Images \& turbulence - 08

The wavefront is, modulo $\lambda / 2 \pi$, proportional to the phase $\Phi(r)$ of the wave $\Psi(r)$ which has went through the turbulent atmosphere before reaching the telescope:

$\Psi(\vec{r})=A(\vec{r}) \exp \{\imath \Phi(\vec{r})\}$

Note that this phase can be decomposed following a base of polynomials, for example Zernike ones:

Images \& turbulence - 09

 polynômes de Zernike $\begin{array}{lllllll}\mathrm{m} & 0 & 1 & 2 & 3 & 4 & 5\end{array}$

Images \& turbulence - 10

 turbulence intensity $\left[\mathrm{m}^{1 / 3}\right]$
$r_{0}=0.185 \lambda^{\frac{6}{5}} \cos (\gamma)^{\frac{3}{5}}$

$C_{n}^{2}(z) d z$
dimension of ro ? value in band H knowing ro at $500 \mathrm{~nm}(10 \mathrm{~cm})$?...

$$
\tau_{0}=0.36 \frac{r_{0}}{\bar{v}}
$$

$\epsilon_{0}=0.98 \frac{\lambda}{r_{0}}$

$$
N_{s} \simeq 0.34\left(\frac{D}{r_{0}}\right)^{2}
$$

$\bar{v}=\left(\frac{\int C_{n}^{2}(h) v(h)^{\frac{5}{3}} d h}{\int C_{n}^{2}(h) d h}\right)^{\frac{3}{5}}$
$\theta_{0}=0.314 \frac{r_{0}}{\bar{h}}$
$\bar{h}=\left(\frac{\int C_{n}^{2}(h) h^{\frac{5}{3}} d h}{\int C_{n}^{2}(h) d h}\right)^{\frac{3}{5}}$

Number of speckles for $\mathrm{ro}=10 \mathrm{~cm}$ and $\mathrm{D}=1 \mathrm{~m}$?...

Images \& turbulence - 11

 ro in band H knowing ro at 500 nm ?...$$
r_{0}=0.185 \lambda^{\frac{6}{5}} \cos (\gamma)^{\frac{3}{5}}\left[\int_{0}^{\infty} C_{n}^{2}(z) d z\right]^{-\frac{3}{5}}
$$

$$
r_{0}^{\mathrm{H}=1.65 \mu \mathrm{~m}}=r_{0}^{500 \mathrm{~nm}}\left(\frac{1.65}{0.5}\right)^{\frac{6}{5}} \simeq 0.42
$$

Number of speckles for $\mathrm{r}_{\mathrm{O}}=10 \mathrm{~cm}$ and $\mathrm{D}=1 \mathrm{~m}$?...

$$
N_{S}^{500 \mathrm{~nm}} \simeq 0.34\left(\frac{1.0}{0.1}\right)^{2} \simeq 34 \quad N_{S}^{\mathrm{H}} \simeq 0.34\left(\frac{1.0}{0.42}\right)^{2} \simeq 2
$$

Images \& turbulence - 12

$\Phi_{\varphi}(\vec{\nu})=0.0228 r_{0}^{-\frac{5}{3}}\left(\nu^{2}+\right.$
 $\overline{\mathcal{L}_{0}^{2}}$

Power Spectral Density (PSD) of the phase, function of the spatial frequency

Kolmogorov/von Kármán model

- Kolmogorov : outerscale of turbulence \mathscr{L}_{0} is infinite.
- One can refine the model by considering also lo.
- \exists other models with a finite \mathscr{L}_{0} (and a non-zero l_{0}).

Images \& turbulence - 13

$$
\Phi_{\varphi}(\vec{\nu})=0.0228 r_{0}^{-\frac{5}{3}}\left(\nu^{2}+\frac{1}{\mathcal{L}_{0}^{2}}\right)^{-\frac{11}{6}}
$$

Spatial frequency

Energy cascade:

wind shear $\Rightarrow>$ turbulent energy injected into the system via a large eddy (\swarrow_{0}) which splits into smaller and smaller eddies (() , and is finally viscously dissipated.

Interval $\left[\ell, L_{0}\right]=$ inertial range.

(A reminder of discrete Fourier transform (DFT) ...)

Images \& turbulence - 14

$\Phi_{\varphi}(\vec{\nu})=0.0228 r_{0}^{-\frac{5}{3}}\left(\nu^{2}+\frac{1}{\mathcal{L}_{0}^{2}}\right)^{-\frac{11}{6}}$

Which, numerically written, and by considering wavefronts made of 'dim' pixels corresponding to 'L' meters, becomes: (re-writing - "de-dimensionalizing" - the equation with $\mathrm{L}_{0}=\mathrm{L}_{0} \mathrm{~L} / \mathrm{L}$ and $\mathrm{v}=\mathrm{v} \mathrm{L} / \mathrm{L}$...)

```
freq = findgen(dim)
dsp = .0228*(L/r0)^(5/3.)*L^2*(freq^2+(L/L0)^2)^(-11./6)
```

And which (with the right frequency scale) can be plot with:
plot_oo, 1./L*findgen(dim), dsp, XR=[1/L/1.2,dim*1/L*1.2], /XS
$=>$ make a function that computes $\operatorname{PSD}\left(L_{0}, r_{0}, \operatorname{dim}, L\right)$ and plot it for different $\left[r_{0}, L_{0}\right] \ldots$ [with, for example: dim= 1000 , $\mathrm{L}=100$, r $\mathrm{r}=0.1, \mathrm{~L} 0=100.110 .1 .1$.]

(IDL - 2)

Example of a function that computes the sum of two parameters:
function sum_of_two_parameters, par1, par2 result=par1+par2 return, result end

Compile and run the function (written, e.g., in a file sum2.pro):
idl > .r sum2
\rightarrow \% Compiled module: SUM_OF_TWO_PARAMETERS idl > res = sum_of_two_parameters $(2,1)$ idl > print, res
$\rightarrow 3$

