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Ui s may be

1. Local decisions

2. Features

3. Raw signal

Overview of 
Distributed 

Inference
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 Introduction

 Heterogeneity and Dependence

 Copula theory

 Signal Detection Using Copulas

 Copula-based Parameter Estimation (Localization)

 Classification using copulas

 Applications in finance are not considered!

 Conclusion
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 Different characterizations of dependence exist, e.g.,

 Correlation coefficient – Linear measure of dependence

 Information theoretic, e.g., mutual information – Computational 
difficulties

 Initial work on distributed inference assumed 
independence for tractability

 Distributed detection with dependent observations is an NP-
complete problem [Tsitsiklis & Athans, 1985]

 Decision fusion strategies to incorporate correlation 
among sensor decisions

 [Drakopolous & Lee, 1991] Assumes correlation coefficients are 
known 

 [Kam et al. 1992] Bahadur-Lazarsfeld expansion of PDF’s

 Both approaches assume prior knowledge of joint statistics
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Inference with dependent observations: difficult problem

Proposed solutions: largely problem specific
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 Non-parametric, learning-based

 HMMs & other graphical models

 M. J. Beal et al., “A Graphical Model for Audio-Visual Object Tracking,” Trans. PAMI, 

July 2003, Vol. 25, No. 7, pp. 828-836.

 M. R. Siracusa and J. Fisher III, “Dynamic dependency tests: analysis and 

applications to multi-modal data association,” in Proc. AI Stats, 2007.

 Manifold learning

 S. Lafon, Y. Keller, R. R. Coifman, “Data fusion and multicue data matching by 

diffusion maps,” IEEE Trans. PAMI, vol. 28, no. 11, pp. 1784--1797, Nov. 2006

 General information theoretic framework for multimodal signal 

processing

 T. Butz and J. Thiran, “From error probability to information theoretic 

(multi- modal) signal processing,” Elsevier: Signal Processing, vol. 85, 

May 2005.
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 For example Z1and Z2 may represent acoustic and 

video signals/features, respectively

 Definition is general

 Includes independent and identically distributed (iid) 

marginals
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
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 Dependence between X and Y evident from scatter 

plot

 Correlation coefficient is unable to capture this: r = 0
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
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 Relative entropy: “distance” from product distribution

 Multi-information is the multivariate extension of mutual 

information

 Normalized measure

H. Joe, “Relative entropy measures of multivariate dependence,” Journal of the American 

Statistical Association, vol. 84, no. 405,  pp. 157-164, 1989

M. Studeny and J. Vejnarova, “The multiinformation function as a tool for measuring 

stochastic dependence,” in Learning in Graphical Models (M. I. Jordan ed.) Kluwer, 

Dordrecht 1998, pp. 261-298
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

A. D. Wyner,  “The common information of two dependent random variables,” IEEE 

Trans. Inf. Theory, vol. 21, no. 2, pp. 163-179, March 1975



Motivation

Concepts
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

Copula-based approach attempts to address these issues
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 Copulas are functions that couple marginals to form 

a joint distribution

 Sklar’s Theorem is a key result – existence theorem
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 Differentiate the joint CDF to get the joint PDF

N marginals

(E.g., from N sensors)

Uniform random variables!
Copula density

Product density

Independence
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 Several copulas have been proposed

 R. Nelsen, An Introduction to Copulas, Springer 1999

 Archimedean copulas & Elliptical copulas

 Widely used in econometrics

 David Li pioneered the use of the Gaussian Copula 

 Blamed for the meltdown on Wall Street

 Highlights dangers of applying theory without 

understanding the implications

 A pictorial example

 Copulas can characterize skewed dependencies

 Copulas can express dependency between marginals that 

do not share the same support (e.g. Normal and Gamma)
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 Copulas are typically defined as a CDF

 Elliptical copulas: derived from multivariate distributions

 Archimedean Copulas

Gaussian copula

t-copula
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
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

Limitations

A. Subramanian, A. Sundaresan and P. K. Varshney, “Fusion for the detection of dependent 

signals using multivariate copulas,” in Proc. 14th International Conf. on Information Fusion, to 

be published
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 Criteria based on Minimum Description Length 

principles

 Akaike Information Criterion (AIC)

 Bayesian Information Criterion (BIC)

 Stochastic Information Criterion (SIC)

 Normalized Maximum Likelihood (NML)

 Online approach

ML Estimate of 

Copula parameter

Penalty term 

proportional to model 

complexity
Joint likelihood

Model 

index
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 Area Under (receiver operating) Curve

 Application specific approach

 Best possible detector from the available library of models 

 ROC is best for assessing detector performance  AUC 

is easier to evaluate

 Offline approach – training/testing paradigm



Signal Detection

Localization Estimation

Classification
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 Binary hypothesis testing problem

 General formulation

 All distribution parameters are unknown

 Estimated using MLE
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 Copula based test-statistic decouples marginal and 
dependency information

 Information theoretic analysis of copula mismatch 
and AUC-based results* 

* S. Iyengar, P. K. Varshney, and T. Damarla, “A parametric copula based framework for hypotheses 

testing using heterogeneous data,” IEEE Trans. Signal Process., Vol 59, No. 5, May 2011, pp. 2308 -

2319

GLR under independence

Dependence term
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 Signals are preprocessed using short-time Fourier 

Transform (STFT) 

 Canonical Correlation Analysis (CCA) on STFT 

coefficients

 Inter-modal correlation is emphasized

 Dimensionality reduction: argmaxa,b Corr(u = aTX, v =

bTY)

 Marginal distributions fitted using generalized 

Gaussian

 Marginal parameters under H0 assumed known

 Dependence under H0 modeled using Gaussian 

copula
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 Binary hypothesis testing problem

 Sensors make local decisions

 Local decisions are fused at a fusion center

 No prior knowledge of joint distribution of sensor 

observations

 Design problem

 Find individual sensor thresholds

 Design optimal fusion rule

 Neyman-Pearson (N-P) framework

 Temporal independence assumed
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 2 sensor case

 Over N time instants from sensors 1and 2 respectively,

Local Sensor Decisions Sensor Threshold

Sensor Observations
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

Copula term
Observations may not be 

conditionally independent
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Chair-Varshney 

Fusion Statistic
Conditional independence 

term

Cross-product Term
Accounts for correlated 

observations
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

*A. Sundaresan, P. K. Varshney, and N. S. V. Rao, “Copula-based fusion of correlated 

decisions,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 454–471, 2011
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

Background 

radiation
Signal 

from 

radioactiv

e material
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 Given the intensity of a radiating source A0 and its 

location (x0,y0),

 Find,

 Copula parameter is estimated as a nuisance 

parameter
A. Sundaresan and P. K. Varshney, “Location estimation of a random signal source based 

on correlated sensor observations,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 787–

799, 2011.
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
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 Data from NIST
 Two face-matchers with different performance and statistical 

properties

 Data partitioning: Randomized test/train partitions

 Fusion of algorithms

Genuin

e or 

Imposte

r

In
fo

rm
a
ti
o
n

 

F
u
s
io

n Accept 

or 

Reject

Iyengar et al., IEEE Trans. Signal Process., Vol 59, No. 5, pp. 2308 – 2319, 2011. 

Also see S. G. Iyengar, P. K. Varshney and T. Damarla, “Biometric Authentication: A Copula Based 

Approach,” in Multibiometrics for Human Identification, B. Bhanu and V. Govindraju, Eds. Cambridge Univ. 

Press
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Copula selected using AUC based methodology

Receiver Operating Characteristic (ROC)



 Neural synchrony: co-movement of 
neural activity

 Why do we care?
 Suggestive of neurophysiological 

disorders such as Alzheimer’s 
Disease and epileptic seizures

 Useful for studying brain 
connectivity and neural coding

 How do we quantify synchrony?

 Limitations of existing measures
 Existing measures such as Granger 

causality measure only the linear 
relationship

 Information theoretic measures 
such as mutual information are 
constrained to be bivariate

 Copula based multi-information 
developed to alleviate both 
limitations 
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

S. G. Iyengar, J. Dauwels, P. K. Varshney and A. Cichocki, “EEG Synchrony 

quantification using Copulas,” Proc. IEEE ICASSP, 2010
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 Neural synchrony can be used as a feature for 

classification

 Drop in neural synchrony indicates possibility of 

Alzheimer’s Disease (AD)

 Increased neural synchrony  Epilepsy

 25 patients with Mild Cognitive Impairment (MCI) vs. 

38 age-matched control subjects

 All 25 patients developed mild AD later

 Inclusion of copula-based feature improves 

classification performance



Summary

References
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 Copula based inference has diverse applicability

 Fusion of multimodal sensors and homogeneous sensors

 Multi-algorithm Fusion – Approach discussed for multi-

biometrics falls under this category

 Multi-classifier Fusion – Fusing different classifiers

 A theory for signal inference from dependent 

observations

 Inclusive theory: independence is a limiting case

 Signal Detection

 Signal Classification

 Parameter estimation

 Copula-based approach shows significant improvement 

over previously proposed techniques on real datasets
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