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Recent Wave Turbulence books Book with focus on experiment

Book with focus on experiment
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Recent Wave Turbulence books Book with focus on theory and new applications

Book with focus on theory and new applications
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Recent Wave Turbulence books Book on foundations of fluid dynamics

Foundations of fluid dynamics, inc. waves and turbulence
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Well, anyway ...

What is Wave Turbulence?

Wave Turbulence is a non-equilibrium statistical system of many randomly
interacting waves. Kinetic equations of Wave Turbulence describe
evolution of the wave energy in Fourier space.

Sergey Nazarenko University of Warwick, UK Wave Turbulence: foundations and challenges 5 / 34



Examples of Wave Turbulence Ocean waves

Wave Turbulence on ocean surface

Kinetic equations of Wave Turbulence are used for the wave weather
forecasts e.g. at ECMWF.
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Examples of Wave Turbulence Water waves in laboratory

Waves in laboratory flumes

Gravity and capillary waves are the most actively studied in laboratory for
validating the Wave Turbulence predictions.
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Examples of Wave Turbulence Magneto-Hydrodynamic waves

Alfvén Wave Turbulence in solar wind

Alfvén Wave Turbulence is at the heart of MHD turbulence theory.
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Examples of Wave Turbulence Drift Wave Turbulence

Waves in fusion plasmas

Drift Wave Turbulence is the cause of the anomalous energy and particle
losses. Its interaction with zonal flows leads to Low-to-High transitions.
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Examples of Wave Turbulence Quantum Wave Turbulence

Superfluid Turbulence

Kolmogorov cascade is taken over by Kelvin Wave Turbulence at the
classical-quantum crossover scale. Bottleneck effect.
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Examples of Wave Turbulence “Liquid light” systems

Optical Wave Turbulence

Optical Wave Turbulence: interacting waves and solitons
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Challenges in Wave Turbulence

Challenges

WT assumes small nonlinearity, which may not be uniformly valid
across scales. How can we prove that what we see in experiment is
WT? What is the role of interaction with strongly turbulent scales,
coherent structures?

Does the phase-amplitude randomness survive over nonlinear time?

Controlling dissipation in experiment.

To validate steps of the WT theory, one has to deal with joint PDF of
wave modes. Tricky infinite-box limit.

Unclear relation between the solutions of the kinetic equations, like
Kolmogorov-Zakharov (KZ), and solutions for joint PDF.

Non-stationary solution of the kinetic equations.
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Schematic structure of Wave Turbulence

Wave Turbulence maze

expansion into the N−mode
4. Substitute the weak−nonlinearity

generating function and average
assuming that initial field is RP.

Weak nonlinearity expansion.
3. Wave amplitude at intermediate time.

Interaction representation.
2. Fourier space. 

1. Nonlinear wave equation

when amplitudes are correlated.
11. Study multi−mode statistics

i.e. not only near t=0.
generating function over the nonlinear time,
This validates use of the equation for the N−mode

description of WT.

generating function & 

and 

N−mode PDF.

intermittency.

to be RPA.

1−mode PDF, 1−mode moments, spectrum.

the nonlinear time.

KZ spectra.

  by weak nonlinearity limit.
5. Take large−box limit followed

6. Evolution equation for the N−mode

7. Check that RP survives over the nonlinear time. 

8.Take initial field

9. Check that RPA survives over

10. Derive equation for reduced objects, e.g.

12. Cascade states.

14. Advance mathematical

WT Life Cycle.

wavebreaking into the WT description.
15. Including coherent structures and

13. Non−Gaussian scalings
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Master example: Petviashvilli equation

Master example: Petviashvilli equation

Petviashvilli equation descrives drift waves in inhomoheneous plasmas in
the limit kρs � 1 in presence of scalar (thermal) nonlinearity:

∂tψ = ∇2∂xψ − ψ∂xψ , (1)

where ψ = ψ(x , y , t) is a real function of two space coordinates (x , y)
and time t.
Petviashvilli equation conserves ”energy”:

E =
1

2

∫
ψ2 dx = const,

and ”potential enstrophy”:

Ω =
1

2

∫ [
(∇ψ)2 +

1

3
ψ3

]
dx = const.

Note: Hamiltonian is actually given by Ω, not E :

∂tψ = −∂x
δΩ

δψ
.
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From the physical space to Fourier

Fourier space

Let us consider a double-periodic system, x ∈ T2, with period L in both
directions Using Fourier coefficients

ak(t) =
1

L2

∫
Box

ψ(x.t)e−ik·xdx , (2)

rewrite Petviashvilli equation as

ȧk + ikxk
2ak + i

∑
1,2

a1a2k2xδ
k
12 = 0, (3)

where dot is for time derivative, a1,2 ≡ ak1,2 , and δk12 = δ(k− k1 − k2).
In the linear limit,

ak = Ake
−iωk t , (4)

where Ak ∈ C is a time-independent amplitude of the wave with
wavevector k, and the frequency of this wave is

ωk = kxk
2 . (5)
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From the physical space to Fourier

Interaction Representation

Let us separate the time scales by introducing interaction representation
variables as

bk =
ak e

−iωk t

ε|kx |1/2
, (6)

where we introduced parameter ε > 0 for easier nonlinearity power
counting.
We now have:

i ḃk = ε sign(kx)
∑
1,2

V12kb1b2δ
k
12e

iωk
12t , (7)

where we have introduced the interaction coefficient

V12k =
1

2

√
|kxk1xk2x | . (8)

and ωk
12 = ωk − ω1 − ω2. Note that the linear term ωkak is gone, and

that there is explicit time-dependence in the nonlinear term. We have not
made any approximations yet.
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Statistical objects.

Discrete k-space

Since we consider a periodic system, x ∈ T2, the wavenumbers are
discrete, k ∈ Z2 (hereafter for simplicity L = 2π). Let the total number of
modes be finite and bounded by some kmax (eg. a dissipation cutoff at
high wavenumbers). Denote by BN the set of all wavenumbers kl inside
the k-space box of volume (2kmax)2:

Figure: Set of active wave modes, BN ⊂ Z2.
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Statistical objects.

Amplitude-Phase representation

We write the wave function in terms of its amplitude and phase

a(k, t) =
√
Jkφk ,

where Jk ∈ R+ is the intensity and φk ∈ S1 is the phase factor of the
mode k. By S1 we mean the unit circle in the complex plane, i.e.
φk = e iϕk :

ξ
l

d

ξ
l

dξ
l

ξ
l

Re

Im

+

0

l
φ
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Statistical objects.

Probability Density Functions.

Denote the set of all Jk and φk with k such that k ∈ BN as {J, φ}.
The probability of finding Jk inside (sk, sk + dsk) ⊂ R+ and finding φk on
the arch (ξk, ξk + dξk) ⊂ S1 (see Figure) is given in terms of the joint PDF
P(N){s, ξ} as

P(N){s, ξ}
∏

k∈BN

dsk|dξk| . (9)

M-mode joint PDF (M < N):

P(M)
k1,k2,...,kM

=

 ∏
k 6=k1,k2,...,kM

∫ ∞
0

dsk

∮
S1

|dξk|

P(N){s, ξ} . (10)

N-mode amplitude-only PDF obtained by integrating out all the phases,

P(N,a){s} =

∏
k∈BN

∮
S1

|dξk|

P(N){s, ξ} . (11)
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Shades of randomness

RP fields.

Single-mode amplitude PDF, P(1,a) ≡ P(a)
k (sk), is obtained via integrated

out all phases ξ, and all amplitudes s but one, sk.
Definition. Random phase (RP) field: all φ are independent random
variables (i.r.v.) each uniformly distributed on S1.
Thus for a RP field

P(N){s, ξ} =
1

(2π)N
P(N,a){s} .

Note: RP (in addition to the weak nonlinearity) is enough for the lowest
level WT closure leading to an equation for the N-point amplitude-only
PDF. However, it is not sufficient for the one-point WT closure, in
particular the wave kinetic equation, and we need to assume something
about the amplitudes too.
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Shades of randomness

Random Phase and Amplitude (RPA) field definition

1 All the amplitudes and all the phases are i.r.v.,

2 All the phases are uniformly distributed on S1,

3 For RPA fields, the PDF has a product-factorized form,

P(N){s, ξ} =
1

(2π)N

∏
kl∈BN

P(a)
j (sj). (12)

We have changed the standard meaning of RPA which usually stands for
“Random phase approximation”. In our definition of RPA:

1 The amplitudes are random, not only the phases.

2 RPA is defined as a property of the field, not an approximation.

RPA does not mean Gaussianity because it does not specify P(a)
j (sj). For

Gaussian fields P(a)(sj) = 1

〈Jj〉 exp

[
− sj

〈Jj〉

]
. WT does not require

Gaussianity, only RPA, so we can study non-Gaussian intermittent fields!
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The spectrum

Wave spectrum

The wave spectrum is defined as follows

nk = 〈Jk〉 .

For the infinite-box limit,

〈ψk , ψ
∗
k ′〉 = nkδ(k− k′) ,

where δ(x) is the Dirac’s delta function.
In terms of the generating function and the PDF, the wave spectrum can
be expressed as follows,

nk =

∫ ∞
0

skP(a)(sk)dsk .
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Assumptions

Assumptions in the wave turbulence theory

Weak nonlinearity.

Initial RP statistics.
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Wave Turbulence closure

Equation for the PDF.

We have the following equation for the PDF,

Ṗ = 8π

∫
kjx ,kmx ,knx>0

|Vmnj |2δ(ωj
mn)δjm+n

[
δ

δs

]
3

(
sjsmsn

[
δ

δs

]
3

P
)

dkjdkmdkn,

[
δ

δs

]
3

=
δ

δsj
− δ

δsm
− δ

δsn
.

No phases: phase randomness propagated. Amplitudes not separated:
amplitude randomness only in coarse-grained sense.
Multiplying by sk and integration over all sj , we get the kinetic equation:

ṅk = 4π

∫
nk1nk2nk3nk

[
1

nk
+

1

nk3

− 1

nk1

− 1

nk2

]
×

δ(ωk + ωk3 − ωk1 − ωk2)δ(k + k3 − k1 − k2) dk1dk2dk3.
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Turbulent cascades and Kolmogorov-Zakharov solutions

Hydrodynamic turbulence, Richardson cascade

Energy injection

Viscous dissipation

Figure: Richardson cascade in the physical space

νk k
f

Energy cascade

Energy injection Viscous dissipation

Figure: Richardson cascade in the k-space space
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Turbulent cascades and Kolmogorov-Zakharov solutions

Kolmogorov spectrum

νk k
f

Energy cascade

Energy injection Viscous dissipation

Figure: Richardson cascade in the k-space space

Richardson cascade states are characterized by Kolmogorov spectrum

E = CP2/3k−5/3.
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Turbulent cascades and Kolmogorov-Zakharov solutions

WT cascade. Kolmogorov-Zakharov spectrum

νk k
f

Energy cascade

Energy injection Viscous dissipation

Figure: WT cascade in the k-space space

WT cascade states are characterized by Kolmogorov-Zakharov (KZ)
spectrum

E = CPσkν .

KZ spectrum can be anisotropic, e.g. for Petviashvili E ∼ kνxx k
νy
y .
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Solutions for the PDF

Solutions for the PDF

An arbitrary function of the un-averaged energy E =
∫
ωksk dk is is a

steady solution,
Ṗ(E ) = 0.

This property is common for all Liouville-type N-particle equations.
An important special case is given by the exponential function,

P = e−β
∫
ωk sk dk,

where β is an arbitrary constant. To understand the meaning of this
solution, let us write its discrete version:

P =
N∏
j

e−βωj sj .

This solution describes a thermodynamic equilibrium, corresponding to N
statistically independent Gaussian-distributed modes with a mean intensity
given by a Rayleigh-Jeans spectrum, nk ∼ 1/ωk .
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Solutions for the PDF

Solutions for the PDF

This kind of solutions were already discussed in the very first WT paper by
Peierls. However, if we replace RJ spectrum with another stationary
solution of the kinetic equation, the KZ spectrum, then it is easy to see
that the result is not a solution of the PDF equation-not even an
approximate solution! Thus the KZ solution obtained in the one-mode WT
closure is valid only in some ”coarse-grained” sense. However, it remains
to be understood what this coarse-graining is in terms of the multi-mode
solutions. It is also possible that for describing the KZ states in the
multi-mode space one has to invoke amplitude fluxes.
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Non-stationary solutions

Evolution of the one-mode PDF

Evolution equation for the one-mode PDF:

∂P(t, s(k))

∂t
+

∂F

∂s(k)
= 0, (13)

with the probability flux

F = −s
(
γP + η

∂P

∂s

)
(14)

and

ηk(t) = 4πε2

∫
|W k1

23 |2δ(∆k)δ(∆ω)n1n2n3dk1dk2dk3,

γk(t) = 8πε2

∫
|W k1

23 |2δ(∆k)δ(∆ω)
[
n1(n2 + n3)− n2n3

]
dk1dk2dk3.

Gaussian fields with P = 1
nk

exp
[
− sk

nk

]
satisfy the stationary equation

(with F = 0). But it is never a solution for evolving systems! What is?
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Non-stationary solutions

Self-similar evolution of the spectrum. MHD turbulence.
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Non-stationary solutions

Self-similar evolution of the spectrum. MHD turbulence.
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Non-stationary solutions

Self-similar evolution of MHD turbulence. Ongoing work
with Nick Bell et al

Here x∗ = 2.82. Simulations of the KE give x∗ = 2.33 (Galtier et al 2000).
Differential approximation of the first order gives x∗ = 2.33; Differential
approximation of the second order gives x∗ = 2.088 (Thalabard et at
2015).
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Summary

Discussion.

Wave turbulence theory is an effective theory for describing turbulent
states in a wide range of applications where random interacting waves
play an important role. Examples: water waves, MHD waves, plasma
waves, nonlinear optics, quantum fluids and BEC.

WT is used for the operational sea wave forecast, for explaining
turbulence in solar wind, for understanding LH transition in tokamaks.

There remain challenges in implementing WT experimentally and in
rigorous mathematical validation of the derivation steps.

Need to extend WT on systems where random weak waves coexist
with strongly nonlinear coherent structures, e.g. vortices and solitons.

Incorporating WT as a part of description of complex systems, e.g.
coarse-grained description of anomalous transport of energy,
momentum and particles, subgrid modelling, etc.
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