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. Low-Level Signal Representation_

e Low-level statistical signal processing:
- compression/information theory for storage and transmission
- estimation from partial and degraded measurements

e A key 1dea: find sparse accurate representations with few
parameters.

e« Mathematical tools: Fourier transform, wavelet/cosine bases,
adaptive representations...

e A relatively well understood framework.
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 Difficult but some algorithms work: sparsity 1s not ey.

e Key concept: informative stable invariants.
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«What» Pathway towards V4:
e More specialized invariance
e «Grand mother cells»
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No Regularity

e Image classes do not define regular manifold structures.
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e Image classes do not define regular manifold structures.

e Example of hand-written digit images

e A digit is a low-dimensional but irregular class because of:

- Translations ¢ .
- Deformations ( X ‘o | .,
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Image Classes are High Dimensional
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dmage Classes are High Dimensional-z

e Textures define high-dimensional 1mage classes.

- Realizations of stationary processes F' but typically not Gaussian
and not Markovian.

same power spectrum
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Representation for Classification .
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Representation for Classification .

e Need to find a representation & which maps signals to lower-
dimensional, regular manifolds by:

- Reducing 1ntra-class variability (invariants)
- Creating a Lipschitz continuous manifold structure (stable)

- Maintaining discriminability (informative)

|2(f) — 2(9)]l
Linear classifiers: SVM, PCA ...
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Perceptual Distance

e Invariance to translations and scaling: variability reduction.
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e Invariance to translations and scaling: variability reduction.

e Sensitive to elastic deformations: natural metric.
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)’ TR",.; . Perceptual Distance -

e Invariance to translations and scaling: variability reduction.

e Sensitive to elastic deformations: natural metric.

e Deformation of f(x) into D, f(x) = f(z — 7(x))
7(x) = 7(xg) + V71 (20)(T — 20)

Metric: elastic deformation amplitude |V 7|/ = sup,, |V7(2)]
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Distance from Representations

e Euclidean distance on a representation: || ®(f) — ®(g)]|]

e Invariance to groups of operators{D. }, such as rigid
translations D, f(x) = f(z — 7):

O(D,f)=](f) : weak property.

e Stability: Lipschitz continuity to deformations

D f(z) = f(x —7(z))
|2(f) — (D)l < ClfIIVT -

[Linearizes small deformations.
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#X F. Overview =y

e Averaging, Fourier and wavelets.

e Invariance through scattering: Convolution Networks

Variability reduction with iterative contractions

e Representation of stationary processes for textures

e Scattering PCA classification of patterns and textures

e General group invariance and learning
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Invariance by Averaging

e Averaging kernel: ¢;(z) =27/ ¢(2_Jx).
f(x) fros(x) — /f

J—>oo

250 T T . . 250
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100, 1 100K\ A~ N4 7
O 1 1 1 1 O 1 1 1 1
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o f x ¢y is invariant to translations small relatively to 2/

e f % ¢y looses too much information for discriminability.
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Deformation Instability of Fourier_.

e Fourier modulus 1s invariant to translations

If D,f(x) = f(z — 7) then E:f(w) — 7Y f (W)

so |Drf(w)] =|f(w)] = ®(f) = |f] .

e For deformations D, f(z) = f(z — 7(x))

A

| f(w)] is unstable at high frequencies &:

11D f| =] FII ~ £ VT - €l

with [|f]? = / F@) da
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e The loss of the Fourier phase eliminates too much information

5(x) and e have same Fourier modulus (constant).

. 2
f(z) =d(x) g(x) =Ae™
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Wavelets

e In 1D, dilated wavelets: I f A o

i(x) =277 (27 )
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X i Wavelets
4 T o

e In 1D, dilated wavelets: J\f VA n\ j\ >
| — 9= (277 A
v () v(2 ) b (w) x 9 (w)]?
15 S SR
L .- : N
0 W

e In 2D, dilated and rotated wavelets:
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2 W Wavelets
o i

e In 1D, dilated wavelets: A n\ j\ N

i) =279(2%2)
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Wavelet Transforms

o Wavelet transform of f at a scale 27:
fx¢s(r) )
Wy f(z) = (
D=\ Txvia@) ) e

e Unitary:

IWafI2 = f*osl®+ D Ifxvinl* =111

3<J,yel
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Image and Audio Descriptors

e How to build invariant descriptors from wavelet coefficients ?
o If fis translated then f x % ~ 18 translated

1 T T T T 0 5

] f(w) : | /\//ky ﬂmy f*%

0 1 1 1 1 1 1 _0.5
0 20 40 60 80 100 120 140 0 1 00 1 20 140
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e How to build invariant descriptors from wavelet coefficients ?
then f % 9, -, 1s translated

e If /1s translated
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e If /1s translated

o|f *%,’Y
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Image and Audio Descriptors

e How to build invariant descriptors from wavelet coefficients ?
then f % 9, -, 1s translated

e %’I(CC)

|l

100 120 140

100 120 140

S

x ¢z (SIFT, MFSC) locally translations if 7 < 2.

: N 8 (o)

100 120 140

100 120 140

e Problem: Important loss of information by averaging.

e Can we recover information that remains locally invariant 7
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. Scattering Operators

‘f*wjla’h‘ *x Qg
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__ Scattering Operators

‘f *wjlﬂ’l‘ * ¢J
Wi (1f % 1bj, ) = > |f* Vgl

o < J
‘f*wﬁ,’yl‘*whﬁz ZEF
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. Scattering Operators

‘f*%‘lm‘*%
Wilf * ) =

o < J
‘f*wﬁ,’h‘*whﬁz ZEP

Translation invariance

\/
Hf*wjla’Yl | *wjgﬁz‘ * ¢J :

Co-occurrence at scales 271, 272 and directions 71, 2.
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Scattering: Convolution Network_ -
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Scattering: Convolution Network_ -
f
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w2cattering: Convolution Network, .
f

J*xoy
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‘f*wﬁ,’)’l‘ *¢J
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‘f*wﬁ,’h‘ *¢J

| |f *¢j1,W1| *¢j2,72| * ng
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‘f*wﬁ,’)’l‘ *¢J

\id] Vit
T_LTF’ % Wil % gy %
......... 1 > | * g * 80|

Cascade of contractive operators.
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Scattering Representation

fxos(x)
[ iy | *x D ()

SJf(CE) — Hf*wj1,71|*¢j2,72|*¢<](x)

\| ‘f*wﬁﬁl‘ *wjm,7m|*¢J(x)/ V1. Im

Scattering norm:

+00
ISTAIP =D > M * Wi o x| > S

m=0 J1---Im
"Yl...")/m

Contractive because cascade of contractive operators |W]|:

1S7f —Ssg|l < \f —all-
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. Scattering Energy Conservation

Theorem: For appropriate complex wavelets

Tim > x| ] 2 =0
(§j1---Jm)EZ™

(Y1---vym)ET™

SO a scattering 1s unitary:

IS £1% = 11£117 -
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_Completness and Reconstruction

Theorem (with Waldspurger): For appropriate wavelets

(T
‘WJ|f— ( \f*%\ >j<,]

is invertible over band-limited signals.
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|,éi“ . .Completness and Reconstruction.

Theorem (with Waldspurger): For appropriate wavelets

(T
‘WJ|f— ( \f*%\ >j<,]

is invertible over band-limited signals.
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Computational Complexity

e Scattering coefficients Sy f(x) are averaged by ¢ ;.

o If f(n) is of size N

Compute only S;f(27n) : 272/ N scattering vectors.

O(N) coefficients computed with O(/N log N) operations.
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_Translation Invariance

e When 27 increases coefficients converge:

lim 22J‘ ’f*wjl,%’“'*wjmﬁm’*¢J(w) :/"f*¢j1771""*¢jm77m(u)’du'

J— 00

Theorem: lim ||S;f — Sjg|l converges and

J — 00

if D,f(x)= f(x —7) is a translation then

lim ||S;f—S;(D-f)]|=0.

J— 00

Friday, July 8, 2011



. _Continuity to Deformations

Theorem If D, f(x) = f(z —7(z)) with |[V7T]s <1

then for J > log ||HVTTH|C|>O

17 lloo

VTl

[Ssf = Ss(D-H)l < Cm | fl] tog (o) 197
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= Scattering Stationary Processes

Conjecture: for a wide class of ”"ergodic” stationary processes

lim ||[S;F — E{S; F}|| =0 : with probability 1.

J — 00
5 )@E{SJF}
F{S,;F(z)} = E{\Ffl.bjlml}

Vi1 9m
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|faﬁ Fi.Scattering Stationary Processes

Conjecture: for a wide class of ”"ergodic” stationary processes

lim ||[S;F — E{S; F}|| =0 : with probability 1.

J— 00
)@E{SJF}
\‘ \A G Sy @ E{5sG}
E{F}
E{S;F(x)} = E{‘Fi‘(‘??.bjlﬂ’l’}

Vi1 9m

Theorem : E{|S,F(z)?} = E{|F(z)?} .
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. Classification : Joan Bruna

e K classes corresponding to K (non stationary) processes { Fj, } < x

e T'wo possible strategies: discriminant or generative classifiers.
- Discriminant (e.g. SVM) is asymptotically optimal.

- Generative can be much better on small training sets
or large number of classes.
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.Classification : Joan Bruna

e K classes corresponding to K (non stationary) processes { Fj, } < x

e Scattering transformation.

e T'wo possible strategies: discriminant or generative classifiers.
- Discriminant (e.g. SVM) is asymptotically optimal.

- Generative can be much better on small training sets

or large number of classes. R
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Generative: Affine Space Selection .
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-Generative: Affine Space Selection .,

{de}kgK

e Fach class is represented by the centroid E{S;F}} an

a space Vg of principal variance directions (PCA).

Affine space model Ay, = E{S;Fr} + Var.
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_Scattering PCA Model Selection _.

e PCA calculation of the d dimensional spaces Vi 4 of maximum
variability of SyFx — E{S;F})} from training samples of F}

e Classification by best scattering affine model selection:

E(f) = arg min [|S;f — Pa, ,(Ssf)| -

1<k<K

e Cross-validation:
- d : dimension of the variability reduction.
- J : maximum scattering scale.
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CUREt database

Rotations and

61 classes 1llumination
variations.
Scattering J I = 1g2 N o
Training | PCA  SVM  Mark.
perclass | m=2 m =2 Rand.
23 0.9% 3.3% 22.43%
46 0.09% 1.1% 2.46%
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e Usual approaches use high order moments: large variance
estimators. Not enough training samples.

e Non-gaussian process models with first and second order
moments of scattering coefficients: co-occurrence information
(Bela Julesz conjecture).

e Effective for audio classification: characterizes attacks, beating...

e What are the properties of these stochastic models ?
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Scattering with J = 3

Training | Conv. PCA  Space
Size Net. m=2 dim. d
300 7.18 6.05 24
5000 1.52 1.22 40

40000 0.65 0.78 180




__ Combined Scattering

e Translation group scattering: not sufficient for complex classes
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e Translation group scattering: not sufficient for complex classes

e Intra-class variability need to be further reduced:

STrans

— S?/ — ...

S¢ R
J S /[&/‘,h:;if/
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e Translation group scattering: not sufficient for complex classes

e Intra-class variability need to be further reduced:

STrans

— | S | — ...

S¢ R
J S /[:‘{{‘3,2;{:/

e Scattering S%, over a compact Lie group G with iterated

wavelet tranforms over G cascaded with modulus operators.

Curvature reduction with iterated contractions.
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e High dimensional signal classification strategy by reducing intra-
class variability with iterated contractions.

e A multiscale scattering 1s invariant, Lipschitz continuous to
deformations and informative. How to do 1t otherwise ?

e Important for image and audio perception: neurophysiology.

e Papers/softwares: www.cmap.polytechnique.fr/scattering
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