Solar Polarization Workshop IV, Boulder, 19-23 September 2005

Effect of a turbulent magnetic field on spectral lines polarization

H. Frisch¹, K.N. Nagendra², & M. Sampoorna²

1 : Observatoire de la Côte d'Azur, Nice; 2 : Indian Institute of Astrophysics, Bangalore

Motivation : effect of a random magnetic field with a **finite correlation length** Zeeman effect (LTE)

- \Rightarrow Mean Zeeman propagation matrix for various magnetic field vector distributions
- ⇒ Mean Stokes parameters and rms fluctuations
 Hanle effect

\Rightarrow Mean Stokes parameters

Magnetic field model : stepwise constant Markov process micro and macroturbulent limits when the correlation length goes to zero and to infinity

Turbulent velocity field : model with a finite correlation length (similar to the magnetic field model) or simply a combination of micro and macroturbulent fields

Mean Zeeman propagation matrix

- Previous work : Dolginov & Pavlov 1972; Domke & Pavlov 1979
- Random magnetic field effects :
 - \Rightarrow broadening and shifts of the σ components only (intensity variations)
 - \Rightarrow averaging over the angular dependence of all the components (σ , π)
- Results
 - ⇒ General expressions for the mean coefficients $\langle \varphi_{\rm I} \rangle$, $\langle \varphi_{\rm Q} \rangle$, $\langle \varphi_{\rm V} \rangle$, ... for random fields H rot. invariant around a mean field H_o , i.e. $H = H_{\rm l} + H_{\rm t}$
 - \Rightarrow Applications to anisotropic and isotropic Gaussian distributions

 $P_{\rm l}(\boldsymbol{H}) \propto e^{-(H_{\rm l}-H_o)^2/2\sigma_{\rm l}^2} \quad \text{longitudinal 1D}$ $P_{\rm t}(\boldsymbol{H}) \propto e^{-H_{\rm t}^2/2\sigma_{\rm t}^2} \quad \boldsymbol{H} = \boldsymbol{H}_o + \boldsymbol{H}_{\rm t} \quad \text{transverse 2D}$ $P_{\rm i}(\boldsymbol{H}) \propto e^{-(\boldsymbol{H}-\boldsymbol{H}_o)^2/2\sigma^2}; \quad \sigma = \sigma_{\rm l} = \sigma_{\rm t} \quad \text{isotropic 3D}$

Parameter: $y_o = \frac{H_o}{\sigma_{t,1}}$; $y_o > 1$, $y_o < 1$, $y_o \simeq 1$ weak, strong, moderate fluctuations second parameter: H_o or $\sigma_{t,1}$

Dependence on the magnetic field distribution

x: in Doppler width units $\Delta_{\rm D} = \frac{\nu_o}{c} \sqrt{v_{\rm th}^2 + v_{\rm turb}^2}$; mean field $H_o(H_o, \theta_o, \phi_o)$; Zeeman shifts: $\Delta H_o = 1., \Delta \sigma \simeq 0.7$; $\Delta = \frac{ge}{4\pi mc} \frac{1}{\Delta_{\rm D}}$ moderate fluctuations left panels: $\langle \varphi_{\rm I} \rangle$ for $\theta_o = 0^\circ$ and $\theta_o = 90^\circ$; right panels $\langle \varphi_{\rm Q} \rangle$ and $\langle \varphi_{\rm V} \rangle$

Zeeman line transfer in a random magnetic field with a finite correlation length

Vector magnetic field model : Kubo-Anderson process

Properties : Markovian; stationary; piece-wise constant; characterized by a correlation length and a probability density.

jumping points t_i : Poisson distribution with density ν probability density of m: P(m)limit $\nu \to 0$: macroturbulence limit $\nu \to \infty$: microturbulence autocorrelation function is exponential: $\langle m(t)m(t') \rangle = \langle m^2 \rangle e^{-\nu |t-t'|}$ if $\langle m \rangle = 0$

Remark : model used by E. Landi Degl'innocenti (1994) (see also Landi Degl'Innocenti & Landolfi 2004, book) for random magnetic fields; for the broadening by random velocity fields (1973), stochastic Stark effect (1971), nuclear magnetic resonance (1954)

Velocity field : also a KAP with density ν (same jumping points); probability densities : $P_{\rm H}(\boldsymbol{H})$ and $P_{\rm v}(\boldsymbol{v})$ if \boldsymbol{H} and \boldsymbol{v} are uncorrelated and $P(\boldsymbol{H}, \boldsymbol{v})$ if they are correlated.

Mean Stokes parameters

• Transfer equation for the Stokes parameters I(I, Q, U, V)

$$d\boldsymbol{I}/d\tau_c = (\hat{E} + \boldsymbol{\beta}\hat{\Phi})[\boldsymbol{I} - \boldsymbol{S}]$$

 $\hat{E}: 4 \times 4$ unit matrix, $\hat{\Phi}:$ line Zeeman propagation matrix, $\tau_c:$ continuum optical depth

• Milne-Eddington atmosphere :

 $\beta = \kappa_{\text{line}} / \kappa_{\text{cont}} = \text{constant}$ source vector \boldsymbol{S} linear : $\boldsymbol{S} = (B_o + B_1 \tau_c) \boldsymbol{U}$, [calculations for $\boldsymbol{U} = (1, 0, 0, 0)$]

• Residual emergent Stokes parameters (at $\tau_c = 0$)

$$\boldsymbol{r}(0) = \frac{1}{B_1} [\boldsymbol{I}_c(0) - \boldsymbol{I}(0)]$$

 $I_c(0)$: continuum intensity

- Result : explicit expression for the mean value $\langle r(0) \rangle$ and dispersion around $\langle r(0) \rangle$ random magnetic field is piece-wise constant
- Method : convolution equation for the mean propagation operator; differs somewhat from Landi Degl'Innocenti (1994,2004); for the dispersion around the mean values : resummation method.

Mean residual emergent Stokes parameters (I)

• Explicit expression for the mean value

$$\langle \boldsymbol{r}(0) \rangle_{\text{kap}} = (1+\nu)\hat{R}_{\text{macro}}\left(\frac{\beta}{1+\nu}\hat{\Phi}\right)\left[\hat{E}+\nu\hat{R}_{\text{macro}}\left(\frac{\beta}{1+\nu}\hat{\Phi}\right)\right]^{-1}\boldsymbol{U}$$

with

$$\hat{R}_{\text{macro}}\left(\frac{\beta}{1+\nu}\hat{\Phi}\right) = \left\langle\frac{\beta}{1+\nu}\hat{\Phi}\left[\hat{E} + \frac{\beta}{1+\nu}\hat{\Phi}\right]^{-1}\right\rangle_{P(\boldsymbol{H},\boldsymbol{v})}$$

 β/ν : correlation length in units of the optical depth at line center

• Micro and macroturbulent limits : Unno-Rachovsky solution

$$\langle \boldsymbol{r}(0) \rangle_{\text{micro}} = \beta \langle \hat{\Phi} \rangle [\hat{E} + \beta \langle \hat{\Phi} \rangle]^{-1} \boldsymbol{U}$$
$$\langle \boldsymbol{r}(0) \rangle_{\text{macro}} = \langle \beta \hat{\Phi} [\hat{E} + \beta \hat{\Phi}]^{-1} \rangle \boldsymbol{U}$$

- Remarks :
 - \Rightarrow differences between micro and macro limits significant for $\beta \simeq 10 100$
 - \Rightarrow microturbulent limit for $\nu \geq \beta$ (correlation length smaller than one in τ_{line} unit)

Mean residual emergent Stokes parameters (II)

x: in Doppler width units $\Delta_{\rm D} = \frac{\nu_o}{c} \sqrt{v_{\rm th}^2 + v_{\rm turb}^2}$; $\beta = \kappa_{\rm line}/\kappa_{\rm cont} = 10$ vector magnetic field distribution $P(\mathbf{H})$: isotropic Gaussian Zeeman shifts: $\Delta H_o = 3$.; $\Delta \sigma \simeq 0.7$ weak fluctuations left panels: $\langle r_{\rm I} \rangle$ and $\langle r_{\rm V} \rangle$ for $\theta_o = 0^\circ$; right panels $\langle r_{\rm I} \rangle$ and $\langle r_{\rm Q} \rangle$ for $\theta_o = 90^\circ$

Dispersion:
$$\sigma_X^2 = \langle X^2 \rangle_{\text{kap}} - \langle X \rangle_{\text{kap}}^2$$
, $X = r_{\text{I},\text{Q},\text{U},\text{V}}(0)$

 $\Delta \sigma \simeq 0.7$; left $\Delta H_o = 0.1$ strong fluctuations; right $\Delta H_o = 1$ moderate fluctuations

Hanle effect in a random magnetic field with finite correlation length

Hanle effect : non-LTE line formation (multiple scattering)

Method

- previous work : turbulent velocity with finite correlation length in the seventies (Nice, Heidelberg, Paris)
- magnetic field and velocity field : KAP along the photon trajectories
- time-dependent transfer equation ; stationary solution as time goes to infinity Simplified Hanle problem
- Polarization is weak : Stokes *I* independent of the magnetic field
- Coupling between Stokes Q and Stokes U is neglected
- Only a few number of scatterings suffice to build up the polarization

Explicit expressions for the mean Stokes parameters

Mean Stokes parameters (I)

Formulation of the problem

two-level atom ; no polarization of the lower level; plane-parallel atmosphere ;

scattering phase matrix $\hat{R}(x, \Omega, x', \Omega') = \varphi(x)\varphi(x')\hat{P}_{\mathrm{H}}(\Omega, \Omega', H)$;

x and $\Omega(\theta, \phi)$: frequency and direction of incident beam ; x' and $\Omega'(\theta', \phi')$ of scattered beam

Stokes I: scalar problem ; Stokes I affected by the random velocity field only Stokes Q:

$$\langle Q(\tau, x, \mathbf{\Omega}) \rangle_{\text{kap}} \simeq \frac{3}{2\sqrt{2}} W_2(1-\mu^2) \bar{I}_2(\tau, x, \mu) \quad \mu = \cos\theta$$

At the surface $\tau = 0$, in the outward direction, *microturbulent velocity*

$$\bar{I}_2(0,x,\mu) = \int_0^\infty e^{-\varphi(x)/\mu} \bar{S}_2(\tau)\varphi(x) \,\frac{d\tau}{\mu}$$

with $\bar{S}_2 = \langle S_2(\tau | \mathbf{H}) \rangle_{P(\mathbf{H})}$. The mean conditional source function, $S_2(\tau | \mathbf{H})$ satisfies an integral equation. Solution by a Neumann series expansion.

Result : explicit expressions for the average over P(H) of the two first terms in the expansion first term : *single-scattering* \Rightarrow *local average*

second term : *two-scattering*⇒ *depends on correlation length of the random magnetic field*

• Expression of \bar{S}_2 : $\bar{S}_2(\tau) = \underbrace{\bar{S}_2^{ss}(\tau)}_{2} + \underbrace{\bar{S}_2^{2s}(\tau)}_{2}$

single-scattering two-scattering

 \Rightarrow Single-scattering term

$$\bar{S}_2^{\rm ss}(\tau) = (1 - \epsilon_{\rm p}) \langle M_{22} \rangle C_{\rm I}(\tau)$$

 $\langle M_{22} \rangle$: usually denoted $W_{\rm B}$; $\epsilon_{\rm p}$: rate of destruction by elastic collisions $C_{\rm I}(\tau)$: depends on I only (dominant term in the frequency averaged spherical tensor $J_0^2(\tau)$)

 \Rightarrow Two-scattering term

$$\bar{S}_2^{2s}(\tau) = (1 - \epsilon_p)^2 W_2 \int_0^\infty K_{2s}(|\tau - \tau'|) C_{\rm I}(\tau') d\tau'$$

with the kernel

$$K_{2s}(|\tau - \tau'|) = \int_{-\infty}^{+\infty} \frac{1}{2} \int_{0}^{1} \varphi(x) \Psi_{22}(\mu) \Gamma_{22}(|\tau - \tau'|) e^{-(|\tau - \tau'|)\varphi(x)/\mu} d\mu dx$$

 $\Psi_{22}(\mu) = \frac{1}{4}(5 - 12\mu^2 + 9\mu^4)$ with $\frac{1}{2}\int_{-1}^{+1}\Psi_{22}(\mu) d\mu = 7/10$ resonance scattering and

 $\Gamma_{22}(|\tau - \tau'|) = e^{-\nu|\tau - \tau'|/\mu} \langle M_{22}^2 \rangle + (1 - e^{-\nu|\tau - \tau'|/\mu}) \langle M_{22} \rangle^2 \quad \text{correlation fct. of } M_{22}$ Limits micro $\nu \to \infty$: $\Gamma_{22}^{\text{micro}} = \langle M_{22} \rangle^2$; macro $\nu \to 0$: $\Gamma_{22}^{\text{macro}} = \langle M_{22}^2 \rangle$

⇒ Remark : Explicit expressions also, if the random velocity field is a KAP ; with effective medium approximation

Further work : contact with observations and numerical simulations

Inversion problems : how to retrieve the random magnetic field parameters

Enrich the models : e.g. depth dependent or magnetic field dependent, correlation length

Publications

.

H. Frisch, M. Sampoorna, & K.N. Nagendra 2005 *Stochastic polarized line formation I. Zeeman propagation matrix in a random magnetic field* (A&A, in press)

H. Frisch, M. Sampoorna, & K.N. Nagendra 2005 *Stochastic polarized line formation II*. *Zeeman line transfer in a random magnetic field* (preprint)

H. Frisch 2005 *The Hanle effect in a random medium*, (preprint, submitted to A&A)