The wavefront is, modulo $\lambda/2\pi$, proportional to the phase $\Phi(r)$ of the wave $\Psi(r)$ which has went through the turbulent atmosphere before reaching the telescope:

$$\Psi(\vec{r}) = A(\vec{r}) \exp\{\imath \Phi(\vec{r})\}$$

Note that this phase can be decomposed following a base of polynomials, for example Zernike ones:

$$\Phi(\vec{r}) = \sum_{i} a_i \, Z_i(\vec{r})$$

entrance pupil

image on the focal plane

turbulence intensity [m^{1/3}]

$$\begin{split} r_0 &= 0.185 \ \lambda^{\frac{6}{5}} \ \cos(\gamma)^{\frac{3}{5}} \left[\int_0^{\infty} C_n^2(z) \ dz \right]^{-\frac{3}{5}} \\ \text{dimension of } r_0 ? \text{ value in band H knowing } r_0 \text{ at 500nm (10cm) }?.. \\ \tau_0 &= 0.36 \frac{r_0}{\bar{\nu}} \\ \bar{\nu} &= \left(\frac{\int C_n^2(h)v(h)^{\frac{5}{3}}dh}{\int C_n^2(h)dh}\right)^{\frac{3}{5}} \\ N_s &\simeq 0.34 \left(\frac{D}{r_0}\right)^2 \end{split} \quad \tilde{h} = \left(\frac{\int C_n^2(h)h^{\frac{5}{3}}dh}{\int C_n^2(h)dh}\right)^{\frac{3}{5}} \end{split}$$

Number of speckles for $r_0=10$ cm and D=1 m?...

Images & turbulence – 11 ro in band H knowing ro at 500nm ?... $r_0 = 0.185 \ \lambda^{rac{6}{5}} \ \cos(\gamma)^{rac{3}{5}} \ \left[\int_0^\infty C_n^2(z) \ dz
ight]$ $r_0^{\text{H}=1.65\,\mu\text{m}} = r_0^{500\,\text{nm}} \left(\frac{1.65}{0.5}\right)^{\frac{3}{5}} \simeq 0.42$ Number of speckles for $r_0=10$ cm and D=1 m?... $N_S^{500\,\mathrm{nm}} \simeq 0.34 \,\left(\frac{1.0}{0.1}\right)^2 \simeq 34 \, N_S^\mathrm{H} \simeq 0.34 \,\left(\frac{1.0}{0.42}\right)^2 \simeq 2$

$$\Phi_{\varphi}(\vec{\nu}) = 0.0228 \ r_0^{-\frac{5}{3}} \left(\nu^2 + \frac{1}{\mathcal{L}_0^2}\right)^{-\frac{11}{6}}$$

Power Spectral Density (PSD) of the phase, function of the spatial frequency

Kolmogorov/von Kármán model

- Kolmogorov : outerscale of turbulence \mathcal{L}_0 is infinite.
- One can refine the model by considering also *lo*.
- \exists other models with a finite \mathcal{L}_0 (and a non-zero ℓ_0).

$$\Phi_{\varphi}(\vec{\nu}) = 0.0228 \ r_0^{-\frac{5}{3}} \left(\nu^2 + \frac{1}{\mathcal{L}_0^2}\right)^{-\frac{11}{6}}$$

Energy cascade:

wind shear => turbulent energy injected into the system via a large eddy (\mathcal{L}_0) which splits into smaller and smaller eddies (ℓ_0) , and is finally viscously dissipated.

Interval $[\ell_0, \mathcal{L}_0]$ = inertial range.

(A reminder of discrete Fourier transform (DFT)...)

$$\Phi_{\varphi}(\vec{\nu}) = 0.0228 \ r_0^{-\frac{5}{3}} \left(\nu^2 + \frac{1}{\mathcal{L}_0^2}\right)^{-\frac{11}{6}}$$

11

Which, numerically written, and by considering wavefronts made of 'dim' pixels corresponding to 'L' meters, becomes: (re-writing - "de-dimensionalizing" - the equation with $L_0=L_0$ L/L and v=v L/L...)

freq = findgen(dim) dsp = .0228*(L/r0)^(5/3.)*L^2*(freq^2+(L/L0)^2)^(-11./6)

And which (with the right frequency scale) can be plot with:

plot_oo, 1./L*findgen(dim), dsp, XR=[1/L/1.2,dim*1/L*1.2], /XS

=> make a function that computes $PSD(L_0, r_0, \dim, L)$ and plot it for different $[r_0, L_0]$... [with, for example: dim=1000, L=100., r0=0.1, L0=100., 10., 1.]

Example of a function that computes the sum of two parameters:

function sum_of_two_parameters, par1, par2 result=par1+par2 return, result end

Compile and run the function (written, e.g., in a file sum2.pro):

idl > .r sum2 --> % Compiled module: SUM_OF_TWO_PARAMETERS idl > res = sum_of_two_parameters(2,1) idl > print, res --> 3