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Kolmogorov: 

“I soon understood that there was little hope of developing 
a pure, closed theory, and because of absence of such a theory
the investigation must be based on hypotheses obtained 
on processing experimental data.” 
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1–10, reaches a maximum at leg 11 (;3300 m), and then
decreases further with decreasing altitude.

In the remainder of this section, we evaluate three third-
order structure functions for each flight segment, namely,
the third-order absolute structure function of the longi-
tudinal velocity S3, defined as

S3 5 h du(r)j j3i; (9)

the third-order structure function DuuT uT
, defined by

DuuT uT
5 h(du)3i1 2hdu(duT)2i, (10)

where h(duT)2i 5 [h(dy)2i1 h(dw)2i]/2; and the struc-
ture skewness, defined as

Sw(r) 5 Dwww/(Dww)3/2, (11)

where Dwww 5 h(dw)3i. In the turbulence inertial sub-
range, S3 is proportional to r (Cho et al. 2001) and
DuuT uT

5!4h«ir/3 (Lindborg 1996; Antonia et al. 1997).
The sign of DuuT uT

indicates the direction of the turbulence
energy cascade (Frisch 1995; Lindborg 1996); the energy
cascade is downscale if DuuT uT

is negative (i.e., h«i. 0 or
a positive dissipation rate) and upscale if it is positive (i.e.,
a negative dissipation rate). The structure skewness is

negative if the shear generation of turbulence dominates
(Mahrt and Gamage 1987).

Figure 11 shows S3/r and D̂uuT uT
5 !3DuuT uT

=4r for
the four KH and one turbulence flight segments. Over
turbulence inertial subranges, these functions should be
constant with r and D̂uuT uT

should be equal to the mean
turbulence dissipation rate. For leg 6, the normalized
third-order structure functions are approximately con-
stant for r between 100 and 1000 m, an inertial subrange
identified from spectral and second-order structure
function analysis. It is noteworthy that the turbulence
dissipation rate is negative between 2900 and 3500 m
(Fig. 11a), indicative of a possible upscale energy transfer.
The negative dissipation rates are found for some of the
turbulence legs as well (Table 1). For example, for leg 11,
the turbulence dissipation rate is negative for scales of
1 km or longer (Fig. 11b).

The KH legs are characterized by large negative
structure skewness (Fig. 12), suggesting that the turbu-
lence above the mountaintop is primarily shear generated,
which is consistent with the velocity and Richardson
number profiles (Figs. 2 and 4). From the smallest re-
solvable scale to 1 km, the skewness functions for the
upper-turbulence legs are negative as well, with much
smaller amplitude than the KH legs, associated with
a weaker but well-defined forward wind shear. For some
low-turbulence legs (;2500 m or lower; not shown) the
skewness function oscillates near zero, indicating that the
shear effect is weak and buoyancy generation of turbu-
lence may be important at these levels.

Finally, it is worth noting that turbulence over complex
terrain is inhomogeneous in nature. Consequently, the
average over each flight leg, with substantial variability in
turbulence characteristics, may not necessarily represent
local turbulence statistics in a quantitative sense. This is
especially true for the spectral and structure function
analysis and is less of a problem for wavelet analysis.

FIG. 11. The normalized third-order structure functions are
plotted vs r for legs (a) 6 and (b) 11. The bold solid curve, red
circles, and blue crosses correspond to S3/r, D̂uuT uT

, and !D̂uuT uT

(when D̂uuT uT
, 0), respectively.

FIG. 12. The structure skewness is plotted as a function of separation
distance for the four KH legs and the turbulence leg 11.
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II. NUMERICAL SET-UP

A. Equations

The Boussinesq equations in the presence of solid body rotation, for a fluid with velocity u, vertical velocity
component w, and density (or temperature) fluctuations ⇢, are:

@u

@t
+ ! ⇥ u+ 2⌦⇥ u = �N⇢êz �rP + ⌫r2u , (4)

@⇢

@t
+ u ·r⇢ = Nw + r2⇢ , (5)

together with r · u = 0 assuming incompressibility. P is the total pressure and êz is the unit vector in the vertical
direction which is in the direction of the imposed rotation and opposed to the imposed gravity; therefore, ⌦ = ⌦ẑ.
The initial conditions for the velocity are centered on the large scales, with excited wavenumbers k0 2 [2, 3] and
isotropic with random phases. In the absence of dissipation (⌫ = ⌘ = 0), the total energy ET = EV +EP is conserved,
with EV = 1

2

⌦
|u|2

↵
and EP = 1

2

⌦
⇢2
↵
respectively the kinetic and potential energies; the point-wise potential vorticity

is also conserved. Lastly, EP = 0 initially.
When linearizing the above equations in the absence of dissipation, one obtains inertia-gravity waves of frequency

!k = k�1
q

N2k2? + f2k2k , (6)

with k =
q

k2? + k2k, k? =
q

k2x + k2y, and kk = kz, respectively the total, horizontal (or perpendicular), and vertical

(or parallel) wavenumbers (see, e.g., [20, 43]). Fourier spectra will be built-up from their axisymmetric counterparts
defined from the two-point one-time velocity covariance U(k) (see, e.g., [2])

eV (|k?|, kk) =
X

k?|k⇥ẑ|<k?+1
kkkz<kk+1

U(k) =
R
U(k)|k| sin ✓d� = e(|k|, ✓) = e(k, ✓) ; (7)

here � is the longitude with respect to the kx axis and ✓ the co-latitude in Fourier space with respect to the vertical
axis. The function eV (k?, kk = 0) may be regarded as the spectrum of two-dimensional (2D) modes, having no vertical
variation. Note that for an isotropic flow, at a given point k in wavenumber space, the ratio of the axisymmetric
spectrum eV (|k?|, kk) to the isotropic spectrum is ⇠ 1/|k| because the size of the volume element in the isotropic
case contains an additional (integrating) factor of |k| compared to the axisymmetric case. Hence, if the axisymmetric
spectrum behaves as k�↵

? , then the corresponding isotropic scaling will be k�↵+1. The spectrum eV (|k?|, kk) can also
be decomposed into the kinetic energy spectrum of the horizontal components (velocity components u and v), and of
the vertical kinetic energy (velocity component w):

eV (|k?|, kk) = e?(|k?|, kk) + ek(|k?|, kk) . (8)

In the following we will also consider the reduced perpendicular spectrum [44]

EV (k?) = ⌃kkeV (k?, kk) , (9)

the reduced parallel spectrum EV (kk) (which has a sum over k?), and the spectrum representing the perpendicular
energy of the strictly three-dimensional (3D) modes:

E3D(k?) = EV (k?)� eV (k?, kk = 0) . (10)

Similar definitions hold for the helicity and potential energy spectra, hV (k?, kk) and eP (k?, kk), their reduced forms,
HV (k?) and EP (k?), as well as their 3D expressions (i.e., the perpendicular spectra of the 3D modes), HV,3D(k?)
and EP,3D(k?). They will be analyzed in the following sections.

B. Specific numerical procedure

The code used in this paper is the Geophysical High Order Suite for Turbulence (GHOST), which is fully parallelized
using a hybrid methodology [45]. It uses parallel multidimensional FFTs in a pseudo-spectral method for 2D and 3D
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We report results on rotating stratified turbulence in the absence of forcing, with large-scale
isotropic initial conditions, using direct numerical simulations computed on grids of up to 40963

points. The Reynolds and Froude numbers are respectively equal to Re = 5.4⇥104 and Fr = 0.0242.
The ratio of the Brunt-Väisälä to the inertial wave frequency, N/f , is taken to be equal to 4.95,
a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This
gives a global buoyancy Reynolds number RB = ReFr2 = 32, a value su�cient for some isotropy
to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that
the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-
scale dynamics, for which we find a spectrum compatible with the Bolgiano-Obukhov scaling, and
confirm that the Froude number based on a typical vertical length scale is of order unity, with strong
gradients in the vertical. Two characteristic scales emerge from this computation, and are identified
from sharp variations in the spectral distribution of either total energy or helicity. A spectral break
is also observed at a scale at which the partition of energy between the kinetic and potential modes
changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are
ubiquitous in the flow in the velocity and temperature fields, with local overturning events indicated
by small Richardson numbers, and a small large-scale enhancement of energy directly attributable
to the e↵ect of rotation is also observed.

I. INTRODUCTION

Rotating stratified flows are particularly important in the understanding of the dynamics of our planet and the
Sun. Several of the key concepts needed in order to progress in predictions of the weather and in the global evolution
of the climate depend crucially on a fundamental understanding of these flows. At di↵erent scales, di↵erent physical
regimes become salient, and yet all scales interact. The nonlinear advection produces steepening, albeit slowly in
the presence of strong waves. Thus, these fronts and turbulent eddies lead to enhanced dissipation and dispersion
of particles and tracers, a↵ecting the global energetic behavior of the atmosphere and climate systems, for example
for atmospheric synoptic scales, and for oceanic currents, in the latter case modifying the meridional circulation. In
the atmosphere, such e↵ects on energetics can in turn impair assessments of whether a given super-cell can spawn
a tornado, and they a↵ect both the evaluation of hurricane intensity and of climate variability. Rotating stratified
turbulence (RST hereafter) thus plays a crucial role in the dynamics of the atmosphere and oceans, with nonlinear
interactions–responsible for the complexity of turbulent flows–having to compete with the waves due to rotation and
stratification.

All of this takes place in the presence of a variety of other phenomena, including reactive chemical transport,
biological or hydrological processes, as well as large-scale shear and bounday layers for example. One common
approach is to tackle the problem in its entirety and construct a succession of models with increasing degrees of
complexity. Conversely, one can take the simplest problem with what may be the most essential ingredients and
examine the dynamics of such flows from a fundamental point of view, an approach taken in this paper. One of the
inherent di�culties is the fact that such flows are represented, in the dry Boussinesq framework, by four independent
dimensionless parameters, the Reynolds, Froude, Rossby and Prandtl numbers defined as:

Re =
U0L0

⌫
, F r =

U0

L0N
, Ro =

U0

L0f
, Pr =

⌫


, (1)

where U0 and L0 are, respectively, a characteristic velocity and length scale, ⌫ and  are the kinematic viscosity
and scalar di↵usivity (taken to be equal, Pr = 1), N is the Brunt-Väisälä frequency, and finally f = 2⌦ with ⌦
the rotation frequency. Other dimensionless parameters, combinations or variants of these basic ones, are commonly
defined as well (see §II C).

A number of studies have shown, at least in the absence of rotation, that the buoyancy Reynolds number RB =
ReFr2 needs to be large enough for vigorous turbulence to develop in the small scales (see for example the review in
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The 20483, 30723 and 40963 runs: 
k0~ 2.5, N/f= 4.95, Re= 55000, Fr= 0.024, Ro= 0.12, Pr=1, RB= 32
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C. Other dimensionless parameters

As mentioned in the introduction, a variety of dimensionless combinations of relevant physical parameters can be
defined for rotating stratified turbulence, beyond those written in Eq. (1). One of the central limitations to a better
understanding of such flows is the need to unravel what the key parameters are that govern the dynamics. Beyond
the Reynolds, Froude, Rossby and Prandtl numbers, one also considers the ratio N/f , as well as the Froude number
based on a characteristic vertical length scale,

Fz = U0/(`ZN) .

Moreover, the combined e↵ect of turbulent eddies and waves can be encompassed in the buoyancy and rotational
Reynolds numbers, mentioned previously and respectively defined as

RB = ReFr2, R⌦ = ReRo2 . (11)

When RB � 1 in a stratified flow, isotropy recovers beyond the so-called Ozmidov scale. Similarly, in a purely rotating
flow, isotropy recovers beyond the Zeman scale for R⌦ � 1 [2].

The partition of energy between kinetic and potential modes can be measured by their ratio, EV /EP , which is one
possible definition of the Richardson number. Another definition is simply to measure the relative strength of the
buoyancy to the inertial forces, or

Ri = 1/Fr2 .

However, in order to emphasize the role of the development of small scales in mixing, one can also define a (local)
Richardson number based on velocity gradients, Rig, as:

Rig = N(N � @z⇢)/(@zu?)
2 . (12)

This definition suggests that a su�ciently large vertical gradient locally leads to negative values of Rig, which is
consistent with the intuitive picture of overturning when a denser parcel of fluid lies atop a less dense parcel.

D. Run parameters and general characterization

We use N/f = 4.95 with N = 13.2 and ⌦ = f/2 = 1.33 (thus, f = 2.66). The viscosity is chosen to have the
simulation well resolved: ⌫ = 4 ⇥ 10�5. In dimensionless units, the resulting overall energetics of the flow lead to
several scales that are of interest, and to a characterization of the flow in terms of the dimensionless parameters.
Considered at the peak of enstrophy, the characteristic velocity is U0 ⇡ 0.83 and the integral length scale, computed
from Lint = 2⇡

R
EV (k)dk/

R
kEV (k)dk ⇡ 2.6, very close as expected to the scale at which the energy spectrum

initially peaks, namely L0 = 2⇡/k0 ⇡ 2.5. The dissipation rate of kinetic energy is taken from a computation of
kinetic enstrophy at the peak of dissipation: "V = ⌫

⌦
|!|2

↵
⇡ 0.0124 (see Fig. 1(b)). Note that in the isotropic case,

"V = ✏K41 = U3
0 /Lint ⇡ 0.22, but this relation does not hold in the highly anisotropic system we are investigating.

Rather, we can take an estimate coming from weak turbulence, namely ✏K41 ⇤ Fr ⇡ 0.005, within a factor of two
of the measured rate of energy dissipation. The Kolmogorov dissipation wavenumber is computed at the peak of
dissipation to be k⌘ ⇡ 660. The Zeman and Ozmidov wavenumbers are therefore found to be, respectively, k⌦ ⇡ 39
and kOZ ⇡ 431. The buoyancy wavenumber is kB = 2⇡/LB ⇡ 16; the lack of scale separation between k⌦ and kB
suggests that it will be di�cult to distinguish as separate e↵ects those due to rotation and those due to stratification.
The Reynolds number is thus found to be Re ⇡ 5.4⇥ 104, the Froude number Fr ⇡ 0.0242, and the Rossby number
Ro ⇡ 0.12. Consequently, the buoyancy and rotational Reynolds numbers are RB ⇡ 32, and R⌦ ⇡ 775. The
Richardson number is determined to be Ri ⇡ 1700, so the flow is, indeed, found to be strongly stratified.

Finally, we can define a Taylor Reynolds number as R� = U0�/⌫, with � = 2⇡[
R
EV (k)dk/

R
k2EV (k)dk]1/2 the

Taylor scale. In classical homogeneous isotropic turbulence (HIT) R� measures the degree of development of small
scales. At peak of dissipation, � ⇡ 0.31, leading to a rather large R� ⇡ 6400, quite high compared to similar
computations in HIT (e.g., R� ⇡ 1200 in a HIT run at similar grid resolution [7, 8]). This is linked to the fact that, in
the presence of strong waves, the transport of energy to small scales is hindered and not as e�cient, and the energy
spectrum becomes steeper at least at large scales, resulting in a larger Taylor scale for the same viscosity. It is worth
noticing that in the atmosphere the Taylor Reynolds number is estimated to be R� ⇡ 20000, and it may be the case
that realistic simulations of stratified and rotating atmospheric turbulence may be feasible in the near future as a
result of this e↵ect. Finally, note also that the value of R� puts the present computation above the di↵erent thresholds
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II. NUMERICAL SET-UP

A. Equations

The Boussinesq equations in the presence of solid body rotation, for a fluid with velocity u, vertical velocity
component w, and density (or temperature) fluctuations ⇢, are:

@u

@t
+ ! ⇥ u+ 2⌦⇥ u = �N⇢êz �rP + ⌫r2u , (4)

@⇢

@t
+ u ·r⇢ = Nw + r2⇢ , (5)

together with r · u = 0 assuming incompressibility. P is the total pressure and êz is the unit vector in the vertical
direction which is in the direction of the imposed rotation and opposed to the imposed gravity; therefore, ⌦ = ⌦ẑ.
The initial conditions for the velocity are centered on the large scales, with excited wavenumbers k0 2 [2, 3] and
isotropic with random phases. In the absence of dissipation (⌫ = ⌘ = 0), the total energy ET = EV +EP is conserved,
with EV = 1

2

⌦
|u|2

↵
and EP = 1

2

⌦
⇢2
↵
respectively the kinetic and potential energies; the point-wise potential vorticity

is also conserved. Lastly, EP = 0 initially.
When linearizing the above equations in the absence of dissipation, one obtains inertia-gravity waves of frequency

!k = k�1
q

N2k2? + f2k2k , (6)

with k =
q

k2? + k2k, k? =
q

k2x + k2y, and kk = kz, respectively the total, horizontal (or perpendicular), and vertical

(or parallel) wavenumbers (see, e.g., [20, 43]). Fourier spectra will be built-up from their axisymmetric counterparts
defined from the two-point one-time velocity covariance U(k) (see, e.g., [2])

eV (|k?|, kk) =
X

k?|k⇥ẑ|<k?+1
kkkz<kk+1

U(k) =
R
U(k)|k| sin ✓d� = e(|k|, ✓) = e(k, ✓) ; (7)

here � is the longitude with respect to the kx axis and ✓ the co-latitude in Fourier space with respect to the vertical
axis. The function eV (k?, kk = 0) may be regarded as the spectrum of two-dimensional (2D) modes, having no vertical
variation. Note that for an isotropic flow, at a given point k in wavenumber space, the ratio of the axisymmetric
spectrum eV (|k?|, kk) to the isotropic spectrum is ⇠ 1/|k| because the size of the volume element in the isotropic
case contains an additional (integrating) factor of |k| compared to the axisymmetric case. Hence, if the axisymmetric
spectrum behaves as k�↵

? , then the corresponding isotropic scaling will be k�↵+1. The spectrum eV (|k?|, kk) can also
be decomposed into the kinetic energy spectrum of the horizontal components (velocity components u and v), and of
the vertical kinetic energy (velocity component w):

eV (|k?|, kk) = e?(|k?|, kk) + ek(|k?|, kk) . (8)

In the following we will also consider the reduced perpendicular spectrum [44]

EV (k?) = ⌃kkeV (k?, kk) , (9)

the reduced parallel spectrum EV (kk) (which has a sum over k?), and the spectrum representing the perpendicular
energy of the strictly three-dimensional (3D) modes:

E3D(k?) = EV (k?)� eV (k?, kk = 0) . (10)

Similar definitions hold for the helicity and potential energy spectra, hV (k?, kk) and eP (k?, kk), their reduced forms,
HV (k?) and EP (k?), as well as their 3D expressions (i.e., the perpendicular spectra of the 3D modes), HV,3D(k?)
and EP,3D(k?). They will be analyzed in the following sections.

B. Specific numerical procedure

The code used in this paper is the Geophysical High Order Suite for Turbulence (GHOST), which is fully parallelized
using a hybrid methodology [45]. It uses parallel multidimensional FFTs in a pseudo-spectral method for 2D and 3D
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We report results on rotating stratified turbulence in the absence of forcing, with large-scale
isotropic initial conditions, using direct numerical simulations computed on grids of up to 40963

points. The Reynolds and Froude numbers are respectively equal to Re = 5.4⇥104 and Fr = 0.0242.
The ratio of the Brunt-Väisälä to the inertial wave frequency, N/f , is taken to be equal to 4.95,
a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This
gives a global buoyancy Reynolds number RB = ReFr2 = 32, a value su�cient for some isotropy
to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that
the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-
scale dynamics, for which we find a spectrum compatible with the Bolgiano-Obukhov scaling, and
confirm that the Froude number based on a typical vertical length scale is of order unity, with strong
gradients in the vertical. Two characteristic scales emerge from this computation, and are identified
from sharp variations in the spectral distribution of either total energy or helicity. A spectral break
is also observed at a scale at which the partition of energy between the kinetic and potential modes
changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are
ubiquitous in the flow in the velocity and temperature fields, with local overturning events indicated
by small Richardson numbers, and a small large-scale enhancement of energy directly attributable
to the e↵ect of rotation is also observed.

I. INTRODUCTION

Rotating stratified flows are particularly important in the understanding of the dynamics of our planet and the
Sun. Several of the key concepts needed in order to progress in predictions of the weather and in the global evolution
of the climate depend crucially on a fundamental understanding of these flows. At di↵erent scales, di↵erent physical
regimes become salient, and yet all scales interact. The nonlinear advection produces steepening, albeit slowly in
the presence of strong waves. Thus, these fronts and turbulent eddies lead to enhanced dissipation and dispersion
of particles and tracers, a↵ecting the global energetic behavior of the atmosphere and climate systems, for example
for atmospheric synoptic scales, and for oceanic currents, in the latter case modifying the meridional circulation. In
the atmosphere, such e↵ects on energetics can in turn impair assessments of whether a given super-cell can spawn
a tornado, and they a↵ect both the evaluation of hurricane intensity and of climate variability. Rotating stratified
turbulence (RST hereafter) thus plays a crucial role in the dynamics of the atmosphere and oceans, with nonlinear
interactions–responsible for the complexity of turbulent flows–having to compete with the waves due to rotation and
stratification.

All of this takes place in the presence of a variety of other phenomena, including reactive chemical transport,
biological or hydrological processes, as well as large-scale shear and bounday layers for example. One common
approach is to tackle the problem in its entirety and construct a succession of models with increasing degrees of
complexity. Conversely, one can take the simplest problem with what may be the most essential ingredients and
examine the dynamics of such flows from a fundamental point of view, an approach taken in this paper. One of the
inherent di�culties is the fact that such flows are represented, in the dry Boussinesq framework, by four independent
dimensionless parameters, the Reynolds, Froude, Rossby and Prandtl numbers defined as:

Re =
U0L0

⌫
, F r =

U0

L0N
, Ro =

U0

L0f
, Pr =

⌫


, (1)

where U0 and L0 are, respectively, a characteristic velocity and length scale, ⌫ and  are the kinematic viscosity
and scalar di↵usivity (taken to be equal, Pr = 1), N is the Brunt-Väisälä frequency, and finally f = 2⌦ with ⌦
the rotation frequency. Other dimensionless parameters, combinations or variants of these basic ones, are commonly
defined as well (see §II C).

A number of studies have shown, at least in the absence of rotation, that the buoyancy Reynolds number RB =
ReFr2 needs to be large enough for vigorous turbulence to develop in the small scales (see for example the review in
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C. Other dimensionless parameters

As mentioned in the introduction, a variety of dimensionless combinations of relevant physical parameters can be
defined for rotating stratified turbulence, beyond those written in Eq. (1). One of the central limitations to a better
understanding of such flows is the need to unravel what the key parameters are that govern the dynamics. Beyond
the Reynolds, Froude, Rossby and Prandtl numbers, one also considers the ratio N/f , as well as the Froude number
based on a characteristic vertical length scale,

Fz = U0/(`ZN) .

Moreover, the combined e↵ect of turbulent eddies and waves can be encompassed in the buoyancy and rotational
Reynolds numbers, mentioned previously and respectively defined as

RB = ReFr2, R⌦ = ReRo2 . (11)

When RB � 1 in a stratified flow, isotropy recovers beyond the so-called Ozmidov scale. Similarly, in a purely rotating
flow, isotropy recovers beyond the Zeman scale for R⌦ � 1 [2].

The partition of energy between kinetic and potential modes can be measured by their ratio, EV /EP , which is one
possible definition of the Richardson number. Another definition is simply to measure the relative strength of the
buoyancy to the inertial forces, or

Ri = 1/Fr2 .

However, in order to emphasize the role of the development of small scales in mixing, one can also define a (local)
Richardson number based on velocity gradients, Rig, as:

Rig = N(N � @z⇢)/(@zu?)
2 . (12)

This definition suggests that a su�ciently large vertical gradient locally leads to negative values of Rig, which is
consistent with the intuitive picture of overturning when a denser parcel of fluid lies atop a less dense parcel.

D. Run parameters and general characterization

We use N/f = 4.95 with N = 13.2 and ⌦ = f/2 = 1.33 (thus, f = 2.66). The viscosity is chosen to have the
simulation well resolved: ⌫ = 4 ⇥ 10�5. In dimensionless units, the resulting overall energetics of the flow lead to
several scales that are of interest, and to a characterization of the flow in terms of the dimensionless parameters.
Considered at the peak of enstrophy, the characteristic velocity is U0 ⇡ 0.83 and the integral length scale, computed
from Lint = 2⇡

R
EV (k)dk/

R
kEV (k)dk ⇡ 2.6, very close as expected to the scale at which the energy spectrum

initially peaks, namely L0 = 2⇡/k0 ⇡ 2.5. The dissipation rate of kinetic energy is taken from a computation of
kinetic enstrophy at the peak of dissipation: "V = ⌫

⌦
|!|2

↵
⇡ 0.0124 (see Fig. 1(b)). Note that in the isotropic case,

"V = ✏K41 = U3
0 /Lint ⇡ 0.22, but this relation does not hold in the highly anisotropic system we are investigating.

Rather, we can take an estimate coming from weak turbulence, namely ✏K41 ⇤ Fr ⇡ 0.005, within a factor of two
of the measured rate of energy dissipation. The Kolmogorov dissipation wavenumber is computed at the peak of
dissipation to be k⌘ ⇡ 660. The Zeman and Ozmidov wavenumbers are therefore found to be, respectively, k⌦ ⇡ 39
and kOZ ⇡ 431. The buoyancy wavenumber is kB = 2⇡/LB ⇡ 16; the lack of scale separation between k⌦ and kB
suggests that it will be di�cult to distinguish as separate e↵ects those due to rotation and those due to stratification.
The Reynolds number is thus found to be Re ⇡ 5.4⇥ 104, the Froude number Fr ⇡ 0.0242, and the Rossby number
Ro ⇡ 0.12. Consequently, the buoyancy and rotational Reynolds numbers are RB ⇡ 32, and R⌦ ⇡ 775. The
Richardson number is determined to be Ri ⇡ 1700, so the flow is, indeed, found to be strongly stratified.

Finally, we can define a Taylor Reynolds number as R� = U0�/⌫, with � = 2⇡[
R
EV (k)dk/

R
k2EV (k)dk]1/2 the

Taylor scale. In classical homogeneous isotropic turbulence (HIT) R� measures the degree of development of small
scales. At peak of dissipation, � ⇡ 0.31, leading to a rather large R� ⇡ 6400, quite high compared to similar
computations in HIT (e.g., R� ⇡ 1200 in a HIT run at similar grid resolution [7, 8]). This is linked to the fact that, in
the presence of strong waves, the transport of energy to small scales is hindered and not as e�cient, and the energy
spectrum becomes steeper at least at large scales, resulting in a larger Taylor scale for the same viscosity. It is worth
noticing that in the atmosphere the Taylor Reynolds number is estimated to be R� ⇡ 20000, and it may be the case
that realistic simulations of stratified and rotating atmospheric turbulence may be feasible in the near future as a
result of this e↵ect. Finally, note also that the value of R� puts the present computation above the di↵erent thresholds
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Figure 2 | Key observations in the Southern Ocean. a, Climatological positions of the subantarctic front (SAF) and polar front (PF) are marked in orange,
with the thickness of the line representing the variance in the latitudinal position. The green arrows indicate the observed speed and direction of surface
ocean currents as measured by drifters floating at a depth of 15 m (note the scale in the upper right-hand side). The depth of the ocean is colour coded in
blue: the main topographic features are labelled. The black lines mark the summer (minimum) and winter (maximum) extent of sea ice. The position of key
hydrographic sections are marked by the thick grey lines. b, T (temperature), S (salinity), and O2 sections along 30� E (coloured red in a) cutting across the
ACC from Africa towards Antarctica. Black contours are labelled in �C (for T), psu (for S) and µmol l�1 (for O2). The thick white line is the 27.6 kg m�3

density surface.

Dynamics of the SouthernOcean and its upwelling branch
The Southern Ocean is driven by surface fluxes of momentum and
density (owing to heat and fresh water) induced by the strong,
predominantly westerly winds that blow over it and the freezing
phenomena close to the continent33. Zonal wind stress (Fig. 4a)
induces upwelling polewards of the zonal surface-wind maximum
and downwelling equatorwards of the maximum. This directly

wind-driven circulation, known as the Deacon cell, acts to overturn
density surfaces supporting the thermal wind current of the ACC
and creating a store of available potential energy.

Air–sea fluxes generate dense water near the continent and
lighten the surface layers in the ACC (see Fig. 4b). The dense
water sinks and tends to draw in warmer, saltier water from the
surrounding ocean; however, rather than being fed from the surface,
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Dynamics of the SouthernOcean and its upwelling branch
The Southern Ocean is driven by surface fluxes of momentum and
density (owing to heat and fresh water) induced by the strong,
predominantly westerly winds that blow over it and the freezing
phenomena close to the continent33. Zonal wind stress (Fig. 4a)
induces upwelling polewards of the zonal surface-wind maximum
and downwelling equatorwards of the maximum. This directly

wind-driven circulation, known as the Deacon cell, acts to overturn
density surfaces supporting the thermal wind current of the ACC
and creating a store of available potential energy.

Air–sea fluxes generate dense water near the continent and
lighten the surface layers in the ACC (see Fig. 4b). The dense
water sinks and tends to draw in warmer, saltier water from the
surrounding ocean; however, rather than being fed from the surface,
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multiple points) at most longitudes
for latitudes between about 70°S
and 80°S. Pockets of enhanced cover-
age (about 35 passes per cell) occur
within a prominent band just ocean-
ward of Enderby Land and Kemp
Land at longitudes near 45°E.
Smaller regions of enhanced cover-
age are found at several latitudes
and longitudes of about 135°E,
180°E, 45°W, and 135°W. The region
of enhanced coverage at about 135°E
is in the middle of the Antarctic conti-
nent, while the other small regions of
enhancement are over ocean.

Momentum fluxes can be intermit-
tent and cover a range of magni-

tudes. Plougonven et al. [2008] study a large-amplitude event identified in VORCORE data. We refer to their
simulations of this event in section 6. Alexander et al. [2010] show a time series showing considerable varia-
bility of fluxes on seasonal time scales. Hertzog et al. [2012] examine VORCORE for the statistical distribution of
fluxes covering the range 0 to 60mPa. The large flux events are in the tail of a continuous distribution. As
described in the following paragraphs, we identify the existence of two distinct populations in the
Concordiasi data: a main population and a “high flux” population. The high flux events seen in the
Concordiasi data have fluxes much larger in magnitude than 60mPa.

Figure 2 shows the vertical flux of zonal momentum obtained by use of (1) for balloons traversing the AP
during the campaign. Each point corresponds to a single 30 s measurement in the region bounded by 1°W
and 100°W longitude and between 50°S and 80°S latitude. A positive (negative) value of flux indicates an
upward transport of eastward (westward) zonal momentum. Each vertical bar represents an individual day
and is made up of large numbers of individual flux determinations. An inspection of Figure 2 shows a set
of high flux events (peak values ≤!1 Pa) and a larger set of events with much smaller peak fluxes
(≤!100mPa). One event (not included) had a peak flux of ~!27 Pa and is clearly an outlier that is either
physically questionable or falls outside the scope of this methodology because the balloon experienced

abrupt and large departures from iso-
pycnal motion. We do not consider
this particular event in the subsequent
analyses. Figure 3 shows histograms of
the fluxes over the campaign in the
sector bounded by 0°W and 90°W,
hereafter referred to as the AP
(Antarctic Peninsula) quadrant. The
colored lines in the figure correspond
to histograms of 30 s u-w products
within the AP quadrant stratified by
area-averaged values of zonalmomen-
tum flux. The averages (denoted mx)
are performed over 500×500 km
areas. The red curve shows the distri-
bution of 30 s u-w products for values
of mx>!50mPa. The 30 s products
(which for convenience we denote
instantaneous or 30 s “fluxes”) are the
products inside the brackets in (1).
This instantaneous flux distribution

Figure 2. The 30 s measurements of vertical flux of zonal momentum over
and near the Antarctic Peninsula as a function of day of year in 2010.

Figure 3. Distribution of single-balloon 30 s fluxes over the campaign
stratified (segregated) as indicated by the color coding. The fluxes are
contained in the quadrant bounded by 0°W and 90°W. The 30 s values are
stratified by the area-averaged zonal momentum fluxes determined from
500 km × 500 km averages (denoted mx) as described in the text.
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Figure 13 shows a map of the campaign-averaged zonal wind speed at balloon altitude (17 km) based on
Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. The circumpolar jet is
located near 68°S. A notable feature of the jet is a maximum near 30°W with peak winds of ~ 30m/s. A sec-

ond maximum is located east of 0°E.
The location of the jet and the jet
maxima agree reasonably well with
flux maxima, especially with the
maxima of the westward zonal flux
shown in Figure 9 for the 0.2–13 h
and 1–13 h bands with the high flux
cases removed.

5. Theory and Modeling:
The Distribution of
Momentum Fluxes and
the Characteristics of Wave
Propagation

In this section we discuss the distribu-
tion of wave fluxes around the AP
in relation to the characteristic of
the waves generated by flow over
terrain simulations.

Figure 12. Maps of the campaign-averaged vertical flux of meridional momentum with the high flux cases removed in
the four intrinsic period bands (top left) 0.2–1.0 h, (top right) 1–5 h, (bottom left) 5–9 h, and (bottom right) 9–13 h.
Tessellation is 500 × 500 km.

Figure 13. Campaign-averaged zonal wind speed at balloon altitude.
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2. Data

The Concordiasi campaign consisted
of 19 long duration superpressure
balloon flights launched from
Antarctica between September
2010 and January 2011. Flight-level
meteorological measurements of
temperature, pressure, and wind
speeds were obtained every 30 s.
The balloons drifted on constant
density surfaces in the lower strato-
sphere at altitudes near 17 km.

A major difference between the
VORCORE and Concordiasi data is
the significantly higher sampling rate
of the latter. The VORCORE sampling
rate was 15min with an aliasing per-
iod near 30min and a noise floor near
1 h [Walterscheid et al., 2012]. The
Concordiasi aliasing period is near
1min, and the noise floor deter-

mined from plots of power spectral density and wavelet amplitude is found to be near 5min. For the
VORCORE analysis we considered periods from 1 to 13 h. In the present study we examine Concordiasi data
for periods from 12min to 13 h, which are at periods well above the aliasing period, the noise floor, and the
Brunt-Väisälä period, the last insuring a minimal contribution from nonhydrostatic waves. Calculations with a
20min lower limit did not differ significantly from results with a 12min lower limit.

3. Data Analysis

Our analysis of Concordiasi data follows the theory developed in Walterscheid et al. [2012] for the direct
calculation of momentum fluxes from measurements obtained by balloons drifting along constant density
surfaces. Time series of velocity, pressure, and balloon height are analyzed with Morlet wavelets in order to
evaluate momentum fluxes over specific time intervals [Torrence and Compo, 1998].

In wavelet space, the specific vertical flux of zonal momentum can be expressed as [Walterscheid et al., 2012]
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(1)

where w
_
′ is perturbation geometric vertical velocity, u′ is perturbation zonal velocity, ωIn is intrinsic

frequency (the frequency measured in the balloons’ frame of reference), H is pressure scale height, ϕ is
geopotential height, g is the acceleration of gravity, S is static stability, p is pressure, and the subscript n
denotes the wavelet component as a function of wave period. The asterisk denotes complex conjugation.
The overbars denoting basic state quantities refer to time averages along the balloon trajectories using a
sliding 24 h window. The brackets indicate spatial averaging used to create the momentum flux maps.
Products of the vertical and horizontal wind components are computed at 30 s intervals along a trajectory
and averaged areally. We refer to these as 30 s fluxes. Spatial averaging is performed using equal area
(500 km× 500 km) bins. Only bins with more than 100 h of cumulative dwell time are used to calculate flux
maps. The wavelet analysis was performed for each balloon trajectory over several band passes; each of
which is a sum over the wavelets in (1) in a given period range. The vertical flux of meridional momentum
is given by a formula similar to (1) with the meridional velocity perturbation (v′) replacing the zonal velocity
perturbation.

The spatial coverage provided by the Concordiasi balloons is shown in Figure 1, which plots the number of
balloon passes per 500 km× 500 km cell. There is good coverage (about 20 or more passes per cell with

Figure 1. Geographical distribution of the number of Concordiasi balloon
passes per 500 km × 500 km cell.
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Stably stratified turbulence: Bolgiano-Obukhov 1959 scaling

Main hypothesis:   Inertial range with a constant buoyancy flux uθ2/ l 
                                                       

EV,P(k) = f(k, εP) with εP = DEP/DT of dimension m2s-5

à EV(k) = εP
2/5  k-11/5

à EP(k) = εP
4/5  k-7/5

à U2/l ~ θ   in the momentum equation

Elusive, …     Paradoxical (Lohse & Xia, Ann. Rev. Fluid Mech. 2010), …
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Turbulent thermal convection in half a soap bubble heated from below displays a new and surprising

transition from intermittent to nonintermittent behavior for the temperature field. This transition is

observed here by studying the high order moments of temperature increments. For high temperature

gradients, these structure functions display Bolgiano-like scaling predicted some 60 years ago with no

observable deviations. The probability distribution functions of these increments are Gaussian throughout

the scaling range. These measurements are corroborated with additional velocity structure function

measurements.
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The importance of turbulent thermal convection for
processes of meteorological, geophysical, or industrial
interest has been stressed for over a century. Many experi-
mental and theoretical endeavors have explored this phe-
nomenon at different scales and for different geometries
[1,2] in the canonical situation of a fluid enclosed in a
container heated from below and cooled at the top [3]. As
for three dimensional hydrodynamic turbulence [4–6], the
statistical properties of temperature and velocity fluctua-
tions in turbulent thermal convection, a state which can be
reached for a high enough temperature difference between
the bottom and the top of the container, can also be
described by scaling laws [7,8]. Several experiments
have been carried out to measure these statistical properties
but a number of issues regarding the scaling properties
remain unresolved [9]. Recently, the two dimensional ver-
sion has been put forth using either vertical soap films or
soap bubbles [10,11]. A detailed examination of the statis-
tical properties of the velocity fluctuations and the density
variations [10,11] showed that they displayed scaling laws
predicted by Bolgiano and Obukhov for stratified turbu-
lence in the 1950s [7–9]. Such scaling laws have so far
been elusive in three dimensional experiments for reasons
still debated today [9,12].

We here explore the temperature field in a recently
introduced thermal convection cell: half a soap bubble
heated from below (see Fig. 1) [11]. This geometry has
the advantage of avoiding the presence of side walls and
therefore the presence of the large scale circulation often
observed when lateral walls are present. By focusing on the
structure functions of the temperature field we uncover a
transition from an intermittent to a nonintermittent behav-
ior. Our results show that the scaling of these functions
switches regimes from the so-called Obukhov-Corrsin–like
scaling [5,6] with intermittency at low temperatures to
Bolgiano-Obukhov–like scaling without intermittency at

higher temperatures. Our results are unique and surprising
since previous numerical work indicated the presence of
strong intermittency for the temperature field [13].
Intermittency in fluid turbulence is an important problem
in hydrodynamics and our experiments bring to light how a
simple system evolves from an intermittent to a noninter-
mittent state.
The convection cell, described previously in [11], con-

sists of a hollow brass ring which is heated using water
from a thermostat. A circular groove is engraved on the

FIG. 1 (color online). Infrared images of the bubble (top !T ¼
50 #C) and a region near the bottom: !T ¼ 21 #C (bottom left)
and 50 #C (bottom right). The region delimited by a rectangle in
the upper image indicates the area covered by the temperature
and velocity measurements. The brass ring is located a few
millimeters from the bottom of the images.
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upper side of the ring and contains the soap solution (0.5 to
2% detergent in water) which is heated to the desired
temperature (up to 85 !C). Half a soap bubble, of 12 cm
in diameter, is blown using a straw and the soap solution in
the groove. The setup is in a room kept at a constant
temperature of 17 !C with a humidity rate of nearly 75%
near the bubble. The temperature gradient between the
bottom and the top of the half bubble !T could be varied
up to 55 !C. The temperature measurements used a cali-
brated 14 bits infrared camera (resolution 256" 360)
working in the spectral range of 3:6 to 5 !m with a
sensitivity of 20 mK and an adjustable exposure time set
between 0.5 and 1 ms. Additional measurements were
carried out using another infrared camera working in the
range 1:9 to 5:2 !m but equipped with a band pass filter in
the range 3 to 4 !m with no noticeable changes in the
results. Images of the same region (between 100 and 500
images at a rate of 50 or 100 frames/second) were recorded
and a home made program was used to calculate tempera-
ture differences across different scales r. Averaging over
the area of interest and over several images allowed us to
improve the statistics (between 1 and 2:5" 106 points
were used) and calculate the high order moments of these
differences. The temperature field was recorded for periods
of up to 10 s which is greater than the temperature corre-
lation time (of order 0.1 s). The error in r, introduced by the
curved geometry of the bubble, turned out to be less than a
few percent over a 1 cm region. The effect of evaporation
was estimated to be small and the lifetime of the bubble,
which should decrease with increased evaporation, actually
increases by a factor of about 4 when a temperature gra-
dient is imposed indicating that convection is more impor-
tant than both evaporation and draining by gravity.

Figure 1 shows a full view of the bubble as well as images
obtained with the infrared camera in a region near the
bottom of the half bubble where the thermal convection is
strongest. One can easily identify thermal plumes rising
from the bottom of the cell which are clearly visible for the
low temperature gradient. The thermal convection becomes
more intense as the temperature gradient increases and
well-defined thermal plumes are difficult to discern. From
such spatial images we extract the temperature difference
"TðrxÞ ¼ Tðxþ rxÞ ' TðxÞ and "TðryÞ ¼ Tðyþ ryÞ '
Tðy) and calculate the nth moments as hj"TðrxÞjni and
hj"TðryÞjni. Here x and y refer to the horizontal and vertical
coordinates and the brackets refer to an average over space
and time. The temperature structure functions are important
quantities in the study of turbulence and different scaling
relations have been proposed for their variation versus the
scale r. In 3D turbulent flows, where Kolmogorov-like
scaling is believed to prevail for the low order moments,
Obhukov and Corrsin [5,6] generalized the scaling argu-
ments of Kolmogorov to a scalar field like the temperature
and used both the energy dissipation rate # and the scalar
dissipation rate #$ to predict that the second order structure

functions should scale as #$#
'1=3r2=3. Similar scaling argu-

ments can be used, as suggested by Bolgiano and Obukhov
[7–9] for stably stratified turbulence, to the case of Rayleigh
Benard convection for which the fluid thermal expansion
rate%, the gravity constant g, and the dissipation rate #$ fix
the scaling relation of the second order structure function of

the temperature as #4=5$ ð%gÞ'2=5 r2=5 [9]. The nth order
moments are expected to vary as a power law of the sepa-
ration distance r with an exponent &Tn of n=5 in the
Bolgiano-Obukhov regime and n=3 for the Obukhov-
Corrsin regime. To compare the experimental conditions
here to their classical counterparts, we estimated the
Rayleigh number (Ra ¼ %!TgR3='( where ' and ( are
the kinematic viscosity and the thermal diffusivity of water)
to be between 7" 107 and 2" 108 while the Reynolds
number (Re ¼ VmeanR=' where Vmean is the characteristic
horizontal velocity) is estimated to be about 3000.
The temperature structure functions are displayed in

Figs. 2(a) and 2(b) for two different !T: 21 and 50 !C.
For the low !T, Fig. 2(a), the temperature structure func-
tions are roughly isotropic as the values of the differences
for the two orthogonal spatial increments rx and ry are

〉
〈

〉
〈

FIG. 2 (color online). Temperature structure functions for
!T ¼ 21 !C (a) !T ¼ 50 !C (b). The horizontal (squares) and
vertical (crosses) components are plotted up to order 8. The data
are shifted by a multiplicative factor (x2 for n ¼ 3 up to x64 for
n ¼ 8). Insets: compensated moments and scaling exponents.
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33405 Talence, France

2Laboratoire TREFLE, CNRS UMR 8508, Esplanade des Arts et Métiers, 33405 Talence, France
(Received 19 July 2010; published 29 December 2010)

Turbulent thermal convection in half a soap bubble heated from below displays a new and surprising

transition from intermittent to nonintermittent behavior for the temperature field. This transition is

observed here by studying the high order moments of temperature increments. For high temperature

gradients, these structure functions display Bolgiano-like scaling predicted some 60 years ago with no

observable deviations. The probability distribution functions of these increments are Gaussian throughout

the scaling range. These measurements are corroborated with additional velocity structure function

measurements.

DOI: 10.1103/PhysRevLett.105.264502 PACS numbers: 47.55.pb, 47.27.!i, 47.55.Hd

The importance of turbulent thermal convection for
processes of meteorological, geophysical, or industrial
interest has been stressed for over a century. Many experi-
mental and theoretical endeavors have explored this phe-
nomenon at different scales and for different geometries
[1,2] in the canonical situation of a fluid enclosed in a
container heated from below and cooled at the top [3]. As
for three dimensional hydrodynamic turbulence [4–6], the
statistical properties of temperature and velocity fluctua-
tions in turbulent thermal convection, a state which can be
reached for a high enough temperature difference between
the bottom and the top of the container, can also be
described by scaling laws [7,8]. Several experiments
have been carried out to measure these statistical properties
but a number of issues regarding the scaling properties
remain unresolved [9]. Recently, the two dimensional ver-
sion has been put forth using either vertical soap films or
soap bubbles [10,11]. A detailed examination of the statis-
tical properties of the velocity fluctuations and the density
variations [10,11] showed that they displayed scaling laws
predicted by Bolgiano and Obukhov for stratified turbu-
lence in the 1950s [7–9]. Such scaling laws have so far
been elusive in three dimensional experiments for reasons
still debated today [9,12].

We here explore the temperature field in a recently
introduced thermal convection cell: half a soap bubble
heated from below (see Fig. 1) [11]. This geometry has
the advantage of avoiding the presence of side walls and
therefore the presence of the large scale circulation often
observed when lateral walls are present. By focusing on the
structure functions of the temperature field we uncover a
transition from an intermittent to a nonintermittent behav-
ior. Our results show that the scaling of these functions
switches regimes from the so-called Obukhov-Corrsin–like
scaling [5,6] with intermittency at low temperatures to
Bolgiano-Obukhov–like scaling without intermittency at

higher temperatures. Our results are unique and surprising
since previous numerical work indicated the presence of
strong intermittency for the temperature field [13].
Intermittency in fluid turbulence is an important problem
in hydrodynamics and our experiments bring to light how a
simple system evolves from an intermittent to a noninter-
mittent state.
The convection cell, described previously in [11], con-

sists of a hollow brass ring which is heated using water
from a thermostat. A circular groove is engraved on the

FIG. 1 (color online). Infrared images of the bubble (top !T ¼
50 #C) and a region near the bottom: !T ¼ 21 #C (bottom left)
and 50 #C (bottom right). The region delimited by a rectangle in
the upper image indicates the area covered by the temperature
and velocity measurements. The brass ring is located a few
millimeters from the bottom of the images.
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upper side of the ring and contains the soap solution (0.5 to
2% detergent in water) which is heated to the desired
temperature (up to 85 !C). Half a soap bubble, of 12 cm
in diameter, is blown using a straw and the soap solution in
the groove. The setup is in a room kept at a constant
temperature of 17 !C with a humidity rate of nearly 75%
near the bubble. The temperature gradient between the
bottom and the top of the half bubble !T could be varied
up to 55 !C. The temperature measurements used a cali-
brated 14 bits infrared camera (resolution 256" 360)
working in the spectral range of 3:6 to 5 !m with a
sensitivity of 20 mK and an adjustable exposure time set
between 0.5 and 1 ms. Additional measurements were
carried out using another infrared camera working in the
range 1:9 to 5:2 !m but equipped with a band pass filter in
the range 3 to 4 !m with no noticeable changes in the
results. Images of the same region (between 100 and 500
images at a rate of 50 or 100 frames/second) were recorded
and a home made program was used to calculate tempera-
ture differences across different scales r. Averaging over
the area of interest and over several images allowed us to
improve the statistics (between 1 and 2:5" 106 points
were used) and calculate the high order moments of these
differences. The temperature field was recorded for periods
of up to 10 s which is greater than the temperature corre-
lation time (of order 0.1 s). The error in r, introduced by the
curved geometry of the bubble, turned out to be less than a
few percent over a 1 cm region. The effect of evaporation
was estimated to be small and the lifetime of the bubble,
which should decrease with increased evaporation, actually
increases by a factor of about 4 when a temperature gra-
dient is imposed indicating that convection is more impor-
tant than both evaporation and draining by gravity.

Figure 1 shows a full view of the bubble as well as images
obtained with the infrared camera in a region near the
bottom of the half bubble where the thermal convection is
strongest. One can easily identify thermal plumes rising
from the bottom of the cell which are clearly visible for the
low temperature gradient. The thermal convection becomes
more intense as the temperature gradient increases and
well-defined thermal plumes are difficult to discern. From
such spatial images we extract the temperature difference
"TðrxÞ ¼ Tðxþ rxÞ ' TðxÞ and "TðryÞ ¼ Tðyþ ryÞ '
Tðy) and calculate the nth moments as hj"TðrxÞjni and
hj"TðryÞjni. Here x and y refer to the horizontal and vertical
coordinates and the brackets refer to an average over space
and time. The temperature structure functions are important
quantities in the study of turbulence and different scaling
relations have been proposed for their variation versus the
scale r. In 3D turbulent flows, where Kolmogorov-like
scaling is believed to prevail for the low order moments,
Obhukov and Corrsin [5,6] generalized the scaling argu-
ments of Kolmogorov to a scalar field like the temperature
and used both the energy dissipation rate # and the scalar
dissipation rate #$ to predict that the second order structure

functions should scale as #$#
'1=3r2=3. Similar scaling argu-

ments can be used, as suggested by Bolgiano and Obukhov
[7–9] for stably stratified turbulence, to the case of Rayleigh
Benard convection for which the fluid thermal expansion
rate%, the gravity constant g, and the dissipation rate #$ fix
the scaling relation of the second order structure function of

the temperature as #4=5$ ð%gÞ'2=5 r2=5 [9]. The nth order
moments are expected to vary as a power law of the sepa-
ration distance r with an exponent &Tn of n=5 in the
Bolgiano-Obukhov regime and n=3 for the Obukhov-
Corrsin regime. To compare the experimental conditions
here to their classical counterparts, we estimated the
Rayleigh number (Ra ¼ %!TgR3='( where ' and ( are
the kinematic viscosity and the thermal diffusivity of water)
to be between 7" 107 and 2" 108 while the Reynolds
number (Re ¼ VmeanR=' where Vmean is the characteristic
horizontal velocity) is estimated to be about 3000.
The temperature structure functions are displayed in

Figs. 2(a) and 2(b) for two different !T: 21 and 50 !C.
For the low !T, Fig. 2(a), the temperature structure func-
tions are roughly isotropic as the values of the differences
for the two orthogonal spatial increments rx and ry are
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FIG. 2 (color online). Temperature structure functions for
!T ¼ 21 !C (a) !T ¼ 50 !C (b). The horizontal (squares) and
vertical (crosses) components are plotted up to order 8. The data
are shifted by a multiplicative factor (x2 for n ¼ 3 up to x64 for
n ¼ 8). Insets: compensated moments and scaling exponents.
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Also in shell models of 2D flows  (Brandenburg, 1992; Boffetta+ 2012)
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FIG. 3. (Color online) For stably stratified simulation with Pr =
1 and Ri = 0.01, plots of KE flux !u(k), normalized KE flux
!u(k)k4/5, and potential energy flux !θ (k).

We also performed 5123 grid simulations for Ri = 0.5 and
4 × 10−7 with Pr = 1. The normalized KE spectra for these
two cases are exhibited in Figs. 5(a) and 5(b), respectively.
Our results show that BO scaling is valid for Ri = 0.5, but KO
scaling [with a constant !u(k)] is valid for Ri = 4 × 10−7,
which is as expected since buoyancy is significant only for
moderate and large Ri’s.

We compute F (k), D(k), and d!u(k)/dk for Ri = 0.5 and
4 × 10−7 and plot them in Figs. 6(a) and 6(b), respectively. In
the inertial range, F (k) < 0 for both cases, just like Ri = 0.01.
The behavior of F (k), D(k), and d!u(k)/dk for Ri = 0.5 is
very similar to that of Ri = 0.01, except that F (k) for Ri = 0.5
is a bit smaller than that for Ri = 0.01. For Ri = 4 × 10−7,
buoyancy is weak, hence F (k) is much smaller than that for
Ri = 0.01, which leads to an approximately constant !u(k),
and Kolmogorov’s spectrum for the kinetic energy.

Recall that we employ the periodic boundary condition
for the stably stratified flows in the vertical direction, thus
eliminating the effects of boundary walls. In Fig. 7 we
plot the plane-averaged (over xy plane) mean temperature
profile T̄ (z) = ⟨T (x,y,z)⟩xy . Since T̄ (z) is linear, a constant
temperature gradient dT̄ /dz (hence buoyancy) acts in the
whole box. Therefore, BO scaling is expected everywhere.
It is important to contrast the above profile with that for

FIG. 4. (Color online) For stably stratified simulation with
Pr = 1 and Ri = 0.01, plots of −F (k),D(k),[−F (k) + D(k)],
−d!u(k)/dk, and k−9/5 line to match with −d!u(k)/dk in the
small-k regime.

FIG. 5. (Color online) For stably stratified simulation with Pr =
1, and (a) Ri = 0.5 and (b) Ri = 4 × 10−7, the plots of normalized
KE spectra for BO scaling and KO scaling.

Rayleigh-Bénard convection in which most of the temperature
drop takes place in the narrow thermal boundary layers at the
plates [19,37], while the bulk flow has dT̄ /dz ≈ 0. Thus we
expect BO scaling in the boundary layers and KO scaling in
the bulk, as reported by Calzavarini et al. [21].

In the next subsection we will discuss the results of
Rayleigh-Bénard convection.

B. Rayleigh-Bénard convection

Borue and Orszag [16] and Skandera et al. [17] simulated
RBC flow under the periodic boundary condition. They
observed KO scaling for both velocity and temperature fields,
consistent with the arguments presented in Sec. II. A shell
model approximates the turbulence in a periodic box quite
well; a recent shell model of RBC flow [38] also yields KO
scaling, consistent with the numerical results of Borue and
Orszag [16] and Skandera et al. [17]. In a typical RBC flow,
however, a fluid is confined between two horizontal conducting
plates that are maintained at constant temperatures, with the
bottom plate hotter than the top one. Earlier, Mishra and Verma
[18] showed that zero- and small-Prandtl-number RBC exhibit
Kolmgorov’s spectrum for the kinetic energy, but their results
were inconclusive for moderate-Prandtl-number RBC. In this
subsection, we will investigate this issue for Pr = 1.

To explore which of the two scaling (KO or BO) is
applicable for RBC turbulence with plates, we perform RBC
simulations for Pr = 1 and Ra = 107 and compute the spectra
and fluxes of the KE as well as the entropy for the steady-state
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to

KBO ⇠ "
3/4
P "

�5/4
V . (16)~ 11
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One can invoke a dimensional argument to explain the large-scale spectral distribution, namely the Bolgiano-
Obukhov scaling ([? ? ] BO hereafter) derived for purely and stabley stratified turbulence. This scaling is obtained
under the assumption that the source of energy at large scale is contained in the buoyancy, or in the potential
modes, with nonlinear transfer rate "P = |dEP |/dt, assumed constant, and with a negligible advection term in the
momentum equation. Since ⇢ in the primitive equations written in Eq. (??) has the dimension of a velocity, we have
to re–introduce the physical dimension of the buoyancy flux in terms of length and time, i.e., L2T�5; similarly one
can use "PN

2 for the constant flux. This then leads to (see [? ] for a review):

EV (k) ⇠ "
2/5
P k�11/5 , EP (k) ⇠ "

4/5
P k�7/5 . (14)

In the BO phenomenology, the scalar actively modifies the velocity field, and is therefore not passive. Note that
the Coriolis force does not contribute to the energy balance but only to an angular redistribution of energy favoring
negative flux to large scales, and thus does not perturb the dynamics leading to the BO scaling. The phenomenology
derives from the idea that at large scales, the nonlinear advection term is not strong enough in the direct cascade to
small scales, and the only available source of energy is therefore that coming from the scalar fluctuations. Stating that
the kinetic and potential energy spectra will depend only on the dimensional buoyancy flux, "P , and wavenumber, k,
leads to the above spectra.

There are indications that the BO scaling has been observed in stably stratified in the atmosphere [? ], as well
as at the bottom boundary of convectively unstable cells, using temporal structure functions conditionally averaged
on local values of the thermal dissipation rate [? ]. A recent three-dimensional DNS analysis of Rayleigh-Bénard
convection shows such a scaling as well [? ]. BO scaling has been associated with a bi-dimensionalization of the flow
due to stratification and the growth of the mixing layer leading to a confined dynamics [? ? ]. In the case of the
present computation, we note that the quasi 2D large-scale dynamics is reinforced by the presence of rotation, as
observed in the kinetic energy flux which is negative, corresponding to inverse transfer (see below).

We show in Fig. ?? (top right) the kinetic and potential energy spectra averaged over the time interval corresponding
to the peak of enstrophy and compensated by the BO scaling. This scaling seems to hold at large scales, up to k ⇡ 12
for the velocity, and on a shorter range for the temperature field. In Fig. ?? (bottom right) is shown the ratio of
kinetic to potential energies, each averaged over time, and their ratio is consistent with a k�4/5 law at large scale,
as predicted by Eq. (??) to within constants of order unity, whereas in the next regime, close to a Kolmogorov law,
this ratio is close to equipartition in these units. Fig. ?? (bottom left) displays several fluxes. The (forward) flux of
total energy (solid line) is approximately constant, at a level of ⇡ 0.022 in these two identified ranges, indicative of a
classical turbulent cascade. Note also that it becomes negative (reaching ⇡ �0.0085) at scales larger than the scale
of the initial conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade may
develop, as observed in [? ] and as it does when the forcing is placed at smaller scale (see e.g., [? ? ? ]).

We also show in Fig. ?? (bottom left) the energy flux decomposed into its kinetic (dashed) and potential (dash-
dotted) components, ⇧V,P , as well as the buoyancy flux, ⇧w⇢, (dotted line), defined in wavenumber space as:

⇧w⇢(k) =
k0=kX

k0=0

X

k0<|k00|<k0+1

Re(ŵ(k00)⇢̂(k00)⇤) , (15)

where ŵ(k) and ⇢̂(k) are the Fourier coe�cients for the vertical velocity and the scalar, respectively. The first two
fluxes, ⇧V,P , correspond to a scale–by–scale analysis of the two non-linear flux terms, ⇢u ·r⇢ and u · [u ·r]u, whereas
the buoyancy flux concerns the energetic exchanges between the velocity and density fluctuations. The sum of the
kinetic enstrophy at its peak (see Fig. ??) plus the kinetic energy flux, ⇧v(k = 1) ⇡ �0.01 is ⇡ 0.0024, which is in
excellent agreement with the nearly constant value of ⇧v in the region k 2 [4, 20] seen in this figure. Furthermore, it
can be seen that, as hypothesized in the BO phenomenology, the potential flux to small scales is dominant, constant
and positive for a wide range of scales. The kinetic flux has a strong peak at wavenumbers smaller than k0. It is in
fact negative throughout the wavenumber range around the peak of enstrophy; this is likely due to the fact that the
buoyancy flux acts as a source of energy for the velocity in a wide range of scales.

We present the time average of ⇧w⇢ in Fig. ?? (bottom left, dotted curve), where it is seen that it is, in fact,
comparable to the total energy flux, and can serve potential as a kinetic energy source. We note that large temporal
fluctuations in the buoyancy flux are observed; they correspond to gravity waves directly a↵ecting vertical motions.

Finally, we can evaluate the wavenumber, KBO, at which the transition to a Kolmogorov spectrum EV (k) ⇠

"
2/3
V k�5/3 is taking place, in the framework of the BO scaling, by equating the two spectra at that scale. This leads
immediately to

KBO ⇠ "
3/4
P "

�5/4
V . (16)

Vertical buoyancy flux: 
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FIG. 4. Data for run B on a grid of 5123 points with balanced initial conditions (see Sec. IV B). (a) Temporal evolution of
kinetic and potential energies (solid and dashed lines) and of total dissipation (dotted line, see also Fig. 1). (b) Time evolution
of kinetic energy spectra compensated by k11/5. The solid line is the spectrum averaged over the time interval t 2 [4.8, 5.2]
corresponding to the peak in enstrophy. (c) Time evolution of potential energy spectra compensated by k7/5. The solid line is
the spectrum averaged over the same time interval. (d) Energy fluxes as in Fig. 3(d) for this new run, averaged over the same
time interval. In the inset is plotted, the ratio of kinetic to potential energy spectra, each averaged again over the same time
interval.

which leads in Fourier space to the initial condition we seek for the scalar fluctuations, namely,
#̂ = �i(kz/N)P̂.

Even though the initial conditions are di↵erent, the parameters of run B are kept similar to
those of run A, except for the smaller Reynolds number because of the reduced resolution. They are
specifically N = 13.2,N/ f = 4.95,⌫ =  = 3.2 ⇥ 10�4. The temporal dynamics of this run leads at
the peak of dissipation to Re ⇡ 6600, Fr ⇡ 0.026, Urms ⇡ 0.85, Lint ⇡ 2.5, `z ⇡ 0.15, and RB ⇡ 4.4;
the resulting vertical Froude number is again only slightly smaller than one (⇡0.4).

In Fig. 4(a), we show the temporal evolution of the kinetic and potential energies and of the
total dissipation; they evolve in a manner very similar to run A, but with oscillations of smaller
amplitude, and with a slight progressive growth of potential energy. We note that, even though
there is no potential energy initially in run A, the presence of strong gravity waves builds it fast,
whereas in the initially geostrophically balanced case, that growth is more likely on the slower
nonlinear timescale. The kinetic and potential energy spectra are given, respectively, in Figs. 4(b)
and 4(c) together with their build-up in time due to non-linear interactions (see labels). The solid
lines give the spectra averaged temporally around the peak of enstrophy (t 2 [4.8, 5.2], an interval
representing the same number of gravity wave periods as in run A). Furthermore, the spectra are
compensated by the respective expected spectral laws for a Bolgiano-Obukhov scaling. It appears
remarkably accurate again in this case. The fit to the spectral index for the kinetic energy is ⇡ � 2.3
over the wavenumber range k 2 [2, 16], close to the reference slope indicating BO scaling, and the
fit for the potential energy in the same range is ⇡ � 1.5. At this lower resolution, the small-scale
Kolmogorov-like spectrum is not realized, the energy decaying faster at large wavenumbers. The fits
thus give spectral indices that are slightly further from the BO prediction than for run A; this may be

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded
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Interplay	of	waves	and	eddies	
•  Field X(k) = [ui(k), θ(k)] (i = 1, 3) decomposition on 0 & wave (+/-) modes 

of frequency σ (Leith, 1980; Bartello, 1995; ... Use δ=divHuH & ωz ): 

    X(k) = A0(k)X0(k) + A+(k)X+(k) + A−(k)X−(k) 
Linear (slow) dynamics is geo. & hydro. balanced, no vertical velocity and 
with all (linear) potential vorticity (since σ ΠL =0, Smith Waleffe 2002) 

	
•  E0 = ⟨u2

0 + θ0
2⟩/2 = Σk|A0(k)|2 = ΣkE0(k)  

•  EW = ⟨u2
w + θw

2 ⟩/2 = ΣkEW (k) = Σk[|A+(k)|2 + |A-(k)|2 ] = Σk [E+(k) + E-(k)]		

	
	

Corentin Herbert + 2014, 2015



4096  normal mode decomposition of total energy spectrum at peak 
RB=32

Susan Kurien, private communication, 2014



Normal mode decomposition of the total energy spectrum at peak, RB=32

Susan Kurien, private communication
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Figure 4. Wave-, vortical- and kh = 0 (wave) mode spectra for B-series δ = 1, Fr ≃ 0.002 flows with
(Ro, N/f ) as indicated, at τ nl = 50 non-linear times. The VSHF (excluding the forcing scales) are
not significant at these early times. (a) B4: Ro = 0.0091; N/f = 4. (b) B8: Ro = 0.016; N/f = 8.
(c) B16: Ro = 0.032; N/f = 16. (d) B32: Ro = 0.064; N/f = 32.

3.2. Equal time data analysis

Since our flows are run out to different non-linear times (see Figure 1) we first compare
B4–B32 at equal time τ nl ≈ 50 (the latest time for B32). Layered structure has emerged
in the wave modes in all four cases (left column of Figure 3). The vortical component
shows very weak structures for B4, becoming more distinct for higher values of Ro (B8,
B16, B32, right column of Figure 3). From these early time visualisations we may conclude
qualitatively, that: (1) layering is set up at early times in all cases; (2) for relatively small
N/f (Ro ≃ 4Fro) the layers observed in the vortical component of the flow are not very
distinct, and the magnitudes of the vortical and wave components are comparable; (3) for
larger N/f (Ro ≥ 8Fro) the layered structure becomes more distinct in the vortical mode and
the magnitude of the vortical component becomes much larger than the wave component;
and (4) fine-scale layered structure in the vertical increases in the wave component as Ro
increases, but the magnitude of the wave component becomes sub-dominant to the vortical.
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6403 forced N/f=4, t=50
Ro=0.009, hyper visc.



Normal mode decomposition
5123 runs
             Re~ 104

             Ro=0.038, N/f= ½  
             Fr-0.076, RB~50

Marino et al., 2015



Mesophere Lower Thermosphere (MLT) run
N/f=137,  Fr = 0.067, Ro = 9.2, Re ≃ 12000 and RB = 53, 10243 grid

.ωmag



Interplay	of	waves	and	eddies	
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10243 res.

No forcing
.k0 ~2.5

θ(t=0)=0



TABLE I: Parameters of the DNS on grids of 10243 points, with Id the identification of runs following Table I in [78], in which Fr, N/f and Re were already given.
All other entries are defined in §II; with 2⇡/kM the smallest resolved scale and ⌘ the Kolmogorov dissipation length, k⌘/kM is a measure of the resolution of the runs.
Length-scales denoted `⇤ are unresolved by the grid (`⇤ > 2⇡ or `⇤ < 2⇡/kM ⇡ 0.018). Finally, kinetic energy dissipation is adimensionalized (r✏ = ✏V /✏D).

Id Fr R! N/f Re k⌘/kM ✏D r✏ Lint LB `Oz `Ze Id Fr R! N/f Re k⌘/kM ✏D r✏ Lint LB `Oz `Ze

1 .0013 13.5 100 10905 .53 .27 .018 2.57 .02 .0001⇤ .100 34 .0884 57.1 7 8525 .73 .20 .09 2.32 1.29 .115 2.14

2 .0023 11.5 50 9895 .50 .20 .02 2.60 .038 .00025⇤ .090 35 .0921 483 50 11016 .96 .22 .086 2.12 1.22 .109 38.5*

3 .0061 12.4 20 10678 .49 .23 .015 2.64 .10 .00097⇤ .086 36 .099 815 94 7717 .74 .22 .088 2.09 1.30 .122 110.*

4 .0064 60.9 98 9270 .52 .22 .02 2.40 .097 .001* 1.08 37 .0991 605 69 7718 .75 .22 .088 2.09 1.30 .121 70.*

5 .0073 26.6 31 13945 .64 .23 .035 2.49 .115 .0012* .206 38 .0999 44.8 4.95 8200 .75 .20 .10 2.28 1.429 .142 1.57

6 .0116 36.9 26 14679 .68 .25 .012 2.56 .187 .002* .30 39 .1004 976 94 10747 .98 .23 .091 2.07 1.30 .124 113.*

7 .0119 346. 250 13504 .68 .26 .018 2.38 .178 .0026* 10.4* 40 .1007 725 69 10754 .98 .23 .090 2.07 1.31 .124 72.*

8 .0127 60. 50 8933 .53 .22 .023 2.35 .187 .003* 1.126 41 .1017 899 69 16226 1.33* .236 .090 2.06 1.32 .126 73.*

9 .0210 15.4 7 11079 .53 .23 .021 2.72 .358 .007* .140 42 .1332 28.6 2.5 7563 .76 .198 .108 2.12 1.77 .213 .828

10 .0215 53.9 22 13449 .69 .24 .02 2.41 .325 .007* .680 43 .1361 58.7 4.95 7603 .79 .21 .12 2.10 1.80 .231 2.53

11 .0225 11.7 4.95 10977 .54 .204 .026 2.78 .39 .01* .106 44 .1401 84.8 7 7442 .80 .21 .12 2.05 1.81 .235 4.35

12 .0262 503 175 12044 .73 .243 .026 2.22 .36 .01* 22.3* 45 .1422 120.3 10 7328 .80 .217 .12 2.02 1.81 .236 7.39*

13 .0280 14.5 4.95 10722 .56 .020 .031 2.74 .482 .014* .158 46 .1632 958 60 9576 1.07* .22 .136 1.91 1.96 .292 136.*

14 .0301 966 312 10522 .74 .22 .03 2.05 .388 .012* 64.5* 47 .1884 1882 199 2521 .39 .17 .148 1.98 2.35 .392 1100*

15 .0333 523 137 13020 .77 .26 .025 2.31 .534 .014* 22.6* 48 .2015 470 25 8718 1.09* .21 .153 1.80 2.28 .40 50.*

16 .0365 1048 250 13217 .77 .26 .028 2.33 .53 .017* 67.1* 49 .2016 943 50 8757 .84 .21 .154 1.80 2.29 .40 141.*

17 .0377 14.4 3.7 10534 .59 .20 .039 2.71 .64 .025 .176 50 .2059 3244 199 6272 .84 .19 .163 1.85 2.39 .438 1229*

18 .0409 60. 15 9843 .61 .22 .040 2.52 .648 .026 1.51 51 .2582 957 40 8576 1.13* .22 .169 1.76 2.86 .598 151*

19 .0422 25.7 4.95 14841 .78 .22 .038 2.65 .703 .028 .315 52 .3408 59.7 2.5 5024 .87 .21 .171 1.53 3.27 .791 3.07

20 .0453 341 67 12790 .81 .25 .038 2.30 .654 .027 14.8* 53 .3797 961 30 7117 1.16* .22 .187 1.53 3.65 .973 160.*

21 .0474 418 94 8882 .63 .24 .042 2.29 .682 .030 27.7* 54 .3966 1879 106 1984 .40 .17 .176 1.66 4.13 1.09 1199*

22 .0480 501 94 12366 .82 .24 .042 2.27 .685 .031 28.1* 55 .4688 78.6 2.5 4500 .89 .207 .186 1.42 4.18 1.24 4.89

23 .0487 622 94 18586 1.11* .24 .042 2.26 .690 .031 28.2* 56 .5539 936 20 7139 1.17* .21 .203 1.55 5.41 1.82 162.*

24 .0490 1251 187 18550 1.11* .25 .042 2.25 .691 .031 80.2* 57 .6154 109 2.5 5012 .88 .179 .215 1.60 6.19 2.25 8.88*

25 .0494 1047 187 12769 1.26* .26 .038 2.27 .706 .030 77.5* 58 .8937 153 2.5 4708 .89 .197 .203 1.49 8.35* 3.56 14.1*

26 .0566 33.1 4.95 13730 .85 .20 .059 2.57 .914 .053 .589 59 1.25 1005 10 6473 1.21* .243 .199 1.39 10.9* 5.46 173.*

27 .0568 13.9 2.5 9748 .63 .185 .052 2.61 .930 .051 .197 60 2.69 853 4.95 4019 .81 .31 .186 1.42 24.0* 17.0* 190.*

28 .0606 327 50 11649 .86 .23 .054 2.19 .835 .047 16.8* 61 5.48 894 2.5 4258 .84 .34 .191 1.45 50.* 51.* 202.*

29 .0621 60.3 9.9 9639 .67 .22 .057 2.48 .968 .057 1.78

30 .0669 98623 13750 11486 .88 .23 .059 2.16 .910 .057 91863 62 0.012 1 1 15225 .69 .278 .012 2.56 .195 .002* 1

31 .0671 1000 137 11728 .88 .24 .057 2.18 .921 .057 91.7* 63 .0268 1 1 11804 .73 .264 .026 2.17 .366 .01* 1

32 .0731 336 42 12211 .90 .24 .062 2.24 1.03 .069 18.6* 64 .0669 1 1 11487 .88 .23 .059 2.16 .910 .057 1

33 .0861 47.4 4.95 12111 .94 .19 .094 2.37 1.283 .116 1.294 65 .2015 1 1 8797 1.09* .21 .153 1.81 2.29 .40 1
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Pr=1
•  Also, N=0 ; or f=0
•  Forced or not @ k0 ,
helical or not or random
•  Various 2.5 ≤ k0 ≤ 50
•  1000 ≤ Re ≤  55000
•   ~ 1 ≤ RB ≤ 300

Present rot-strat data (Mostly Marino -ENS, & Rosenberg, SciTex)

CPU: NSF (XSEDE & Yellowstone/NCAR); DOE
Thanks to Corentin
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the general characteristics depicted in the canonical
spectrum in Fig. 1; the total KE has a shallow slope at the
largestwavelengths (above a few thousandkilometers; i.e.,
the global scale), a steeper-slope region at wavelengths
between a few thousand kilometers and several hundred
kilometers (the synoptic scale), followed by a transition to
a shallower-sloped region for wavelengths less than sev-
eral hundred kilometers (mesoscale and finer scales). The
slopes steepen again in the tails, indicating the effect of
model filters on the kinetic energy (Skamarock 2004).
Figure 3 plots the slope of themodel-derived spectra given
in Fig. 2. The slope of the tropospheric spectrum is slightly
greater than23 in the synoptic scale and slightly less than
25/3 in the mesoscale. The mesoscale transition region
occurs at somewhat longerwavelengths in the stratosphere
compared to the troposphere. The shallower slope in the
global scale is evident, but it is difficult to assign or com-
pute any approximate value to the slope given the few
wavenumbers present and the spread in their KE. The
stratospheric spectrum is similar to the tropospheric
spectrum, with a transition to a slightly shallower-sloped
mesoscale beginning at slightly longer wavelengths.
The MPAS spectra are similar to observationally an-

alyzed spectra presented by Nastrom and Gage (1985,
their Fig. 3) using GASP observations and by Lindborg
(1999, their Fig. 7) using the MOZAIC observations.
Specifically, the simulated and observed spectra show
transitions between a steeper synoptic-scale slope to a
shallower mesoscale slope at wavelengths of several
hundred kilometers. The transitions between synoptic

and mesoscale are gradual and a distinct transition
wavelength or wavenumber is not identifiable, as is the
case with the observational analyses. The mesoscale
transition in the MPAS KE spectra occurs at somewhat
smaller wavelengths than that deduced from observa-
tions. There is evidence for the shallower-sloped spectra
in the global scales in the observational analyses—for
example, in Boer and Shepherd (1983, their Fig. 1) and
Nastrom and Gage (1985, their Fig. 3). In the modeled
KE spectra, there is more energy in the synoptic scales in
the troposphere than in the stratosphere while there is
a similar amount of energy in the mesoscale in the two
regions. Nastrom and Gage (1985, their Fig. 6) show
small differences in the KE levels in the troposphere
compared to the stratosphere in the mesoscale, with
some indication that only small differences persist into
the synoptic scale, although their analyses are truncated
at a wavelength of 800 km. Also note that we have
computed our stratospheric KE at levels well above the
tropopause (16–18 km MSL), while the GASP flight
levels contributing to the analysis for stratospheric
spectra were just above the tropopause.
Figure 4 depicts the variance (spectra) for potential

temperature from the 3-km global MPAS simulation for
the troposphere and stratosphere. It shows a similar
wavenumber dependence as found in the KE spectra,
consistent with the observational analysis of Nastrom
and Gage (1985, their Fig. 3). The stratospheric poten-
tial temperature spectrum showsmore variance than the
troposphere at all wavelengths except those between

FIG. 2. Kinetic energy spectra from the 3-km MPAS global simulation for the (left) troposphere and (right) stratosphere.
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the general characteristics depicted in the canonical
spectrum in Fig. 1; the total KE has a shallow slope at the
largestwavelengths (above a few thousandkilometers; i.e.,
the global scale), a steeper-slope region at wavelengths
between a few thousand kilometers and several hundred
kilometers (the synoptic scale), followed by a transition to
a shallower-sloped region for wavelengths less than sev-
eral hundred kilometers (mesoscale and finer scales). The
slopes steepen again in the tails, indicating the effect of
model filters on the kinetic energy (Skamarock 2004).
Figure 3 plots the slope of themodel-derived spectra given
in Fig. 2. The slope of the tropospheric spectrum is slightly
greater than23 in the synoptic scale and slightly less than
25/3 in the mesoscale. The mesoscale transition region
occurs at somewhat longerwavelengths in the stratosphere
compared to the troposphere. The shallower slope in the
global scale is evident, but it is difficult to assign or com-
pute any approximate value to the slope given the few
wavenumbers present and the spread in their KE. The
stratospheric spectrum is similar to the tropospheric
spectrum, with a transition to a slightly shallower-sloped
mesoscale beginning at slightly longer wavelengths.
The MPAS spectra are similar to observationally an-

alyzed spectra presented by Nastrom and Gage (1985,
their Fig. 3) using GASP observations and by Lindborg
(1999, their Fig. 7) using the MOZAIC observations.
Specifically, the simulated and observed spectra show
transitions between a steeper synoptic-scale slope to a
shallower mesoscale slope at wavelengths of several
hundred kilometers. The transitions between synoptic

and mesoscale are gradual and a distinct transition
wavelength or wavenumber is not identifiable, as is the
case with the observational analyses. The mesoscale
transition in the MPAS KE spectra occurs at somewhat
smaller wavelengths than that deduced from observa-
tions. There is evidence for the shallower-sloped spectra
in the global scales in the observational analyses—for
example, in Boer and Shepherd (1983, their Fig. 1) and
Nastrom and Gage (1985, their Fig. 3). In the modeled
KE spectra, there is more energy in the synoptic scales in
the troposphere than in the stratosphere while there is
a similar amount of energy in the mesoscale in the two
regions. Nastrom and Gage (1985, their Fig. 6) show
small differences in the KE levels in the troposphere
compared to the stratosphere in the mesoscale, with
some indication that only small differences persist into
the synoptic scale, although their analyses are truncated
at a wavelength of 800 km. Also note that we have
computed our stratospheric KE at levels well above the
tropopause (16–18 km MSL), while the GASP flight
levels contributing to the analysis for stratospheric
spectra were just above the tropopause.
Figure 4 depicts the variance (spectra) for potential

temperature from the 3-km global MPAS simulation for
the troposphere and stratosphere. It shows a similar
wavenumber dependence as found in the KE spectra,
consistent with the observational analysis of Nastrom
and Gage (1985, their Fig. 3). The stratospheric poten-
tial temperature spectrum showsmore variance than the
troposphere at all wavelengths except those between

FIG. 2. Kinetic energy spectra from the 3-km MPAS global simulation for the (left) troposphere and (right) stratosphere.
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Fig. 3. Left: Temporal evolution of kinetic energy (and of its dissipation in the insert) for three sets of runs. Top: Constant and
low Ro < 0.15, with Bu = Ro/Fr varying between ≈ 2.5 and 20; runs ID are 3, 9, 13, 17 and 27 in ascending Froude number
(see table 1). Middle: Relatively constant Fr at low values, with resulting moderate RB (0.065 < Fr < 0.1, 50 < RB < 100,
runs 31, 33, 34, 36 and 38). Bottom: Same as above but with higher Fr and RB (0.16 < Fr < 0.4, 200 < RB < 400, runs 46,
48–50, 54). Right: Evolution of the total energy and of the ratio of kinetic to potential energy in the insert, for the same runs
as in the left column. Note the relatively constant EV /EP ratios throughout the runs with rather different parameter values,
as it settles at the time of maximum dissipation, after initial oscillations due to the early dominance of the waves.

•  The kinetic to potential energy ratio
~3, is insensitive to parameters

•  Peak of dissipation occurs at approx.
.the same time except at very low Fr

•  The rate at which energy dissipates
.increases with RB
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FIGURE 3. Variation of non-dimensional diapycnal scalar diffusivity eK⇢ = K⇢/ with the
buoyancy Reynolds number Reb = "k/⌫N2. eK⇢ has been calculated based on (2.7) due to
WD96 or our proposed reformulation in (2.23). This figure illustrates a compilation of 24
DNS runs with various combinations of Re, Ri0 and Pr as tabulated in table 1 and are all
associated with the fully turbulent phase of the flow evolution as defined in the text for
the KH ansatz;E, Pr = 1; ⇥, Pr = 2; +, Pr = 4;A, Pr = 8; ⇤, Pr = 16. Bigger (smaller)
markers are associated with higher (lower) Rib. Time increases roughly as Reb decreases.

number to be Pr = 7, then the DNS results at Pr = 8 in figure 3 suggest that
the range of dimensional turbulent diapycnal diffusivity K⇢ reaches approximately
K⇢ ⇡ 10�4 m2 s�1, which lies within the range of estimated turbulent diffusivities in
the ocean (Waterhouse et al. 2014).

It is useful to compare our DNS results for K⇢ with those reported in figure 1
of SKIF. Based on their numerical results, SKIF categorized the turbulent mixing
into three regimes in terms of Reb: (i) a ‘molecular’ regime for Reb < 7, (ii) an
‘intermediate’ regime corresponding to stationary turbulence for 7 < Reb < 100 and
(iii) an ‘energetic’ regime for Reb > 100. Note that the DNS results of SKIF are based
on a constant value of Pr = 0.72 whereas figure 3 includes DNS runs with various
Pr. Thus we have normalized eK⇢ by Pr in figure 4, thereby effectively plotting
K⇢/⌫ (where K⇢ is dimensional) versus Reb. Despite the intrinsic differences between
the geophysically relevant flows we are analysing (e.g. see Smyth et al. 2001 for a
discussion concerning such relevance) and the more highly constrained homogeneous
problem of SKIF and their calculation methodology for K⇢ (which is based on
the mixing length model), there exist striking similarities between our figure 4 and
their figure 1. In order to better highlight the similarities, figure 4 also includes
the approximation of diapycnal diffusivity due to Osborn (1980), eKosb

⇢ = 0.2 Pr Reb,
as discussed in § 2.1.2 (shown by a dashed line), as well as the line of best fit
taken from SKIF for their ‘energetic’ regime, namely eK⇢ = 2 Pr Re1/2

b (shown by a
solid line).

Similar to SKIF, a transition to a noticeably different regime of turbulent mixing is
also evident in our simulations at approximately Reb = O(102). However, unlike SKIF,
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FIGURE 10. Variation of turbulent Prandtl number Prt = Km/K⇢ with Reb = "k/⌫N2. Prt
has been calculated based on our proposed formulation in (3.18) for all of the DNS cases
investigated. For symbol conventions, refer to figure 3.

of large-scale model development. What is clearly evident, however, is that the
parameterizations embedded in larger scale numerical models should not simply rely
on the assumption of a constant value of Prt. They should instead attempt to identify
the relevant mixing regime and therefore employ a dynamic representation of Prt
based on Reb. Because the maximum Reb in oceanic flows extends to Reb = O(105),
further DNS analysis of weakly stratified turbulence will be necessary in order to
develop an appropriate parameterization for Prt.

5. Summary and conclusion
Diapycnal diffusivity, K⇢ , is a means of characterizing the irreversible vertical

mixing of density-stratified turbulence and plays a crucial role in estimating the
amount of upwelling associated with the abyssal waters required for the closure
of the meridional overturning circulation of the oceans (Wunsch & Ferrari 2004).
Yet, it seems that unambiguous and accurate representations of this quantity
have not been employed in the subgrid-scale parameterizations embedded in the
large-scale circulation models of the oceans or for the purpose of interpreting oceanic
microstructure measurements. Rather, canonical models due to Osborn & Cox (1972)
or Osborn (1980) have been favoured for such purposes despite their well-established
limitations, apparently due to their simplicity. In this paper, we have reformulated the
diascalar representation of K⇢ due to WD96 into a more familiar ‘Osborn-like’
expression (see (2.23)) which essentially inherits the simplicity of the Osborn
formula but avoids its limiting assumptions. The main difference however is that the
correct representation of instantaneous mixing efficiency, E , should replace the flux
Richardson number Rf in the Osborn formula. Such a slight modification accurately
distinguishes the irreversible process of mixing (at smallest scales) from the reversible
process of stirring (at larger scales) as required for a correct representation of K⇢ .
Furthermore, the new formulation formally generalizes the length scale arguments of
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Fig. 1. Total scalar diffusivity of the data used in the present paper. DNS data from SKIF have been omitted here. S and T denote
salinity and temperature as the active scalar, respectively. DNS data from Smyth et al. (2005) are an average of the decaying
turbulence in runs 2–4.

2.2. Parameterization inferred from the ratio of the turbulent length scales

Smyth et al. (2001; hereafter SMC) argue from DNS that the ratio LO/LT is an indicator of the age of
the turbulence and increases with time following the onset of turbulence within a flow. Rather than
parameterizing mixing with Reb, SMC  define the mixing efficiency

! = 0.33

(
LO

LE
3/4LT

1/4

)−0.63

≈ 0.33
(

LO

LT

)−0.63
(4)

where LE and LT are the Ellison and Thorpe scales, respectively. SMC  found a ∼60% increase in the
diffusivity with Eq. (4) compared to the classic Osborn method (Eq. (1)). Contrary to SKIF, the SMC
model suggests the unique existence of a single K" regime.

2.3. Parameterization inferred from the variance of the temperature fluctuation equation

Similar to Eq. (2),  based on TKE budget, the Osborn–Cox model (Osborn and Cox, 1972; hereafter OC)
used a scalar budget to relate the vertical diffusivity to the rate of suppression of the scalar variance,

expressed for heat under isotropic conditions as #T = 6D(∂T ′/∂z)2, leading to

K" = #T

2(∂T̄/∂Z)
2 (5)

The OC method is widely used in oceanography.

2.4. Parameterization inferred from the scalar properties

Jackson and Rehmann (2003, hereafter JR) and Rehmann and Koseff (2004, hereafter RK) conducted
laboratory experiments over 10 ≤ Reb ≤ 106 for fluids with Pr = 7 and 700 using a towed grid (RK) and
an oscillating comb (JR). These studies found K" to be a function of Reb and showed that the traditional
Osborn model (Eq. (1),  e.g., linear dependence on Reb) was only valid for Reb < O(100); above which
an Energetic regime formed where Rf decreases and a 0.6 power law (Eq. (3))  is a better fit to the data
(RK).

In general, the laboratory and numerical research above (Section 2.1)  show agreement for Kp∼Ren
b ,

with n < 1 at ‘high’ Reb and n = 1 at ‘low’ Reb. However, the form of the parameterization for the



Conclusions and questions
•  Large resolutions allow for scale separation and thus to distinguish between 

(multiple) regimes within a flow
•  Evidence for Bolgiano-Obukhov scaling at large scale and complex interplay 

between velocity and buoyancy modes & fluxes
•  Local instabilities and strong local variations (dissipation, PV, …)

•  Waves and eddies partition and local small-scale dynamics
•  Role of rotation, inverse cascade, of walls and B.C.  in the BO scaling?
•  Role  of forcing (3D vs. 2D, vortices vs. waves, …), of large-scale friction, of non-

local interactions & large-scale instabilities?

^ How much in RST and how is it structured and characterized: Intermittency in 
velocity itself? Generalized model for intermittency of V in RST? Helicity?

^ Role of temperature fluctuations, balanced or not, in I.C. or forcing?
^ Reynolds number in mixing: does mixing saturate?

^ What models for vorticity lanes in RST?

^ How many transitions in RB=ReFr2? (4k, Fr~.15, Ro=.7, RB~1200; or Fr~.25, Ro=.5, RB~3100)



    Some questions in Rotating Stratified Turbulence

^ How much in RST and how is it structured and characterized:
•  Intermittency in velocity components themselves?
•  Generalized model for intermittency of V in RST?
•  Helicity?

^ Role of 
^ temperature fluctuations, balanced or not, in I.C. or forcing?
^ Reynolds number in mixing: does mixing saturate?

^ What models for vorticity lanes in RST?

^ How many transitions in RB=ReFr2? (4k, Fr~.15, Ro=.7, RB~1200; or Fr~.25, Ro=.5, RB~3100)
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“In this unfolding conundrum of life and history there is such a 
thing as being too late ... We may cry out desperately for time to 
pause in her passage, but time is adamant to every plea and 
rushes on. Over the bleached bones and jumbled residue of 
numerous civilizations are written the pathetic words: 
 "Too late". ‘’

Martin Luther King Jr, 1967
After Clive Hamilton, Utopias in the Anthropocene,  American Sociological Association, Denver 2012



Geophysical	High	Order	Suite	for	Turbulence	(D.	Gomez	&	P.	Mininni)	
	
•  Pseudo-spectral DNS, periodic BC cubic (also 2D), single/double 

precision; Runge-Kutta for incompressible Navier-Stokes, SQG & 
Boussinesq. Includes rotation, passive scalar(s), MHD + Hall term 

•  GHOST, from laptop to high-performance, parallelizes linearly up to 130,000 
processors, using hybrid MPI/Open-MP (Mininni et al. 2011, Parallel Comp. 37) 

•  LES: alpha model & variants (Clark, Leray) for fluids & MHD 
•  Helical spectral (EDQNM) model for eddy viscosity & eddy noise 
•  Lagrangian particles (w. A. Pumir) 

•  Gross-Pitaevskii & Ginzburg-Landau (PM+M. Brachet)	
•  Data,	forced:	20483	Navier-Stokes	and	15363	&	30723	with	rotaEon,	both	w.	or	w/o	

helicity.	RotaEng	straEfied	turbulence	w.	20483	grids	forced	at	intermediate	scale	
•  Data,	spin-down	MHD:15363	random	+	61443	ideal	&	20483	w.	T-Green	symmetry	
•  Decaying	rotaEng	straEfied	flow,	N/f~5,	Re=5.5	104,	20483	,	30723	&	40963	grids.	
•  Decaying	rotaEng	straEfied	flow,	2.5<N/f<300,	Re	up	to	1.8	104,		RB	up	to	105,	10243	grid.	

																									mininni@df.uba.ar												duaner62@gmail.com																							marino@ucar.edu	
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