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 Low-Level Signal Representation

• Low-level statistical signal processing: 
– compression/information theory for storage and transmission
– estimation from partial and degraded measurements

• A key idea: find sparse accurate representations with few 
parameters.

• Mathematical tools: Fourier transform, wavelet/cosine bases, 
adaptive representations...

• A relatively well understood framework.
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Face retrieval:

 Representation for Classification
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Face retrieval:

 Representation for Classification

• Difficult but some algorithms work: sparsity is not key. 
• Key concept: informative stable invariants.
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ψ(x) = θ(x)eiξx

 Psychophysics of Vision

[Wolf et Al.] 

Hypercolumns in V1:
  directional wavelets

Simple cells Gabor linear models
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ψ(x) = θ(x)eiξx

 Psychophysics of Vision

[Wolf et Al.] 

Hypercolumns in V1:
  directional wavelets

Simple cells Gabor linear modelsFigure 2: Adapted from (Hubel and Wiesel, 1962).

Following Hubel and Wiesel, we say that the simple cells are tuned to a particular preferred
feature. This tuning is accomplished by weighting the LGN inputs in such a way that a simple
cell fires when the inputs arranged to build the preferred feature are co-activated. In contrast,
the complex cells’ inputs are weighted such that the activation of any of their inputs can drive
the cell by itself. So the complex cells are said to pool the response of several simple cells. As a
visual signal passes from LGN to V1 its representation increases in selectivity, patterns without
edges (such as sufficiently small circular dots of light) are no longer represented. Then as the
signal passes from simple cells to complex cells the representation gains in invariance. Complex
cells downstream from simple cells that respond only when their preferred feature appears in a
small window of space now represent stimuli presented over a larger region.

4.2 Model implementation

At the end of the hierarchy of visual processing, the cells in IT respond selectively to highly com-
plex stimuli and also invariantly over several degrees of visual angle. A popular class of models of
visual processing proceed through subjecting an input signal to a series of selectivity-increasing
and invariance-increasing operations (Fukushima, 1980; Perrett and Oram, 1993; Riesenhuber
and Poggio, 1999). Higher level representations become tuned to more and more complex
preferred features through selectivity-increasing operations and come to tolerate more severe
identity-preserving transformations through invariance-increasing operations.

We implemented a biologically-plausible model of the visual system modified from (Serre et al.,
2007a). This 4-layer model converts images into a feature representation via a series of processing
stages referred to as layers. In order, the layers of the model were: S1 → C1 → S2 → C2. In our
model, an object presented at a position A will evoke a particular pattern of activity in layer S2.
When the object is moved to a new position B, the pattern of activity in layer S2 will change
accordingly. However, this translation will leave the pattern in the C2 layer unaffected.

8

Complex Cells

• Non-linear
• Large receptive fields
• Some forms of invariance
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Hypercolumns in V1:
  directional wavelets

Simple cells Gabor linear modelsFigure 2: Adapted from (Hubel and Wiesel, 1962).

Following Hubel and Wiesel, we say that the simple cells are tuned to a particular preferred
feature. This tuning is accomplished by weighting the LGN inputs in such a way that a simple
cell fires when the inputs arranged to build the preferred feature are co-activated. In contrast,
the complex cells’ inputs are weighted such that the activation of any of their inputs can drive
the cell by itself. So the complex cells are said to pool the response of several simple cells. As a
visual signal passes from LGN to V1 its representation increases in selectivity, patterns without
edges (such as sufficiently small circular dots of light) are no longer represented. Then as the
signal passes from simple cells to complex cells the representation gains in invariance. Complex
cells downstream from simple cells that respond only when their preferred feature appears in a
small window of space now represent stimuli presented over a larger region.

4.2 Model implementation

At the end of the hierarchy of visual processing, the cells in IT respond selectively to highly com-
plex stimuli and also invariantly over several degrees of visual angle. A popular class of models of
visual processing proceed through subjecting an input signal to a series of selectivity-increasing
and invariance-increasing operations (Fukushima, 1980; Perrett and Oram, 1993; Riesenhuber
and Poggio, 1999). Higher level representations become tuned to more and more complex
preferred features through selectivity-increasing operations and come to tolerate more severe
identity-preserving transformations through invariance-increasing operations.

We implemented a biologically-plausible model of the visual system modified from (Serre et al.,
2007a). This 4-layer model converts images into a feature representation via a series of processing
stages referred to as layers. In order, the layers of the model were: S1 → C1 → S2 → C2. In our
model, an object presented at a position A will evoke a particular pattern of activity in layer S2.
When the object is moved to a new position B, the pattern of activity in layer S2 will change
accordingly. However, this translation will leave the pattern in the C2 layer unaffected.

8

Complex Cells

• Non-linear
• Large receptive fields
• Some forms of invariance

 «What» Pathway towards V4:
• More specialized invariance
• «Grand mother cells»
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• Image classes do not define regular manifold structures.

            No Regularity
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• Image classes do not define regular manifold structures.

            No Regularity

• Example of hand-written digit images
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• Image classes do not define regular manifold structures.

            No Regularity

• Example of hand-written digit images

• A digit is a low-dimensional but irregular class because of:

- Translations

- Deformations

g
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• Image classes do not define regular manifold structures.

            No Regularity

• Example of hand-written digit images

• A digit is a low-dimensional but irregular class because of:

- Translations

- Deformations

gf
‖f − g‖
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Image Classes are High Dimensional

G

F
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Image Classes are High Dimensional

same power spectrum

• Textures define high-dimensional image classes.
– Realizations of stationary processes  F  but typically not Gaussian 

and not Markovian. 

G

F
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  Representation for Classification

f g

‖f − g‖
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  Representation for Classification

• Need to find a representation      which maps signals to lower-
dimensional, regular manifolds by:
– Reducing intra-class variability (invariants)
– Creating a Lipschitz continuous manifold structure (stable)
– Maintaining discriminability (informative)

f g

‖f − g‖ Linear classifiers: SVM, PCA ...

Φ
Φ(f)

Φ(g)

‖Φ(f)− Φ(g)‖

Φ
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• Invariance to translations and scaling: variability reduction.

         Perceptual Distance
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• Invariance to translations and scaling: variability reduction.

         Perceptual Distance

• Sensitive to elastic deformations: natural metric.
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• Invariance to translations and scaling: variability reduction.

         Perceptual Distance

• Sensitive to elastic deformations: natural metric.

Metric: elastic deformation amplitude ‖∇τ‖∞ = supx |∇τ(x)|

• Deformation of f(x) into Dτf(x) = f(x− τ(x))

τ(x) ≈ τ(x0) +∇τ(x0)(x− x0)
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  Distance from Representations

•Euclidean distance on a representation: 

•Invariance to  groups of operators             such as rigid 
translations                                     :

•Stability: Lipschitz continuity to deformations

Linearizes small deformations.

{Dτ}τ

Dτf(x) = f(x− τ)

Dτf(x) = f(x− τ(x))

‖Φ(f)− Φ(Dτf)‖ ≤ C ‖f‖‖∇τ‖∞ .

‖Φ(f)− Φ(g)‖

Φ(Dτf) = Φ(f) : weak property.
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        Overview

• Averaging, Fourier and wavelets.

• Invariance through scattering: Convolution Networks

• Representation of stationary processes for textures

• Scattering PCA classification of patterns and textures 

• General group invariance and learning

Variability reduction with iterative contractions
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f(x) f ! φJ(x)
∫

f(u) du

• f ! φJ is invariant to translations small relatively to 2J

• f ! φJ looses too much information for discriminability.

• Averaging kernel: φJ(x) = 2−J φ(2−Jx).

      Invariance by Averaging
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• Fourier modulus is invariant to translations

• For deformations Dτf(x) = f(x− τ(x))

|f̂(ω)| is unstable at high frequencies ξ:

Deformation Instability of Fourier

If Dτf(x) = f(x− τ) then D̂τf(ω) = e−iτω f̂(ω)

so |D̂τf(ω)| = |f̂(ω)| : Φ(f) = |f̂ | .

‖ |D̂τf |−| f̂ | ‖ ∼ ‖f‖ ‖∇τ · ξ‖∞

with ‖f‖2 =
∫

|f(x)|2 dx
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δ(x) and eix2
have same Fourier modulus (constant).

• The loss of the Fourier phase eliminates too much information.
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g(x) = λ eix2
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|f̂(ω)| = |ĝ(ω)|

   Loss of Discriminability
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ψj(x) = 2−j ψ(2−jx)

• In 1D, dilated wavelets:

     Wavelets

|ψ̂j(ω)|2|φ̂J(ω)|2

0 ω
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ψj(x) = 2−j ψ(2−jx)

• In 1D, dilated wavelets:

     Wavelets

• In 2D, dilated and rotated wavelets:

[Wolf et Al.] 

ψ(x) = θ(x) eiξx

|ψ̂j(ω)|2|φ̂J(ω)|2

0 ω
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ψj(x) = 2−j ψ(2−jx)

• In 1D, dilated wavelets:

     Wavelets

• In 2D, dilated and rotated wavelets:

[Wolf et Al.] 

ψ(x) = θ(x) eiξx

ψj,γ(x) = 2−2j ψ(2−jRγx)

|φ̂J(ω)|2

|ψ̂j,γ(ω)|2

ω1

ω2

|ψ̂j(ω)|2|φ̂J(ω)|2

0 ω
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WJf(x) =
(

f ! φJ(x)
f ! ψj,γ(x)

)

j<J,γ∈Γ

• Wavelet transform of f at a scale 2J :

• Unitary:

‖WJf‖2 = ‖f ! φJ‖2 +
∑

j<J,γ∈Γ

‖f ! ψj,γ‖2 = ‖f‖2

     Wavelet Transforms
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    Image and Audio Descriptors

•How to build invariant descriptors from wavelet coefficients ?
•If f is translated then f ! ψj,γ is translated
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    Image and Audio Descriptors

•How to build invariant descriptors from wavelet coefficients ?
•If f is translated then f ! ψj,γ is translated
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• |f ! ψj,γ | ! φJ (SIFT, MFSC) locally translations if τ ! 2J .
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    Image and Audio Descriptors

•How to build invariant descriptors from wavelet coefficients ?
•If f is translated then f ! ψj,γ is translated

• Problem: Important loss of information by averaging.

• Can we recover information that remains locally invariant ?
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    Scattering Operators

|f ! ψj1,γ1 | ! φJ
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WJ(|f ∗ ψj1,γ1 |) =

    Scattering Operators

|f ! ψj1,γ1 | ! φJ

|f ! ψj1,γ1 | ! ψj2,γ2
j2 < J

γ2 ∈ Γ

|f ! ψj1,γ1 |
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Co-occurrence at scales 2j1 , 2j2 and directions γ1, γ2.

WJ(|f ∗ ψj1,γ1 |) =

    Scattering Operators

||f ! ψj1,γ1 | ! ψj2,γ2 | ! φJ .

Translation invariance

|f ! ψj1,γ1 | ! φJ

|f ! ψj1,γ1 | ! ψj2,γ2
j2 < J

γ2 ∈ Γ
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     Scattering: Convolution Network
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     Scattering: Convolution Network
f
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     Scattering: Convolution Network

|f ! ψj1,γ1 |

f ! φJ
|WJ |

f
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     Scattering: Convolution Network

|f ! ψj1,γ1 | ! φJ
∀j1
∀γ1

| |f ! ψj1,γ1 | ! ψj2,γ2 |

|WJ |
|f ! ψj1,γ1 |

f ! φJ
|WJ |

f
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     Scattering: Convolution Network

| |f ! ψj1,γ1 | ! ψj2,γ2 | ! φJ
∀j1, j2
∀γ1, γ2

|WJ |

|f ! ψj1,γ1 | ! φJ
∀j1
∀γ1

| |f ! ψj1,γ1 | ! ψj2,γ2 |

|WJ |
|f ! ψj1,γ1 |

f ! φJ
|WJ |

f
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     Scattering: Convolution Network

| |f ! ψj1,γ1 | ! ψj2,γ2 | ! φJ
∀j1, j2
∀γ1, γ2

|WJ |

|f ! ψj1,γ1 | ! φJ
∀j1
∀γ1

| |f ! ψj1,γ1 | ! ψj2,γ2 |

|WJ |
|f ! ψj1,γ1 |

f ! φJ
|WJ |

| |f ! ψj1,γ1 · · · | ! ψjm+1,γm+1 |

Cascade of contractive operators.

· · · · · ·
| |f ! ψj1,γ1 | · · · ! ψjm,γm |

|WJ |
| |f ! ψj1,γ1 | · · · ! ψjm,γm | ! φJ

∀j1...jm

∀γ1...γm

f
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∀j1...jm

∀γ1...γm

Scattering norm:

‖SJf‖2 =
+∞∑

m=0

∑

j1...jm
γ1...γm

‖ | |f ! ψj1,γ1 | · · · ! ψjm,γm | ! φJ‖2

Contractive because cascade of contractive operators |WJ |:

     Scattering Representation

SJf(x) =

f ! φJ(x)
|f ! ψj1,γ1 | ! φJ(x)

||f ! ψj1,γ1 | ! ψj2,γ2 | ! φJ(x)

| |f ! ψj1,γ1 | · · · ! ψjm,γm | ! φJ(x)
· · ·

‖SJf − SJg‖ ≤ ‖f − g‖.
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Theorem: For appropriate complex wavelets

lim
m→∞

∑

(j1...jm)∈Zm

(γ1...γm)∈Γm

‖ | |f ! ψj1,γ1 | · · · | ! ψjm,γm | ‖2 = 0

so a scattering is unitary:

 Scattering Energy Conservation

‖SJf‖2 = ‖f‖2 .
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|WJ | f =
(

f ! φJ

|f ! ψj |

)

j<J

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

0 100 200 300 400 500
0

20

40
0 100 200 300 400 500
0

200

400

0 100 200 300 400 500
0

20

40

0 100 200 300 400 500
0

20

40

0 100 200 300 400 500
0

10

20

0 100 200 300 400 500
0

10

20

|f ! ψJ−1|

|f ! ψj |

|WJ |

is invertible over band-limited signals.

Theorem (with Waldspurger): For appropriate wavelets

f ! φJ

   Completness and Reconstruction

f

Friday, July 8, 2011



|WJ | f =
(

f ! φJ

|f ! ψj |

)

j<J

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

0 100 200 300 400 500
0

20

40
0 100 200 300 400 500
0

200

400

0 100 200 300 400 500
0

20

40

0 100 200 300 400 500
0

20

40

0 100 200 300 400 500
0

10

20

0 100 200 300 400 500
0

10

20

|f ! ψJ−1|

|f ! ψj |

|WJ |

is invertible over band-limited signals.

Theorem (with Waldspurger): For appropriate wavelets

f ! φJ

   Completness and Reconstruction
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• If f(n) is of size N

Compute only SJf(2Jn) : 2−2JN scattering vectors.

O(N) coefficients computed with O(N log N) operations.

• Scattering coefficients SJf(x) are averaged by φJ .

     Computational Complexity 
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     Scattering Examples
f SJf

m=1

m=1

m=2

m=2

m=3

m=3
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Theorem: lim
J→∞

‖SJf − SJg‖ converges and

lim
J→∞

‖SJf − SJ(Dτf)‖ = 0 .

if Dτf(x) = f(x− τ) is a translation then

• When 2J increases coefficients converge:

   Translation Invariance

lim
J→∞

22J | |f ! ψj1,γ1 |... ! ψjm,γm | ! φJ(x) =
∫

| |f ! ψj1,γ1 |... ! ψjm,γm(u)| du.
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If Dτf(x) = f(x− τ(x)) with ‖∇τ‖∞ < 1Theorem

then for J > log ‖τ‖∞
‖∇τ‖∞

‖SJf − SJ(Dτf)‖ ≤ C m ‖f‖ log
( ‖τ‖∞
‖∇τ‖∞

)
‖∇τ‖∞

  Continuity to Deformations
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lim
J→∞

‖SJF − E{SJ F}‖ = 0 : with probability 1.

 Scattering Stationary Processes

E{F}

E{|F ! ψj1,γ1 |}

E{| |F ! ψj1,γ1 | · · · ! ψjm,γm |}

E{SJF (x)} =
· · ·

∀j1...jm

∀γ1...γm

E{SJF}

E{SJG}G

F

SJ

x

x

Conjecture: for a wide class of ”ergodic” stationary processes
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lim
J→∞

‖SJF − E{SJ F}‖ = 0 : with probability 1.

 Scattering Stationary Processes

E{F}

E{|F ! ψj1,γ1 |}

E{| |F ! ψj1,γ1 | · · · ! ψjm,γm |}

E{SJF (x)} =
· · ·

∀j1...jm

∀γ1...γm

E{SJF}

E{SJG}G

F

SJ

x

x

Conjecture: for a wide class of ”ergodic” stationary processes

Theorem : E{|SJF (x)|2} = E{|F (x)|2} .
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• K classes corresponding to K (non stationary) processes  

• Two possible strategies: discriminant or generative classifiers.

- Discriminant (e.g. SVM) is asymptotically optimal.

- Generative can be much better on small training sets
or large number of classes.

    Classification : Joan Bruna

{Fk}k≤K

F1 F2
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• K classes corresponding to K (non stationary) processes  

• Scattering transformation.

• Two possible strategies: discriminant or generative classifiers.

- Discriminant (e.g. SVM) is asymptotically optimal.

- Generative can be much better on small training sets
or large number of classes.

    Classification : Joan Bruna

{Fk}k≤K

F1 F2

SJ
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 Generative: Affine Space Selection

{Fk}k≤K

F1 F2
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 Generative: Affine Space Selection

{Fk}k≤K

F1 F2

SJ

Friday, July 8, 2011



 Generative: Affine Space Selection

{Fk}k≤K

F1 F2

SJ

a space Vd,k of principal variance directions (PCA).

• Each class is represented by the centroid E{SJFk} and

Affine space model Ad,k = E{SJFk} + Vd,k.

E{SJF1}

Ad,1

Ad,2

E{SJF2}
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f

 Generative: Affine Space Selection

{Fk}k≤K

F1 F2

SJ

a space Vd,k of principal variance directions (PCA).

• Each class is represented by the centroid E{SJFk} and

Affine space model Ad,k = E{SJFk} + Vd,k.

E{SJF1}

Ad,1

Ad,2

E{SJF2}
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f

SJf

 Generative: Affine Space Selection

{Fk}k≤K

F1 F2

SJ

a space Vd,k of principal variance directions (PCA).

• Each class is represented by the centroid E{SJFk} and

Affine space model Ad,k = E{SJFk} + Vd,k.

E{SJF1}

Ad,1

Ad,2

E{SJF2}
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   Scattering PCA Model Selection

• PCA calculation of the d dimensional spaces            of maximum            
variability of                                  from training samples of 

• Classification by best scattering affine model selection: 

• Cross-validation:
– d : dimension of the variability reduction.
– J : maximum scattering scale.

Fk

Vk,d
SJFk − E{SJFk}

k(f) = arg min
1≤k≤K

‖SJf − PAk,d(SJf)‖ .
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Scattering J = log2 N

Training PCA SVM Mark.
per class m = 2 m = 2 Rand.

23 0.9% 3.3% 22.43%
46 0.09% 1.1% 2.46%

CUREt database

   Classification of Textures

61 classes

Rotations and 
illumination 
variations.
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Non-Gaussian Process Characterization

• Usual approaches use high order moments: large variance 
estimators. Not enough training samples.

• Non-gaussian process models with first and second order 
moments of scattering coefficients: co-occurrence information 
(Bela Julesz conjecture).

• Effective for audio classification: characterizes attacks, beating...

• What are the properties of these stochastic models ?
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Scattering with J = 3

 Digit Classification: MNIST

Training Conv. PCA Space
Size Net. m = 2 dim. d
300 7.18 6.05 24
5000 1.52 1.22 40
40000 0.65 0.78 180
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• Translation group scattering: not sufficient for complex classes.

    Combined Scattering
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f −→ STrans
J −→ SG

J′ −→ ...

• Intra-class variability need to be further reduced:

• Translation group scattering: not sufficient for complex classes.

SJf

    Combined Scattering

SG
J

Friday, July 8, 2011



f −→ STrans
J −→ SG

J′ −→ ...

• Intra-class variability need to be further reduced:

• Translation group scattering: not sufficient for complex classes.

SJf

    Combined Scattering

• Scattering SG
J′ over a compact Lie group G with iterated

wavelet tranforms over G cascaded with modulus operators.

Curvature reduction with iterated contractions.

SG
J
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         Conclusion

• High dimensional signal classification strategy by reducing intra-
class variability with iterated contractions.

• A multiscale scattering is invariant, Lipschitz continuous to 
deformations and informative.  How to do it otherwise ?

• Important for image and audio perception: neurophysiology.

• Papers/softwares:  www.cmap.polytechnique.fr/scattering 
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