

Low-Level Signal Representation

- Low-level statistical signal processing:
 - compression/information theory for storage and transmission
 - estimation from partial and degraded measurements
- A key idea: find **sparse** accurate representations with few parameters.
- Mathematical tools: Fourier transform, wavelet/cosine bases, adaptive representations...
- A relatively well understood framework.

Face retrieval:

Face retrieval:

Face retrieval:

- Difficult but some algorithms work: sparsity is not key.
- Key concept: informative stable invariants.

Psychophysics of Vision

Hypercolumns in V1: directional wavelets

Simple cells Gabor linear models

Psychophysics of Vision

Hypercolumns in V1: directional wavelets

Simple cells Gabor linear models

Complex Cells

- Non-linear
- Large receptive fields
- Some forms of invariance

Friday, July 8, 2011

Psychophysics of Vision

Hypercolumns in V1: directional wavelets

Simple cells Gabor linear models

Complex Cells

- Non-linear
- Large receptive fields
- Some forms of invariance

«What» Pathway towards V4:

- More specialized invariance
- «Grand mother cells»

No Regularity

• Image classes do not define regular manifold structures.

- No Regularity
- Image classes do not define regular manifold structures.
- Example of hand-written digit images

3681796691 6757863485 2179712845 4819018894

• Image classes do not define regular manifold structures.

No Regularity

• Example of hand-written digit images

3681796691 6757863485 2179712845 4819018894

• A digit is a low-dimensional but irregular class because of:

- Translations
- Deformations

• Image classes do not define regular manifold structures.

No Regularity

• Example of hand-written digit images

3681796691 6757863485 2179712845 4819018894

• A digit is a low-dimensional but irregular class because of:

- Translations
- Deformations

Image Classes are High Dimensional

Image Classes are High Dimensional

- Textures define high-dimensional image classes.
- Realizations of stationary processes F but typically not Gaussian and not Markovian.

- Need to find a representation Φ which maps signals to lower-dimensional, regular manifolds by:
 - Reducing intra-class variability (invariants)
 - Creating a Lipschitz continuous manifold structure (stable)
 - Maintaining discriminability (*informative*)

• Invariance to translations and scaling: variability reduction.

- Invariance to translations and scaling: variability reduction.
- Sensitive to elastic deformations: natural metric.

- Invariance to translations and scaling: variability reduction.
- Sensitive to elastic deformations: natural metric.

• Deformation of f(x) into $D_{\tau}f(x) = f(x - \tau(x))$

$$\tau(x) \approx \tau(x_0) + \nabla \tau(x_0)(x - x_0)$$

Metric: elastic deformation amplitude $\|\nabla \tau\|_{\infty} = \sup_{x} |\nabla \tau(x)|$

Distance from Representations

- Euclidean distance on a representation: $\|\Phi(f) \Phi(g)\|$
- Invariance to groups of operators $\{D_{\tau}\}_{\tau}$ such as rigid translations $D_{\tau}f(x) = f(x \tau)$:

$$\Phi(D_{\tau}f) = \Phi(f)$$
 : weak property.

• Stability: Lipschitz continuity to deformations

$$D_{\tau}f(x) = f(x - \tau(x))$$

$$\|\Phi(f) - \Phi(D_{\tau}f)\| \le C \|f\| \|\nabla \tau\|_{\infty}.$$

Linearizes small deformations.

ಿವರಿ

- Averaging, Fourier and wavelets.
- Invariance through scattering: Convolution Networks

Variability reduction with iterative contractions

- Representation of stationary processes for textures
- Scattering PCA classification of patterns and textures
- General group invariance and learning

Invariance by Averaging

• $f \star \phi_J$ is invariant to translations small relatively to 2^J

• $f \star \phi_J$ looses too much information for discriminability.

Deformation Instability of Fourier

• Fourier modulus is invariant to translations

If
$$D_{\tau}f(x) = f(x - \tau)$$
 then $\widehat{D_{\tau}f}(\omega) = e^{-i\tau\omega}\widehat{f}(\omega)$

so
$$|\widehat{D_{\tau}f}(\omega)| = |\widehat{f}(\omega)| : \Phi(f) = |\widehat{f}|.$$

• For deformations $D_{\tau}f(x) = f(x - \tau(x))$ $|\hat{f}(\omega)|$ is unstable at high frequencies ξ :

$$\| |\widehat{D_{\tau}f}| - |\widehat{f}| \| \sim \|f\| \|\nabla \tau \cdot \xi\|_{\infty}$$

with
$$||f||^2 = \int |f(x)|^2 dx$$

Loss of Discriminability

• The loss of the Fourier phase eliminates too much information. $\delta(x)$ and e^{ix^2} have same Fourier modulus (constant).

• In 2D, dilated and rotated wavelets:

 $\psi(x) = \theta(x) e^{i\xi x}$

• In 2D, dilated and rotated wavelets:

 $\psi(x) = \theta(x) e^{i\xi x}$

$$W_J f(x) = \left(\begin{array}{c} f \star \phi_J(x) \\ f \star \psi_{j,\gamma}(x) \end{array}\right)_{j < J, \gamma \in \Gamma}$$

Wavelet Transforms

• Unitary:

$$||W_J f||^2 = ||f \star \phi_J||^2 + \sum_{j < J, \gamma \in \Gamma} ||f \star \psi_{j,\gamma}||^2 = ||f||^2$$

Image and Audio Descriptors

- How to build invariant descriptors from wavelet coefficients ?
- If f is translated then $f \star \psi_{j,\gamma}$ is translated

Image and Audio Descriptors

- How to build invariant descriptors from wavelet coefficients ?
- If f is translated then $f \star \psi_{j,\gamma}$ is translated

• $|f \star \psi_{j,\gamma}| \star \phi_J$ (SIFT, MFSC) locally translations if $\tau \ll 2^J$.

140

Image and Audio Descriptors

- How to build invariant descriptors from wavelet coefficients ?
- If f is translated then $f \star \psi_{j,\gamma}$ is translated

• $|f \star \psi_{j,\gamma}| \star \phi_J$ (SIFT, MFSC) locally translations if $\tau \ll 2^J$.

- **Problem:** Important loss of information by averaging.
- Can we recover information that remains locally invariant ?

Scattering Operators

 $|f \star \psi_{j_1,\gamma_1}| \star \phi_J$

Scattering Operators

$$W_{J}(|f * \psi_{j_{1},\gamma_{1}}|) = \begin{pmatrix} |f \star \psi_{j_{1},\gamma_{1}}| \star \phi_{J} \\ |f \star \psi_{j_{1},\gamma_{1}}| \star \psi_{j_{2},\gamma_{2}} \end{pmatrix} \xrightarrow{j_{2} < J}_{\gamma_{2} \in \Gamma} |f \star \psi_{j_{1},\gamma_{1}}|$$

Scattering Operators

$$W_{J}(|f * \psi_{j_{1},\gamma_{1}}|) = \begin{pmatrix} |f \star \psi_{j_{1},\gamma_{1}}| \star \phi_{J} \\ |f \star \psi_{j_{1},\gamma_{1}}| \star \psi_{j_{2},\gamma_{2}} \end{pmatrix}_{\substack{j_{2} < J \\ \gamma_{2} \in \Gamma}} \\ \downarrow \text{ Translation invariance} \\ ||f \star \psi_{j_{1},\gamma_{1}}| \star \psi_{j_{2},\gamma_{2}}| \star \phi_{J} .$$

Co-occurrence at scales 2^{j_1} , 2^{j_2} and directions γ_1 , γ_2 .

f

Scattering Representation

$$S_J f(x) = \begin{pmatrix} f \star \phi_J(x) \\ |f \star \psi_{j_1,\gamma_1}| \star \phi_J(x) \\ ||f \star \psi_{j_1,\gamma_1}| \star \psi_{j_2,\gamma_2}| \star \phi_J(x) \\ \dots \\ ||f \star \psi_{j_1,\gamma_1}| \cdots \star \psi_{j_m,\gamma_m}| \star \phi_J(x) \end{pmatrix}_{\substack{\forall j_1 \dots j_m \\ \forall \gamma_1 \dots \gamma_m}}$$

Scattering norm:

$$\|S_J f\|^2 = \sum_{m=0}^{+\infty} \sum_{\substack{j_1 \dots j_m \\ \gamma_1 \dots \gamma_m}} \| \|f \star \psi_{j_1,\gamma_1}\| \dots \star \psi_{j_m,\gamma_m} \| \star \phi_J \|^2$$

Contractive because cascade of contractive operators $|W_J|$:

$$\|S_J f - S_J g\| \le \|f - g\|.$$

Scattering Energy Conservation

Theorem: For appropriate complex wavelets

$$\lim_{m \to \infty} \sum_{\substack{(j_1 \dots j_m) \in \mathbf{Z}^m \\ (\gamma_1 \dots \gamma_m) \in \Gamma^m}} \| \| f \star \psi_{j_1, \gamma_1} \| \cdots \| \star \psi_{j_m, \gamma_m} \| \|^2 = 0$$

so a scattering is unitary:

$$||S_J f||^2 = ||f||^2$$

Completness and Reconstruction

Theorem (with Waldspurger): For appropriate wavelets $|W_J| f = \begin{pmatrix} f \star \phi_J \\ |f \star \psi_j| \end{pmatrix}_{j < J}$

is invertible over band-limited signals.

Completness and Reconstruction

Theorem (with Waldspurger): For appropriate wavelets $|W_J| f = \begin{pmatrix} f \star \phi_J \\ |f \star \psi_j| \end{pmatrix}_{j < J}$

is invertible over band-limited signals.

Friday, July 8, 2011

Computational Complexity

• Scattering coefficients $S_J f(x)$ are averaged by ϕ_J .

• If f(n) is of size N

Compute only $S_J f(2^J n) : 2^{-2J} N$ scattering vectors.

O(N) coefficients computed with $O(N \log N)$ operations.

Scattering Examples

f

Translation Invariance

• When 2^J increases coefficients converge:

$$\lim_{J\to\infty} 2^{2J} ||f \star \psi_{j_1,\gamma_1}| \dots \star \psi_{j_m,\gamma_m}| \star \phi_J(x) = \int ||f \star \psi_{j_1,\gamma_1}| \dots \star \psi_{j_m,\gamma_m}(u)| \, du.$$

Theorem: $\lim_{J \to \infty} \|S_J f - S_J g\| \text{ converges and}$ if $D_{\tau} f(x) = f(x - \tau)$ is a translation then $\lim_{J \to \infty} \|S_J f - S_J (D_{\tau} f)\| = 0.$ **Continuity to Deformations**

Theorem If
$$D_{\tau}f(x) = f(x - \tau(x))$$
 with $\|\nabla \tau\|_{\infty} < 1$

then for $J > \log \frac{\|\tau\|_{\infty}}{\|\nabla \tau\|_{\infty}}$

$$\|S_J f - S_J (D_\tau f)\| \le C m \|f\| \log\left(\frac{\|\tau\|_{\infty}}{\|\nabla\tau\|_{\infty}}\right) \|\nabla\tau\|_{\infty}$$

Scattering Stationary Processes

Conjecture: for a wide class of "ergodic" stationary processes $\lim_{J\to\infty} \|S_J F - E\{S_J F\}\| = 0 : \text{ with probability 1.}$

Scattering Stationary Processes

Conjecture: for a wide class of "ergodic" stationary processes $\lim_{J\to\infty} \|S_J F - E\{S_J F\}\| = 0 : \text{ with probability 1.}$

Scattering of Stationary Processes

Friday, July 8, 2011

Classification : Joan Bruna

• *K* classes corresponding to *K* (non stationary) processes $\{F_k\}_{k \leq K}$

- Two possible strategies: discriminant or generative classifiers.
 - Discriminant (e.g. SVM) is asymptotically optimal.
 - Generative can be much better on small training sets or large number of classes.

Classification : Joan Bruna

- K classes corresponding to K (non stationary) processes $\{F_k\}_{k \leq K}$
- Scattering transformation.
- Two possible strategies: discriminant or generative classifiers.
 - Discriminant (e.g. SVM) is asymptotically optimal.
 - Generative can be much better on small training sets or large number of classes.

 $\{F_k\}_{k\leq K}$

 $\{F_k\}_{k\leq K}$

• Each class is represented by the centroid $E\{S_JF_k\}$ and $\{F_k\}_{k \leq K}$ a space $\mathbf{V}_{d,k}$ of principal variance directions (PCA).

Affine space model $\mathbf{A}_{d,k} = E\{S_J F_k\} + \mathbf{V}_{d,k}$.

• Each class is represented by the centroid $E\{S_JF_k\}$ and $\{F_k\}_{k\leq K}$ a space $\mathbf{V}_{d,k}$ of principal variance directions (PCA).

Affine space model $\mathbf{A}_{d,k} = E\{S_J F_k\} + \mathbf{V}_{d,k}$.

• Each class is represented by the centroid $E\{S_JF_k\}$ and $\{F_k\}_{k\leq K}$ a space $\mathbf{V}_{d,k}$ of principal variance directions (PCA).

Affine space model $\mathbf{A}_{d,k} = E\{S_J F_k\} + \mathbf{V}_{d,k}$.

Scattering PCA Model Selection

- PCA calculation of the d dimensional spaces $V_{k,d}$ of maximum variability of $S_J F_k E\{S_J F_k\}$ from training samples of F_k
- Classification by best scattering affine model selection:

$$k(f) = \arg \min_{1 \le k \le K} \|S_J f - P_{\mathbf{A}_{k,d}}(S_J f)\|.$$

• Cross-validation:

- d : dimension of the variability reduction.
- J: maximum scattering scale.

Classification of Textures

Rotations and illumination variations.

Scattering $J = \log_2 N$

Training	PCA	SVM	Mark.
per class	m=2	m = 2	Rand.
23	0.9%	3.3%	22.43%
46	$\mathbf{0.09\%}$	1.1%	2.46%

CUREt database

61 classes

Non-Gaussian Process Characterization

- Usual approaches use high order moments: large variance estimators. Not enough training samples.
- Non-gaussian process models with first and second order moments of scattering coefficients: co-occurrence information (Bela Julesz conjecture).
- Effective for audio classification: characterizes attacks, beating...
- What are the properties of these stochastic models ?

Digit Classification: MNIST

3681796691 6757863485 2179712845 4819018894

Scattering with J = 3

Training	Conv.	PCA	Space
Size	Net.	m=2	dim. d
300	7.18	6.05	24
5000	1.52	1.22	40
40000	0.65	0.78	180

• Translation group scattering: not sufficient for complex classes

- Translation group scattering: not sufficient for complex classes
 - Intra-class variability need to be further reduced:

- Translation group scattering: not sufficient for complex classes
 - Intra-class variability need to be further reduced:

• Scattering $S_{J'}^G$ over a compact Lie group G with iterated wavelet transforms over G cascaded with modulus operators.

Curvature reduction with iterated contractions.

- High dimensional signal classification strategy by reducing intraclass variability with iterated contractions.
- A multiscale scattering is invariant, Lipschitz continuous to deformations and informative. How to do it otherwise ?
- Important for image and audio perception: neurophysiology.
- Papers/softwares: www.cmap.polytechnique.fr/scattering