Spectro polarimétrie à la lunette Jean Rösch au Pic du Midi <u>II - Etat des lieux</u>

Malherbe J.-M., Roudier Th., Moity J., Arnaud J., Müller R., Mein P., Bommier V., Faurobert M., Derouich M., Rondi S., Semel M., Frisch H., Coutard Ch.

UNIVERSITE PAUL SABATIER

Polarimétrie avec les retardateurs à cristaux liquides Principe

FLC Ferroelectric Liquid Crystal

Rotateur de polarisation DISPLAYTECH « achromatique » 2 états correspondant à +5 V et –5 V Vitesse de modulation: plusieurs KHz

Tension appliquée aux cristaux FLC: tension continue + transitoire pour accélérer la transition entre les deux états

NLC Nematic Liquid Crystal

Lames à retard variable entre 0 et 800 nm (0 à ³/₄ onde) Vitesse de modulation: quelques dizaines de Hz seulement

Polarimètre PdM1, technologie FLC Modulateur ½ onde et lame statique ¼ onde Mesure de I+Q et I-Q <u>en séquence</u> *ou* Mesure de I+V et I-V <u>en séquence</u>

Polarimètre PdM2: 2 modulateurs <u>NLC</u> à retard variable Mesure de I+Q, I-Q, I+U, I-U, I+V et I-V <u>en séquence</u>

- 1: water cooling device (field stop)
- 2: UV/IR filter 390-700 nm
- 3: variable retarder 1
- 4: variable retarder 2
- 5: magnification lens (f=40/60/95 mm)
- 7: interference filter
- 8: precision dichroïc linear polarizer
- 9: flat mirror
- 10: spectrograph entrance slit
- 11: optical rail
- 6: beam shifter and flat field lenses (MSDP only)

Polarimètre PdM2: 2 modulateurs NLC à retard variable Relation retard/tension des cristaux nématiques

Le banc de calibration optique avec acquisition numérique

Example 1 Calibration 0 et $\lambda/2$ entre polariseurs linéaires Calibration $\lambda/4$ et $3\lambda/4$ avec une quart d'onde Fichou achromatique

Polarimètre PDM2 à deux lames retardatrices (cristaux nématiques) $S = I + Q \cos \delta 2 + \sin \delta 2$ (U sin $\delta 1 - V \cos \delta 1$)

Caméra CCD 12 bits, 12 MHz, 1280 x 1024, puits de potentiel de 25000 électrons, pixels de 6.7 μ, obturateur électronique, entrelacement zone mémoire/zone sensible, micro lentilles, FF 70%

Contrôle des effets instrumentaux sur la polarisation de SrI 4607

Observatoire de Paris – Observatoire Midi Pyrénées

Anneau de Mehltreter

(empêche l'exposition au soleil du barillet de l'objectif de 50 cm)

→Gain en contraste→Mise au point stable

Limite la dépolarisation

Mesure de dépolarisation par les cirrus

Mesure de la dépolarisation par les cirrus par analyse de la polarisation de la lumière laser rétrodiffusée

Spectro imagerie DPSM 11 canaux, NaD1, Oct 2002, 0.13"/pixel

DPSM polarimétrique NaD1 Oct 2003

Oscillations de la raie (effet Zeeman), I+V, I-V alternatifs

Recentrage et correction de distorsion entre les images du continu issus des couples I+V et I-V

Continus

recentrés

Continus non

recentrés

Décalages entre I+V et I-V

Application du recentrage aux décalages Doppler Somme des décalages = V// Différence des décalages = B//

Quantification des concentrations de champ magnétique

région magnétique

région calme

Observatoire de Paris – Observatoire Midi Pyrénées

Diagnostic en altitude

à 144 mA (basse chromosphère): Points brillants dans la raie

à 144 mA (basse chromosphère): <B//> = -420 G <V//> = -590 m/s

a 288 mA (haute photosphère): <<u>B//>= -630 G <<u>V//>= -950 m/s</u></u>

Spectro polarimétrie dans le bleu

Exemple de la raie CaII K 3934 A (2 spectres bruts soustraits)

Spectroscopie dans le bleu

le de la bande CN 3874 A, pose 1 s, ', champ spectral 15 A, pixel 10 mA

Spectro polarimétrie dans le bleu

Exemple de la bande CH 4305 A (2 spectres bruts soustraits)

Exemples de profils de Stokes en FeI 6301/6302 A (région active) Profils bruts sans traitement (simple soustraction de 2 spectres)

Autre exemple, FeI 5250 Stokes Q, soustraction de 2 spectres bruts

Sunspot group, 22 OCT 2003 Exp Time 50 ms, slit 0.6"

<u>Second spectre</u>: polarisation de résonance du spectre solaire au limbe

Rayonnement incident *anisotrope* (assombrissement centre bord)

 \rightarrow Dépolarisation du rayonnement ré-émis résultant

On observe le rayonnement diffusé à 90°

Effet Hanle

 \rightarrow Rotation du plan de polarisation

Si B=0: polarisation linéaire parallèle au limbe (cf Rayleigh)

Si B faible non résolu: dépolarisation (photosphère) + rotation du plan de polarisation (chromosphère)

Coloured lines, 3D scattering polarization calculations in the presence of a single-valued microturbulent field with an isotropic distribution of directions (from top to bottom: 0, 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 150, 200, 250 and 300 G). The best average fit to SrI 4607 observations is obtained for <u>60 G</u> (Trujillo Bueno et al, *Nature, 2004*)

Second spectre dans le bleu SrI 4607 A, Stokes Q, 2004

→B et (dB/dz) turbulent dans la <u>photosphère</u>

<u>Variation du champ magnétique *moyen* avec l'altitude</u> (modélisation M. Derouich, V. Bommier, à partir des Observations 2004 du Pic du Midi)

Observatoire de Paris – Observatoire Midi Pyrénées

Variations spatiales de la polarisation dans les raies près du limbe **Prédiction théorique: ||B|| plus fort dans les** intergranules que dans les granules \rightarrow Mesurer Q/I dans le réseau convectif photosphérique et chromosphérique (difficile: haute résolution nécessaire, anamorphose et faible contraste au bord)

Variation du champ magnétique turbulent avec les structures solaires (observations 2004), SrI 4607, fente 0.6''

Most of the volume of the upflowing granules where the observed C₂ line polarization originates is occupied by magnetic fields much weaker (10 G) than what is needed (60 G) to explain the observed depolarization in the Sr I 4607 Å line. Therefore, most (but not all) of the observed SrI line depolarization must be produced by relatively strong and tangled fields in the intergranular regions (Trujillo Bueno, *Nature, 2004*)

Inversion des contrastes granule/intergranule

DOT bande G 430 nm / Ca H 397 nm Qu'en est il avec les raies moléculaires ?

Variations spatiales de la polarisation

Actions à entreprendre à la lumière des prédictions théoriques:

Sur SrI (4607):

recueillir des spectres à haute résolution spatiale (0.3'') en polarimétrie au limbe (40'' ou 80'' du bord) → ||B|| intergranules et granules Examiner la contrepartie chromosphérique (BaII 4554) Sur C2 (5139-5142):

recueillir des spectres en intensité au centre disque (y a t-il une variation d'abondance de C2 granules/intergranules ?) Si oui, recueillir des données en polarisation au limbe, → ||B|| granules

Comparer avec les résultats SrI (si C2 donne ||B|| granulaire, il est peut être possible de déduire ||B|| intergranulaire de SrI même en résolution spatiale modérée)

0.030 Second spectre dans le bleu 0.025 CaI 4227 A, Stokes Q, 2004 0.020 \rightarrow B et (dB/dz) turbulent dans la -∂ ^{0.015} <u>chromosphère</u> 0.010 0.005 0.000 0 100 200 300 400 Wavelength (pixel unit) 0.04 0.03 5 0.02 0.01 0.00 Ľ 0 20 40 60 100 120 80 Observatoire de Paris Limb distance in arc sec

Effet Hanle différentiel sur les raies moléculaires de C2

Polarisations faibles du second spectre, HeD3 5876 A, Stokes Q, 2004

D3 au limbe dans la chromosphère

Observatoire de Paris – Observatoire Midi Pyrénées

Polarisations faibles

du second spectre, Na <u>D2</u> 5890 A, Stokes Q, 2004

Polarisations faibles du second spectre, Na <u>D1</u> 5896 A, Stokes Q, 2004

→ Mesure des anomalies de polarisation
→ Processus de polarisation des raies

Sensibilité requise 10-5

Combien ça coûte en fonctionnement ?

Année PNST		LESIA	LA2T	Total
2002	7500	4000	1700	13200
2003	10000	6000	3000	19000 *
2004	8000	8000	5500	21500 *
2005	5000	5000 ?	5000 ?	15000

- → Budget de fonctionnement annuel de 15000 Euros hors salaires seulement, y compris les frais de mission
- → Coût de la publication vraiment très compétitif
- → L'aide des laboratoires est importante, mais ne pourrait être obtenue sans un soutien et un avis favorable du PNST qui reste absolument essentiel
- (*) Années de budgétisation des polarimètres FLC et NLC

Le personnel

Pas de personnel technique affecté à la LJR, donc:

- → Pas d'opérateur → instrument réservé à un cercle d'initiés
- → Les astronomes contribuent aux réglages et aux travaux techniques de développement (on aimerait à ce titre un classement en service d'observation au SO6 de l'INSU)
- → L'assistance d'un ingénieur opticien du LESIA
- → Appel très fréquent à des stagiaires d'écoles d'ingénieur (ENIT à Tarbes) en électronique notamment
 - L'aide des laboratoires utilisateurs est ponctuelle mais essentielle
- Petite mécanique au LA2T et au LESIA
- Bureau d'études du LA2T (grands axes)
- Aide des équipes techniques en roulement au Pic du Midi

Conclusion: les domaines concurrentiels

Spectro-polarimétrie des raies bleues 390-460 nm au limbe Spectro-polarimétrie à haute résolution spatiale SrI 4607, Ball 4554, CH 4307, Cal 4227, SrII 4078...

Spectro-imagerie polarimétrique à haute résolution angulaire type DPSM sur le disque (0.3'', par rafales) *NaD1 5896, CaI 6103*

Jusqu'en 2004: beaucoup de travaux techniques, de calibrations et de tests exploratoires (*absence de personnel technique affecté*)
 Il y en aura encore en 2005 (séparateur de faisceaux, tests en imagerie polarimétrique, boîte DPSM raies fines)
 → La phase d'exploitation scientifique commence

