Astronomical imaging

(image formation, atmospheric turbulence, intro to adaptive optics)

Marcel Carbillet [marcel.carbillet@oca.eu]

lagrange.oca.eu/carbillet/enseignement/M1-MASS/

Menu

- High-angular resolution imaging in astronomy
- Atmospheric turbulence
- Numerical modelling of perturbed wavefronts
- Formation of resulting images (+detection noises)
- (Introduction to speckle interferometry)
- Introduction to adaptive optics (AO)
- AO error budget
- Post-AO point-spread function morphology
- Anisoplanatic error study (ideal AO system)

(IDL - 1)

launch IDL (or IDLDE=IDL+interface), on zztop (+VPN launched before).

000

 test it: IDL> print, 'hello' IDL> plot, [1,2], [1,2]

 test it more: IDL> xx=findgen(50) IDL> yy=2*xx+1 IDL> plot, xx, yy

The image formed through turbulent atmosphere (optically speaking) is degraded:

- Scintillation (due to intensity fluctuation in the pupil).
 Agitation (due to angle-of-arrival variation).
- Spreading (due to a loss of spatial coherence).

(Illustration from Pierre Léna, Astrophysique – Méthodes physiques de l'observation, CNRS Éd. (2me éd.), p.177)

The object-image relation between the intensity $I(\alpha)$ in the image plane (i.e. the focal plane of the telescope) and the brightness $O(\alpha)$ of the object (in the sky) is a relation of convolution implying the point-spread function (PSF) $S(\alpha)$ of the whole ensemble telescope+atmosphere, with α the angular coordinates in the focal plane:

$$I(\vec{\alpha}) = O(\vec{\alpha}) * S(\vec{\alpha})$$

 $I(\vec{\alpha}) = O(\vec{\alpha}) * S(\vec{\alpha})$

This relation is valid notably at the condition that the system is invariant by translation (everything happens within the isoplanatic domain)...

λ/D

 λr_0

Some orders of magnitude concerning the turbulent atmosphere:

	$\lambda = 500 \text{ nm}$	$\lambda = 2.2 \ \mu m$
Fried parameter (r ₀)	→ 10 cm	60 cm
velocity of the turbulent layers (v)	→ 10 m/s	id.
=> image FWHM (ε≈λ/r₀)	→1"	~1"
=> evolution time ($\tau_0 \propto r_0/v$)	→ 3 ms	18 ms

entrance pupil

image on the focal plane

remembering eq. 2.17 from the course of Éric Aristidi:

$$I(x,y) = rac{1}{\lambda^2 F^2} \left| \hat{f}_0 \left(rac{x}{\lambda F}, rac{y}{\lambda F}
ight)
ight|^2$$

directly coming from (eq. 2.16):

$$f_F(x,y) = \frac{e^{ikF}}{i\lambda F} e^{\frac{i\pi\rho^2}{\lambda F}} \hat{f}_0\left(\frac{x}{\lambda F}, \frac{y}{\lambda F}\right)$$

The wavefront is, modulo $\lambda/2\pi$, proportional to the phase $\Phi(r)$ of the wave $\Psi(r)$ which has went through the turbulent atmosphere before reaching the telescope:

$$\Psi(\vec{r}) = A(\vec{r}) \exp\{\imath \Phi(\vec{r})\}$$

Note that this phase can be decomposed following a base of polynomials, for example Zernike ones:

$$\Phi(\vec{r}) = \sum_{i} a_i \, Z_i(\vec{r})$$