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Chapter 0

Reminders about Fourier analysis

Also read:

� Bracewell, R. “The Fourier Transform and its applications”

� Goodman, J.W. “Introduction to Fourier Optics”, chap 2

� Roddier, F., “Distributions et transformation de Fourier” (in french)

0.1 Some useful functions

0.1.1 The rectangle function

The rectangle function is useful to describe objects like slits or diaphragms whose transmission is 0 or 1. It is defined as

Π(x) = 1 if |x| < 1
2

Π(x) = 0 otherwise
(1)

−0,5

 

0,5

0,25

x

1,0

1,0

0,75

0,5

0,0

0,0−1,0

Some other definitions may be found in the literature (in particular for the value at x = ± 1
2 ). A rectangular function of

width a centered at x = b will express as Π

(
x− b
a

)
.

2D rectangle function

We consider functions of 2 variables x and y. The quantity

f(x, y) = Π(x) = Π(x) 1(y)

describes a strip of width 1 parallel to the y axis : it is invariant by translation along y (see Fig. 1). The notation 1(y)
stands for a function which value is 1 whatever y.
A two dimensional rectangle function of width a in the x direction and b in the y direction expresses as

f(x, y) = Π
(x
a

)
Π
(y
b

)
(2)

We whall use this function throughout this course to express the transmission coefficient of rectangular slits.
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Figure 1: 2D rectangle function f(x, y) = Π
(
x
a

)
Π
(
y
b

)
of width a in the x direction and b in the y. Left: perspective plot as

a function of x and y. Right: gray-level representation in the (x, y) plane.

Figure 2: 2D circular function f(x, y) = Π
(
ρ
d

)
of diameter d. Left: perspective plot as a function of x and y. Right:

gray-level representation in the (x, y) plane.

2D circular function

We consider the following quantity:

f(x, y) = Π
(ρ
d

)
(3)

with ρ =
√
x2 + y2. Its value is one for ρ < d

2 , i.e. inside a disc of diameter d. This function will be used to describe
transmission coefficient of circular diaphragms.

0.1.2 Dirac delta distribution
The Dirac delta distribution (also known as “Dirac impulse”) δ(x) can be defined as
a function which is 0 if x 6= 0 and infinite for x = 0. Its integral is 1:∫ ∞

−∞
δ(x) dx = 1 (4)

and this last relation shows that δ(x) has the dimension of [x]−1. The δ distribution
is often represented as a vertical arrow centered as x = 0, of height 1, as in the graph
on the right.

The Dirac δ is sometimes defined as the limit of a rectangular function of width ε → 0 and height 1
ε so that its integral

remains 1:

δ(x) = lim
ε→0

1

ε
Π
(x
ε

)
(5)

An important property is:
f(x) δ(x− a) = f(a) δ(x− a) (6)

where δ(x− a) is the Dirac impulse centered at x = a. Some other properties are:
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(x,y)δ

y

x a

b

x

y

(x−a,y−b)δ

Figure 3: Graphic representation of the 2D Dirac impulses. Left: δ(x, y). Right: shifted impulse δ(x− a, y − b) centered at
x = a, y = b.

� δ(ax) = 1
|a| δ(x) (for x 6= 0)

� δ(x) = d
dxH(x) where H(x) is the Heaviside distribution (1 if x > 0, 0 if x < 0).

2D Dirac impulse

We define the 2D Dirac distribution as
δ(x, y) = δ(x).δ(y) (7)

It is 0 in the whole plane (x, y) excepted at the origin where it is infinite. Its integral is 1:∫∫ ∞
−∞

δ(x, y) dx dy = 1 (8)

The 2D Dirac impulse can be considered as the limit of a rectangular function of width ε in both directions x and y (the
surface of the rectangle being ε2):

δ(x, y) = lim
ε→0

1

ε2
Π
(x
ε

)
Π
(y
ε

)
(9)

It is also the limit of a 2D circular function of diameter ε (and of surface s = π ε
2

4 )

δ(x, y) = lim
ε→0

1

s
Π
(ρ
ε

)
(10)

The 2D Dirac distribution is often used in optics to describe the amplitude of a point-source, or the transmission coefficient
of a pin-hole (diaphragm with very small diameter).

0.1.3 Dirac comb

The Dirac comb is a periodic succession of Dirac impulses:

Ø(x) =

∞∑
n=−∞

δ(x− n) (11)

its period is 1 in the standart form above, its graph (on the right) looks like a
comb, hence its name.

0 1 2 3−1−2 x

1

−3

It is possible to define a comb of period a, having all δ impulses located at x = na (n integer) as

Ø
a

(x) =

∞∑
n=−∞

δ(x− na) =
1

|a|
Ø

(x
a

)
(12)

The comb is of fundamental importance in signal processing: it is the tool used to describe mathematically the operation of
sampling. In optics it is used to describe periodic structures such as diffraction gratings.
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2D Dirac comb

The 2D Dirac comb (sometimes denoted as “Dirac brush”) is the product of 2
combs in directions x and y:

Ø
a

(x).Ø
b

(y) =

∞∑
n=−∞

∞∑
p=−∞

δ(x− na, y − pb) (13)

with a and b the periods in x and y directions.

0.2 Convolution

0.2.1 Definition

The convolution product of two functions f and g is defined as

h(x) = (f ∗ g)(x) =

∫ ∞
−∞

f(x′)g(x− x′)dx′ (14)

It can be interpreted as a weighted moving average of the function f (g(−x) being the weighting function). In signal
processing, g is denoted as “impulse response”. If g is a function such as a Gaussian or a rectangle, the convolution will
result into a smoothing of the details of f .

2D convolution

The 2D convolution between two functions of (x, y) is

h(x, y) = (f ∗ g)(x, y) =

∫∫ ∞
−∞

f(x′, y′)g(x− x′, y − y′)dx′ dy′ (15)

Note that we use the same symbol ∗ for 1D and 2D convolutions, but the two operations are different (single integral for 1D,
double integral for 2D). The 2D impulse response is sometimes denoted as “point-spread function”. The 2D convolution has
a lot of applications in image processing; for example convolving an image f(x, y) by a 2D rectangle function will blur the
image.

0.2.2 Properties

Here are some properties of the convolution:

� It is commutative (f ∗ g = g ∗ f) and associative (f ∗ (g ∗ h) = (f ∗ g) ∗ h))

� The convolution by 1 gives the integral of the function: f(x) ∗ 1(x) =
∫
f(x)dx (this can be useful for certain types of

calculations).

� Dilatation: (f ∗ g)(λx) = |λ|f(λx) ∗ g(λx)

� Convolving by δ(x) has no effect (f(x) ∗ δ(x) = f(x)). This property is the origin of the term “impulse response” for
g in the relation (f ∗ g).

� Convolving by a shifted impulse δ(x − a) translates the function: f(x) ∗ δ(x − a) = f(x − a). This property is very
important and useful for Fourier optics calculations.

� Convolution by a comb:

f(x) ∗Ø
a

(x) =

∞∑
n=−∞

f(x− na) (16)

this is a periodization of the function f (each impulse of the comb is replaced by f , see Fig. 4).

7



Figure 4: The convolution of a function f by a comb results into a periodization of f (Eq 16). Left, the comb of period a.
Center: the function f (here a rectangular function). Right: result of the convolution.

Figure 5: Property of translation of the convolution (Eq. 17): a function f(x, y) (on the left) centered at the origin is
convolved by a Dirac impulse centered at (x = a, y = b). The result (on the right) is the shifted function f(x − a, y − b)
centered at (x = a, y = b).

2D convolution

Most of the above properties apply to 2D convolution. In particular this one:

f(x, y) ∗ δ(x− a, y − b) = f(x− a, y − b) (17)

which is illustrated by the Figure 5. A translation of a function inside the (x, y) plane can be expressed as a convolution by
a shifted 2D Dirac impulse. This is the origin of the name “point-spread function” (PSF) for the impulse response at 2D
(a 2D Dirac impulse is a infinitely sharp point in the (x, y) plane, and the convolution transforms this point into a larger
function f).
A corollar of this property is:

f(x, y) ∗
∑
n

Anδ(x− xn, y − yn) =
∑
n

Anf(x− xn, y − yn) (18)

which is illustrated by Figs. 6 and 7.

Figure 6: Illustration of Eq. 18. (a) gray-scale plot of a sum of 2D Dirac impulses with different amplitudes. (b) gray-
scale plot of the point-spread function f(x, y) (f(x, y) = 1 inside an octogonal domain, 0 elsewhere). (c) result of the 2D
convolution of the two functions. As predicted by Eq. 18, the result is a sum of shifted PSFs (each impulse of the sum is
replaced by the PSF, with the same amplitude An) When PSFs overlap, the result is the sum of overlapping terms.
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Figure 7: Image of portion of sky with a defocused optics: each star has the shape of a small disc, with a central obstruction.
This is a typical illustration of a 2D convolution as in Fig. 7. The perfect image f(x, y) is composed of a sum of 2D impulses
(ideal image of a point-source). It is convolved by a Point-Spread function g(x, y) which is the small disc (two examples are
in the red boxes). The fuzzy objet on the top right is the Dumbbell nebula, which is also convolved by the PSF (so that
every point of the nebula is replaced by the PSF, resulting in a blurred image).

0.3 Fourier transform

0.3.1 Definition

The Fourier transform of a function f(x) is defined as

f̂(u) =

∫ ∞
−∞

f(x) e−2iπux dx (19)

it can be noted as f̂(u) or F [f ]. It is sometimes denoted as frequency spectrum, since it comes from the idea that a function

can be developped as a weighted sum of complex sinusoids. The value f̂(u) represents the wheight of the sinusoid of frequency
u in the sum.
If x is a length, the variable u is a spatial frequency, having the dimension of [x]−1. The spatial frequency of a space-
dependent sinusoidal function (for ex. cos(2πux)) plays the same role as the temporal frequency for a time-dependent

function, it represents the number of periods per unit of length. The dimension of f̂(u) is

[f̂(u)] = [f ].[x] (20)

A very important property is
F [exp(2iπu0x)] = δ(u− u0) (21)

i.e. the Fourier transform of a complex sinusoid of frequency u0 is a Dirac impulse centered at u0. This emphasizes the fact
that the complex sinusoid has only one frequency in its spectrum.
The inverse Fourier transform is

f(x) =

∫ ∞
−∞

f̂(u) e+2iπux du = F−1[f̂ ] (22)

2D Fourier transform

The 2D Fourier transform of a function of two variables f(x, y) is defined as

f̂(u, v) =

∫∫ ∞
−∞

f(x, y) e−2iπ(ux+vy) dx dy (23)

The variables u and v are spatial frequencies associated to the space variables x and y. They define, in the (u, v) plane, a

“spatial frequency vector” ~σ =

∣∣∣∣ uv (see Fig. 8). As for the 1D Fourier transform, the idea is that a function f(x, y) can be

expressed as a sum of 2D complex sinusoids of any period and any orientation.
The 2D inverse Fourier transform is

f(x, y) =

∫∫ ∞
−∞

f̂(u, v) e+2iπ(ux+vy) dx dy (24)
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Figure 8: Representation of a 2D sinudoidal function f(x, y) = cos(2π~σ.~ρ) = cos(2π(ux + vy)). (a): perpective plot. (b):
grayscale plot. The frequency vector ~σ = (u, v) has been drawn on the right plot; it is perpendicular to the ridge lines of the
function, its modulus is the frequency of the oscillations measured along the unit vector σ̂. Its components are u = 1

a , v = 1
b

with a and b the periods in the x and y directions.

0.3.2 Properties

Here is a short list of useful properties of the 1D Fourier transform

� Dilatation: a function which is large in the direct plane will be narrow in the Fourier plane

f
(x
a

)
F−→ |a| f̂(au) (25)

� Convolution and product:

f(x) . g(x)
F−→ f̂(u) ∗ ĝ(u)

f(x) ∗ g(x)
F−→ f̂(u) . ĝ(u) (26)

� Derivation: the Fourier transform of the derivative of a function is a high-pass filtering in the frequency plane (product
by u which strengthens the high frequencies)

df

dx

F−→ 2iπuf̂(u)

x . f(x)
F−→ − 1

2iπ

df̂

du
(27)

� Value at frequency u = 0: it is the integral of the function (this property in sometimes interesting to calculate integrals)

f̂(0) =

∫ ∞
−∞

f(x) dx (28)

� Sign change for the variable x:

f(−x)
F−→ f̂(−u) (29)

� Complex conjugate:

f(x)
F−→ f̂(−u) (30)

� Double Fourier transform:

f(x)
F−→ f̂(u)

F−→ f(−x) (or:
ˆ̂
f(x) = f(−x)) (31)

� Fourier transform of real-valued functions: they are Hermitian, with an even real part and an odd imaginary part. It
can be summarized by

is f(x) real , then f̂(u) = f̂(−u) (32)
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� Real/even functions: if a function f is real and even, then

– Its Fourier transform is also real and even (no imaginary part)

– Its inverse transform is equal to its direct transform: F−1[f ](u) = F [f ](u)

� Parseval theorem: ∫ ∞
−∞
|f̂(x)|2 dx =

∫ ∞
−∞
|f̂(u)|2 du (33)

Specific properties for 2D Fourier transform

Separable functions: if a function h(x, y) is the product of two functions of one variable f(x) and g(y), then its 2D Fourier
transform is also a separable function, i.e.

h(x, y) = f(x) . g(y)
F−→ ĥ(u, v) = f̂(u) . ĝ(v) (34)

This property must not to be confused with the Fourier transform of a product of functions of the same variables
(Eq. 26): here the variables for f and g are different, and the 2D transform is a double integral.

Radial functions of the type f(x, y) = f(ρ) with ρ =
√
x2 + y2: the 2D Fourier transform f̂(u, v) is also a radial function

F (q) with q =
√
u2 + v2. It takes the following form known as Hankel transform:

F (q) = f̂(u, v) =

∫ ∞
0

2πρ f(ρ) J0(2πqρ) dρ (35)

where J0(x) is the zero order Bessel function. The Hankel transform f(ρ) −→ F (q) is not to be confused with the 1D
Fourier transform (Eq. 19).

0.3.3 Table of Fourier transforms

1D transforms

Function Fourier transform Function Fourier transform
δ(x) 1(u) 1(x) δ(u)

δ(x− a) exp(−2iπua) exp(2iπmx) δ(u−m)

Heaviside H(x)
H(x) = 1 if x > 0, 0 otherwise

1

2
δ(u) + VP

(
1

2iπu

)
Π
(x
a

)
|a| sinc(πua)

with sinc(x) =
sin(x)
x

Øa(t) Ø(au) Triangle Λ
(x
a

)
Λ(x) = 1− |x| if |x| ≤ 1, 0 otherwise

|a| sinc2(πua)

cos(2πmx)
1

2
δ(u−m) +

1

2
δ(u+m) sin(2πmx) −1

2
δ(u−m) +

1

2
δ(u+m)

exp
(
−
∣∣∣x
a

∣∣∣) 2|a|
1 + 4π2a2u2

1

1 +
(
x
a

)2 π|a| exp (−2π|au|)

exp

[
−π
(x
a

)2
]

|a| exp(−πa2u2) exp

[
iπ
(x
a

)2
] √

ia2 exp(−iπa2u2)

2D transforms (radial functions)

Function Fourier transform Function Fourier transform

δ(ρ− a) 2πaJ0(2πaq)
1√

ρ2 + a2

exp(−2πaq)

q

Π
(ρ
d

)
2S jinc(πdq)

jinc(x) =
J1(x)
x S = πd2

4

(ρ
d

)
(ρ) = Π(ρ) ∗ Π(ρ)

4S jinc(πdq)2

exp(−πρ2) exp(−πq2) exp

(
iπ
ρ2

a2

)
ia2 exp(−iπa2q2)

with ρ =
√
x2 + y2 and q =

√
u2 + v2
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Chapter 1

Reminders about diffraction

Also read : Goodman, ‘Introduction to Fourier Optics”, chap. 3, 4

1.1 Some particular kinds of waves

1.1.1 Monochromatic waves

Electromagnetic waves are created by the propagation of an electromagnetic field ( ~E, ~B). Both are vectorial quantities, but
the majority of diffraction phenomena can be explained by considering the scalar quantity E(x, y, z, t) (either the electric or
magnetic field, without vectors).
A monochromatic wave is characterised by a time dependence in e−iωt. It has only one pulsation ω (with ω = 2πν where
ν is the temporal frequency, typically 1015 Hz for visible light). It also has a unique wavelength λ = c

ν (or λ = c
nν if the

refraction index is n) whose dimension is a length (in m).
The field E(x, y, z, t) takes the following form of a product of a spatial term and a temporal term:

E(x, y, z, t) = ψ(x, y, z) e−iωt (1.1)

where ψ(x, y, z) (or ψ(~r)), the spatial part of the field, is called the complex amplitude of the vibration. In what follows we
will consider that all the waves are monochromatic, and will deal with complex amplitudes.

1.1.2 Plane waves

Wavefronts (i.e. surfaces where the electric field value is constant at a given time) are planes. The distance between two
consecutive wavefonts is the wavelength λ (two consecutive wavefronts are characterized by a 2π phase difference between
complex amplitudes in both planes).

We define the wave vector ~k = 2π
λ k̂. Its norm is 2π

λ and its unit vector k̂ is parallel to the direction of propagation (see
Fig. 1.1).

image : wikipedia

plane wavefront

wave vector

wavelength

Figure 1.1: Structure of a plane wave
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The electric field ~E of a monochromatic plane wave takes the form

~E = ψ0 e
i(~k.~r−ωt) Ê (1.2)

with ψ0 a constant [unit: V/m] and Ê a unit vector, perpendicular to ~k. Note that ~E is constant in a plane perpendicular

to ~k (i.e. wave planes are perpendicular to ~k, see Fig. 1.1).

We denote as α, β and γ the three components of the unit
vector k̂ (projections of k̂ onto the 3 axes as in the scheme
on the right). The wave vector expresses as

~k =
2π

λ
(αx̂+ βŷ + γẑ) (1.3)

with the condition
√
α2 + β2 + γ2 = 1 (k̂ is a unit vector).

The case (α = β = 0, γ = 1) corresponds to a propagation
parallel to the z axis.
With these notations, the complex amplitude of a monochromatic plane wave takes the form

ψ(~r) = ψ0 e
i~k.~r = ψ0 exp

[
2iπ

λ
(αx+ βy + γz)

]
(1.4)

It exhibits a phase term which is a linear function of coordinates (x, y, z).

Intensity It is the electromagnetic power per surface unit carried by the electromagnetic wave. It is proportional to the
square modulus of the complex amplitude

I = (Cte) |ψ(~r)|2 (1.5)

the multiplicative constant is generally taken as unity for a sake of simplicity.

1.1.3 Spherical waves

Wavefronts are concentric spheres (Fig. 1.2). If the center of these spheres is at the point (0, 0, 0), the complex amplitude
expresses as

ψ(~r) =
S0

r
eik.r or ψ(~r) =

S0

r
e−ik.r (1.6)

without vectors in the complex exponential. The sign + (resp. −) denotes a diverging (resp. converging) spherical wave:
the radius of the wave-spheres increase (resp decrease) with time. Note that

� The point r = 0 (center of the spheres) is singular, the field value diverges. It can be a point-source (case of a diverging
wave) or a point of focalisation (converging wave).

� The dimension of S0 is not that of an amplitude ([S0] = [ψ].[r], in V ).

Case of a spherical wave not centered at the origin: if we call ~r0 = (x0, y0, z0) the center of wave-spheres, a simple
translation allows to write the complex amplitude as:

ψ(~r) =
S0

|~r − ~r0|
e±ik.|~r−~r0| (1.7)

with |~r − ~r0| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.

13



Figure 1.2: Structure of a spherical wave.

Paraxial approximation

It is an important approximation in Fourier optics, the majority of
relations will be derived within this approximation. We consider
that the segment joining the source and the point at ~r is nearly
parallel to the z-axis, as illustrated by the scheme on the right. If
the source is at the origin, we have |x| � |z| and |y| � |z|, and
make the following approximation for r:

r ' |z|+ ρ2

2|z|
with ρ2 = x2 + y2 (1.8)

The complex amplitude in paraxial approximation (if the source is at the origin) becomes

ψ(~r) ' S0

|z|
e±ik|z|︸ ︷︷ ︸

plane wave

. exp

(
± iπρ

2

λ|z|

)
︸ ︷︷ ︸

phase curvature

(1.9)

It is the product of two terms

� A plane wave S0

|z| e
±ik|z| with wave-planes perpendicular to z,

� A quadratic phase term exp
(
± iπρ

2

λ|z|

)
which can be interpreted as a deviation from the plane wave. The wavefronts

associated to this term are parabolöıds (a parabolöıd is indeed the 2nd order approximation of a sphere). This term
in sometimes denoted as phase curvature because it is a pure phase term and in reference to the curvature of the
wavefronts (see Fig. 1.3).

Plots of the paraxial form of the spherical wave amplitude are shown in Fig. 1.4. In a plane z = Cte, it is a centro-symmetric
function whose real and imaginary part show concentric rings of characteristic size

√
λz (for z > 0).

For large z, the phase curvature vanishes and the spherical wave becomes plane. This happens when |z| � ρ2/λ (1m for
λ = 1µm and ρ = 1mm).

Validity of the approximation

The approximate expression for r in Eq. 1.8 is the leading terms of a Taylor expansion. The approximation is valid if the
following term is small:

r ' |z|+ ρ2

2|z|
+

ρ4

8|z|3
+ . . . (1.10)

The corresponding complex amplitude is

ψ(~r) ' S0

|z|
e±ik|z| exp

(
± iπρ

2

λ|z|

)
exp

(
± iπρ4

4λ|z|3

)
(1.11)
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Figure 1.3: Paraxial approximation of a spherical wave, in the case of z � ρ. In this example, z is positive and the wave is
diverging (+ sign in the complex exponentials). The spherical wave is the product of a plane wave under normal incidence

(blue wave-plane) and a correcting term (phase curvature eik∆, red wavefront) as written in Eq. 1.9. The quantity ∆ = ρ2

2z
is the path difference between blue and red wavefronts.

Figure 1.4: Plot of the complex amplitude ψ(x, y, z) = Cte exp
(
iπρ2

λz

)
of a spherical wave in paraxial approximation for fixed

z. (a) and (c): Real and imaginary parts as a function of ρ (in units of
√
λz). (b) and (d): Grey-level plot of the real and

imaginary parts in the (x, y) plane.
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The paraxial approximation (Eq. 1.9) is valid if the last term is close to unity, i.e. if

|z| �
(
ρ4

λ

) 1
3

(1.12)

In visible light (λ = 0.5µm) and for ρ=1mm this gives a few centimeters.

Case of a source at a position ~r0 = (x0, y0, z0): Making the variable change x → x − x0, y → y − y0, z → z − z0, we
obtain

ψ(~r) ' S0

|z − z0|
e±ik|z−z0| exp

(
± iπ[(x− x0)2 + (y − y0)2]

λ|z − z0|

)
(1.13)

1.2 Huyghens-Fresnel principle

Also read : Goodman, “Introduction to Fourier Optics”, chap 4.

1.2.1 Introduction

The Huygens-Fresnel principle describes the way a monochromatic wave is modified when it propagates into space (this
phenomenom is called diffraction). We shall consider a monochromatic wave of amplitude f0(x′, y′) in a plane taken as
origin, z = 0. This can be obtained, for example, by placing a screen of transmission t(x′, y′) (for example a slit or a
diaphragm) in the path of a monochromatic plane wave of complex amplitude A = Aeikz. In this case we simply have

f0(x′, y′) = A t(x′, y′) (1.14)

The observation is made at in a plane a distance z from the plane z = 0, as in the scheme below. Note that we use the
notations (x′, y′) for coordinates in the plane z = 0 and (x, y) in the observation plane. We suppose that the propagation is
made towards z > 0, which will be assumed for the rest of this course.

In the observation plane at a point P of coordinates (x, y, z), we denote as fz(x, y) the complex amplitude. This notation
emphasises the fact that is is a 2D structure in x and y, and that z is here a parameter. The Huygens-Fresnel principle show
that fz(x, y) expresses as a sum of complex amplitudes produced by all the points of f0(x′, y′)

fz(x, y) =
eikz

iλ

∫∫ ∞
−∞

f0(x′, y′)
exp (ik|~r − ~r′|)
|~r − ~r′|

dx′ dy′ (1.15)

where ~r = (x, y, z) and ~r′ = (x′, y′, 0). This integral is indeed a continuous sum of spherical waves centered at every point ~r′

on the plane z = 0 (Huyghens wavelets).

1.2.2 Paraxial approximation and Fresnel diffraction

When the paraxial approximation is valid, the above integral becomes

fz(x, y) =
eikz

iλz

∫∫ ∞
−∞

f0(x′, y′) exp

(
iπ

(x− x′)2 + (y − y′)2

λz

)
dx′ dy′ (1.16)

This paraxial form of the Huyghens-Fresnel principle is known as Fresnel diffraction and is valid for z �
(
d4

λ

) 1
3

with d the

size of the diffracting aperture (width of the function f0(x′, y′)).
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Figure 1.5: Geometry for the Fraunhofer diffraction by an aperture in the plane z = 0. x and y are coordinates in the
observation plane at large distance z from aperture plane. d is here the aperture diameter.

The equation 1.16 is a convolution relation, which we can note as:

fz(x, y) = eikzf(x, y) ∗Dz(x, y) (1.17)

where the term eikz expresses the propagation of a plane wave on the distance z, and

Dz(x, y) =
1

iλz
exp

(
iπ
ρ2

λz

)
with ρ2 = x2 + y2

is the complex amplitude of a spherical wave of center O. This convolution relation expresses fz(x, y) as the sum of spherical
waves produced by point-sources in the plane z = 0.
The function Dz is the “amplitude point-spread function” of the Fresnel diffraction. It is a normalized function:∫∫ ∞

−∞
Dz(x, y) dx dy = 1

1.2.3 Far field: Fraunhofer diffraction

Fraunhofer diffraction (or diffraction at infinity) is the limit of the Fresnel diffraction when the distance z tends towards
infinity (far-field hypothesis). The equation (1.16) writes as:

fz(x, y) =
eikz

iλz

∫∫ ∞
−∞

f0(x′, y′) exp

(
iπz

λ

[
ρ2

z2
+
ρ′2

z2
− 2

xx′ + yy′

z2

])
dx′ dy′ (1.18)

with ρ2 = x2 + y2 and ρ′2 = x′2 + y′2. Since z −→ ∞, we assume ρ � z and ρ′ � z and neglect the second order terms in
ρ2

z2 and ρ′2

z2 in the exponential term. The above equation simplifies in

fz(x, y) =
eikz

iλz

∫∫ ∞
−∞

f0(x′, y′) exp
(
−2iπ

[
x′
x

λz
+ y′

y

λz

])
dx′ dy′ (1.19)

We recognise the expression of a Fourier transform

fz(x, y) =
eikz

iλz
f̂0

( x
λz
,
y

λz

)
(1.20)

where the symbolˆstands for the Fourier transform. We can introduce the quantities α = x
z and β = y

z , which are angular
coordinates of a point in the observation plane as seen from the origin (see Fig. 1.5). We obtain the agular form of the
Fraunhofer diffraction formula:

fz(α, β) =
eikz

iλz
f̂0

(
α

λ
,
β

λ

)
(1.21)

In the direction α and β, the diffracted amplitude is proportional to the Fourier transform of the screen. The intensity is

thus proportional to the power spectrum of f(x, y), i.e.
∣∣∣f̂(αλ ,

β
λ )
∣∣∣2.

This kind of calculation is often met in the field of signal processing; it is possible to use the phenomenom of Fraunhofer
diffraction to realise the 2-dimensional Fourier transform. Experimentally, Fraunhofer conditions can be obtained by diffrac-
tion on a distance of several meters or tens of meters. Such an optical setup is somewhat cumbersome and needs a very
bright light source (fz is proportional to 1/z). But in next chapter we shall see that the use of a converging lens allow to
observe Fraunhofer diffraction at finite distance.
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Figure 1.6: Fraunhofer diffraction by a rectangular slit in the plane z = 0.

Validity of the approximation

Fraunhofer diffraction is valid if both the terms ρ2

z2 and ρ′2

z2 in the exponential term of Eq. 1.18 can be neglected. This
exponential term can be developed as:

exp

(
iπz

λ

[
ρ2

z2
+
ρ′2

z2
− 2

xx′ + yy′

z2

])
= exp

(
iπρ2

λz

)
. exp

(
iπρ′2

λz

)
. exp

(
−2iπ

[
x′x

λz
+
y′y

λz

])
(1.22)

The term in ρ′2 can be neglected if exp
(
iπρ′2

λz

)
' 1, thus if ρ′2 � λz. If the size of the diffracting aperture is d (so that

ρ′ ≤ d in the integral of Eq. 1.18), we obtain a condition on z to apply Fraunhofer diffraction:

z � d2

λ
(1.23)

In the visible domain (λ = 500nm), this gives z > 2m for d = 1mm, and z > 200m for d = 1cm.

1.2.4 Example of Fraunhofer diffraction patterns

Rectangular slit

The object is a rectangular slit of width a in the x direction and b in the y direction (see Fig. 1.6). Its transmission can be
written as

t(x, y) = Π
(x
a

)
Π
(y
b

)
(1.24)

We suppose that this slit is lit by a plane wave under normal incidence whose amplitude is A in the plane of the slit. Applying
Eq. 1.20, the diffracted amplitude at distance z under Fraunhofer approximation is

fz(x, y) = Aeikz
ab

iλz
sinc

(πax
λz

)
sinc

(
πby

λz

)
(1.25)

The graph of the corresponding intensity is displayed in Fig. 1.7. It exhibits, in both directions, a central lobe surrounded
by secondary maxima. The brightest secondary maximum has an intensity of 4.5% of the maximum. The half-size of the
central lobe in the x (resp y) direction is λz/a (resp. λz/b), inversely proportional to the slit width. The position of the
secondary minima (in the x direction) is periodically distributed at pλz/a (p 6= 0).

Circular diaphragm

The object is a circular aperture of diameter a. Its transmission is

t(x, y) = Π
(ρ
a

)
with ρ =

√
x2 + y2 (1.26)
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Figure 1.7: Intensity diffracted by a rectangular slit in Fraunhofer approximation. (a) Plot of the normalised intensity as
a function of x. (b) Perspective plot of the 2D intensity in the (x, y) plane. (c) Gray level plot showing the aspect of the
image.
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Figure 1.8: Airy disc: intensity diffracted by a circular aperture. (a) Plot of the normalised intensity as a function of x. (b)
Perspective plot of the 2D intensity in the (x, y) plane. (c) Gray level plot showing the aspect of the image.

As for the previous example, the incident wave is plane with normal incidence and amplitude A in the aperture plane. Note
that the wave in the plane z = 0 is invariant by rotation around the z-axis: its diffraction pattern has the same symmetry.
The diffracted amplitude at distance z is

fz(x, y) = Aeikz
S

iλz
2 jinc

(πaρ
λz

)
with S =

πa2

4
(aperture surface) (1.27)

which looks very similar to the amplitude diffrated by a slit of same width a, excepted that the sinc function is replaced by
a jinc (preceeded by a multiplicative factor 2 because jinc(0)= 1

2 ). The intensity is the well-known Airy function:

I(x, y) =
|A|2S2

(λz)2
4 jinc2

(πaρ
λz

)
(1.28)

its graph is displayed in Fig. 1.8. It has the appearence of a bright disc surrounded by faint rings (Airy disc). The radius
of the central lobe is 1.22λz/a. The first secondary ring has an intensity of 1.7% of the maximum. Note that radii of dark
rings is not periodic (as it was the case for the slit).
It it interesting to compare the diffraction patterns (intensity) produced by a disc of diameter a and a square of same side a
(Fig. 1.9). Some differences may be noticed:

� the size of the central lobe is larger in the case of the disc (by 22%),

� the central lobe contains more energy in the case of the disc (84% of the integrated intensity for the disc, 81% for the
square),

� secondary maxima are fainter for the disc (1st maximum at 1.7% of the central intensity for the disc, 4.5% for the
square),

� secondary minima are periodically distributed for the square, not for the disc.
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Figure 1.9: Comparison between Fraunhofer diffraction patterns of a disc of diameter a and a square aperture of same side
a. Left: graph of the intensities (normalised so that the maximum is 1). Right: same in semi-logarithmic scale.
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Chapter 2

Fourier properties of converging lenses

Also read:

� Goodman, J.W., “Introduction to Fourier Optics”, chap 5

2.1 Phase screens

2.1.1 Transmission coefficient of a thin phase screen

It can be considered that transparent objects with variable thickness e(x, y) (e.g. prisms,
lenses, glass plates) and/or variable refraction index n(x, y) (for example a layer of gas
with inhomogeneous temperature) act as screens introducing a phase shift. The associated
transmission coefficient t(x, y) is a complex phase term which takes the form :

t(x, y) = eik∆ exp [ik(n− 1) e(x, y)] (2.1)

with k the wave number of the incoming light and ∆ the maximal thickness of the plate.
Paraxial approximation is assumed here so that we consider that the traject in the material
is e(x, y) whatever the incidence of the wave, neglecting effects of inclinations. This relation
is true only if the phase screens are thin.

Proof: The plate is enclosed between two parallel planes (see graph above) Σ (corresponding to z = 0) and Σ′ (at z = ∆).
We consider a plane incident wave with normal incidence. Its complex amplitude at the entrance plane Σ is a constant

f0(x, y) = A

In the exit plane z = ∆, the light ray crossing the point (x, y) has travelled a distance e(x, y) in the material1, and ∆−e(x, y)
in the vacuum, so that the complex amplitude is

f∆(x, y) = A eik n e(x,y) eik (∆−e(x,y))

which is the product of two terms:

f∆(x, y) = f0(x, y) eik∆ exp[ik(n− 1)e(x, y)] (2.2)

the influence of the plate is a multiplicative term t(x, y) = eik∆ exp[ik(n− 1)e(x, y)].

We generally neglect the constant term eik∆ and write the transmission coefficient of the plate as

t(x, y) = exp [ik(n− 1)e(x, y)] (2.3)

1assuming that the ray goes almost parallel to the z axis so that it hits the planes Σ and Σ′ at the same transverse coordinates (x, y): this
approximation is possible only for thin plates.
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Figure 2.1: (a): glass prism of refraction index n. The thickness function is e(x, y) = Ax with A � 1. (b): illustration of
the deviation of a plane wave with normal incidence by the prism. The new incidence is α = (n− 1)A.

2.1.2 Example: prism

We consider the glass prism of Fig. 2.1a with a thickness e(x, y) = Ax and A� 1. The transmission of this prism is

t(x, y) = exp[ik(n− 1)Ax] (2.4)

Note that we have neglected the edges of the prism, considering that is has an infinite extension in the plane (x, y). The
above transmission coefficient is indeed to be multiplied by an adequate rectangular function. If the prism is lit by a plane
wave under normal incidence and complex amplitude ψ0 at the entrance plane of the prism (taken as z = 0), then the exit
amplitude (in the plane z = 0)2 is

f(x, y) = ψ0 e
ik(n−1)Ax (2.5)

which is, in paraxial approximation, the amplitude of a plane wave (linear phase in x, see Section 1.1.2) of wave vector

~k = 2π
λ

∣∣∣∣∣∣
α = (n− 1)A
β = 0
γ

the coefficient γ does not appear explicitely here since the amplitude is written in the plane z = 0.

It can be calculated using the relation α2 +β2 +γ2 = 1. Note that the tilt angle of this wave is (n−1)A, a result well-known
in geometric optics (see Fig. 2.1b).

2.1.3 Converging lens

We consider a plano-convex lens of refraction index n and radius of curvature R (Fig. 2.2a). The curved surface is a portion
of sphere which can be approximated by a paraboloid if the lens is thin (e.g. R � ∆). In this case the thickness function
expresses as

e(x, y) ' ∆− ρ2

2R
(2.6)

with ρ2 = x2 + y2. The transmission coefficient (neglecting the constant term in ∆) is

t(x, y) = exp

[
−ik(n− 1)

ρ2

2R

]
(2.7)

let’s introduce the focal length F of the lens

F =
R

n− 1
(2.8)

the transmission of the lens is a quadratic phase term which will now be denoted using the notation LF (x, y):

LF (x, y) = exp

[
− iπρ

2

λF

]
(2.9)

As for the example of the prism above, we have neglected the edges of the lens, considering an infinite extension if the (x, y)
plane. The complete transmission coefficient is obtained by multiplying LF (x, y) by a a 2D circular function.

2the exit amplitude should be written in the exit plane z = ∆ with ∆ the maximum thickness of the prism. However we neglected the term
eik∆ in the transmission coefficient: that is similar to write the exit amplitude back in the plane z = 0.
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Figure 2.2: (a): Plano-convex lens of refraction index n. The exit surface is a portion of sphere of radius of curvature R and
maximum thickness ∆. (b): Transformation of an incident plane wave into a converging spherical wave at the exit of the
lens. The center of this converging wave is at z = F (focal length of the lens).

Figure 2.3: Optical scheme for the observation of the 2D Fourier transform of the transmission of an objet using a converging
lens. (a): Object in the same plane as the lens. (b): Objet at the front focal plane of the lens.

It the lens is lit by a plane wave under normal incidence and complex amplitude ψ0 at the entrance plane of the lens (plane
z = 0), then the exit amplitude (in the plane z = 0+) is

f0+(x, y) = ψ0 e
− iπρ

2

λF (2.10)

the quadratic phase term in x and y is the signature of a spherical wave under paraxial approximation (see Section 1.1.3)
of center (0, 0, F ), and the minus sign in the exponential shows that this is a converging wave. This is illustrated by the
figure 2.2b. The plane z = F is called back focal plane (or just “focal plane”) of the lens.

Case of a diverging lens: a simular calculation shows that the transmission of a diverging lens of focal F is obtained by
changing F into −F in the equation 2.9, so that it can be denoted as “L−F (x, y)”:

L−F (x, y) = exp

[
+
iπρ2

λF

]
(2.11)

It it thus possible to define a generalized focal length, positive for a converging lens and negative for a diverging lens, and
use Eq. 2.9 for both cases.

2.2 Converging lenses and Fourier transform

In this section we consider an ensemble formed by an object of transmission t(x, y) and a converging lens. This ensemble is
lit under normal incidence by a plane wave. The aim is to write down the complex amplitude at the focal plane of the lens.
Two cases will be considered:

� the object is attached to the lens (they are in the same plane),

� the object is in the front focal plane of the lens (distance z = −F from the lens)

The figure 2.3 shows the optical configuration for the two cases.

24



2.2.1 Object in the same plane as the lens

We use the following conventions:

� the plane of the objet/lens is at z = 0

� coordinates in the plane z = 0 are denoted (x′, y′), and (x, y) in the focal plane z = F

� the complex amplitude of the incident wave (for z < 0) is ψ0e
ikz (normal incidence, ~k ‖ ẑ)

The optical configuration is shown in Fig. 2.3a. To calculate the complex amplitude in the plane z = F , we have to write
the amplitude just after the lens (z = 0+), then do a Fresnel diffraction to the plane z = F .
The complex amplitude just before the lens (z = 0−) is the product

f0(x′, y′) = ψ0 t(x
′, y′) (2.12)

After the lens, it becomes
f0+(x′, y′) = f0(x′, y′) LF (x′, y′) (2.13)

The Fresnel diffraction to the plane z = F is given by Eq 1.17:

fF (x, y) = eikF f0+(x, y) ∗DF (x, y) (2.14)

with DF (x, y) = 1
iλF e

iπρ2

λF . By expanding the convolution product, it can be put into the following form (known as Fresnel
transform):

fF (x, y) =
eikF

iλF
e
iπρ2

λF F
[
f0+(x′, y′)e

iπρ′2
λF

]
u= x

λF ,v= y
λF

(2.15)

with ρ′2 = x′2 + y′2 and F the Fourier transform. The curvature phase term e
iπρ′2
λF in the brackets simplifies with the

coefficient LF (x′, y′) so that the complex amplitude in the focal plane is

fF (x, y) =
eikF

iλF
e
iπρ2

λF f̂0

( x

λF
,
y

λF

)
(2.16)

Hence, in the focal plane the amplitude is proportional to the Fourier transform of the amplitude in the plane z = 0. The
intensity is

I(x, y) =
1

λ2F 2

∣∣∣f̂0

( x

λF
,
y

λF

)∣∣∣2 (2.17)

As for a Fraunhofer diffraction (see Section 1.2.3), it is possible to observe the 2D power spectrum |f̂0(u, v)|2 of the complex
amplitude at the entrance of the lens. Note that this observation is valid only in the focal plane of the lens (otherwise a
Fresnel diffraction between the focal plane and the observation plane applies).
An astrophysical application of this Fourier property was made by Labeyrie in 1970 in his historical paper about speckle
interferometry (Labeyrie A., 1970, “Attainment of Diffraction Limited Resolution in Large Telescopes by Fourier Analysing
Speckle Patterns in Star Images”, A&A 6, 85). Labeyrie needed to accumulate power spectra of short exposure photographs
of stars, and he did it using an optical bench (a laser beam passing trough the photographic film, a lens and a photographic
plate recording the power spectrum).
In the absence of object (t(x′, y′) = 1) the diffracted amplitude is proportional to a Dirac function δ(x, y), which explicits
the focusing effect of a converging lens on the axis.

The multiplicative phase curvature e
iπρ2

λF in Eq. 2.16 may be cancelled by adding a second converging lens of focal F in the
focal plane. But we shall see hereafter that this phase term vanishes if the object is placed at the distance F if front of the
lens.

2.2.2 Object at the front focal plane

The optical scheme is shown in Fig. 2.3b. The object is at a distance F in front of the lens (front focal plane). To calculate the
amplitude at the back focal plane z = 2F we use a plane by plane approach, and successively calculate complex amplitudes
in the 3 planes of interest (object, lens, focal).

Object plane z = 0: the complex amplitude just after the object is denoted as f0(x′, y′) as in the paragraph before.

Lens plane, just before the lens (z = F−): we apply a Fresnel diffraction (Eq 1.17) between the planes z = 0 and z = F :

fF (x, y) = eikF f0(x, y) ∗DF (x, y) (2.18)
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Focal plane, z = 2F : we can apply the result of the paragraph above (Eq. 2.16), the amplitude fF (x, y) plays here the
same role as f0 in Eq. 2.16:

f2F (x, y) =
eikF

iλF
e
iπρ2

λF f̂F

( x

λF
,
y

λF

)
(2.19)

using the expression of fF (x, y) we have

f2F (x, y) =
eikF

iλF
e
iπρ2

λF F
[
eikF f0(x, y) ∗DF (x, y)

]
u= x

λF ,v= y
λF

(2.20)

which gives

f2F (x, y) =
e2ikF

iλF
e
iπρ2

λF f̂0

( x

λF
,
y

λF

)
. D̂F

( x

λF
,
y

λF

)
(2.21)

The Fourier transform of DF is D̂F (u, v) = exp[−iπλF (u2 + v2)]. It simplifies with the curvature phase term e
iπρ2

λF ,
and we finally obtain

f2F (x, y) =
e2ikF

iλF
f̂0

( x

λF
,
y

λF

)
(2.22)

The phase curvature e
iπρ2

λF has now been cancelled and we obtain the exact Fourier transform of the amplitude f0 of the
object, scaled by a factor 1

λF in both directions x and y. The relation between f0 and f2F will be denoted as “optical
Fourier transform”.

It can be shown that these results remain valid whatever the position of the object before the lens, providing that the lens
is large enough to collect all the light diffracted by the object. Moving the object along the z axis changes only the phase
curvature term in Eq. 2.16 but the intensity remains the same.
In the case where the object if placed after the lens, in the converging light beam, one still observes its 2D Fourier transform
but there is a scale factor depending on the distance between the lens and the object. We then have a “zoom” effect on the
power spectrum by varying the distance.
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Chapter 3

Coherent optical filtering

Also read:

� Goodman, J.W., “Introduction to Fourier Optics”, chap 8

3.1 Principle

In electronics, or signal processing, the frequency filtering is the operation which consists to multiply the frequency spectrum
of a given temporal signal by a function called “filter”. The result is a convolution of the signal by an impulse response,
which is the inverse Fourier transform of the filter. In optics, this operation is made on 2D functions, and is a filtering of
spatial frequencies.
It is very easy to perform: we showed in section 2.2.2 that a converging lens of focal F forms, in its focal plane, the 2D
Fourier transform t̂

(
x
λF ,

y
λF

)
of an object of transmission t(x, y). It is therefore possible to multiply this Fourier transform

by placing objects in the focal plane of the lens. We will denote this focal plane as “filtering plane”, since the filtering is
performed in this particular plane. Objects such as slits or diaphragms will act on the modulus of t̂. Transparent objects
with a given index of refraction and thickness will act on the phase of t̂.
To observe the result of the filtering in the direct plane, one needs to perform an inverse Fourier transform. In signal
processing, this is done by a dedicated software. In optics, one can take advantage of the following remarkable Fourier
property:

f̂(u, v)
F−→ f(−x,−y) (3.1)

hence, a direct Fourier transform is similar to an inverse Fourier transform, with a change of the sign of the variables x and
y (resulting in a 180◦ rotation of the function f). This property allows to observe the result of an optical filtering by placing
a second lens after the filtering plane: in the focal plane of this second lens one observes the 2D inverse Fourier transform of
the filtered spectrum t̂, i.e. the filtered object, rotated by 180◦.
This two-lens system is also known as “double diffraction setup” (see Fig. 3.1), each lens performing an optical Fourier
transform (analogous to a Fraunhofer diffraction). Note that the two lenses may have different focal lengths, but the filtering
plane has to be at the front focal plane of the second lens (conjugated lenses) in order to avoid unwanted phase curvature
terms in the optical Fourier transforms.

3.2 Abbe-Porter experiments

Pioneering experiments were made in the early 1900’s and give a spectacular illustration of image formation and Fourier
optics fundamentals. They consist in simple filtering of spatial frequencies, as described in the previous section. The principle
is the following: a fine 2D metallic grid is lit by a laser beam (Fig. 3.2). This object is placed a the front focal plane of the
first lens (plane P0). In the filtering plane (P1) one observes the Fourier transform of the object. It is composed of bright
spots (since the object is periodic), every spot being an Airy disc if the grid is limited by a circular diaphragm. In the focal
plane of the second lens (observation plane, P2), one observes a replica of the object, convoluted by the PSF of the filter (see
section 3.3 for details). If no filter is placed in the filtering plane, the image is identical to the object (rotated by 180◦).
In the filtering plane, bright spots along the horizontal (resp. vertical) axis correspond to horizontal (resp. vertical) spatial
frequencies composing the object. We suppose that the filter is here a slit which selects one row of bright spots. If the slit is
vertical (Fig. 3.3a) it selects only the vertical frequencies of the object: the image in the plane P2 is a grid with horizontal
parallel strips. If the slit is horizontal, (Fig. 3.3b) horizontal frequencies are selected and the image is composed of vertical
parallel strips.
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Figure 3.1: Double diffraction setup for optical filtering. The object is placed at the front focal plane of the first lens of focal
F1 and lit by a plane wave. The second lens (focal F2) is placed at a distance z = F1 + F2 from the first one, so that the
filtering plane is at the front focal plane of the second lens. The observation is made in the back focal plane of the second
lens.

Figure 3.2: Illustration of the Abbe-Porter experiment. A 2D grid is placed in the front object plane P0 of the first lens. In
the focal plane P1, one finds the spectrum of the grid, composed of a 2D arrangement of bright spots. If no filter is placed
in P1, then the second lens forms; at its focal plane P2, a replica of the object, rotated by 180◦ (Fourier transform of its
spectrum).

28



Figure 3.3: Abbe-Porter experiment similar to Fig. 3.2, with a slit in the filtering plane P1. (a) vertical slit, selecting the
central column of bright spots. The corresponding image in the plane P2 is a series of horizontal strips, Fourier Transform
of the truncated spectrum. (b) horizontal slit, producing in P2 a set of vertical strips.

3.3 Object-image relation

We consider the double diffraction experiment of Fig. 3.1. The aim of this section is to explicit the relations between the
complex amplitudes of the object (plane P0) and the image in the plane P2. We denote as

� ψ0 the complex amplitude of the incident plane wave in the plane P0 (normal incidence is assumed)

� F1 and F2 the focal length of the two lenses

� (x′, y′), (x1, y1) and (x, y) the coordinates of a point in the planes P0 (object plane), P1 (filtering plane) and P2

(observation plane)

� t(x′, y′) the transmission coefficient of the object (plane P0)

� P (x1, y1) the transmission coefficient of the filter (plane P1)

Let’s calculate step by step the propagation from planes P0 to P2: at the output the plane P0, the complex amplitude is
simply proportional to the transmission of the object:

f0(x′, y′) = ψ0 t(x
′, y′) (3.2)

We can apply Eq. 2.22 to write the amplitude in the plane P1, taking advantage of the Fourier property of the converging
lens:

f1(x1, y1) =
e2ikF1

iλF1
f̂0

(
x1

λF1
,
y1

λF1

)
(3.3)

In the plane P1, the filtering operation is performed by multiplying f1(x1, y1) by the transmission of the filter:

f1+(x1, y1) =
e2ikF1

iλF1
f̂0

(
x1

λF1
,
y1

λF1

)
P (x1, y1) (3.4)

And to obtain the amplitude in the plane P2, we make use, once again, of Eq. 2.22:

f2(x, y) =
e2ikF2

iλF2
f̂1+

(
x

λF2
,
y

λF2

)
(3.5)
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with

f̂1+

(
x

λF2
,
y

λF2

)
=
e2ikF1

iλF1
F
[
f̂0

(
x1

λF1
,
y1

λF1

)
P (x1, y1)

]
u= x

λF2
,v= y

λF2

(3.6)

We eventually obtain a convolution relation:

f2(x, y) = − 1

G
e2ik(F1+F2) f0

(
− x
G
,− y

G

)
∗ 1

(λF2)2
P̂

(
x

λF2
,
y

λF2

)
(3.7)

where G = F2

F1
is a magnification factor. The amplitude of the final image in the plane P2 is thus a convolution between

f0

(
− x
G ,−

y
G

)
(the object magnified by a factor G and rotated 180◦) and the point-spread function 1

(λF2)2 P̂
(

x
λF2

, y
λF2

)
. The

magnification applies before the convolution by the impulse response. The case of identical lenses (F1 = F2) corresponds to
G = 1: no magnification, the object and image have the same size.

3.4 Low-pass and high-pass filters

In signal processing, low-pass or high-pass filters attenuate low or high frequencies. The spectrum of the signal is multiplied
by a function (denoted as transfer function) which vanish for high (resp. low) frequencies in the case of a low-pass (resp.
high-pass) filter.
In optics, with a double diffraction experiment, the spectrum of the image can be obtained by taking the Fourier tranform
of Eq. 3.7. For a sake of simplicity, we shall consider the case of two identical lenses (F1 = F2 = F ). We obtain:

f̂2(u, v) = −e4ikF f̂0(−u,−v) P (−λFu,−λFv) (3.8)

The minus sign in both f0(−u,−v) and P (−λFu,−λFv) is due to the 180◦ rotation of the image. The above equation may
be rewritten in the following form

f̂2(−u,−v) = −e4ikF f̂0(u, v) P (λFu, λFv) (3.9)

which lets appear the product between the object spectrum f0(u, v) and the following transfer function:

h(u, v) = P (λFu, λFv) (3.10)

which is simply a replica of the pupil function, magnified by a factor 1
λF .

3.4.1 Low-pass filters

A low-pass filter has a transfer function which vanish for high frequencies. A circular diaphragm of diameter d, centered on
the optical axis in the filtering plane, is an example of low-pass filter. The corresponding transfer function is

h(u, v) =
∏(

λFq

d

)
with q2 = u2 + v2 (3.11)

This transfer function is isotropic, and vanishes for spatial frequencies q > fc with fc = d
2λF the cutoff frequency.

Let-s consider the case where the object is a sinusöıdal grid of spatial frequency m whose transmission (between 0 and 1) is

t(x, y) =
1

2
+

1

2
cos(2πmx) (3.12)

its Fourier transform is composed of 3 Dirac peaks centered at frequencies (0, 0), (m, 0) and (−m, 0)

t̂(u, v) =
1

2
δ(u, v) +

1

4
δ(u−m, v) +

1

4
δ(u+m, v) (3.13)

Multiplying this spectrum by the transfer function of Eq. 3.11 will cut the lateral peaks if m > fc. In this case, the image
in the plane P2 will be uniform. This is illustrated by Fig. 3.4. For a more general object t(x, y) having a continuous
frequency spectrum t̂(u, v), a low-pass filter will remove high frequencies, resulting into a fuzzy image with a loss of details,
as illustrated by Fig. 3.5.
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Figure 3.4: Low-pass filtering of a sinusöıdal grid of spatial frequency m by a circular transfer function of cutoff frequency
fc < m (see § 3.4.1). (a) grayscale plot of the transmission of the object. (b) Perspective plot showing the transfer function
(Eq. 3.11) and the 3 peaks of the Fourier transform of the object (Eq. 3.13). Since m > fc the two lateral peaks are cut by
the transfer function. (c) Resulting image (uniform) in the observation plane P2.

Figure 3.5: Low-pass filtering of an object (Mickey shape) for 3 different filters. (a) Object. (b) Spectrum of the object
(modulus). (c) Spectrum of the object (modulus) multiplied by the transfer function of the filter. (d) Resulting image in
the observation plane (without the 180◦ rotation). 1st row: the filter is a circular pupil. 2nd row: the filter is also a circular
pupil, but with lower diameter (resulting in a more fuzzy resulting image). 3rd row: the filter is an horizontal slit; it is still
a low-pass filter, but in the vertical direction only.
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Figure 3.6: High-pass filtering of an object (Mickey shape). (a) Object. (b) Spectrum of the object (modulus). (c) Spectrum
of the object (modulus) multiplied by the transfer function of the filter. (d) Resulting image in the observation plane
(without the 180◦ rotation). The filter is here a circular occulter having the same diameter as the circular hole of the 1st
row of Fig. 3.5.

3.4.2 High-pass filters

A high-pass filter has a transfer function which vanish for low frequencies. An example is a on-axis circular occulter of placed
in the filtering plane P1 which blocks the light up to a certain distance from the center. This kind of filter tends to reinforce
high spatial frequencies in the image and to emphasize fine details – exactly the opposite of the low-pass filter.
Fig. 3.6 shows the effet of a high-pass filtering by a circular occulter on a “Mickey” object similar to the figure 3.5. The
filtered image displays only the contours of Mickey, everything else has been removed by the filter. This reinforcement of
the contours is easy to understand if one remarks that the filter (circular occulter) is the complementary screen of a circular
diaphragm. Its transmission expresses as

Po(x, y) = 1− P (x, y) (3.14)

with P (x, y) = Π
(
ρ
d

)
the transmission of the circular diaphragm. Therefore the point-spread function of the filtering

(appearing in Eq. 3.7) is

P̂o

( x

λF
,
y

λF

)
= (λF )2δ(x, y)− P̂

( x

λF
,
y

λF

)
(3.15)

and the amplitude in the observing plane, given by Eq. 3.7, expresses as the difference of two terms

f2(x, y) = −e4ikF

 f0(−x,−y)︸ ︷︷ ︸
amplitude of the unfiltered object

− f0(−x,−y) ∗ 1

(λF )2
P̂
( x

λF
,
y

λF

)
︸ ︷︷ ︸

low-pass filtered object

 (3.16)

The first term is the amplitude of the unfiltered object, i.e. the “Mickey” object (Fig. 3.5, column a). The second term is
the amplitude of object filtered by the circular diaphragm, it is a smoothed version of “Mickey” (Fig. 3.5, 1st row, column
d). The first term has sharpest countours than the second, this is why their difference let only appear only the countours of
the object.
Other spectacular illustrations of optical filtering of 2D objects can be found in the book “Atlas of Optical Transforms” by
Harburn.

3.5 Strioscopy and phase contrast

Optical filtering techniques can be applied to phase objects, i.e. transparent objects with variable thickness or refraction
index (for example a fingerprint on a microscope plate). Phase variations of the object can be made visible by placing an
appropriate mask in the filtering plane of a double-diffraction setup.
For the whole paragraph, we consider the optical setup of Fig. 3.1, with identical lenses (F1 = F2 = F ). The object in the
plane P0 is a pure phase object of transmission

t(x, y) = eiφ(x,y) (3.17)

lit by an incident plane wave of amplitude ψ0. With the condition φ(x, y) � 1 (small phase variations), the transmission
can be approximated to the first-order development

t(x, y) ' 1 + iφ(x, y) (3.18)
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Figure 3.7: Optical Fourier transform of a phase object with small phase variations. The complex amplitude in the focal
plane of the lens (P1) shows a bright central spot surrounded by a halo of light diffracted by phase variations of the object
(see Eq. 3.19).

The complex amplitude in the plane P1, given by Eq. 3.3, is composed of two terms:

f1(x1, y1) = ψ0
e2ikF

λF

−i(λF )2δ(x1, y1)︸ ︷︷ ︸
bright central spot

+ φ̂
( x1

λF
,
y1

λF

)
︸ ︷︷ ︸

light diffracted by phase variations

 (3.19)

There is a bright spot at the origin, surrounded by a halo of light diffracted by the phase variations φ(x, y) of the object.
This halo of light is faint because φ(x, y)� 1, and disappears if φ = 0, i.e. is there is no object in the plane P0 (in this case
the bright central spot is simply the light of the incident plane wave, focused by the lens L1). This is illustrated by Fig. 3.7.
If no filter is placed in the plane P1, one observes, in the image plane P2, a complex amplitude

f2(x, y) = e4ikF ψ0 t(−x,−y) (3.20)

and the intensity is uniform since |t(−x,−y)|2 = 1. This means that the phase variations of the object are invisible on the
image. To make them visible, several kinds of filters can be placed in the plane P1. We shall study two of them in the
following: an amplitude filter (strioscopy technique) and a phase filter (phase-contrast technique).

3.5.1 Strioscopy

In the technique of strioscopy, the filter is a circular occulter of very small diameter (like a pinhead), centered on the optical
axis. It is a high-pass filter which blocks only the spatial frequency (0, 0). The optical setup is shown in Fig. 3.8.
The action of the occulter is to cancel the Dirac peak appearing in the complex amplitude in the plane P1 (Eq. 3.19). At
the output of the filter, the complex amplitude becomes

f1+(x1, y1) ' ψ0
e2ikF

λF
φ̂
( x1

λF
,
y1

λF

)
(3.21)

Note that the occulter cancels also a part of the term φ̂
(
x1

λF ,
y1
λF

)
near the origin, but since we made the hypothesis that the

occulter is very small, this effect will be neglected. The complex amplitude in the observation plane P2 is

f2(x, y) = −i e4ikF ψ0 φ(−x,−y) (3.22)

and the intensity is
I2(x, y) = |ψ0|2 |φ(−x,−y)|2 (3.23)

it is proportional to the square of the phase variations of the object. Therefore the object phase is made visible by this
strioscopy technique. Similar results can be obtained by replacing the occulter in the plane P1 by a half plane (Foucault
knife-edge technique). Spectacular videos can be found on the web, see for example
https://www.futura-sciences.com/sciences/videos/voir-invisible-strioscopie-822/.
However this technique has the disavantage that the sign of the phase is lost (i.e. it is impossible to know if a given structure
in the image corresponds to a bump or a hole on the object). Also, since the phase variations φ(x, y) are small, images are
very faint. The alternative technique of “phase contrast”, presented hereafter, provides an answer to these problems.
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Figure 3.8: Strioscopy technique applied to a phase object placed in the plane P0. In the Fourier plane (P1), there is a
central bright spot (see Eq. 3.19) which is cancelled by a small occulter. In the image plane P2, the intensity is proportional
to the square of the phase variations of the object.

3.5.2 Phase contrast

The technique of phase contrast was proposed by Zernike in the early 30s (Zernike F., 1934, MNRAS 94, 377). It appeared
to have many applications in microscopy to study quasi-transparent living cells. Zernike was awarded the Nobel prize in 1953
for the phase-constrast micropsopy technique. Phase constrast is similar to strioscopy: the difference is that the occulter is
no more opaque, but is a small parallel plate producing a π

2 phase shift to the on-axis light. The complex amplitude in the
plane P1 at the output of the plate becomes

f1+(x1, y1) = ψ0
e2ikF

λF

[
(λF )2δ(x1, y1) + φ̂

( x1

λF
,
y1

λF

)]
(3.24)

and in the observation plane
f2(x, y) = −i e4ikF ψ0 [1 + φ(−x,−y)] (3.25)

The corresponding intensity is (under the hypothesis φ(x, y)� 1)

I2(x, y) ' |ψ0|2 [1 + 2φ(−x,−y)] (3.26)

it is now an affine function of the phase φ(x, y), composed of a constant term (uniform light background) and intensity
variations proportionnal to the phase of the object, with its sign: brightest (resp. darkest) zones in the image correspond to
positive (resp. negative) phase value.
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Chapter 4

Image formation

Also read : Goodman J.W., ‘Introduction to Fourier Optics”, chap. 6
The aim of this chapter is to derive the object-image relation between intensities of an astronomical object and its image
at the focus of a telescope. The object is supposed to be incoherent and at large distance from the telescope. The optical
scheme is shown hereafter:

We use the following conventions:

Plane 1O: Astronomical object (distance from the telescope is D, can be several parcsecs)

Plane 2O: Converging lens (focal F ) + pupil function P (x, y) (in most cases a uniform disc)

Plane 3O: Image plane = focal plane of the telescope.

Principle of the calculation:

� Place a point-source at position (x0, y0) in plane 1O.

� Calculate the corresponding intensity in plane 3O, using Fourier properties of lenses

� Sum on (x0, y0) to obtain the intensity produced by any object in plane 1O.

4.1 Object-image convolution relation

4.1.1 Image created by a point-source

In plane 1O

Coordinates the plane 1O are denoted as (x′, y′). A
point-source is placed at position (x0, y0): its com-
plex amplitude is f1(x′, y′) = a0δ(x

′ − x0, y
′ − y0)

where a0 is a constant. We change to the following
angular variables[

α′ = x′

D

β′ = y′

D

[
α0 = x0

D
β0 = y0

D

(4.1)
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so that the complex amplitude writes as

f1(x′, y′) = a0δ(x
′ − x0, y

′ − y0) =
a0

D2
δ(α′ − α0, β

′ − β0) = f0δ(α
′ − α0, β

′ − β0). (4.2)

The corresponding intensity is:
I0δ(α

′ − α0, β
′ − β0) (4.3)

with I0 = |f0|2

In plane 2O

Since D is very large (astronomical distance), Fraunhofer diffraction is assumed between planes 1O and 2O. Therefore the
complex amplitude in plane 2O, just before the telescope pupil, is

f2(x, y) =
eikD

iλD
f̂1

( x

λD
,
y

λD

)
(4.4)

with f1(x′, y′) = a0δ(x
′− x0, y

′− y0) the complex amplitude of the point-source as a function of linear coordinates x′ and y′

(not angular, to apply the formula for Fraunhofer diffraction). The calculation gives

f2(x, y) =
eikD

iλD
a0 e

−2iπ
λD (xx0+yy0)

↓ change variable α0 = x0/D, β0 = y0/D

=
eikD

iλD
a0 e

−2iπ
λ (α0x+β0y)

= eikD
Df0

iλ
e
−2iπ
λ (α0x+β0y)

(4.5)

We recognise the complex amplitude of a plane
wave with angles of incidence (−α0,−β0). This
is expected, since a point-source emits a spherical
wave which becomes plane at large distance.

The complex amplitude just after the pupil is

f2+(x, y) = eikD
Df0

iλ
e
−2iπ
λ (α0x+β0y) P (x, y) (4.6)

In plane 3O

The complex amplitude just before the telescope lens is f2+(x, y). Therefore the complex amplitude at the focal plane is (see
Section 2.2.2, Eq. 2.16):

f3(x, y) =
eikF

iλF
exp

(
iπρ2

λF

)
f̂2+

( x

λF
,
y

λF

)
(4.7)

with ρ2 = x2 + y2. We get:

f3(x, y) = −e
ik(F+D)

λ2

Df0

F
exp

(
iπρ2

λF

)
F
[
e
−2iπ
λ (α0x+β0y) P (x, y)

]
(4.8)

where the Fourier Transform above (F) is to be taken for variables u = x
λF and v = y

λF . Here we have

F
[
e
−2iπ
λ (α0x+β0y) P (x, y)

]
= P̂

(
u+

α0

λ
, v +

β0

λ

)
(4.9)
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so

f3(x, y) = −e
ik(F+D)

λ2

Df0

F
exp

(
iπρ2

λF

)
P̂

(
x

λF
+
α0

λ
,
y

λF
+
β0

λ

)
↓ change variable α = x/F , β = y/F

= −e
ik(F+D)

λ2

Df0

F
exp

(
iπρ2

λF

)
P̂

(
α+ α0

λ
,
β + β0

λ

)
(4.10)

The variables α and β represent angles in the
image plane as seen from the center of the
pupil.

The intensity is |f3|2. Using angular variables (α, β), it expresses as

|f3(α, β)|2 = K I0

∣∣∣∣P̂ (α+ α0

λ
,
β + β0

λ

)∣∣∣∣2 (4.11)

where K = D2

λ4F 2 is a multiplicative constant, generally neglected. We introduce

S(α, β) =

∣∣∣∣P̂ (αλ , βλ
)∣∣∣∣2 (4.12)

so that the intensity is simply I0S(α+α0, β+β0) (neglecting the constant K). As a conclusion, we can see that a point-source
at position (angle) (α0, β0) in plane 1O produces an image whose intensity is the Fourier Transform (square modulus) of the
pupil function, centered at position (−α0,−β0). This is illustrated by the following scheme:

Point-Spread Function: The quantity S(α, β) is called the Point-Spread Function (PSF). It is indeed the image of a
point-source of unit intensity (I0 = 1) located on the optical axis (α0 = β0 = 0). It expresses as the power spectrum (square
modulus of the Fourier Transform) of the pupil function, as defined in Eq. 4.12

4.1.2 Object-image relation

In plane 1O we now consider an incoherent object with intensity distribution I0(α′, β′) as a function of position angles defined
by Eq. 4.1. The intensity I0 can be written as

I0(α′, β′) = I0 ∗ δ(α′, β′) =

∫∫ ∞
−∞

I0(α0, β0)︸ ︷︷ ︸
weighting factor

δ(α′ − α0, β
′ − β0)︸ ︷︷ ︸

unit point-source

dα0 dβ0 (4.13)
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This integral can be interpreted as a continuous sum of point-sources located at positions (α0, β0) and weighted by the
factor I0(α0, β0). Ech of these point-sources produces in the place 3O a PSF S(α+α0, β+ β0), weighted by the same factor,
as demonstrated in previous section. Thus the total intensity observed at plane 3O is the continuous sum of intensities1

produced by each point-source, i.e.

I(α, β) =

∫∫ ∞
−∞

I0(α0, β0)S(α+ α0, β + β0) dα0 dβ0

↓ change variable α′ = −α0, β′ = −β0

=

∫∫ ∞
−∞

I0(−α′,−β′)S(α− α′, β − β′) dα′ dβ′

(4.14)

And we obtain the well-known object-image convolution relation between intensities, expressed with angular variables:

I(α, β) = I0(−α,−β) ∗ S(α, β) (4.15)

The function I0(−α,−β) represents the object rotated by 180◦. This relation is valid only for incoherent sources (a similar
relation exists between amplitudes for coherent light, see for example the chapter 5 of Goodman, Introduction to Fourier
Optics).

Geometric limit, infinite pupil: this is the case where P (x, y) = 1. The lens in plane 2O has no spatial limitation. The
PSF is then a Dirac impulse:

S(α, β) = δ(α, β) (4.16)

so the image of a point-source is a single point (perfect stigmatism): this is the case of geometric optics. Note that the same
result is obtained if λ −→ 0. The object-image relation becomes

I(α, β) = I0(−α,−β) (4.17)

so the image is the object itself (rotated by 180◦).

4.2 Optical transfer function (OTF)

The convolution relationship in the focal plane (Eq. 4.15) corresponds to a linear filtering in the Fourier plane. If we denote
u and v the angular frequencies associated with α and β, the Fourier transform of Eq. 4.15 becomes

Î(u, v) = Î0(−u,−v) . T (u, v) (4.18)

with

T (u, v) = F [S(α, β)] = F

[∣∣∣∣P̂ (αλ , βλ
)∣∣∣∣2
]

(4.19)

The function T (u, v) is called “Optical transfer function” (OTF). It is a complex funtion; its modulus and phase are denoted
as “modulation transfer function” and “phase transfer function” respectively. u and v are expressed in rad−1. To calculate
T (u, v), we use the Wiener-Kinchin theorem, which expresses the Fourier transform of the power spectrum of a function:

F [|f̂(u)|2] = Cf (X) =

∫ ∞
−∞

f(x) f(x+X) dx (4.20)

The quantity Cf (X) is the Autocorrelation function of f(x). It can be interpreted as the integral of superposition of the

function f(x) and the same function conjugated and translated: f(x+X).

Proof of the Wiener-Kinchin theorem:

� Write
∣∣∣f̂(u)

∣∣∣2 = f̂(u).f̂(u)

1To calculate the intensity created by the addition of several waves in incoherent light, one adds intensities of individual waves (not amplitudes).

38



Figure 4.1: Illustration of the calculation of an Optical transfer function in the case of a square pupil of side d. Left:
superposition of the overlapping terms: P (x, y) (centered at (0, 0)) and P (x+ λu, y + λv) (centered at (−λu,−λv)) which
intervene in the integral of Eq. 4.26. Middle and right: plot of the OTF for v = 0 and in the (u, v) plane. The OTF is a
pyramid in this case.

� Use the following Fourier properties :
F [f̂(u)] = f(−X) (4.21)

and
F
[
f(x)

]
= f̂(−u) (4.22)

� The Fourier transform of |f̂(u)|2 is obtained as the convolution

Cf (X) = f(−X) ∗ f(X) (4.23)

which develops as

Cf (X) =

∫ ∞
−∞

f(−x′) f(X − x′) dx′ =

∫ ∞
−∞

f(x) f(x+X) dx (4.24)

To compute the optical transfer function, we make use of the Wiener-Kinchin theorem and the Fourier property

F
[
f
(x
a

)]
= |a|f̂(au)

so that

T (u, v) = F

[∣∣∣∣P̂ (αλ , βλ
)∣∣∣∣2
]

= λ2 CP (λu, λv) (4.25)

and in general we introduce a multiplicative constant to normalise the transfer function so that T (0, 0) = 1. We shall then
define the OTF as

T (u, v) =
1

S
CP (λu, λv) =

1

S

∫∫ ∞
−∞

P (x, y) P (x+ λu, y + λv) dx dy (4.26)

where S is the surface of the pupil. This is the integral of superposition of two identical pupils, one being conjugated and
shifted by a quantity (−λu,−λv) as illustrated by Fig. 4.1

Properties of the OTF:

� It is a normalised fonction T (0, 0) = 1

� If the pupil P (x, y) is real, then the OTF T (u, v) is real and even, T (−u,−v) = T (u, v)

� If the pupil is a separable function P (x, y) = P1(x).P2(y) then the OTF is also a separable function T (u, v) =
1

S
CP1

(λu).CP2
(λv)

� If the pupil is isotropic (i.e. P (x, y) = P (ρ) with ρ2 = x2 + y2) then the OTF is also isotropic ( T (u, v) = T (q) with
q2 = u2 + v2)
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Figure 4.2: Illustration of the physical significance of the OTF in the case of an image of a sinusöıdal grid. Left: object of
intensity I0(α, β). Middle: Fourier transform Î(u, 0) together with the OTF T (u, 0) (taken as a triangle for this example).
Right: Observed image, with a contrast |T (f, 0)|.

Physical significance of the transfer function: To understand the physical significance of the OTF, let’s consider an
incoherent object which is a pure sinusöıdal grid of angular frequency f in the α direction, as in Fig. 4.2. The object has an
intensity distribution

I0(α, β) =
1

2
[1 + cos(2πfα)] (4.27)

This object has indeed 3 vector angular frequencies in the (u, v) plane: ~f1 = (0, 0), ~f2 = (f, 0) and ~f3 = (−f, 0). Its Fourier
transform is

Î0(u, v) =
1

2
δ(u, v) +

1

4
δ(u− f, v) +

1

4
δ(u+ f, v) (4.28)

Applying the object-image relation in the Fourier plane (Eq. 4.18), we can derive the F.T. of the intensity distribution of
the image:

Î(u, v) =
T (0, 0)

2
δ(u, v) +

T (f, 0)

4
δ(u− f, v) +

T (−f, 0)

4
δ(u+ f, v) (4.29)

With T (0, 0) = 1 by definition. The lateral terms in Î(u, v) are multiplied by the value of the OTF at (u, v) equals to the
grid frequencies. In the case of an even OTF (corresponding to square or a circular pupil), we have T (f, 0) = T (−f, 0) and
the expression simplifies. It is then easy to obtain the image intensity distribution by inverse F.T.:

I(α, β) =
1

2
[1 + T (f, 0) cos(2πfα)] (4.30)

Which is also a sinusöıdal grid of same frequency as the object. The difference is that the cosine term has been attenuated.
The contrast of this figure is

C =
Imax − Imin

Imax + Imin
= |T (f, 0)| (4.31)

which gives the physical significance of the OTF, in fact of its modulus (the MTF): it is indeed the contrast (also known as
“visibility”) of the image of the grid. Changing the grid frequency would result into another value of the contrast. It is then
possible to estimate the MTF by making images of grids of various frequencies and measure their contrast.

4.3 Case of a circular pupil

4.3.1 PSF and resolving power

The pupil is a uniform disc of diameter d. It expresses as

P (x, y) = Π
(ρ
d

)
with ρ2 = x2 + y2 (4.32) ��

��
-� d

the PSF is an Airy disc of intensity

S(α, β) =

(
πd2

4

)2

4 jinc

(
πdθ

λ

)2

(4.33)

it is an isotropic function of the angle θ2 = α2 + β2. It is independent of the telescope focal. The multiplicative constant(
πd2

4

)2

may be ommited. The PSF is displayed in Fig. 4.3. It exhibits a central peak of angular radius 1.22λd surrounded

by dark and bright faint rings (the brightest ring has a maximum intensity of 1.7% of the peak intensity of the PSF).
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Figure 4.3: Airy disc: intensity PSF for a circular pupil of diameter d (Eq. 4.33). (a) plot of the intensity profile as a function
of position angle θ in the focal plane. Positions of the first zeros and the first secondary maxima are written on the graph (in
units of λ/d). (b) Same plot in semi-log scale. Relative intensities of the first secondary maxima are written on the graph.
(c) Gray-level plot of the Airy disc.
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Figure 4.4: Image of two point-sources by a circular pupil at Rayleigh limit: star separation ∆ is equal to the PSF radius
= 1.22λ/d. (a) Plot of the intensity as a function of the angle α in the focal plane. (b) Surface plot of the intensity I(α, β).
(c) Gray level plot of the intensity showing the aspect of the image.

Resolving power: it is defined from the image of two point-sources, composed by the sum of two shifted PSF. Images of
each point-source are distinct if their separation is greater than the size of the PSF. An empiric definition was proposed by
Lord Rayleigh in 1879 (Phil. Mag. S 5. Vol. 8, Oct. 1879). It corresponds to the situation where the angular separation ∆
of the two points is exactly equal to the PSF radius, i.e. the radius of the first dark ring of the Airy disk (see Fig 4.4):

∆ = 1.22
λ

d
[unit: radian] (4.34)

Typical values for λ = 500 nm:

� d = 12 cm =⇒ ∆ = 1 arcsec

� d = 2 mm (human eye in daylight) =⇒ ∆ = 1 arcmin

� d = 2.40 m (Hubble Space Telescope) =⇒ ∆ = 0.05 arcsec

4.3.2 Optical transfer function

The OTF T (u, v) is the surface of the intersection of two discs of diameter d, shifted by a vector (λu, λv) as defined by
Eq. 4.26. It is a real, isotropic function. The calculus is made in a geometrical way (see Goodman, “Introduction to Fourier
Optics” for details) and gives a chinese hat function

T (u, v) =

(
λq

d

)
with q2 = u2 + v2 (4.35)
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Figure 4.5: Transfer function of a circular pupil. Left: geometric interpretation of T (u, v) as the area of the intersection of
two identical shifted pupils (Eq. 4.26). Middle: 3D plot of the OTF showing the typical “chinese hat” shape. Right: Plot of
T (u, 0), showing the angular cutoff frequency fc = d/λ.

where

(x) =
2

π

[
acos(|x|)− |x|

√
1− x2

]
(4.36)

The function (x) is displayed on the right: it looks like a
triangle with curved sides. It is an even function, vanishing for
|x| ≥ 1.
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The graph of the transfer T (u, v) function is shown in Fig. 4.5. It is an isotropic chinese hat which has non-zero values for
q ≤ d

λ . It corresponds to a low-pass filtering of angular frequencies of the object.

Cutoff frequency: it is defined as the highest frequency for which the transfer function is not zero. For a circular pupil
of diameter d, the angular cutoff frequency is

fc =
d

λ
unit: rad−1 (4.37)

The cutoff frequency is the frequency of the finest sinusöıdal grid that the telescope is capable to image with non-zero
contrast. In other words, if one considers an pure sinusoidal object having an intensity distribution I0(α, β) = A cos(πu0α)2

of angular frequency u0, then its image becomes uniform when u0 ≥ d/λ.
It is possible to use fc to define a resolving power in a sense less empirical than the Rayleigh criterion presented before. Let’s
define ∆c = 1

fc
the cutoff period, i.e. the angular period of the finest imageable grid. Indeed, ∆c represents the angular size

of the finest details in the image: this gives another definition of the resolving power for a pupil of diameter d:

∆c =
λ

d
(4.38)

It is sometimes called “resolution element” or resel. We see that ∆c is close to the Rayleigh definition ∆ = 1.22λd . Note
that

� When d↗ then ∆c ↘ : better resolution for a large telescope

� When λ↘ then ∆c ↘ : better resolution at short wavelengths
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Chapter 5

Exercises

0 Exercises for chapter 0

0.1 1-dim Fourier transforms

1. Use the Fourier formula sheet to calculate the Fourier Transform (FT) of the function f(x) = a+ b cos(2πu0x) (a, b,
u0 are positive numbers). Compare with the FT of the function f(x) = a+ b sin(2πu0x) (make a plot of both Fourier
transforms).

2. Consider the function f(x) =
∏(

x
a

)
. cos(2πu0x) with u0 � 1

a and Π the rectangular function. Plot f (take for

example u0 = 4
a ), and calculate its FT f̂(u). Plot f̂ .

3. Consider the function f(x) =
∏(

x− a
2

b

)
+
∏(

x+ a
2

b

)
with a > b. Plot f . Express it as a convolution, calculate

is Fourier Transform f̂(u), and plot the graph of f̂ for a = 4b.

4. Consider the Ronchi function defined as f(x) = Π
(
x
a

)
∗Ø2a(x) where Øa is the Dirac comb of period a. Plot its

graph, calculate and plot its Fourier transform. What happens to f̂ if one multiplies f by a rectangular function Π
(
x
L

)
with L = 10a ?

5. Let ga the centered Gaussian function of standart deviation a > 0, defined as

ga(x) =
1

a
√

2π
e−

x2

2a2

Show that ga ∗ gb = g√a2+b2 , where ∗ is the convolution product (hint: do the calculation in the Fourier plane).

0.2 2-dim Fourier transforms

1. Calculate the Fourier transform (FT) of the 2-dimensionnal rectangle function of width a in the x direction b in the y

direction. The rectangle is supposed centered at the origin. Plot f̂ in the case b = 2a

2.

Consider the function

f(x, y) =

 cos2(πx/a) if
√
x2 + y2 < d

2 .

0 otherwise

with d � a > 0. Express f using the rectangular function, calculate and plot
its Fourier transform.

3.
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y’

x’

a The function on the left is composed of an infinity of
identical circular pupils of diameter d, regularly placed
along the x axis with a period a > d. Calculate and plot
its Fourier transform

4. Show that the 2-dimensionnal FT of a circularly symmetric function f(ρ) with ρ2 = x2 + y2 is the Hankel transform
(Hint: write the 2D Fourier integral, and express it in polar coordinates).

f̂(u, v) =

∫ ∞
0

f(ρ) J0(2πqρ) 2πρ dρ

with q2 = u2 +v2. The function J0(x) =
1

2π

∫ 2π

0

eix cos θ dθ is the Bessel function of order 0. We recall that cos(a−b) =

cos a cos b+ sin a sin b.

5. Use the Hankel transform to calculate the FT of a circular pupil f(ρ) = Π(ρd ) with ρ2 = x2 + y2 and d > 0 the pupil

diameter. Express it with the jinc function defined as jinc(x) = J1(x)
x where J1 is the 1st order Bessel function (we

recall the useful formula : (xnJn(x))′ = xnJn−1(x)). Plot f .

1 Exercises for chapter 1

1.1 The Moon laser at the Plateau de Calern

The Moon laser, located on the Plateau de Calern, allows to estimate the distance between the Earth and the Moon. The
principle is the following: a laser beam is emitted from a 1.5m telescope at Calern. On the Moon, small mirrors were installed
by astronauts (Apollo missions) and reflect a part of the beam towards the Earth. Since the speed of light is very well known,
the round-trip propagation time of the laser light gives the Earth-Moon distance.

The laser beam exiting the telescope is modelled by a monochromatic plane wave (wavelength λ and amplitude A). The
telescope pupil is circular (diameter d). The wave propagates over a distance D to attain the Moon.

1. We call W the electromagnetic power of the laser beam. Express W as a function of A (hint: consider the intensity of
the wave).

2. Using Fraunhofer approximation, write down the diffracted amplitude at a distance D from the telescope pupil. On
the Moon, what is the diameter L1 of the first dark Airy ring ? N.A.: d = 1.5 m, D = 384000 km, λ = 0.5 µm.

3. Give the complex amplitude ψ0 and the intensity I0 at the centre of the diffraction pattern (on the Moon). Express I0
as a function of W (calculated in question 1).

4. The reflector on the Moon is supposed to be a circular mirror of diameter a � L1 (with a reflection coefficient of
100%). It is located at the center of the Airy disc of the telescope, and, since is diameter is small, uniformly lit. Give
the expression of the electromagnetic power W1 reflected by the mirror and calculate numerically the ratio W1/W for
a = 3cm.

5. After being reflected, the wave propagates back towards the earth (distance D). What is the size L2 of the diffraction
pattern on the Earth (diameter of the first dark Airy disc) ? Give its numeric value. What is the intensity at the center
of the Airy disc ?

6. Assuming d� L2, give the total electromagnetic power collected by a telescope of diameter d located at the center of
the diffraction pattern of the returning beam. Calculate the efficiency (ratio W2/W of the collected/emitted wave) of
the Moon Laser.
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1.2 Aperture synthesis

We consider an opaque screen pierced with N circular holes of diameter d centered at positions ~ρk. This screen is lit under
normal incidence by a plane wave of wavelength λ and amplitude ψ0. We want to calculate the diffracted amplitude at some
distance z, under Fraunhofer approximation, as a function of angles α and β.

1. Consider N = 2, ~ρ1 = (a2 , 0) = −~ρ2 with a = 10d. Write down the expression for the diffracted intensity, and calculate
the angular fringe size and the angular diameter of the first Airy disc. Plot the two-dimensional intensity using your
computer.

2. Consider N = 3 apertures at the vertices of an equilateral triangle of side a = 10d. Show that the intensity exhibits
three fringe patterns corresponding to the 3 hole pairs (give the period and the direction of these fringe patterns). Plot
the two-dimensionnal intensity.

3. Consider N = 10 apertures regularly placed along a circle of diameter a = 10d. Plot the two-dimensionnal intensity
and compare it with the intensity diffracted by a circular pupil of diameter a.

1.3 Circular pupil with central obstruction

We consider a circular aperture of diameter d with a central circular obstruction of diameter d1. The aperture is lit under
normal incidence by a plane wave of wavelength λ.

Circular pupil with central obstruction

x jinc(πx) x jinc(πx) x jinc(πx) x jinc(πx) x jinc(πx)
0.0 0.500 1.0 0.090 2.0 -0.033 3.0 0.018 4.0 -0.012
0.1 0.493 1.1 0.045 2.1 -0.019 3.1 0.011 4.1 -0.007
0.2 0.475 1.2 0.006 2.2 -0.004 3.2 0.003 4.2 -0.002
0.3 0.446 1.3 -0.023 2.3 0.008 3.3 -0.004 4.3 0.003
0.4 0.407 1.4 -0.046 2.4 0.019 3.4 -0.011 4.4 0.007
0.5 0.360 1.5 -0.059 2.5 0.026 3.5 -0.016 4.5 0.010
0.6 0.308 1.6 -0.065 2.6 0.031 3.6 -0.019 4.6 0.013
0.7 0.252 1.7 -0.064 2.7 0.032 3.7 -0.020 4.7 0.014
0.8 0.196 1.8 -0.058 2.8 0.030 3.8 -0.019 4.8 0.013
0.9 0.141 1.9 -0.047 2.9 0.025 3.9 -0.016 4.9 0.011

Table of values of the function jinc(πx)

1. Using the Fraunhofer approximation, calculate the amplitude f(α, β) as a function of the angles α and β.

2. Calculate the intensity I0 at the center of the diffraction pattern as a function of the ratio d1/d

3. For what follows we shall suppose d1/d = 0.5. Using either your computer or the table above, plot each of the two
terms of the amplitude as a function of α.

4. Give the radius of the 1st dark ring (amplitude is zero). How does it compare with the situation without obstruction ?

5. Estimate the intensity I1 at the maximum of the 1st bright ring (consider that the radius of the first bright ring is the
same as the situation without obstruction). Compare it with the value corresponding to the unobstructed aperture.
Do the same for the 2nd and 3rd bright rings.

More information at : http://www.telescope-optics.net/obstruction.htm

1.4 Fraunhofer diffraction by a screen

1. Consider a screen of transmission t(ρ) = αδ(ρ−d/2) with ρ2 = x2 +y2 and d a positive number. What does this screen
look like ?

2. The screen is lit under normal incidence by a plane wave of complex amplitude A. Use Fraunhofer approximation to
calculate the amplitude diffracted by this screen at a distance z (Hint: make use of the Hankel transform).

3. With your computer, plot the intensity diffracted by the above screen, and compare it with the intensity diffracted by
an unobstructed circular aperture of diameter d. In particular compare the radii of the central peaks and the intensities
at the maximum of the first bright rings.
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2 Exercises for chapter 2

2.1 Measuring the focal length of a telescope

Accurate estimation of the focal of a telescope is a crucial step
to calibrate the field of view of a focal instrument (e.g. camera).
The focal length can be measured by placing a periodic mask
(grating) of known period at the entrance pupil of the telescope.
The image of a star is then a succession of peaks whose separation
is proportional to the focal length. We used this technique in 2005
on the 102cm telescope of Merate (Italy) and built the mask of
the photo on the right . (Scardia et al., 2007, MNRAS 374, 965).

For this problem we consider mask periodic along the x direction,
whose transmission is described by the sinusoidal function
t(x) = cos2

(
πx
a

)
. It is spatially limited by the telescope pupil,

i.e. a disc of diameter d� a. Values for Merate are: d = 102cm,
a = 88mm. The mask looks like the image on the right.

1. Write the transmission coefficient of the mask (including the telescope pupil).

2. The mask is placed at the front focal plane of the telescope (considered as a thin lens of focal F ). The incident light
is a plane wave of wavelength λ having a constant amplitude A on the telescope pupil. Write the complex amplitude
at the image focal plane.

3. Calculate the positions of the peaks, and their width `

4. Give an approximate expression of the intensity at the focal plane in the case d� a

5. If the position of the peaks is measured with an accuracy ∆ = `
10 , what is the relative error ∆F

F on the telescope focal
for the mask of Merate (d = 102cm, a = 88mm) ?

6. Using your computer, plot the graph of the intensity for λ = 600 nm (take F = 16m).

7. By a simple reasonning, explain how would be modified the image in case of polychromatic light.

8. Plot the graph of the polychromatic intensity (consider uniform spectrum of central wavelength λ = 600 nm and width
δλ = 50 nm and sample the bandwith with N = 10 values of λ).

2.2 Focusing screens

1. A screen has a transmission t0(x, y) = cos2(πρ
2

a2 ), with a a constant and ρ2 = (x2 + y2). Show that this screen, when
lit by a monochromatic plane wave, is equivalent to a combination of two lenses.

2. Show that this screen has focusing properties and give its focal length.

3. Calculate its focal lenth in the red (λ = 0.7µ) and the blue (λ = 0.4µ) for a = 5 mm. What would be observed on the
optical axis, near the focus, if the mask is lit in white light ?

4. Give the fraction of the incident intensity which is concentrated at the focus (hint: do the calculation in the mask
plane).
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5. The variable transmissions of such screens is indeed very difficult to manufacture with precision. It is easier to make
a screen of binary transmission (1 or 0), as the Soret pattern shown in the figure below (on the left). Its transmission

expresses as t(x, y) = H(sin(πρ
2

a2 )) with H the Heaviside unit step. Write down a Fourier-like expansion for t (Hint: set
X = ρ2, plot t(X), express it as a Ronchi function, and perform a Fourier expansion using the Poisson formula. ).
Show that this screen act as a sum of converging and diverging lenses, and that it has multiple focal planes.

Figure 5.1: Left : ideal Soret grating. Right : prototype installed on the 76cm refractor of Nice observatory. See Serre &
Koechlin, EAS Pub. Series, Vol. 22, , pp.253 (2006)

2.3 Diffraction grating

A glass plate of refraction index n has a sinusoidal thickness e(x, y) = e0 + e1 sin(2π xa ) where e0, e1 and a are positive
numbers. It is spatially limited by a square aperture of side L � a. It is placed in the plane z = 0 and lit under normal
incidence by a plane wave of wavelength λ and amplitude A. A converging lens of focal F is placed in the plane z = F .

1. What are the dimensions (i.e. in which unit are they expressed) of e0, e1 and a (justify your answer) ?

2. Write down the complex transmission t(x, y) of the plate (you may neglect constant phase terms in factor).

3. Use the relation eiX sinφ =

∞∑
p=−∞

Jp(X) eipφ to calculate the complex amplitude in the focal plane of the lens (Jp

denotes the Bessel function of integer order p).

4. Give the position (xp, yp) and the width of the diffraction order p

5. In the case L� a, write an approximate expression of the intensity I(x, y) in the focal plane, and describe the observed
figure. Make a plot of I(x, 0)

6. Give the ratio Rp between the maximum intensity in the order p and the order 0.

7. Give an approximation of Rp when e1/λ is weak (use the Taylor approximation Jp(X) ' 1
p! (

x
2 )p for x→ 0)

8. What is the condition on e1/λ to neglect the order p = 2 with a glass plate of refraction index n = 2 (consider the
condition R2 < 0.01) ?

2.4 Cylindrical lens

A cylindrical converging thin lens is a portion of a cylinder of axis ∆, as shown
in the figure on the right. As for a spherical lens, its amplitude coefficient
transmission CF (x, y) is a pure phase term (the lens itself being a “phase
mask”). We suppose that

CF (x, y) = exp

(
− iπx

2

λF

)
1(y)

where F is the focal of the lens and λ the wavelength. Paraxial approximation
is assumed on the whole problem.

axis

∆
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1. Which direction is the axis ∆ parallel to (x or y) ? Justify your answer.

2. Show that this cylindric lens is equivalent to the superposition of two masks: a converging (spherical) thin lens LF (x, y)
and a mask M(x, y). Give the expression of M(x, y). What is the nature of optical element corresponding to the mask
M(x, y) ?

3. The lens is placed in the plane z = 0. It is lit under normal incidence by a plane wave of amplitude A (in the plane
z = 0) and wavelength λ. Calculate the complex amplitude in the plane z = F (hint: use the result of question 2).
Describe the image in the plane z = F (make a sketch).

4. How is modified the amplitude in the plane z = F if the cylindrical lens is spatially limited by a slit of transmission
Π
(
x
d

)
? Describe the corresponding image (intensity) and make a sketch.

3 Exercises for chapter 3

3.1 Filtering of periodic patterns

The optical setup below is composed of two identical conjugated lenses of focal length F1 = 1 m (Abbe-Porter double
diffraction setup). The incident plane wave as a complex amplitude Aeikz (normal incidence). The object (plane z = 0) has
a transmission t(x, y). In the filtering plane (focal plane of the lens L1), there is a circular pupil P (x, y) of diameter D.

Plane
wave

z

L1 L2

objet plane

F F x

image plane

F F

t(x,y)
filtering plane
P(x,y)

1. Write down the complex amplitude in the filtering plane, just after the circular pupil.

2. Derive the relation betwen amplitudes in the object and image planes. Express it as a convolution product with a
point-spread function (PSF) (we recall that f(λx) ∗ g(λx) = |λ| (f ∗ g)(λx)).

3. If the object has a transmission t(x, y) = cos2(πxa ), what is the condition on D to obtain a uniform image ? Under
that condition, compare the period of the object and the PSF size in the image plane and conclude.

4. The object is now composed of 6 periodic patterns as in the figure below. Each pattern is described by a cos2 function
of period a =2 mm, 1.7 mm, 1.5 mm, 1.4 mm, 1.3 mm and 1 mm (these patterns are actually used in laboratories to
measure the resolution of instruments, see http://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart).

1 3 4 5 62

The wavelength is λ = 700 nm, the observed image (figure below) show that the grids 3 to 6 are uniform. What is
the condition on the pupil diameter D to observe this image ? What if the wavelength is set to λ =500 nm (using the
same pupil diameter as before) ?
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5. The object is now a Siemens star (fig. on the right). It has
a number N of radial lines over an angle of 2π radians.

(a) Express the spatial period as a function of the distance
ρ from the star center

(b) Describe the image and give the diameter ∆ of the
disc in which the image is uniform.

(c) If L is the star diameter, what is the pupil diameter
to realise ∆ = L/2 ? N.A.: λ = 600 nm, N = 36,
L =1 cm.

3.2 High-pass optical filtering

We consider the Abbe-Porter experiment of the problem 3.1, composed of two identical converging thin lenses of focal F . A
square aperture of side d is placed in the object plane. It is illuminated under normal incidence by a monochromatic plane
wave of wavelength λ and amplitude A. In the filtering plane, we place a mask of transmission P (x, y) = b x, proportionnal
to x (with b > 0).

1. The mask in the filtering plane has a negative transmission for x < 0. Which optical components must we use to obtain
this negative transmission?

2. The filtering made with this experiment is it a high-pass, low-pass, band-pass filtering ? Or someting else (explain)?

3. Calculate the complex amplitude in the filtering plane, just after the mask P (x, y), and plot the corresponding intensity
as a function of x (take y=0 for the plot)

4. Calculate the complex amplitude in the image plane (you may drop the multiplicative constants in factor). Describe
the image (in the xy plane), and plot the corresponding intensity as a function of x (take y=0 for the plot).

5. How is modified the amplitude in the image plane if the mask P (x, y) is spatially limited by a slit of width ` in the x
direction ? Plot the corresponding intensity as a function of x (take y=0 for the plot).

3.3 Image replication

We consider the Abbe-Porter experiment of problem 3.1, but we change the second lens L2 so that its focal is F2. The
distance between the filtering plane and L2 is now F2, as well as the distance between L2 and the image plane.
The object is a regular pentagon of width a and transmission p(x, y) (transmission is 1 inside the pentagon, 0 outside). It is
represented in the scheme below. It is not necessary to write explicitely the expression of p(x, y).
In the filtering plane, we place a 2D grid whose transmission P (x, y) is represented by a 2D Dirac comb of period b in both
directions x and y.

1. Write down the object-image relation between amplitudes in the object and image planes (cf chapter 3). What is the
difference with the case F2 = F (you may set G = F2

F )?

2. Write down the transmission P (x, y) of the grid

3. Calculate the point-spread function (PSF) of the optical filtering

4. Calculate the complex amplitude in the image plane, and make a sketch. Why do we talk about “image replication”
for this problem ?

5. How must be chosen the period b of the grid to avoid overlap between successive images in the image plane ?

a

Object
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3.4 Optical filtering with coherent and incoherent light

We consider the following double-diffraction experiment composed of two lenses of focal F . An object is placed in the plane
(A). Its transmission coefficient (in amplitude) is t(x, y). It is filtered in the plane (B) by a circular pupil of diameter d.
The resulting image is observed in the plane (C). We shall consider the two following cases:

� coherent light: incident plane wave of constant amplitude ψ0, normal incidence

� incoherent light: constant intensity of the incident light (normal incidence)

L1 L2

x

F FFF

Object Filter

(A) (B) (C)

0

Coherent light

1. Calculate the complex amplitude f(x, y) in the plane (C)

2. Write down the amplitude PSF h(x, y) and the amplitude transfer function ĥ(u, v).

3. Express the cutoff frequency fc of this low-pass filter.

4. The objet is made of two pinholes located at positions (±x0

2 , 0) in the plane (A). Write down the intensity I(x, y) in
the plane (C) and plot it as a function of x (N.A.: λ = 500 nm, F = 10 cm, d = 1 cm, x0 = 1.5λF/d).

5. The objet is a sinusoidal grid of spatial frequency m and contrast 1. What is the condition on m to observe a uniform
image ? N.A. : λ = 500 nm, F = 10 cm, d = 1 cm.

6. The object is a sinusoidal grid of frequency m and contrast 1, with m a function of the coordinate x (linear dependence
m = m0 + bx). Show that the image is uniform for certain values of x and make a qualitative plot of the intensity
I(x, y) in the image. N.A. : m0 = 20mm−1, b = 20mm−2.

Incoherent light

The objet has a transmission coefficient (in intensity) t(x, y), so that the intensity in the plane (A) is I0(x, y) = Cte t(x, y).
In incoherent light, it can be shown that there is a convolution relation between the intensity of the object I0(x, y) and the
image I(x, y), i.e. I(x, y) = I0(−x,−y) ∗ S(x, y) with S(x, y) the intensity PSF.

7. From results of section 1, derive the intensity PSF S(x, y)

8. Calculate the intensity transfer function T (u, v) (you may normalize the transfer function so that T (0, 0) = 1).

9. Express the cutoff frequency fc of this low-pass filter. What is the difference with the coherent case ?

10. The objet is made of two pinholes located at positions (±x0

2 , 0) in the plane (A). Write down the intensity I(x, y) in
the plane (C) and plot it as a function of x (N.A.: λ = 500 nm, F = 10 cm, d = 1 cm x0 = 1.5λF/d). Is the object
best resolved in coherent or incoherent light ?

11. The objet is a sinusoidal grid of spatial frequency m, its transmission coefficient (in intensity) is t(x, y) = 1
2 +

1
2 cos(2πmx). Calculate the intensity of the image and derive its contrast. What is the condition on m to observe a
uniform image ? N.A. : λ = 500 nm, F = 10 cm, d = 1 cm.

12. The object is a sinusoidal grid of frequency m and contrast 1, with m a function of the coordinate x (linear dependence
m = m0 + bx). Show that the contrast of the image depends of x (give its expression) and make a qualitative plot of
the intensity I(x, y) in the image. N.A. : m0 = 20mm−1, b = 20mm−2.
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3.5 Optical filtering by a pair of holes

We consider the Abbe-Porter experiment of exercise 3.4, composed of two identical converging thin lenses of focal F . The
object has a amplitude transmission t(x, y). It is illuminated under normal incidence by a monochromatic plane wave of
wavelength λ and amplitude A. In the filtering plane, we place a mask of transmission P (x, y).

1. Write down the complex amplitudes in the filtering plane and in the image plane.

2. Give the amplitude PSF h(x, y) and the corresponding transfer function ĥ(u, v)

In the following, we suppose that the object transmission is t(x, y) = cos(2πmx) with m > 0. The filter P (x, y) is composed
of two circular apertures of diameter d. They are centered at positions (x = ±d, y = 0) in the filtering plane.

3. Plot the transfer function ĥ(u, v) for v = 0 (put all relevant informations on your graphs (labels, particular values,
etc. . . )

4. For which values of m do we have a non-zero intensity in the image plane? What kind of filtering is it?

5. For the values of m transmitted by the filter (corresponding to the previous question), calculate the intensity I(x, y)
in the image plane

6. We now use a variable frequency grid (the same as in exercise 3.4). Its spatial frequency depends on the x coordinate
(linear variation m(x) = m0 + Kx). The total length of the grid is L = 1cm. The spatial frequency varies from
m0 = 50 mm−1 at x = 0 to m1 = 550 mm−1 at x = L. For which values of x do we have a uniform intensity in the
image (N.A. d =1 cm, F = 100 mm, λ = 500 nm) ? Make a plot of I(x, 0) (place all relevant informations on your
graph).

The object transmission is again t(x, y) = cos(2πmx). One introduces a π phase shift on one of the two apertures of the
filter P (x, y).

7. Calculate and plot the new transfer function ĥ(u, v) for v = 0. What are the new cutoff frequencies (compare with the
situation without the π phase shift)?

8. For the frequencies m transmitted by the system, calculate the intensity I1(x, y) in the image plane. What are the
differences with the question 5 (you may plot the two functions on the same graph for comparison).

4 Exercises for chapter 4

4.1 Image of a double star and pupil apodization

A telescope has a circular pupil P (x, y) of diameter d. With this telescope, one observes a star with a companion. We
denote as r the intensity ratio of the companion and the main star, and φ the angular separation of the couple. The angular
intensity distribution of the source is I0(α, β) = A[δ(α, β) + rδ(α− φ, β)]. For numerical applications, we shall consider the
following values : d = 1m, λ = 500nm.

1. Write the angular intensity PSF S(α, β) at the focal plane of the telescope.

2. What is the angular resolution (Rayleigh definition) θ0 of the telescope ? Calculate its numerical value in arcsec

3. Write the intensity I(α, β) of the image of the couple, express it as the sum of two terms I1(α, β) and I2(α, β) (I1 is
produced by the star, I2 by the companion)

4. Using your computer, plot (on the same graph) the intensities I1(α, 0), I2(α, 0) and I(α, 0) as a function of α for r = 1
and φ = 0.2 arcsec (for the horizontal axis, you may display values in arcsec).

5. Make a gray-level plot of the 2D intensity I(α, β) (use the python function pcolor).

6. Do the same for φ = θ0 (Rayleigh limit): is the couple resolved ? Same question for φ = λ
d . Which value seems more

suitable to define a limit of resolution: θ0 or λ
d ?

7. We take r = 0.001 and φ = 0.3 arcsec. Plot the intensities I1(α, 0), I2(α, 0) and I(α, 0) as a function of α (use a log
scale for the y axis).

8. Still with r = 0.001 and φ = 0.3 arcsec, calculate I2(−φ, 0) and I1(−φ, 0) and show that the companion is fainter than
the light coming from the main star.
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The telescope pupil is now apodized, so that it is multiplied by a Gaussian transmission G(x, y) = exp
(
− ρ2

w2

)
, with

ρ2 = x2 + y2 and w = d
4 the with of the Gaussian. The new pupil function is then P2(x, y) = P (x, y).G(x, y). We shall

neglect the effects of the pupil edges (so that P2(x, y) ' G(x, y)).

9. Plot the pupil function P2(x, 0) as a function of x (do not forget the circular disc). What do you think of the hypothesis
“we shall neglect the effects of the pupil edges” (Hint: compare your graph with the case w = d/2)

10. One defines the angular resolution ∆ of this telescope as the FWHM of its PSF (because there is no Rayleigh limit for a
Gaussian pupil). Calculate the PSF and express ∆ as a function of λ

d . Compare with the resolution of the unapodized
pupil.

11. Repeat question 4 for this pupil with r = 1 and φ = ∆. Is the couple resolved ?

12. Repeat question 7 for this pupil. Is the companion detectable ? Calculate I2(−φ, 0) and I1(−φ, 0) and show that the
companion is now brighter than the light diffracted by the main star.

13. What would become the PSF if one does not neglect the effects of the pupil edges ? Express is as a convolution (you
might calculate it numerically with your computer).

4.2 Measurement of the angular diameter of a star

In 1920, making use of the 2.5m telescope of Mt Wilson, Michelson and Pease made the first measurement of the angular
diameter of a star (Michelson A., Pease F., 1921, ApJ 53, 249). They published a value of 0.047 arcsec for the star Betelgeuse.
They used a 2-holes mask at the entrance pupil of the telescope. The masks were small and in this problem we shall consider
them as pinholes (transmission described by a Dirac δ distribution). The separation between the holes is denoted as d. The
source star is described by a circular uniform disc of angular diameter θ0. Observations are made at the wavelength λ.

1. Write down the angular PSF S(α, β) of this pupil

2. Express the angular intensity distribution I(α, β) in the focal plane as a convolution.

3. Show that the image exhibit fringes (hint : calculate the Fourier transform of I(α, β))

4. Show that the fringe contrast (i.e. visibility) vanish for several values of d. Propose a method to derive the angular
diameter of the star.

5. The former interferometer I2T, operating on the plateau de Calern in the years 1980, was composed of two small
telescopes which could be moved on rails up to a separation of 140 m. What is the smallest angular diameter measurable
by I2T at λ = 500 nm ?

4.3 Image of a sinusoidal grid

A telescope with circular pupil of diameter d observes an extended source described by the angular intensity distribution
I0(α, β) = A cos2

(
πα
a

)
with a a positive number. Observations are made at the wavelength λ.

1. Calculate the angular intensity distribution I(α, β) at the focal plane (hint: do the calculation in the Fourier plane.
You may drop multiplicative constants in factor).

2. On the same graph, plot the intensities I0(α, 0) and I(α, 0) as a function of α.

3. The angular period of the source is 50 mas (milli arcsec). What is the minimum telescope diameter d1 to observe a
non-uniform image at λ = 600 nm ?

4. The telescope diameter being fixed to d1, what is the value of the contrast of the image at λ = 400 nm ?

The telescope pupil is now a square of side d (sides are parallel to directions α and β).

5. Calculate the transfer function for this aperture. What is the cutoff frequency in the direction α ? Compare with the
circular pupil: is the resolution better with the circular or the square pupil?

6. Same questions as 3 and 4 for the square pupil. Which image has a better contrast at λ = 400 nm if d = d1 ?
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4.4 Diluted pupil with two circular apertures

The pupil of an interferometer is composed of
two circular apertures of diameter d, distant of a
separation B > d in the x direction (scheme on the
right). Observations are made in monochromatic
light at the wavelength λ.

d

B

1. Calculate the angular intensity PSF S(α, β) and plot S(α, 0) as a function of α for B = 4d and λ = 600nm.

2. Use your computer to make a gray-level plot of S(α, β)

3. How many fringes are visible in the central peak of the Airy disc ? N.A.: B = 2d (this value almost corresponds to the
pupil of the Large Binocular Telescope (Arizona), B = 1.7d)

4. The source is a double star of angular separation ∆ in the α direction. Stars have the same magnitude. Write the
angular intensity distribution I(α, β) at the focal plane, and make a gray-level plot of I(α, β) for ∆ = 4λd and B = 2d.

5. Calculate the transfer function T (u, v) and give angular cutoff frequencies uc and vc in directions u and v

6. Show that the angular resolution of this interferometer (defined as the cutoff period) is equal, in the u direction, to
that of a large circular aperture (give its diameter).

7. In the case B < 2d, explain why the transfer function does not vanish in the interval u ∈ [−uc, uc] for v = 0.

4.5 Study of a defocus aberration

We consider a telescope with square pupil of side d (the pupil is taken square and not circular for a sake of simplicity).
Images of incoherent objects are observed at the focal plane of the telescope (focal length F ), the light is monochromatic
(wavelength λ). The lens of the telescope is not perfect: there is a phase aberration W (x, y) so that the pupil of the telescope
is multiplied by the complex term exp[iW (x, y)] (this product is called generalized pupil function). The function W (x, y) is
given by

W (x, y) =
π

λ
ε(x2 + y2)

with ε� 1
F .

1. Show that the aberration changes the focal length of the telescope, so that is becomes F ′ (hint: express the transmission
coefficient of the telescope lens in presence of the phase aberration). Express F ′ as a function of F . If ε > 0, does this
corresponds to intrafocal or extrafocal images ?

2. What is the optical path difference w produced by the aberration term between the center of the pupil and its edge
(consider the point (d2 , 0)) ?

3. Calculate the angular intensity PSF S(α, β) of this generalized pupil P (x, y). Express it with a convolution product
(do not calculate the convolution analytically, but you may try to do it numerically using python fft2 function).

4. Show that the angular transfer function T (u, v) of the generalized pupil P (x, y) is a separable function in u and v, and
that it must be real and even (T (−u,−v) = T (u, v)). Calculate T (u, v). We recall that

T (u, v) =
1

S

∫∫ ∞
−∞

P (x, y) P (x+ λu, y + λv) dx dy

with S the pupil surface.

5. What are the cutoff frequencies uc and vc in the u and v directions ?

6. Examine the limit of T (u, v) when ε→ 0. In this case the aberration term vanishes, and you should obtain the transfer
function of an un-aberrated rectangular pupil.
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7. With your computer, plot the transfer function T (u, 0) for 0 < u < 1.2uc in the cases w = λ
4 , w = λ

2 , and w = 0.6λ.
Numerical values are λ = 500nm, d = 1m.

8. The object observed by the telescope is a sinusoidal grid of spatial period a in the x direction, located at a distance
D from the pupil (with D � F ). The defocus aberration corresponds to w = 0.6λ. Using your graph above, show
that the constrast of the image vanishes for several values of a, and give the two largest values a1 and a2. (N.A. :
D = 10km, λ = 500nm, d = 1m). If a1 < a < a2, show that there is a contrast reversal, i.e. a swap between dark and
bright fringes.

Images of a Siemens star: (a) perfect image. (b) defocused image showing contrast reversal.

4.6 Rectangular pupil with phase shift

We consider a telescope with a rectangular pupil of width b in the x direction
and 2a in the y direction. A parallel plate introducing a π phase shift is placed
over the upper half of this pupil (see scheme). Observations are made in the
focal plane of the telescope at the wavelength λ, in incoherent light.

1. Calculate the angular intensity PSF S(α, β) as a function of angles α and
β. Plot the PSF and compare it to the case where there is no parallel
plate

2. Calculate the optical transfer funtion T (u, v) by two different ways.

3. Plot T (u, 0) and compare it to the case where there is no parallel plate.

2a

b

a
+π

4.7 A simple pistonscope

We consider a telescope with a pupil made of 2 circular apertures of diameter
d, distant from a > 2d. The baseline (line joining the two apertures) is parallel
to the x direction. The light is monochromatic (wavelength λ). The wavefront
is not flat, and there is a phase shift φ between the two apertures (i.e. the
complex amplitude on the aperture centered at x = a

2 is multiplied by eiφ).
This phase shift corresponds to an optical path difference (OPD) δ as shown
on the sketch.

δ
wavefront

Telescope lens

pupil

1. Write down the relation between φ and δ.

2. Write down the generalized pupil function P (x, y) including the phase shift (the point (x, y) = (0, 0) will be taken
between the two apertures).

3. Calculate the intensity PSF S(α, β) as a function angles (α, β). Make a plot of S(α, 0) (write relevant informations on
the axes, labels,...)

4. How many fringes are present in the central peak of the PSF ?

5. Show that the fringes are shifted by a quantity ∆, and express ∆ as a function of the OPD δ
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6. The PSF is recorded by a camera whose pixel size is p (p = 10µm). The focal length is F . What is the value of δ
corresponding to a fringe displacement of 1 pixel on the camera? N.A. : a = 1m, F = 10m.

7. Calculate the normalized optical transfer function T (u, v) for this generalized pupil. What are the differences with the
case φ = 0?

8. Make a plot of |T (u, 0)| (write relevant informations on the axes, labels,...).

9. What is the angular resolution of this telescope? What is the difference with the case φ = 0?

10. The object observed by the telescope is a sinusoidal grid of spatial period ` (` is a length) in the x direction, located at
a distance D from the pupil (with D � F ). Give the conditions on ` to observe a non-uniform image. N.A.: D = 1km,
λ = 500nm, d = 10cm, a = 1m.

4.8 Circular disc with limb darkening

We consider an interferometer with a pupil made of two holes separated by a distance B (baseline) along the x direction.
The diameter of the two holes is supposed to be infinitely small. The astronomical (incoherent) source observed by the
instrument has an intensity distribution I0(α, β) as function of angles α and β (α is taken parallel to the x direction). The
function I0(α, β) is supposed even. The source is monochromatic, the wavelength is λ.

1. Write down the pupil function P (x, y) of the interferometer

2. Calculate the angular PSF S(α, β)

3. Calculate the corresponding transfer function. Which angular frequencies are accessible to this interferometer?

4. Calculate the intensity I(α, β) in the image and show that it is composed of fringes (we recall that I0(α, β) is an even
function).

5. Express the fringe contrast as a function of the baseline B (visibility function).

Two different objects are observed by this interferometer:

Object 1: a uniform disc of angular diameter θ0. The corresponding angular intensity distribution is denoted as I1(α, β)

Object 2: a disc with smooth edges (example of a star with limb darkening) The angular intensity distribution is modelled

by the convolution I2(α, β) = I1(α, β) ∗ g(α, β) with g(α, β) = exp

[
−
(√

α2+β2

L

)2
]

a gaussian function of with

L� θ0. The two functions I1(α, 0) and I2(α, 0) are shown hereafter.
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We want to measure L by comparing visibility curves obtained with both objects.

6. Write the visibility function V1(B) for the object 1.

7. Explain how you would measure the angular diameter θ0 from the visibility V1(B).

8. Give the baseline Bm corresponding to the first secondary maximum of V1. What is the numerical value of the fringe
contrast V1(Bm)?

9. Write the visibility function V2(B) for the object 2, and give its value at B = Bm.

10. Propose a method to estimate L from the two visibilities V1 and V2.
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Appendix: Solutions to exercises

Exercises for chapter 0

1-dim Fourier transforms

1. If f(x) = a + b cos(2πu0x) then f̂(u) = aδ(u) + b
2δ(u − u0) + b

2δ(u + u0) (both functions are real and even). If

f(x) = a+ b sin(2πu0x) then f̂(u) = aδ(u)− ib
2 δ(u− u0) + ib

2 δ(u+ u0) (the sine is responsible for the imaginary part
of the Fourier transform).

2. f̂(u) = a
2 sinc(πa(u+ u0)) + a

2 sinc(πa(u− u0))

3. f expresses as the convolution : f(x) = Π
(
x
b

)
∗ [δ(x+a

2 )+δ(x−a2 )]. Its Fourier transform is f̂(u) = 2bsinc(πub). cos(πua).

4. f̂(u) = a sinc(πua)Ø(2au) (the Dirac comb has a period 1
2a ). If f is multiplied by a rectangular function Π( xL ) then

f̂(u) is convolved by L sinc(πuL). Expanding the Dirac comb leads to

f̂(u) =
L

2

∞∑
n=−∞

sinc
(πn

2

)
sinc

(
πL
(
u− n

2a

))

5. The Fourier transform of ga(x) is ĝa(u) = exp
(
−π(ua

√
2π)2

)
. The Fourier transform of the convolution ga ∗ gb is

exp
[
−π(u

√
a2 + b2

√
2π)2

]
. By identification, we recognize the Fourier transform of g√a2+b2

2-dim Fourier transforms

1. f(x, y) = Π(xa ).Π(yb ) is a separable function, so its Fourier transform is also separable: f̂(u, v) = ab sinc(πua).sinc(πvb).

2. f can be written as f(x, y) = Π(ρd ). cos2(πxa ) with ρ =
√
x2 + y2. So f̂(u, v) = S jinc(πdq)+S

2 jinc
(
πd
√

(u+ 1
a )2 + v2

)
+

S
2 jinc

(
πd
√

(u− 1
a )2 + v2

)
with S = πd2

4 and q =
√
u2 + v2

3. The function is f(x, y) = Π(ρd ) ∗ [Øa(x).1(y)]. Its Fourier transform is f̂(u, v) = 2S jinc(πdq).Ø(au) (a “striped” jinc
function with period 1

a ).

4. Hints: the 2D Fourier transform of f is

∫∫ ∞
−∞

f(x, y) exp(2iπ(ux + vy)) dx dy. Make the variable change x = ρ cos θ,

y = ρ sin θ, u = q cosφ, v = q sinφ (polar coordinates in direct and Fourier domains). The term (ux + vy) becomes

qρ cos(θ − φ). The Bessel function J0(X) can also be written as J0(X) =
1

2π

∫ 2π

0

exp(iX cos(θ − φ)) dθ ∀φ because

exp(iX cos θ) is 2π periodic in θ.

5. f̂(u, v) = πd2

2 jinc(πdq)

Exercises for chapter 1

Ex. 1.1: the Moon laser at the Plateau de Calern

1. The wave intensity |A|2 is its power per unit surface, so W = S|A|2 with S = πd2

4

2. Amplitude at Moon surface fD(x, y) =
AeikD

iλD
2S jinc

(
πdρ

λD

)
. Diameter of the first dark Airy ring: L1 = 2.44λD

d = 312m
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3. ψ0 = ASeikD

iλD . I0 = |ψ0|2 = WS
λ2D2

4. If a � L1 the mirror is almost uniformly lit with an amplitude fD(0, 0). Hence W1 = S1|fD(0, 0)|2 = WSS1

λ2D2 with

S1 = πa2

4 the mirror surface. Numerical value: W1

W = 3.4 10−8

5. Same calculation as in question 2, replacing d by a and A by fD(0, 0). Diameter of the first dark ring: L2 = 2.44λD
a =

15km. Intensity at center: I1 =
|A|2S2S2

1

λ4D4 .

6. W2 = SI1, so W2

W =
WS2S2

1

λ4D4 = 1.1 10−15

Ex. 1.2: aperture synthesis

1. Screen transmission: t(x, y) = Π(ρd )∗[δ(x−a2 )+δ(x+a
2 )]. Diffracted intensity: I(α, β) =

(
4|ψ0|S
λz

)2

jinc
(
πθd
λ

)2
cos2(παaλ)

with S = πd2

4 and θ =
√
α2 + β2. Diameter of the first dark Airy ring: 2.44λD

d . Fringe period: λ/a (smaller than the
Airy disc size, so the image looks like a striped Airy disc).

2. Intensity:

I(α, β) =

(
2|ψ0|S
λz

)2

jinc

(
πθd

λ

)2 [
3 + 2 cos

(
2π

λ
~θ. ~B12

)
+ 2 cos

(
2π

λ
~θ. ~B13

)
+ 2 cos

(
2π

λ
~θ. ~B23

)]
with ~θ = (α, β) and ~Bij = ~ρj − ~ρi the distance between the 3 hole pairs. The term between the brackets [] is an
interference pattern made of 3 fringe systems (3 cosine terms) corresponding to the 3 hole pairs. The whole fringe
pattern is multiplied by an Airy function jinc2 corresponding to the diffraction by individual holes.

3. Intensity:

I(α, β) =

(
2|ψ0|S
λz

)2

jinc

(
πθd

λ

)2
10 + 2

10∑
j=1

∑
i6=j

cos

(
2π

λ
~θ. ~Bij

)
The interference function between the brackets [] is made of N(N−1)

2 cosine terms (with N = 10) corresponding to the
N(N−1)

2 possible bases ~Bij . At its center, it exhibits a pseudo-Airy disc of size ∼ λ
a , similar to to diffraction pattern of

a circular diaphragm of diameter a.

Ex. 1.3: circular pupil with central obstruction

1. Diffracted amplitude:

f(α, β) =
Aeikz

iλz

[
2S jinc

(
πdθ

λ

)
− 2S1 jinc

(
πd1θ

λ

)]
with A the incident amplitude, S = πd2

4 , S1 =
πd21
4 and θ =

√
α2 + β2.

2. I0 =
(
|A|S
λz

)2 (
1− S1

S

)2
4. With d1 = 0.5d, the angular radius θ1 of the first dark ring is the solution of 4jinc

(
πdθ1
λ

)
= jinc

(
πdθ1
2λ

)
. From the table,

we find θ1 = λ
d (1.22λd without obstruction).

5. Intensity I1 in the first bright ring, for θ = 1.6λd (radius of the 1st bright ring without obstruction): I1 = 0.068 I0
(brighter than the situation without obstruction where I1 = 0.017 I0)

Ex. 1.4: Fraunhofer diffraction by a screen

1. The screen is a bright ring of radius d
2

2. Diffracted amplitude fz(ρ) = πAαdeikz

iλz J0

(
πdρ
λz

)
3. Radius of the first bright ring: 0.76λzd (circular aperture: 1.22λzd ). Intensity I1 of the first bright ring: I1/I(0) = 0.16

(circular aperture: 0.017).
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Exercises for chapter 2

Ex. 2.1: focal length of a telescope

1. Mask transmission: t(x, y) = Π(ρd ) cos2(πxa )

2. Amplitude at focal plane:

f(x, y) = B

2jinc

(
πdρ

λF

)
+ jinc

 πd

λF

√(
x+

λF

a

)2

+ y2

+ jinc

 πd

λF

√(
x− λF

a

)2

+ y2


with S = πd2

4 and B = AS
2iλF e

2ikF

3. Peak positions: (0, 0), (±λFa , 0). Width: ` = 2.44λFd

4. Intensity: if d � a the double products between terms in the amplitude vanish (as their width is � their separation.
We obtain the sum of 3 Airy discs:

I(x, y) = |B|2

4jinc

(
πdρ

λF

)2

+ jinc

 πd

λF

√(
x+

λF

a

)2

+ y2

2

+ jinc

 πd

λF

√(
x− λF

a

)2

+ y2

2


5. ∆F
F = 1.22a

5d ' 0.02

7. In polychromatic light, the peak width and separation increase with λ. The secondary peaks are dispersed.

Ex. 2.2: focusing screens

1. The screen transmission can be written as t(x, y) = 1
2 + 1

4LF (x, y)+ 1
4L−F (x, y) with LF (resp. L−F ) the transmission

of a converging (resp. diverging) lens of focal F = a2

2λ .

2. Part of the light (1/4 of the amplitude) is focused by the term LF (x, y). Focal F = a2

2λ

3. Red light: focal length F = 17m. Blue light: F = 31m. There is a very strong chromaticity. In white light one would
observe a dispersion (rainbow) along the optical axis.

4. 1/16 of the incident intensity is focused (1/4 of the amplitude).

5. The plot shows that t(X) is a Ronchi function, i.e. t(X) =

∞∑
n=−∞

∏(
X −Xn

a2

)
with Xn = (2n + 1/2)a2. Applying

the Poisson formula gives:

t(x, y) =
1

2a2

∞∑
n=−∞

insinc
(πn

2

)
exp

(
iπρ2

λFn

)
with Fn = a2

nλ . It is therefore a sum of converging (for n < 0) and diverging (for n > 0) lenses. Note that even terms
excepted n = 0 are null (because of the sinc factor).

Ex. 2.3: diffraction grating

1. e1 and e0 are lenghs (same dimension as e(x, y)). a is also a length (same dimension as x to make sure that the
argument of sin(2π xa ) is dimensionless.

2. Transmission: t(x, y) = Π
( x
L

)
Π
( x
L

)
exp

(
2iπ(n− 1)e1

λ
sin
(

2π
x

a

))

3. Amplitude at focal plane: f(x, y) =
AL2

iλF
e2ikF

∞∑
p=−∞

Jp

(
2π(n− 1)e1

λ

)
sinc

(
πL

λF
(x− xp)

)
sinc

(
πLy

λF

)
4. Peak positions: xp = pλF

a , yp = 0. Width: 2λF
L
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5. Intensity: I(x, y) = |f(x, y)|2. If L � a, the width of peaks � their separation, and they do not overlap (double
products vanish in the sum). Hence:

I(x, y) ' |A|
2L4

λ2F 2

∞∑
p=−∞

Jp

(
2π(n− 1)e1

λ

)2

sinc

(
πL

λF
(x− xp)

)2

sinc

(
πLy

λF

)2

6. Rp =

(
Jp(X)

J0(X)

)2

with X = 2π(n−1)e1
λ

7. If e1/λ� 1 then Rp '
1

p!2
(π(n− 1))2p

(e1

λ

)2p

8. R2 < 0.01 if e1 < 0.14λ

Ex. 2.4: cylindrical lens

1. Axis ∆ parallel to y (the transmission coefficient is independent of y)

2. M(x, y) = exp
(
iπy2

λF

)
so that the product LF (x, y).M(x, y) is CF (x, y). M(x, y) corresponds to a diverging cynlindrical

lens (with curvature along the y direction).

3. To calculate the amplitude at z = F , we consider the equivalent problem of an object of transmission M(x, y) in
front of a converging lens LF . Therefore, the amplitude is the optical Fourier transform of AM(x, y). We obtain:

f(x, y) =
A
√
λF√
i

eikF δ(x) 1(y). It is a bright line parallel to the y axis.

4. Lens spatially limited: M(x, y) is multiplied by Π(xd ). The new amplitude in the focal plane is:

f ′(x, y) =
Ad√
iλF

eikF e
iπx2

λF sinc

(
πdx

λF

)
1(y)

Exercises for chapter 3

Ex. 3.1: filtering of periodic patterns

1. Amplitude in filtering plane: fb(x, y) = A
e2ikF

iλF
t̂
( x

λF
,
y

λF

)
.P (x, y)

2. Amplitude in the image plane: f(x, y) = −Ae4ikF t(−x,−y) ∗ 1

λ2F 2
P̂
( x

λF
,
y

λF

)
3. Image uniform if D < 2λF

a . PSF size ` = 2.44λFD .

4. We want the grid #5 to be filtered but not the grid #4. This gives 0.82mm < D < 0.93mm. If λ = 500nm, only the
grid #6 is filtered.

5. Siemens star:

(a) Spatial period: a(ρ) = 2πρ
N

(b) Low-pass filter: the center of the star is filtered (uniform). ∆ = 2NλF
πD

(c) D = 2.7mm

Ex. 3.2: high-pass optical filtering

1. A negative transmission of -1 corresponds to a phase shift of π. Hence to obtain a negative transmission −bx, one has
to use an absorbing filter (transmission b|x|) and a parallel plate of transmission eiπ.

2. High-pass

3. Amplitude in filtering plane: fb(x, y) =
Abde2ikF

iπ
sinc

(
πdy

λF

)
sin

(
πdx

λF

)
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4. Amplitude in image plane: f(x, y) =
AbλFe4ikF

2iπ

∏(y
d

) [
δ

(
x+

d

2

)
− δ

(
x− d

2

)]
5. If P (x, y) is multiplied by Π(x` ).Π(y` ), the amplitude in the image plane become:

f(x, y) = (Cte)
∏(y

d

) [
sinc

(
π`

λF

(
x+

d

2

))
− sinc

(
π`

λF

(
x− d

2

))]
with (Cte) a multiplicative constant.

Ex. 3.3 image replication

1. Amplitude in the image plane: f(x, y) = − 1

G
e2ik(F+F2) f0

(
− x
G
,− y

G

)
∗ 1

λ2F 2
2

P̂

(
x

λF2
,
y

λF2

)
with f0(x, y) = Ap(x, y)

the amplitude in the object plane, and G = F2

F a magnification factor (main difference with the case F2 = F ).

2. P (x, y) = (Cte)Ø
b

(x).Ø
b

(y) where (Cte) is an optional multiplicative constant (useful to make P (x, y) dimensionless).

3. Amplitude PSF: h(x, y) =
1

λ2F 2
2

Ø

(
bx

λF2

)
Ø

(
by

λF2

)
. Period λF2

b in both directions.

4. Amplitude in image plane: f(x, y) = −AGe
2ik(F+F2)

λ2F 2
2

p
(
− x
G
,− y

G

)
∗Ø

(
bx

λF2

)
Ø

(
by

λF2

)
. It is a periodic replication

(period λF2

b ) of a magnified pentagon of size aG.

5. No overlap if b < λF
a

Ex. 3.4 optical filtering with coherent and incoherent light

1. fc(x, y) = −e4ikF fA(−x,−y) ∗ 2s

λ2F 2
jinc

(
πdρ

λF

)
with fA(x, y) = ψ0t(x, y), s = πd2/4 and ρ =

√
x2 + y2

2. Amplitude PSF: h(x, y) = 2s
λ2F 2 jinc

(
πdρ
λF

)
. Transfer function: ĥ(u, v) = Π( qλFd ) with q =

√
u2 + v2

3. fc = d
2λF

4. I(x, y) = (Cte)|ψ0|2
[
h(x− x0

2 ) + h(x+ x0

2 )
]2

5. Uniform image if m > fc

6. Image uniform for x > (fc −m0)/b

7. Intensity PSF: S(x, y) = |h(x, y)|2

8. T (u, v) =
(
λFq
d

)
9. fc = d

λF two times larger than the coherent case

10. I(x, y) = (Cte)|ψ0|2
[
h(x− x0

2 )2 + h(x+ x0

2 )2
]
. The difference with the coherent case is that there is no double

product. The object is best resolved with incoherent light.

11. If t(x, y) = 1
2 + 1

2 cos(2πmx), then I(x, y) = (Cte)
[
1 +

(
λFm
d

)
. cos(2πmx)

]
. Contrast: C =

(
λFm
d

)
. Uniform

image if m > d
λF

12. Contrast C(x) =
(
λF (m0+bx)

d

)
.
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Ex. 3.5: optical filtering by a pair of holes

1. Amplitude in the filtering plane: f1(x, y) = Ae2ikF

iλF t̂
(
x
λF ,

y
λF

)
.P (x, y).

Amplitude in image plane: f(x, y) = −Ae4ikF t (−x,−y) ∗ 1
λ2F 2 P̂

(
x
λF ,

y
λF

)
2. h(x, y) = 1

λ2F 2 P̂
(
x
λF ,

y
λF

)
. ĥ(u, v) = P (−λFu,−λFv).

4. Intensity 6= 0 if d
2λF < m < 3d

2λF . Bandpass filter.

5. Intensity in the above case: I(x, y) = |A|2 cos2(2πmx)

6. Image uniform if x > 1
K

(
3d

2λF −m0

)
or x < 1

K

(
d

2λF −m0

)
7. New transfer function: ĥ(u, v) = Π

(
qλF
d

)
∗
[
δ(u− d

λF , v)− δ(u+ d
λF , v)

]
. Cutoff frequencies unchanged: uc =

± d
2λF ,±

3d
2λF

8. New intensity: I(x, y) = |A|2 sin2(2πmx). There is a half period shift of the fringes.

Exercises for chapter 4

Ex. 4.1: Image of a double star and pupil apodization

1. Intensity PSF: S(α, β) = 4s2 jinc
(
πdθ
λ

)2
with s = πd2

4 and θ =
√
α2 + β2

2. θ0 = 1.22λd

3. I(α, β) = I1(α, β) + I2(α, β) with I1(α, β) = AS(α, β) and I2(α, β) = rAS(α+ φ, β)

6. The plot shows that images are well resolved if φ = θ0 and “just resolved” if φ = λ
d . So the limit of resolution is λ

d .

8. Numeric values are I2(−φ, 0) = 10−3 As2 and I1(−φ, 0) = 2.4.10−3 As2. The intensity produced by the main star (I1)
is greater than the intensity produced by the companion.

9. The plot of the apodized pupil shows a discontinuity of about 0.02 at the pupil edges. This is small enough to be
neglected.

10. PSF: S(α, β) = π2w4 exp
(
− 2π2w2θ2

λ2

)
. ∆ = 1.5λd larger than θ0 so there is a loss of resolution with the apodization.

12. Numeric values are I2(−φ, 0) = 10−3 πAw2 and I1(−φ, 0) = 2.9.10−5 πAw2. The companion is now brighter than the
main star.

13. If pupil edges are not neglected: S(α, β) = (Cte)

[
jinc

(
πdθ

λ

)
∗ exp

(
−π

2w2θ2

λ2

)]2

with (Cte) a multiplicative

constant.

Ex. 4.2: Measurement of the angular diameter of a star

1. PSF: S(α, β) = 4 cos2
(
πdα
λ

)
2. Intensity in the focal plane: I(α, β) = I0(−α,−β) ∗ S(α, β) with I0(α, β) = Π

(
θ
θ0

)
3. I(α, β) =

πθ2
0

2

[
1 + 2jinc

(
πθ0d

λ

)
. cos

(
2παd

λ

)]
4. Fringe contrast: C =

∣∣2jinc
(
λ
ad

)∣∣. C = 0 for all zeros of the jinc function. The first zero is for d = 1.22 λ
θ0

, allowing to
measure θ0 (the method is to change d until the image becomes uniform).

5. I2T: smallest value θ0 = 0.9 milli-arcsec.
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Ex. 4.3: Image of a sinusoidal grid

1. Intensity at focal plane: I(α, β) = 1
2 + 1

2

(
λ
ad

)
. cos

(
2πα
a

)
3. Diameter d1 = 2.47m

4. For λ = 400nm, the contrast is C = 0.22

5. Square pupil transfer function: T (u, v) = Λ
(
uλ
d

)
.Λ
(
vλ
d

)
. Cutoff frequencies uc = vc = d

λ , identical to the circular
pupil: both telescopes have the same resolution.

6. Contrast for the square pupil at λ = 400nm: C = 0.33 (better contrast than circular pupil).

Ex. 4.4: Diluted pupil with two circular apertures

1. PSF: S(α, β) = 16s2 cos2
(
πBα
λ

)
.jinc

(
πθd
λ

)2
with s = πd2

4 and θ =
√
α2 + β2

3. Fringe number: N = 2.44Bd

4. Intensity in the image: I(α, β) = A
[
S(α− ∆

2 , β) + S(α+ ∆
2 , β)

]
with A a constant for dimension purpose (A =

intensity of individual stars).

5. Transfer function T (u, v) =

(
qλ

d

)
+

1

2

λ
d

√(
u− B

λ

)2

+ v2

+
1

2

λ
d

√(
u+

B

λ

)2

+ v2

 with q =
√
u2 + v2.

Cutoff frequencies: uc = B+d
λ , vc = d

λ

6. In the u direction, the telescope has the same cutoff frequency (so the same resolution) than a telescope of diameter
B + d.

7. If B < 2d the 3 terms of the transfer function overlap, and the transfer function has no zero in the interval u ∈ [−uc, uc]

Ex. 4.5 study of a defocus aberration

1. The lens transmission expresses as t(x, y) = exp
(
− iπρ

2

λF ′

)
(ρ =

√
x2 + y2) with F ′ ' F + εF 2. If ε > 0: intrafocal

(images are observed at a distance F < F ′ from the telescope pupil).

2. w = εd2/8

3. S(α, β) = (Cte)

[
sinc

(
παd

λ

)
.sinc

(
πβd

λ

)
∗ exp

(
− iπθ

2

λε

)]2

with θ =
√
α2 + β2

4. T (u, v) =
1

d2

sin (πεu(d− λ|u|))
πεu

sin (πεv(d− λ|v|))
πεv

5. uc = vc = d/λ

6. Limit ε→∞: T (u, v) ' Λ
(
uλ
d

)
.Λ
(
vλ
d

)
8. Object intensity distribution: I0(α, β) = (Cte) cos2

(
πα
α0

)
with α0 = a/D. Image contrast: C = |T ( 1

α0
, 0)|. C = 0 for

a = a1 = 1.4Dλd and a = a2 = 3.4Dλd . If a1 < a < a2 the signed visibility T ( 1
α0
, 0) < 0 resulting in a contrast reversal.

Ex. 4.6: rectangular pupil with phase shift

1. Pupil function: P (x, y) = Π
(x
b

) [
Π
(y
a

)
∗
(
δ
(
y +

a

2

)
− δ

(
y − a

2

))]
.

PSF: S(α, β) = (Cte).sinc

(
παb

λ

)2

.sinc

(
πβa

λ

)2

. sin

(
πβa

λ

)2

2. First method: calculate the Fourier transform of S(α, β). Second method: make use of the pupil autocorrelation
CP (X,Y ) and express it as the convolution CP (X,Y ) = P (−X,−Y ) ∗ P (X,Y ).

One obtains T (u, v) = Λ

(
uλ

b

)
.

[
Λ

(
vλ

a

)
− 1

2
Λ

(
λ

a

(
v − λ

a

))
− 1

2
Λ

(
λ

a

(
v +

λ

a

))]
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Ex: 4.7: a simple pistonscope

1. φ = 2πδ/λ

2. P (x, y) = Π
(ρ
d

)
∗
(
eiφδ

(
x− a

2
, y
)
− δ

(
x+

a

2
, y
))

with ρ =
√
x2 + y2

3. S(α, β) = 8s2jinc

(
πθd

λ

)2

.

[
1 + cos

(
2παa

λ
− φ

)]
with s = πd2

4 and θ =
√
α2 + β2

4. Fringe number: N = 2.44a/d

5. The cosine term in S is cos
(

2πa
λ (α−∆)

)
with ∆ = δ/a

6. We want ∆ = p/F so δ = ap/F

7. T (u, v) =
(
qλ
d

)
∗
[
δ(u, v) + 1

2δ(u−
a
λ , v)e−iφ + 1

2δ(u+ a
λ , v)eiφ

]
. It is a complex function (the complex terms e±iφ

vanish if φ = 0)

9. Angular resolution=cutoff period=λ/(a+ d). Independent of φ

10. Non-uniform image if ` > λD
d+a

Ex: 4.8: circular disc with limb darkening

1. P (x, y) = δ(x− B
2 , y) + δ(x+ B

2 , y)

2. S(α, β) = 4 cos2

(
παB

λ

)
3. Transfer function T (u, v) = 2δ(u, v) + δ(u− B

λ , v) + δ(u+ B
λ , v) Accessible frequencies: (u, v) = (0, 0) and (±Bλ , 0)

4. I(α, β) = 2Î0(0, 0) + 2Î0(Bλ , 0). cos
(

2παB
λ

)
. Fringes of angular period λ/B.

5. Contrast: C =

∣∣∣∣∣ Î0(Bλ , 0)

Î0(0, 0)

∣∣∣∣∣
6. V1(B) = 2

∣∣jinc
(
πθ0B
λ

)∣∣
7. V1 = 0 for B = 1.22λ/θ0. By varying B, one can look for a uniform image and deduce θ0.

8. Bm = 1.6λ/θ0. V1(Bm) = 0.12.

9. V2(B) = V1(B). exp
(
−π

2L2B2

λ2

)
. V2(Bm) = 0.12 exp

(
−π

2L21.62

θ20

)
.

10. Measure the ratio of the two visibilities: R = V2

V1
= exp

(
−π

2L2B2

λ2

)
. B and λ are known, so one can deduce L.
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