Statistical Signal Processing Workshop

June 28-30, 2011

A Copula based Framework for Distributed Inference

Pramod K. Varshney

EECS Department, Syracuse University | varshney@syr.edu

This research was sponsored by ARO grant W911NF-09-1-0244

Different Sensors, Diverse Information

Pramod K. Varshney | Sensor Fusion Lab

June 29, 2011

Pramod K. Varshney | Sensor Fusion Lab

June 29, 2011

Outline

- Introduction
- Heterogeneity and Dependence
- Copula theory
- Signal Detection Using Copulas
- Copula-based Parameter Estimation (Localization)
- Classification using copulas
- > Applications in finance are not considered!
- Conclusion

Previous Work: Signal Processing Using Dependent Observations

- Different characterizations of dependence exist, e.g.,
 - Correlation coefficient Linear measure of dependence
 - Information theoretic, e.g., mutual information Computational difficulties
- Initial work on *distributed inference* assumed independence for tractability
 - Distributed detection with dependent observations is an NPcomplete problem [*Tsitsiklis & Athans, 1985*]
- Decision fusion strategies to incorporate correlation among sensor decisions
 - [Drakopolous & Lee, 1991] Assumes correlation coefficients are known
 - [Kam et al. 1992] Bahadur-Lazarsfeld expansion of PDF's
 - Both approaches assume prior knowledge of joint statistics

nference with dependent observations: difficult probler Proposed solutions: largely problem specific

Pramod K. Varshney | Sensor Fusion Lab June 29, 2011

Inference Under Dependent Observations: Different Approaches

- Non-parametric, learning-based
 - HMMs & other graphical models
 - M. J. Beal *et al.*, "A Graphical Model for Audio-Visual Object Tracking," *Trans. PAMI*, July 2003, Vol. 25, No. 7, pp. 828-836.
 - M. R. Siracusa and J. Fisher III, "Dynamic dependency tests: analysis and applications to multi-modal data association," in *Proc. AI Stats*, 2007.

Manifold learning

- S. Lafon, Y. Keller, R. R. Coifman, "Data fusion and multicue data matching by diffusion maps," *IEEE Trans. PAMI*, vol. 28, no. 11, pp. 1784--1797, Nov. 2006
- General *information theoretic* framework for multimodal signal processing
 - T. Butz and J. Thiran, "From error probability to information theoretic (multi- modal) signal processing," *Elsevier: Signal Processing,* vol. 85, May 2005.

Heterogeneity and Dependence

Heterogeneous Random Vectors

Definition

A random vector $\mathbf{Z} = [Z_1, Z_2, \dots, Z_N]$ governing the joint statistics of an N-variate data set can be termed as multimodal or heterogeneous if the marginals Z_n $(n = 1, \dots, N)$ are non-identically distributed.

- For example Z₁ and Z₂ may represent acoustic and video signals/features, respectively
- Definition is general
 - Includes independent and identically distributed (iid) marginals

Models of Dependence

Product distribution

$$\widehat{\mathbf{f}_{\mathbf{Z}}}(\mathbf{z}) = \prod_{n=1}^{N} \mathbf{f}_{Z_n}(z_n) = \mathbf{f}_{\mathbf{Z}}^{\mathbf{m}}(\mathbf{z})$$

- Accounts for disparate marginals but not statistical dependence
- Multivariate Gaussian
 - Cannot model disparate marginals
 - \blacktriangleright Models dependence through Pearson's ρ
 - $\triangleright \rho$ measures only *linear* relationship

Why is ρ insufficient?

- Dependence between X and Y evident from scatter plot
- Correlation coefficient is unable to capture this: $\rho = 0$

Measures of Dependence

- Rank-based (nonparametric) measures: Kendall's τ and Spearman's ρ^s quantify concordance
- For a bivariate random vector (X, Y) and its realizations (X₁, Y₁) and (X₂, Y₂)

$$\tau_{X,Y} = \underbrace{P\left[(X_1 - X_2)(Y_1 - Y_2) > 0\right]}_{concordance} - \underbrace{P\left[(X_1 - X_2)(Y_1 - Y_2) < 0\right]}_{discordance}$$

►
$$-1 \le \tau \le 1$$

Measures of Dependence

- Relative entropy: "distance" from product distribution
 - Multi-information is the multivariate extension of mutual information

$$\mathcal{I}(Z_1;\ldots;Z_N) = \int_{\mathbf{z}} \mathbf{f}_{\mathbf{Z}}(\mathbf{z}) \log \left(\frac{\mathbf{f}_{\mathbf{Z}}(\mathbf{z})}{\prod_{i=1}^N \mathbf{f}_{Z_i}(z_i)}\right) d\mathbf{z}$$

Normalized measure

$$\delta^* = \sqrt{1 - \exp(-2.\mathcal{I})}$$
$$0 < \delta^* < 1$$

H. Joe, "Relative entropy measures of multivariate dependence," *Journal of the American Statistical Association*, vol. 84, no. 405, pp. 157-164, 1989
M. Studeny and J. Vejnarova, "The multiinformation function as a tool for measuring

stochastic dependence," in *Learning in Graphical Models (M. I. Jordan ed.)* Kluwer,

Dorgrecht 1998, pp. 261-298 ramod K. Varshney | Sensor Fusion Lab

Measures of Dependence

Wyner's Common Information

$$C(X,Y) = \min_{X \to W \to Y} I(XY;W)$$

- Gács and Körner's Common Randomness
 - For random sequences X^n , Y^n
 - Let $W_1 = f_n(X^n)$ and $W_2 = g_n(Y^n)$. Define $\epsilon_n = \Pr(W_1 \neq W_2)$.

$$K(X,Y) = \lim_{n \to \infty, \epsilon_n \to 0} \sup \frac{1}{n} H(W_1)$$

$$K(X,Y) \leq I(X;Y) \leq C(X,Y)$$

A. D. Wyner, "The common information of two dependent random variables," *IEEE Trans. Inf. Theory*, vol. 21, no. 2, pp. 163-179, March 1975

Pramod K. Varshney | Sensor Fusion Lab

Motivation Concepts

Motivation: Why Copulas?

- Multimodal sensors provide information diversity: fusing heterogeneous information is a challenge
 - Incommensurate modalities ⇒ Disparate marginal distributions: e.g. audio-video
 - Complex intermodal interactions $\rightarrow \rho$ is not sufficient
- A parametric probabilistic basis for fusion: Joint distribution of sensor observations as an explicit function of parameters
- Copula-based approach attempts to address these issues
 - Learning-based
 - Non-parametric, e.g., Hidden Markov Models, Neural Nets, Bayesian Nets
 - Scenario dependent performance and analysis is difficult
 - Curse of dimensionality
 - Simple models are assumed, e.g., independence, joint normality

- Copulas are functions that *couple* marginals to form a joint distribution
- Sklar's Theorem is a key result existence theorem

Sklar's Theorem

The joint cumulative distribution function (CDF) $F_{\mathbf{Z}}(z_1, z_2, \dots, z_N)$ of random variables $Z_1, Z_2 \dots, Z_N$ are joined by a copula function $C(\cdot)$ to the respective marginal distributions $F_{Z_1}(z_1), F_{Z_2}(z_2), \dots, F_{Z_N}(z_N)$ as

 $F_{\mathbf{Z}}(z_1, z_2, \cdots, z_N) = C(F_{Z_1}(z_1), F_{Z_2}(z_2), \cdots, F_{Z_N}(z_N))$

Further, if the marginals are continuous, $C(\cdot)$ is unique.

Differentiate the joint CDF to get the joint PDF

$$f(z_1, \ldots, z_N) = \left(\prod_{i=1}^N f(z_i) \right) C F_1(z_1), \ldots, F_N(z_N)$$

N marginals
(E.g., from N sensors)
Independence
Copula density
Uniform random variables!

Several copulas have been proposed

- R. Nelsen, An Introduction to Copulas, Springer 1999
- Archimedean copulas & Elliptical copulas

Widely used in econometrics

- David Li pioneered the use of the Gaussian Copula
- Blamed for the meltdown on Wall Street
- Highlights dangers of applying theory without understanding the implications
- A pictorial example
 - Copulas can characterize skewed dependencies
 - Copulas can express dependency between marginals that do not share the same support (e.g. Normal and Gamma)

Summary of Copula Functions

- Copulas are typically defined as a CDF
- Elliptical copulas: derived from multivariate distributions

 $C^{G}(\mathbf{k}|\Sigma) = \Phi_{\Sigma}(\Phi^{-1}(k_{1}), \dots, \Phi^{-1}(k_{m}))$ Gaussian copula $C^{t}(\mathbf{k}|\Sigma, \nu) = t_{\nu,\Sigma}(t_{\nu}^{-1}(k_{1}), \dots, t_{\nu}^{-1}(k_{m}))$ *t*-copula

Archimedean Copulas

Copula	Generator Function	Parametric Form
Clayton	$\frac{1}{\phi} \left(k^{-\phi} - 1 \right)$	$\left(\sum_{i=1}^{m} k_i^{-\phi} - 1\right)^{-\frac{1}{\phi}}, \ \phi \in [-1,\infty) \setminus \{0\}$
Frank	$\frac{\exp^{-\phi} - 1}{\exp^{-\phi k} - 1}$	$-\frac{1}{\phi}\ln\left(1+\frac{\prod_{i=1}^{m}(\exp^{-\phi k_{i}}-1)}{\exp^{-\phi}-1}\right),\phi\in\mathbb{R}\setminus\{0\}$
Gumbel	$-\ln k^{\phi}$	$\exp\left\{-\left(\sum_{i=1}^{m}(-\ln k_i)^{\phi}\right)^{\frac{1}{\phi}}\right\}, \ \phi \in [1,\infty)$
Independent	$-\ln k$	$\prod_{i=1}^{m} k_i$

Dependence Through Copulas

- Amount of dependence is characterized by the parameter vector of the copula functions

 - Σ, ν for the elliptical copulas
 φ for the Archimedean copulas
- Typically ϕ is unknown: Estimated using
 - Kendall's τ : For random variables A, B and copula C

$$x_{\tau}(A,B) = 4\mathbb{E}\{C_{AB}\} - 1$$
$$= \int \int_{I^2} C_{AB}(u,v) dC_{AB}(u,v) - 1$$

Maximum likelihood

$$\hat{\boldsymbol{\phi}} = \arg\max\sum_{i}\log c(\mathbf{u}_i|\boldsymbol{\phi})$$

Collectively denoted as ϕ

Multivariate Copulas

- A copula density, c, is defined on \mathbb{R}^N , $N \ge 2$, however,
 - Closed-forms are difficult to obtain from the copula CDF
 - Archimedean copulas: only 1 dependence parameter for N > 2
- Archimedean and Elliptical copulas
 - Exchangeability condition
 Symmetry
- Multivariate distribution using vines
 - A vine is a nested set of trees, where the edges of a the k-th tree are the nodes of the (k + 1)-th tree
- We consider a class called D-vines

A. Subramanian, A. Sundaresan and P. K. Varshney, "Fusion for the detection of dependent signals using multivariate copulas," in Proc. 14th International Conf. on Information Fusion, to be published Pramod K. Varshney | Sensor Fusion Lab June 29, 2011

Construction of a Multivariate Copula

Pramod K. Varshney | Sensor Fusion Lab

June 29, 2011

$$\begin{split} f(\mathbf{x}) &= \left[\prod_{i=1}^{4} f(x_i)\right] c_{12}(F_1(x_1), F_2(x_2)) \\ &\cdot c_{23}(F_2(x_2), F_3(x_3)) c_{34}(F_3(x_3), F_4(x_4))) \\ &\cdot c_{13|2}(F_{1|2}(x_1|x_2), F_{3|2}(x_3|x_2))) \\ &\cdot c_{24|3}(F_{2|3}(x_2|x_3), F_{4|3}(x_4|x_3))) \\ &\cdot c_{14|23}(F_{1|23}(x_1|x_2, x_3), F_{4|23}(x_4|x_2, x_3))) \end{split}$$

D

Copula-based Inference: Framework

Copula Selection: MDL-based Approach

- Criteria based on Minimum Description Length principles
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)
 - Stochastic Information Criterion (SIC)
 - Normalized Maximum Likelihood (NML)

Copula Selection: AUC-based Approach

- <u>A</u>rea <u>U</u>nder (receiver operating) <u>C</u>urve
 - Application specific approach
 - Best possible detector from the available library of models
 - ► ROC is best for assessing detector performance → AUC is easier to evaluate
- Offline approach training/testing paradigm

Pramod K. Varshney | Sensor Fusion Lab

Copula Theory Applied to Inference

Signal Detection Localization Estimation Classification

Signal Detection

Binary hypothesis testing problem

$$H_{1}: f(\mathbf{z}|\boldsymbol{\theta}_{1}, \phi_{1}) = \left[\prod_{i} f_{i}(\cdot|\boldsymbol{\theta}_{1i})\right] c_{1}(\mathbf{F}(\cdot|\boldsymbol{\theta}_{1})|\phi_{1})$$
$$H_{0}: g(\mathbf{z}|\boldsymbol{\theta}_{0}, \phi_{0}) = \left[\prod_{i} g_{i}(\cdot|\boldsymbol{\theta}_{0i})\right] c_{0}(\mathbf{G}(\cdot|\boldsymbol{\theta}_{0})|\phi_{0})$$

- General formulation
 - All distribution parameters are unknown
 - Estimated using MLE

Generalized likelihood ratio test

- Copula based test-statistic decouples marginal and dependency information
- Information theoretic analysis of copula mismatch and AUC-based results*

* S. Iyengar, P. K. Varshney, and T. Damarla, "A parametric copula based framework for hypotheses testing using heterogeneous data," *IEEE Trans. Signal Process.*, Vol 59, No. 5, May 2011, pp. 2308 -

Indoor Activity Detection

Pramod K. Varshney | Sensor Fusion Lab

June 29, 2011

Indoor Activity Detection

- Signals are preprocessed using short-time Fourier Transform (STFT)
- Canonical Correlation Analysis (CCA) on STFT coefficients
 - Inter-modal correlation is *emphasized*
 - Dimensionality reduction: argmax_{a,b} Corr(u = a^TX, v = b^TY)
- Marginal distributions fitted using generalized Gaussian
- Marginal parameters under H₀ assumed known
- Dependence under H₀ modeled using Gaussian copula

Results: Seismic-acoustic Fusion

Pramod K. Varshney | Sensor Fusion Lab

June 29, 2011

Distributed Detection: Fusion of correlated local decisions

- Binary hypothesis testing problem
 - Sensors make local decisions
 - Local decisions are fused at a fusion center
- No prior knowledge of joint distribution of sensor observations
- Design problem
 - Find individual sensor threshol(τ_i)
 - Design optimal fusion rule $\Lambda(\mathbf{u})$
- Neyman-Pearson (N-P) framework
- Temporal independence assumed

Distributed Detection: Preliminaries

2 sensor case

Over N time instants from sensors 1 and 2 respectively,

 H_0 : Source absent $\rightarrow f(z_{in}|H_0)$ $i = 1, 2; n = 1, \ldots, N$ H_1 : Source present $\rightarrow f(z_{in}|H_1)$ $i = 1, 2; n = 1, \dots, N$ Sensor Observations $u_{in} = \mathbb{Q}(z_{in}) = \begin{cases} 0 & \text{if } -\infty < z_{in} \le \tau_i \\ 1 & \text{if } \tau_i \le z_{in} < \infty \end{cases}$ Local Sensor Decisions Sensor Threshold $\mathbf{u}_1 = [u_{11}, \dots, u_{1N}]^{\mathrm{T}} \quad \mathbf{u}_2 = [u_{21}, \dots, u_{2N}]^{\mathrm{T}}$

Pramod K. Varshney | Sensor Fusion Lab

Distributed Detection: Dependent Observations

•
$$P_{ij} = \Pr(u_{1n} = i, u_{2n} = j | H_1)$$

•
$$Q_{ij} = \Pr(u_{1n} = i, u_{2n} = j | H_0)$$

For binary quantizers $i, j \in \{0, 1\}$

For example,

Pramod K. Varshney | Sensor Fusion Lab

Distributed Detection: Fusion Statistic (Likelihood Ratio)

$$C_1 = \log \frac{P_{10}Q_{00}}{P_{00}Q_{10}} \quad C_2 = \log \frac{P_{01}Q_{00}}{P_{00}Q_{01}} \quad C_3 = \log \frac{P_{00}P_{11}Q_{01}Q_{10}}{P_{01}P_{10}Q_{00}Q_{11}}$$

June 29, 2011

Distributed Detection: Remarks

- Test statistic:Asymptotically normal
 - Used for calculating P_D and optimal thresholds
- L-sensor case is similarly solved*
- Discussion assumed known ϕ , use MLE if unknown^{*}

^{*}A. Sundaresan, P. K. Varshney, and N. S. V. Rao, "Copula-based fusion of correlated decisions," *IEEE Trans. Aerosp. Electron. Syst.*, vol. 47, no. 1, pp. 454–471, 2011

Distributed Detection Example: Radiation Detection

Two models

- Poisson model in Gaussian noise
- 2. Hierarchical Poisson-Gamma model

model
$$\lambda_{ii} \mid \alpha_{ii}, \beta_{ii} \sim \text{Gamma}(\alpha_{ii}, \beta_{ii})$$

 $s_{in}^{J} \mid \lambda_{ij} \sim \text{Poisson}(\lambda_{ij})$

Binary hypothesis testing

Distributed Detection Example: Radiation Detection – ROC (Poisson Model)

June 29, 2011

Copula-based Location Estimation

Given the intensity of a radiating source A₀ and its location (x₀, y₀),

$$\boldsymbol{\theta} = [A_0, x_0, y_0]$$

Find,

$$\widehat{\boldsymbol{\theta}} = \arg \max \left[\sum_{n=1}^{N} \sum_{l=1}^{L} \log(f(v_{in} | \boldsymbol{\theta})) + \sum_{n=1}^{N} \log c(\mathbf{F}(\cdot | \boldsymbol{\theta}) | \boldsymbol{\phi}) \right]$$

Copula parameter is estimated as a nuisance parameter

A. Sundaresan and P. K. Varshney, "Location estimation of a random signal source based on correlated sensor observations," *IEEE Trans. Signal Process.*, vol. 59, no. 2, pp. 787–799, 2011.
 Pramod K. Varshney | Sensor Fusion Lab June 29, 2011

Source Localization: Model Fusion

- Using the same data for statistical inference and model selection leads to selection bias
- Model fusion can reduce selection bias
- Uses weighted sum of all K models, including those rejected

Results: Localization of an isotropic radiating source

Results: Localization of an isotropic radiating source

Classification: Application to Multi-biometrics

Data from NIST

- Two face-matchers with different performance and statistical properties
- Data partitioning: Randomized test/train partitions
- Fusion of algorithms

Iyengar et al., IEEE Trans. Signal Process., Vol 59, No. 5, pp. 2308 – 2319, 2011.

<u>Also see</u> S. G. Iyengar, P. K. Varshney and T. Damarla, "Biometric Authentication: A Copula Based Approach," in *Multibiometrics for Human Identification*, B. Bhanu and V. Govindraju, Eds. Cambridge Univ.

Pramod K. Varshney | Sensor Fusion Lab

June 29, 2011

Quantification of Neural Synchrony

- Neural synchrony: co-movement of neural activity
- Why do we care?
 - Suggestive of neurophysiological disorders such as Alzheimer's Disease and epileptic seizures
 - Useful for studying brain connectivity and neural coding
- How do we quantify synchrony?

Limitations of existing measures

- Existing measures such as Granger causality measure only the linear relationship
- Information theoretic measures such as mutual information are constrained to be bivariate
- Copula based multi-information developed to alleviate both limitations

Copula-based Multi-information

- Multi-information is used as a global synchrony measure
- Joint density estimated using copula

$$\mathcal{I} = \int f \log \frac{f^p c(\cdot)}{f^p} = \mathbb{E}_f \log c(\cdot)$$

Copula based estimate (for 2 sensors, and a time frame of m samples → model order m)

$$\hat{\mathcal{I}}_{h} = \frac{1}{L} \sum_{k} \log h(u_{1k}, \dots, u_{1(k-m)}, u_{2k}, \dots, u_{2(k-m)})$$

• $h(\cdot)$ is the copula density chosen a priori

S. G. Iyengar, J. Dauwels, P. K. Varshney and A. Cichocki, "EEG Synchrony quantification using Copulas," *Proc. IEEE ICASSP*, 2010

Early Diagnosis of Alzheimer's Disease

- Neural synchrony can be used as a feature for classification
 - Drop in neural synchrony indicates possibility of Alzheimer's Disease (AD)
 - ▶ Increased neural synchrony \rightarrow Epilepsy
- 25 patients with Mild Cognitive Impairment (MCI) vs.
 38 age-matched control subjects
- All 25 patients developed mild AD later
- Inclusion of copula-based feature improves classification performance

Conclusion

Summary References

Summary

- Copula based inference has diverse applicability
 - Fusion of multimodal sensors and homogeneous sensors
 - Multi-algorithm Fusion Approach discussed for multibiometrics falls under this category
 - Multi-classifier Fusion Fusing different classifiers
- A theory for signal inference from dependent observations
 - Inclusive theory: independence is a limiting case
 - Signal Detection
 - Signal Classification
 - Parameter estimation
- Copula-based approach shows significant improvement over previously proposed techniques on real datasets

References

- 1. S. Iyengar, P. K. Varshney, and T. Damarla, "A parametric copula based framework for hypotheses testing using heterogeneous data," *IEEE Trans. Signal Process.*, Vol 59, No. 5, pp. 2308 – 2319, 2011.
- A. Sundaresan, P. K. Varshney, and N. S. V. Rao, "Copula-based fusion of correlated decisions," *IEEE Trans. Aerosp. Electron. Syst.*, vol. 47, no. 1, pp. 454– 471, 2011.
- A. Sundaresan and P. K. Varshney, "Location estimation of a random signal source based on correlated sensor observations," *IEEE Trans. Signal Process.*, vol. 59, no. 2, pp. 787–799, 2011.
- 4. S. G. Iyengar, J. Dauwels, P. K. Varshney and A. Cichocki, "EEG Synchrony quantification using Copulas," *Proc. IEEE ICASSP*, 2010.
- 5. S. G. Iyengar, P. K. Varshney and T. Damarla, "On the detection of footsteps using heterogeneous data," in *Proc. ACSSC 2007*, 4-7 Nov. 2007, pp. 2248-2252.
- 6. A. Sundaresan, A. Subramanian, P. K. Varshney and T. Damarla, "A copula-based semi-parametric approach for footstep detection using seismic sensor networks," in *Proc. SPIE*, vol. 7710, 2010.
- A. Subramanian, A. Sundaresan and P. K. Varshney, "Fusion for the detection of dependent signals using multivariate copulas," in *Proc. 14th International Conf. on* ⁵⁵ *Information Fusion*, to be published.