Low dimensional turbulence

F. Daviaud

in collaboration with A. Chiffaudel, B. Dubrulle P.-P. Cortet, P. Diribarne, D. Faranda, E. Herbert, L. Marié, R. Monchaux, F. Ravelet, B. Saint-Michel, C. Wiertel and V. Padilla, Y. Sato (Hokkaido University) VKS team & SHREK team

Laboratoire SPHYNX Service de Physique de l'Etat Condensé CEA Saclay - CNRS UMR 3680 Université Paris Saclay

Turbulence: 2 non reconcilable viewpoints

• Landau (1944):

Turbulence = superposition of a growing number of modes with incommensurate oscillation frequencies, resulting from an infinite number of bifurcations with increasing Re

• Ruelle and Takens (1971):

Turbulent states = described by a small number of degrees of freedom, i.e. by a low dimensional "strange attractor" on which all turbulent motions concentrates in a suitable phase space

Lorenz attractor (63)

3

Turbulence and symmetry breaking (1)

- Transition to turbulence: succession of symmetry breakings/bifurcations of the flow
- → 2 main types of transitions:
 supercritical, continuous
 Ex: Rayleigh Bénard convection or Taylor Couette flow
- subcritical, discontinuous, finite amplitude solutions
 Ex: plane Couette or Taylor Couette flow

Transition to turbulence in Taylor Couette

Andereck et al. JFM 86

laminar stationary pattern oscillating pattern chaos turbulence

5

End of story?
 Re

Transition to turbulence in Taylor Couette

Laminar/mean state stationary pattern oscillating pattern chaos turbulence

6

End of story?

Re

Turbulence and symmetry breaking (2)

- at "large" Reynolds number Re:
 - \rightarrow Turbulence is fully developed (K41, intermittency..)
 - \rightarrow Symmetries are statistically restored (*Frisch 95*)
- However, at large Re, observation of new symmetry breakings which concern the flow statistics :

Turbulent bifurcations, instabilities...chaos?

 \rightarrow in natural systems

 \rightarrow in laboratory experiments

Atmospheric circulation

Weeks et al. Science 278, 1598 (1997)

Fig. 1. Atmospheric pictures of (**A**) zonal and (**B**) blocked flow, showing contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a contour interval of 60 m for both panels. The plots were obtained by averaging 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to 19 January 1963; the data are from the National Oceanic and Atmospheric

Administration's Climate Analysis Center. The nearly zonal flow of (A) includes quasi-stationary, small-amplitude waves (32). Blocked flow advects cold Arctic air southward over eastern North America or Europe, while decreasing precipitation in the continent's western part (26).

Zonal

Blocked

Persistent states, abrupt transitions. Scales: ~500 km, 2-5 years. Known since 1960s (Taft 1972).

Global oceanic circulation and D/O events

NATURE | VOL 419 | 12 SEPTEMBER 2002 | www.nature.com/nature

Figure 3 Temperature reconstructions from ocean sediments and Greenland ice. Proxy data from the subtropical Atlantic⁸⁶ (green) and from the Greenland ice core GISP2 (ref. 87; blue) show several Dansgaard–Oeschger (D/O) warm events (numbered). The timing of Heinrich events is marked in red.

Grey lines at intervals of 1,470 years illustrate the tendency of D/O events to occur with this spacing, or multiples thereof.

Erratic inversions of the magnetic field

VKS experiment

11

Large scale bifurcations in turbulence

Natural systems characterized by :

- strongly turbulent flows
- several *mean large scale* states
- transitions/bifurcations towards or between these mean states on temporal scales >> fluctuations.

Simple model experiments:

- stability of the turbulent flow ?
- transitions:
 - \rightarrow low dimensional dynamical systems ?
 - \rightarrow chaos?

Turbulent bifurcations in lab experiments

- geophysical experiments: Weeks et al. Science (1997)
- RB convection at high Ra : Chilla et al., EPJB (2004) - Roche et al. NJP (2010) - Grossmann and Lohse, POF (2011) - Alhers et al. NJP (2011) - van der Poel et al. (2011)
- turbulent rotating RB convection: Stevens et al. PRL (2009) - Weiss et al., PRL (2010)
- spherical Couette flow Zimmermann et al. (2011)
- Taylor-Couette flow Lathrop et Mujica (2006)
- von Karman flows VKS (2007)

de la Torre and Burguete (2007, 2012)

• wake behind a sphere Cadot et al. (2013)

Turbulence or chaos?

However

- no complete theory of these transitions
- all tentative to find the strange attractor of a turbulence state (atmosphere or climate) failed so far:
 - Nicolis 84: yes
 - Grassberger 86: no
 - Lorenz 91: unlikely!

I therefore see no reason to believe that an extensive weather or climate system possesses a low-dimensional attractor. At the same time, I do not feel that most of the real-data studies are meaningless; they merely need to be reinterpreted. As suggested in one study⁵, the atmosphere might be viewed as a loosely coupled set of lower-dimensional subsystems. Perhaps the procedure, as practised, attempts to measure the dimension of a subsystem. Turbulence or chaos?

End of the story?

abandon all hope to apply tools from dynamical systems theory to a turbulent flow, except for transition to turbulence?

No!

\rightarrow in this talk:

try to reconcile the 2 points of view in fully developed turbulence

A model experiment: the von Karman flow

- flow between 2 rotating impellers
 Re = 10² to 10⁶ (water and water-glycerol) 10⁷ (Sodium) and 10⁸ (liquid Helium)
- inhomogeneous and intense turbulence
- different forcings:

Measurements

SPIV
 →3 velocity components
 in a vertical plane

 \rightarrow up to 50 000 fields

→ freq max=15 Hz

 \rightarrow resolution = 2 mm

Transition to turbulence in von Karman

laminar stationary pattern oscillating pattern chaos turbulence

First bifurcations and symmetry breaking

meridian plane: poloïdal recirculation

Re = 90 Stationary axisymmetric

Re = 185 m = 2 ; stationary **Re = 400** *m = 2 ; periodic*

Time spectra as a function of Re

Re = 1000Chaotic

2000 < Re < 6500

Bimodal distribution : signature of the turbulent shear

Transition to turbulence: azimuthal kinetic energy fluctuations

Ravelet et al. JFM 2008

Turbulent von Karman at Re> 5000

Instantaneous Flow

Mean flow

Transition to turbulence in von Karman

laminar stationary pattern oscillating pattern chaos turbulence

End of story?

Eckhaus type instability (1)

+ sense, fully turbulent regime, Kp constant, and yet...

Energy spectrum (Re= 10⁶)

Evolution of $k_{\rm x}\, {\rm with}\; {\rm Re}$

Herbert et al. Phys. Fluids 2013

Eckhaus type instability (2)

- \rightarrow parity change (m change)
- cf. laminar/turbulent transition
- related to the number of mean turbulent vortices in the shear layer

Re= 10^4 : von Karman turbulent flow « stable » (no m change up to Re = 10^6) ...

Transition to turbulence in von Karman

laminar stationary pattern oscillating pattern chaos turbulence Eckhaus type instability turbulence* End of story?

Transition of the turbulent mean state

 \rightarrow response to an external symmetry breaking: $\theta \neq 0$

sense -: abrupt transition

Ravelet et al. Phys. Rev. Lett. 2004 Saint-Michel et al. Phys. Rev. Lett. 2013 NJP 2014 Thalabard et al. NJP 2015

sense +: soft transition

Cortet et al. Phys. Rev. Lett. 2010 J. Stat. Mech. 2011

Soft transition

Global angular momentum $I = f(\theta)$

Global angular momentum $I = f(\theta)$

Divergence of the susceptibility around $Re = Re_c \approx 40\,000$ $\rightarrow phase transition?$

Analogy with ferromagnetic systems

Control parameter: turbulence « temperature » $\left| T \sim 1 / \log Re
ight|$

Castaing, J. Phys. II (1996)

Mean field critical divergence

 $\chi \propto |T - T_c|^{-1}$

 $\chi \propto \left| \frac{1}{\log Re} - \frac{1}{\log Re_c} \right|_{4}^{-1}$

with Re_c = 40 000

Abrupt transition

coexistence of the 3 states only in turbulent regimes

Stability of the symmetric state

Statistics on 500 runs for different θ

Cumulative distribution functions of bifurcation time t_{bif} :

 $P(t_{bif} > t) = A \exp(-(t - t_0)/\tau)$

t₀f ~ 5
τ : characteristic bif. time

Stability of the symmetric state

40

Turbulent bifurcation

Evolution of ΔKp for different Reynolds

Re= 800 - 3000 - 5800 - 15300 - 195000

42

Ferromagnetism

Evolution of ΔKp for different Reynolds

Re= 800 - 3000 - 5800 - 15300 - 195000

44

Ferroturbulence

In liquid Helium (SHREK experiment)

Collaboration with ENS Lyon, SBT, Neel, LEGI, LUTh (EuHIT)

Transition to turbulence in von Karman

Conjugate parameter: y

Conjugate parameter: θ

Turbulent bifurcation: speed control

Speed control: forbidden γ zone

Turbulent bifurcation: torque control

torque control: new mean states accessible 50

Turbulent bifurcation: torque control

3 states (attractors) (s^{*}) (b^{*}) (i^{*}) in the θ pdf and the joint (f₁,f₂) pdf

Torque control: mean velocity fields

Stability of turbulent states depends on forcing protocoll

Experimental time series

Experimental turbulent attractor

γ=0.067

Torque control: chaos?

Yes but shift of paradigm to stochastic chaos

Classical chaos	Stochastic chaos
Instantaneous velocity	Mean velocity
Bifurcation = Breaking of rotational symmetry	Bifurcation = Breaking of R _π symmetry of mean flow
Chaos	Chaos with noise
Attractor	Stochastic Attractor N=dimension of attractor+ dimension of noise
N=dimension of attractor	

Modelisation: stochastic Duffing attractor

minimal dynamical system model (not reducible to SDE)

- autonomous oscillator at frequency f_0
- dynamics of $\gamma(t)$ induced by the turbulent fluctuations represented by a stochastic force.
- $\theta \rightarrow$ θ symmetry excludes the presence of a quadratic nonlinearity

Stochastic Duffing equations, with two variables x (exp: θ) and $y = \dot{x}$, with random forcing z (exp: dynamics of $\gamma(t)$) obeying:

$$dx = ydt$$

$$dy = (-ay + x - x^3 + z\sin\omega t)dt$$

$$dz = -\phi(z - \mu)dt + \sigma dW_t,$$

Control parameter: μ (exp: γ)

Comparison Turbulent & Duffing attractor

Comparison with Duffing attractor

Effective dimension:

- Turbulent attractor =10
- Duffing attractor = 9

Lyapounov exponents (*z* deterministic Duffing)

Low dimensional turbulence?

→ in turbulent von Karman flows:

- instability of turbulent states f(Re, symmetry, forcing)
- multiplicity of solutions, depending on forcing protocol
- possible transitions between these solutions:
 1st or 2nd order like
- emergence of low dimensional dynamics
- turbulent chaotic attractors

Chaotic turbulence?

