Q2: HOW TO OPTIMIZE SOCIAL LEARNING?

Social Learning: Choose local decision greedily: a; = min, E;, ., {c(z,a)}.
Results in herding. Posterior m, = P(x|ay, ..., a;) freezes.

Socialistic Learning: [More Sophisticated Protocol] To estimate x ~ g

I choose my local decision to sacrifice my local ultility so that my
action provides useful information to subsequent agents

Benevolent agents choose local decision by minimizing social welfare cost:

N
ar = i (mp_1,yx) € {yr(reveal), ar_i(herd)}, p* = arg mjn Eﬁo{z c(x,ar)}
k=1

Can show: [IEEE Trans. Info. Theory, 201 1]
e Under supermodular assumptions global decision policy is threshold.

herd
reveal

posterior probability of state | 77(1)

>

* Global decision policy: Initially socialistic then capitalistic. UBC
13
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Q3. How do local decisions in social learning
affect global decisions in Quickest Time

[ ]
- _ =) Y £ . - - \ . WLl - , P AT o
. hs N . . | ‘ | ' A N A o /% . . ""- ..- K T 7N g |: - "S. P 1 .. - .
- 2 .h’u. e 'f o g ._- % \._c' "y act .\‘ " i g .... R S e - : >
' z - o » p & =5 y "

oy |

9 L e o e
- 0
» ’
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Q3: HoOw DO LOCAL DECISIONS AFFECT

GLOBAL DECISIONS?

Example: Multi-agent Quickest Time Change Detection

15
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Q3: HOW DO LOCAL DECISIONS AFFECT GLOBAL DECISIONS?
Example: Multi-agent Quickest Time Change Detection

)
, Bi() k<7 : :
Observations vy ~ < 1) 4 Where 7 = change time (usually geometric)
\BQ(') k> T

Aim: Compute time 7 to annouce change: Minimize E# {d|r — 7°|" + f I(T < 7°)}

W \ . ~ _J/

delay false-alarm
Classical: Given posterior 7 = P(change|yi,...,yx):
Optimal decision policy is threshold. ‘ declare change
no change

posterior probability of change
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Q3: HOW DO LOCAL DECISIONS AFFECT GLOBAL DECISIONS?
Example: Multi-agent Quickest Time Change Detection

)
, Bi() k<7 : :
Observations vy ~ < () ~ s Where 7 = change time (usually geometric)
\BQ(°) k> T

Aim: Compute time 7 to annouce change: Minimize E# {d|r — 7°|" + f I(T < 7°)}

Hﬂ N\ ~ _J/

delay false-alarm
Classical: Given posterior 7 = P(change|yi,...,yr):
Optimal decision policy is threshold. ‘ declare change
no change

Social Learning: 7,1 = P(change|ai,...,ar_1) posterior probability of change
e Agent k receives observation ;.

e Chooses local decision greedily

ar = min E{c(state,a)lay,...,ar_1,yr} Cg/‘o
a

e Broadcasts action ag. obal declare change
globa —

decision
policy

no change

Y

15 posterior probability of change
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Q3: HOW DO LOCAL DECISIONS AFFECT GLOBAL DECISIONS?
Example: Multi-agent Quickest Time Change Detection

)
, Bi() k<7 : :
Observations vy ~ < () ~ s Where 7 = change time (usually geometric)
\BQ(°) k> T

Aim: Compute time 7 to annouce change: Minimize E# {d|r — 7°|" + f I(T < 7°)}

Hﬂ N\ ~ _J/

delay false-alarm
Classical: Given posterior 7 = P(change|yi,...,yr):
Optimal decision policy is threshold. ‘ declare change
no change

Social Learning: 7,1 = P(change|ai,...,ar_1) posterior probability of change
e Agent k receives observation ;.

e Chooses local decision greedily

ar = min E{c(state,a)lay,...,ar_1,yr} Cg/‘o
a

e Broadcasts action ag. obal declare change
globa
. docis:
When should global decision-maker declare change? [ 0"
no change
multi-threshold _
15 posterior probability of change
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Q3: HOW DO LOCAL DECISIONS AFFECT GLOBAL DECISIONS?
Example: Multi-agent Quickest Time Change Detection

)
i Bl . k < ’7'O . :
Observations vy ~ < ) ~ s Where 7 = change time (usually geometric)
\BQ(°) k> T

Aim: Compute time 7 to annouce change: Minimize E# {d|r — 7°|" + f I(T < 7°)}

Hﬂ N\ ~ _J/

delay false-alarm

Classical: Given posterior 7 = P(change|yi,...,yr):
Optimal decision policy is threshold. no change ‘ declare change
Social Learning: 7,1 = P(change|ai,...,ar_1) posterior probability of change

e Agent k receives observation ;.

e Chooses local decision greedily

ar = min E{c(state,a)lay,...,ar_1,yr} Cg/‘o
a

e Broadcasts action ag. obal declare change
globa —

decision
policy

When should global decision-maker declare change?

no change

Non-standard Partially Observed Markov

Decision Process Likelihood: P(ag|mg—1, zk) multi-threshold
15 posterior probability of change
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Q3: HOW DO LOCAL DECISIONS AFFECT GLOBAL DECISIONS?
Example: Multi-agent Quickest Time Change Detection

)
, Bi() k<7 : :
Observations vy ~ < () ~ s Where 7 = change time (usually geometric)
\BQ(°) k> T

Aim: Compute time 7 to annouce change: Minimize E# {d|r — 7°|" + f I(T < 7°)}

Hﬂ N\ ~ _J/

delay false-alarm
Classical: Given posterior 7 = P(change|yi,...,yr):
Optimal decision policy is threshold. ‘ declare change
no change

Social Learning: 7,1 = P(change|ai,...,ar_1) posterior probability of change
e Agent k receives observation ;.

e Chooses local decision greedily

ar = min E{c(state,a)lay,...,ar_1,yr} Cg/‘o
a

e Broadcasts action ag. obal declare change
globa —

decision
policy

When should global decision-maker declare change?

no change

Summary: Global Decision making usin
/ .. : ’g 5 multi-threshold
Iocal deCISlonS IS ComPIeX° 15 posterior probability of change
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SUMMARY FOR PART 2

Sequential Social Learning and Herding

*Model |. Greedy social learning from local
decisions causes herding - information cascade.

Individuals imitate actions of others.

*Model 2. Social learning with benevolent agents.
Global decision specifies local decision (micromanagement)

Stochastic control problem eveal
¢ Threshold policy is optimal (supermodularity) (1)

¢ Simulation-based stochastic optimization to estimate
threshold.

*Model 3. Making global decision (quickest time f\i/o

change detection) using local decisions has multi- | @ owechnee

threshold behavior.

posterior probability of change

16

Thursday, July 14, 2011



SUMMARY FOR PART 2

Sequential Social Learning and Herding

LA

*Model |. Greedy social learning from local
decisions causes herding - information cascade.

Individuals imitate actions of others.

*Model 2. Social learning with benevolent agents.
Global decision specifies local decision (micromanagement)

Stochastic control problem eveal ‘
¢ Threshold policy is optimal (supermodularity) (1)

¢ Simulation-based stochastic optimization to estimate
threshold.

*Model 3. Making global decision (quickest time f\i/o

change detection) using local decisions has multi- | @ owechnee

threshold behavior.
How to extend to more general communication

graphs? 16

posterior probability of change
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SUMMARY FOR PART 2

Sequential Social Learning and Herding

*Model |. Greedy social learning from local
decisions causes herding - information cascade.
Individuals imitate actions of others.

*Model 2. Social learning with benevolent agents.
Global decision specifies local decision (micromanagement)

Stochastic control problem

LA

reveal

¢ Threshold policy is optimal (supermodularity)

¢ Simulation-based stochastic optimization to estimate
threshold.

*Model 3. Making global decision (quickest time
change detection) using local decisions has multi-
threshold behavior.

. declare change

In which order should agents act? |

posterior probability of change

Thursday, July 14, 2011



High reputation

=

No reputation

g

P

-
-

\F

- .
»

Extension: Panel of Experts
Good reputation

Low rep_utation

! \

17

=
)

B

3)}
)

Thursday, July 14, 2011



High reputation

=

No reputation

g

P

-
-

\F

- .
»

Extension: Panel of Experts
Good reputation

Seniority Rule!

Low rep_utation

! \

17

=
)

B

3)}
)

Thursday, July 14, 2011



Extension: Panel of Experts
High reputation Good reputation
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Extension: Panel of Experts
High. reputa’uon Good reputation
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OUTLINE

|. Global Games and Dynamic Sensor Activation:
Suppose each sensor deploys a simple algorithm.

What can you say about global performance! Action 0
Game Theory as an analysis tool A threshold policy

2. Social Learning and Rational Herds:
* How can agents learn from actions of other agents!?
* How do local decisions affect global decisions?
Game Theory as a synthesis tool

3. Adaptive Filtering Games:
Each node deploys an adaptive filter to optimize its decision. (VU

Can the global system achieve consensus in policy space!?
Game theory in adaptive learning.

18
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OUTLINE

|. Global Games and Dynamic Sensor Activation:

Suppose each sensor deploys a simple algorithm.
What can you say about global performance!
Game Theory as an analysis tool

Action 1

Action O

A threshold policy

2. Social Learning and Rational Herds:

* How can agents learn from actions of other agents!?
* How do local decisions affect global decisions?
Game Theory as a synthesis tool

3. Adaptive Filtering Games:
Each node deploys an adaptive filter to optimize its decision. /., |

Can the global system achieve consensus in policy space! '(ﬂ
Game theory in adaptive learning.

Unifying theme: local to global behavior for autonomous decision making  [UBC
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PART 3: ADAPTIVE FILTERING GAMES

Non-Bayesian - game theory in adaptive learning

e [ach agent [:

l | Receive
. l ’ ] P@r) " Payoff
1. Chooses action randomly {x,,; =i} ~ P(ry,) 1
rn
2. Receives stage utility u' (4, x;_lH) Adaptive l Receive
Filter P(rn) " Pavoff
S Y ¥ l/- —1 yo
: I o ol /" Agents Interaction \\\‘ )
4. Adaptive filter r;, ; =1, + € [Regretn 41 rn] . Enoironment ) Ai?llz;vel
UBC

19
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PART 3: ADAPTIVE FILTERING GAMES

Non-Bayesian - game theory in adaptive learning

e [ach agent [:

. Chooses action randomly {azfﬁl =4}~ P(I'fln)

. Receives stage utility u' (3, X;_ZH)

—1

1

2

3. Regretn+1(i,j) = (7, Xn+1) — u’ (4, X;il)

A l

. Adaptive filter r,lnH =rl +e¢ [Regretn 41— T

Main Result: Consensus in decision space

l | Receive
P@r) " Payoff
rl !
n
Adaptive
Filter

.

Can this simple local behavior lead to rational global behavior?
Global behavior converges to correlated equilibrium set (weakly or wpl).

19

7~ Agents Interaction
N Environment

) _ Receive
P(ry) Payoff
‘ 2
~
) Adaptive
4 Filter
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PART 3: ADAPTIVE FILTERING GAMES

Non-Bayesian - game theory in adaptive learning

e [ach agent [:

l | Receive
. l . ] P@r) " Payoff
1. Chooses action randomly {x,,; =i} ~ P(ry,) 1
rn
2. Receives stage utility ! (1, x;_lH) Adaptive ] Receive
Filter P(ry) " Pavoff
3. Regret, . (i,7) =u'(j,x ) —u'(3,x L) 4
. g n-+1 vJ) = J> n+1 ) *n+1 T | 2
: I o ol /" Agents Interaction \\\‘ )
4. Adaptlve filter ni1 =Ty, + € [Regreth I'n] N Environment p. A(lj:?ll»)c:rve‘

Main Result: Consensus in decision space

Can this simple local behavior lead to rational global behavior?
Global behavior converges to correlated equilibrium set (weakly or wpl).

[1] Hart, S. and Mas-Collel, A (2000) A simple procedure leading to correlated equilibrium, Econometrica. [ JgC

[2] Hart, S (2005) Adaptive Heuristics, Econometrica. T
19 "
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PART 3: ADAPTIVE FILTERING GAMES

Non-Bayesian - game theory in adaptive learning

e Kach agent [: Pt | Receive
n " Payoff
1. Chooses action randomly {z},.; =i} ~ P(r}) 1 1
rn
2. Receives stage utility u' (1, x;_lH) Adaptive l Receive
l l : l Filter P(ry) " Payoff
3. Regret,, . (¢,5) =u (j,x, 1) —u (3, %, ) T | 2
: I I I " Agents Interacti I .
4. Adaptive filter ry, y; = r;, + € [Regret, ,; — 17| . RN D A‘f:?ﬁ?rve‘
Main Result: Consensus in decision space
Can this simple local behavior lead to rational global behavior? R
Global behavior converges to correlated equilibrium set (weakly or wpl). op

» CORRELATED EQUILIBRIUM (CE) [Aumann, 1987]: a generalization of Nash equilibrium

Ce={m: > =,xH'Gx"H—u'(,x <0, Vi,jeA,leLl}

x—l EA—Z L
» Why ? 1) Correlation device: common history of actions, 2) Structural Simplicity: convex BIaC|<vve||. |
polytope, 3) Provably convergent learning algorithms approachability
UBC
19 I.:-\ *vy n/‘l
\ P/
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PART 3: ADAPTIVE FILTERING GAMES

Non-Bayesian - game theory in adaptive learning

e [ach agent [: parly | Receive
. l . ] n " Payoff
1. Chooses action randomly {x,,; =i} ~ P(ry,) 1
rn
2. Receives stage utility ! (1, x;_lH) Adaptive ] Receive
Filter P(ry) " Pavoff
3. Regret, 41 (i,5) = v (j, x,41) — u! (i, x,1) y
. gre n+1 1,7) = u\j, Xn—|—1 U (7, Xn—l—l - 2
: I o ol /" Agents Interaction \\\ .
4. Adaptlve filter ni1 =Ty, + € [Regretnﬂ I'n] N Environment / A(lj:?ll»)czrve‘

Application: Any problem where multiple agents need to establish

consensus in decision making:
*aUutoNOMOUS Sensor activation A
espectrum allocation in cognitive radio T

» CORRELATED EQUILIBRIUM (CE) [Aumann, 1987]: a generalization of Nash equilibrium

Ce={m: > =,xH'Gx"H—u'(,x <0, Vi,jeA,leLl}

x—leA—! g
» Why ? 1) Correlation device: common history of actions, 2) Structural Simplicity: convex BIaC|<vve||. |
polytope, 3) Provably convergent learning algorithms approachability
UBC
I 9 oy ¥y
\ P/
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PART 3: ADAPTIVE FILTERING GAMES

Non-Bayesian - game theory in adaptive learning

e [ach agent [: parly | Receive
n " Payoff
1. Chooses action randomly {z},.; =i} ~ P(r}) 1 1
rn
2. Receives stage utility u (z, xn_lH) Adaptive ] Receive
Filter P(ry) " Pavoff
N l l yo
3. Regretn+1 (7/7 ,]) = U (] ’ Xn—|—1 —u (Z Xn—|—1) T | 2
. ~~ Agents Interacti N .
4. Adaptlve filter I',ln_|_1 — I'fln + € [Regreth — I',ln] N ggrrll\firgniae;‘zon /;w Adaptive
~__ - Filter

Key tool: Stochastic averaging theory (Kushner & an%.wn, Math OR, 2006

Differential inclusion

dr(z, 7 . do
UT) & S e Ol y) — w0

» CORRELATED EQUILIBRIUM (CE) [Aumann, 1987]: a generalization of Nash equilibrium

Ce={m: > m,x H'(G,x™) —u'(,xH <0, Vi,je A le L]

05 1 1.5 2 2.5 3
U’

Blackwell
approachability

x—l EA—Z
» Why ? 1) Correlation device: common history of actions, 2) Structural Simplicity: convex
polytope, 3) Provably convergent learning algorithms

A )
19 \ /
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TRACKING TIME-VARYING EQUILIBRIA

ZNF vy

20




TRACKING TIME-VARYING EQUILIBRIA

Each node deploys simple algorithm - global
performance achieves consensus in decision space

20
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TRACKING TIME-VARYING EQUILIBRIA

Each node deploys simple algorithm - global
performance achieves consensus in decision space

* Track time varying correlated

s~ I+ €Q Ce(sn) equilibria -- dynamic spectrum
v allocation in cognitive radio.
O e Asynchronous updates
. Krishnamurthy, Yin, SIAM |.Opt [2004],
time 7 Kushner & Yin [2003],

Krishnamurthy, Yin, SIAM |. Multiscale [2009].
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TRACKING TIME-VARYING EQUILIBRIA

Each node deploys simple algorithm - global
performance achieves consensus in decision space

* Track time varying correlated

s~ I+ €Q Ce(sn) equilibria -- dynamic spectrum
v allocation in cognitive radio.
O e Asynchronous updates
. Krishnamurthy, Yin, SIAM |.Opt [2004],
time 7 Kushner & Yin [2003],

Krishnamurthy, Yin, SIAM |. Multiscale [2009].

Non-standard stochastic averaging —

requires use of " Martingale problem”
of Strook and Varadhan. [Kushner &
Yin 2003], [Ethier & Kurtz]

20
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TRACKING TIME-VARYING EQUILIBRIA

Each node deploys simple algorithm - global
performance achieves consensus in decision space

* Track time varying correlated

s~ I+ €Q Ce(sn) equilibria -- dynamic spectrum
v allocation in cognitive radio.
O e Asynchronous updates
. Krishnamurthy, Yin, SIAM |.Opt [2004],
time 7 Kushner & Yin [2003],

Krishnamurthy, Yin, SIAM |. Multiscale [2009].

Adaptive heuristics are boundedly rational strategies (in fact, highly
“bounded away” from full rationality). The main question of interest is whether
such simple strategies may in the long run yield behavior that is nevertheless

highly sophisticated and rational. Hart, Econometrica, 2005
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DISCUSSION

Vision: Analysis/design of interacting stochastic dynamical systems.
Given simple local behavior, game theory/social learning is useful for
anlaysis/synthesis of global behavior.

Part |: Bayesian Global Game:Agents act simultaneously.
Learn from data and predict other agents actions. dle

Activate

Part 2: Social Learning. Agents learn sequentially from & ®

@
o

actions of previous agents. o

declare change

*Pure capitalism causes herding. Socialism delays herding. —

policy

e Global decisions from local decisions: multi-threshold

posterior probability of change

Part 3:Adaptive filtering games: Global behavior achieves SN
consensus in action space - correlated equilibrium. ./;j:f(WIJ N URC
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