Lmages & turbulence — 20

U(r) = A exp (19(r))

P(r) = A P(r) exp (:@(r)P(r))

Sx(@) o ||[FT{A P(7) exp (:2(7)P(r))}|*

A=1and &(F) = 27”5(7?) = S5(@) o ||[FT{P(7) exp (zzfa(mp(f)>}|\2

Images & turbulence — 21

L=NAx>2D

MAX =

N /L
VL 1/on /D LT T

Shannon (=Nyquist) criterium
=> the image pixel A/L must be at most half the resolution element (resel!) A/D
(in other words : one must have AT LEAST 2 image pixels per /D)

=> the simulated wavefronts must be at least twice the telescope diameter (L>2D)

In addition
- A/ro should be smaller than A/Ax (=> N large enough)

; funétidn wfimg, dim, Iength, Lo, ro, lambda_r@, obs, diam, lambda_psf, n_psf, filename

y use:

; dim = 128L ; [px] wf dimension

; length = 2. ; [m] wf physical dimension

; LO =27 ; [m] outerscale

I) = .1 ; [m] Fried parameter

; lambda_r@ = 500E-9 ; [m] r@ wavelength

; obs = 0. [0-1] ; (linear) obscuration ratio

; diam = dim/2 ; [px] telescope pupil dimension

; lambda_psf= 500E-9 ; [m] PSF wavelength

; n_psf = 100L ; nb of generated statistically independent PSFs

'cube.sav'; cube of PSFs filename
; print, wfimg(/dim,length,L@, r@, lambda_r@, obs,diam, lambda_psf,n_psf, filename)
; sub-routines needed: image.pro, wfgeneration.pro, makepup.pro

; Marcel Carbillet [marcel.carbillet@unice.fr], Lagrange (UCA, OCA, CNRS), Feb. 2018.

function image, pup, wf, lambda

’
’
’
’
’
’
’
’
’
’
&
~ ; filename
. ’
’
’
’
’
’
’
c

ube = fltarr(dim,dim,n_psf)

for i=0, n_psf/2-1L do begin ; image computation from a wavefront
— ' | -
dummy = wfgeneration(dim, length,L®,r0, lambda_r0,SEED=seed) ; pup = pupil,
":; = floa?(dumTz)) ; wf = wavefront [float],
:ummy = ;zzg;::{Zimuﬂ?gm obs) ; lambda = wavelength at which image is computed.
- ’ ’ H
%mgl = @mage(dummy,wfl,lambda_psf) ; Marcel Carbillet [marcel.carbillet@unice.fr],
1m22[= ll;agtla(dumy.WIZ.lambda_Psf) ; UMR 7293 Lagrange (UNS/CNRS/OCA), Feb. 2013.
cube [*, %, 2%i = img ; &
g:be[*.*oz*i+1] = img2 ; Last modification: Feb. 2019 "
endfor - 2
dim = (size(wf))[1] #
save, cube, FILENAME=filename img = (abs(fft(pupkxexp(complex(@,1)*2x!PI/lambdaxwfxpup))))”2 :
; NB: (abs(fft(pupkxexp(complex(0,1)=*2x!PI/lambda*wf))))”~2 would suffice
return, 'Cube of PSFs '+filename+' saved on disk...' img = shift(temporary(img), dim/2, dim/2)
end e e NB: shift(img, dim/2, dim/2) OK too
"”%iﬁffu '31;{ E;return, img

ek e G e) D
IDL> .r wfimg s AR
% Compiled module: WFIMG.

IDL> print, wfimg(l28L, 2. 2?.,0.1,500E-9,0.,64L,500E-9,100L,'cube.sav'}h
Cube Ef FSFs cube.sav saved on disk. ..

(DL et}

Useful remarks concerning IDL

IDL help is called with: IDL>> ?
'?* opens with a defined browser the file ‘idl.htm’, here:

..[Jexelis/.../idl/idl.htm
This file can also be found with the unix command ‘find’:

unix>> cd /

unix>> find . -name idl.htm
See also (for routines which are part of a third library):

IDL>> doc_library, ‘routine_name’

return to main level of programming after a crash: retall
details on a variable xxx: idl> help, xxx

(see all variables: idl> help)

Xt

[IDL> restore, 'cube.sav'

BR(IDL> help

% At FMAING

bjCUBE FLOAT = Array[128, 128, 100]

ALY

Compiled Frocedures:

Compiled Functions:
COMPUTE_RMS DIST IMAGE MAKEFUF WFCUBE
WFGENERATION WFIMG

[IDL> for 1=0,99 do tvscl, cube[*,™*, 1]

L$“1dngexp = total {cube, 3)

[ID
[IDL> twscl, longexp”™.l

Images & turbulence — 24

15.5423

ap 1 1mage formation:
I 1 1- cube of instantaneous
08/~ 1 PSFs (600nm & H-band)
I] 2-long-exposure PSFs
o 13- it with gaussian and
L = i compare FWHM vs. Alro
°-‘*:_)2} _ % ~ FWHM = 20v21n2 _ (seeing), also in function
I E 1 of the outerscale L.
“F <+ => Also read Martinez...
S— e —
%Et 'frfffff”lm 3 In this example, the FWHM is T15.54px
oL T111r1T1E‘1rF) and, since we have here: 1px=(./D)/2,
e 000

[i.e. 7.77/10~0.78 arcsec here (A=500nm)]

Images & turbulence — 25

On the Difference between Seeing and Image Quality:
When the Turbulence Outer Scale Enters the Game

Patrice Martinez’
Johann Kolb'
Marc Sarazin'’
Andrei Tokovinin?

1ESO
2 Cerro-Tololo Inter American Observatory,
Chile

We attempt to clarify the frequent confu-
sion between seeing and image quality
for large telescopes. The full width at
half maximum of a stellar image is com-
monly considered to be equal to the
atmospheric seeing. However the outer
scale of the turbulence, which corre-
sponds to a reduction in the low fre-
quency content of the phase perturba-
tion spectrum, plays a significant role in
the improvement of image quality at the
focus of a telescope. The image quality
is therefore different (and in some cases
by a large factor) from the atmospheric
seeing that can be measured by dedi-
cated seeing monitors, such as a differ-
ential image motion monitor.

of telescope diameters and wavelengths.
We show that this dependence is effi-
ciently predicated by a simple approxi-
mate formula introduced in the literature
in 2002. The practical consequences

for operation of large telescopes are dis-
cussed and an application to on-sky data
is presented.

Background and definitions

In practice the resolution of ground-
based telescopes is limited by the atmos-
pheric turbulence, called “seeing”. It

is traditionally characterised by the Fried
parameter (r,) — the diameter of a tele-
scope such that its diffraction-limited res-
olution equals the seeing resolution.

The well-known Kolmogorov turbulence
model describes the shape of the at-
mospheric long-exposure point spread
function (PSF), and many other phenom-
ena, by this single parameter r,. This
model predicts the dependence’ of the
PSF FWHM (denoted g,) on wavelength (A)
and inversely on the Fried parameter,

ro, Where r, depends on wavelength (to

A finite L, reduces the variance of the
low order modes of the turbulence, and
in particular decreases the image motion
(the tip-tilt). The result is a decrease of
the FWHM of the PSF. In the von Karman
model, r, describes the high frequency
asymptotic behaviour of the spectrum
where L, has no effect, and thus r,, loses
its sense of an equivalent wavefront
coherence diameter. The differential
image motion monitors (DIMM; Sarazin
& Roddier, 1990) are devices that are
commonly used to measure the seeing
at astronomical sites. The DIMM delivers
an estimate of r, based on measuring
wavefront distortions at scales of ~ 0.1 m,
where L, has no effect. By contrast, the
absolute image motion and long-expo-
sure PSFs are affected by large-scale
distortions and depend on L. In this con-
text the Kolmogorov expression for €, is
therefore no longer valid.

Proving the von Karman model experi-
mentally would be a difficult and eventu-
ally futile goal as large-scale wavefront
perturbations are anything but stationary.
However, the increasing number of esti-

++ 4+ ++++++

REPORT

Preliminary measures
introduction

PSD(r@, LO) plot

=> ccl on the influence of r@ and LO

rms(r@, LO) plot or table

=> ccl on the influence of r@ and LO

image formation and FWHM(r@ or lambda, possibly L0)
=> ccl on the influence of r@ or lambda (and poss. L®O
=> comparison with the 'seeing' lambda/ro

Images & turbulence — 26

-> Detection noises:

o At first: photon notse (or shot nowe), poissonan, actually a
transformation of the image.

ne—N LAt

,with : N = o L = luminosity, At = time exp.
v

p(n) = probability to detect n photons when N are expected

For large N: ~gaussian...

Images & turbulence — 27

-> Detector noises:

o At first: photon nowe (or shot nowe), poissonian, actually a
transformation of the image.

o At last: read-out nowe (RON), gaussian with zero mean and
rms o. [e-/px], additive noise.

e In between: dark current nowse, amplification nowe & exotic dark
current nowe 1in the case of EMCCDs, noise due to the calibration

of the flat field, ‘salt e5 pepper’ nowse (‘hot” and ‘cold’ pixels), etc.

;; Photon noise (Poisson) CALLING SEQUENCE:

if keyword_set(PHOT_NOISE) then begin . noisy_image = addnoise(input_image, $
idx=where((image GT @.) AND (image LT 1E8),c) : B PHOT ﬁOISE=phot noise, $
; For values higher than 1E8, should one SIGMA_DARK=sigma_dark, $
if (c.NE ?) thep For i=01,c-11 do $; real}y has‘to worry about photon noise ?, DELJ?[}F=delta_t,_' $
g . noisy_image[idx[i]]=randomn(seed_pn,POISSON=image[idx[i]],/DOUBLE) ; EXODARK=exodark, $
| endif ; GAIN_L3CCD=gain_l3ccd, $
| ;; Additive dark-current noise (Poisson) i g;g;:S§;ﬁizgg;ge:8n :
~ if keyword_set(SIGMA_DARK) then begin i POSITEVE=positi;e ! $
. if not(keyword_set(DELTA_T)) then begin i OUT TYPE=out t e')
message, "dark-current noise calculation does need a time exposure value!!" i - -YP
endif else noisy_image+=randomn(seed_dark,npx,npy,POISSON=sigma_dark*delta_t,/DOUBLE)

“endif

lé;; EMCCD noises
; Additive exotic (time-exposure-independent) dark-current noise (Poisson)
if keyword_set(EXODARK) then noisy_image+=randomn(seed_xd,npx,npy,POISSON=exodark,/DOUBLE)

; Additive main EMCCD noise (Gamma)

if keyword_set(GAIN_L3CCD) then begin

- idx=where(image GT @, c)

if (c NE @) then for i=0l,c-11 do $

) noisy_image[idx[i]]+=gain_l13ccd*randomn(seed_13ccd, GAMMA=image[idx[i]],/DOUBLE)
;3 noisy_image=long(temporary(noisy_image))

endif

;3 Flat-field calibration residuals

if keyword_set(FFOFFSET) then begin
ffres=randomn(seed_ff,npx,npy)*ffoffset+1.
idx = where(ffres LE 0., c)
if (c NE @) then ffres[idx]=1. ; Put possible<=0@ ff values to 1.
noisy_image*=ffres

endif

;3 Additive read-out noise (Gaussian)
if keyword_set(SIGMA_RON) then $
noisy_image+=randomn(seed_ron,npx,npy,/NORMAL,/DOUBLE)*sigma_ron

; Force to zero negative values
if keyword_set(POSITIVE) then begin
idx=where(noisy_image LT @, c)
if (c GT @) then noisy_image[idx]=0.
endif

eTE T o TR AT
R 1 T SRS RN 2 T o)

IDL> restore, 'cube.sav
(IDL> help
% At SMAINS

FLOAT = Array[128, 128, lo0]
Compiled Frocedures:
FMAING

Compiled Functions:

shortexp=cube[*,*, 0]

print, total {(shortexp)

©.197622

shortexp=shortexp/total (shortexp)*100,

shortnoisy=addnoise{shortexp, /FHOT_NOISE)
% Compiled module: ADDNOISE.

[IDL> tvscl, [shortexp,shortnoisy]”®.5

IDL>» longexp=total {(cube, 3)

IDL>» longexp=longexp/total (longexp)*100.*106L
[

|

IDL> longnoisy=addnoise{longexp, /FHOT_NOISE)

IDL> ;yscl, [longexp.,longnoisy] ™. 5

s

REPORT

Preliminary measures
introduction/context
PSD(ro, LO)

=> influence of r@ and

rms(r@, LO)

=> influence of r@ and

FWHM(r@ or lambda=>r0, LO)

=> influence of r@ and

=> comparison with the "seeing"” lambda/re@
noisy 1images

