Images & turbulence – 26

-> Detection noises:

• At first: *photon noise* (or *shot noise*), poissonian, actually a transformation of the image.

$$p(n) = \frac{N^n e^{-N}}{n!}$$
, with : $N = \frac{L\Delta t}{h\nu}$, $L =$ luminosity, $\Delta t =$ time exp.

p(n) = probability to detect n photons when N are expected

For large N: ~gaussian...

$$p(n) \simeq \exp\left(-\frac{(n-N)^2}{2N}\right)$$

Images & turbulence – 27

-> Detector noises:

• At first: *photon noise* (or *shot noise*), poissonian, actually a transformation of the image.

• At last: *read-out noise* (*RON*), gaussian with zero mean and rms σ_e [e-/px], additive noise.

• In between: *dark current noise, amplification noise* & *exotic dark current noise* in the case of EMCCDs, noise due to the *calibration* of the *flat field, 'salt & pepper' noise* ('hot' and 'cold' pixels), etc.

Images & turbulence – 28

; Photon noise (Poisson) if keyword_set(PHOT_NOISE) then begin idx=where((image GT 0.) AND (image LT 1E8),c)

- ; For values higher than 1E8, should one if (c NE 0) then for i=01,c-11 do \$; really has to worry about photon noise noisy_image[idx[i]]=randomn(seed_pn,POISSON=image[idx[i]],/DOUBLE) if
- ; Additive dark-current noise (Poisson)
- if keyword_set(SIGMA_DARK) then begin
 - if not(keyword_set(DELTA_T)) then begin

message, "dark-current noise calculation does need a time exposure value!!"
endif else noisy_image+=randomn(seed_dark,npx,npy,POISSON=sigma_dark*delta_t,/DOUBLE)
endif

;; EMCCD noises

; Additive exotic (time-exposure-independent) dark-current noise (Poisson) if keyword_set(EXODARK) then noisy_image+=randomn(seed_xd,npx,npy,POISSON=exodark,/DOUBLE)

; Additive main EMCCD noise (Gamma)
if keyword_set(GAIN_L3CCD) then begin
 idx=where(image GT 0, c)
 if (c NE 0) then for i=0l,c-1l do \$
 noisy_image[idx[i]]+=gain_l3ccd*randomn(seed_l3ccd,GAMMA=image[idx[i]],/DOUBLE)
; noisy_image=long(temporary(noisy_image))
endif

```
;; Flat-field calibration residuals
if keyword_set(FF0FFSET) then begin
   ffres=randomn(seed_ff,npx,npy)*ffoffset+1.
    idx = where(ffres LE 0., c)
    if (c NE 0) then ffres[idx]=1. ; Put possible<=0 ff values to 1.
    noisy_image*=ffres
endif</pre>
```

endif

```
;; Additive read-out noise (Gaussian)
if keyword_set(SIGMA_RON) then $
    noisy_image+=randomn(seed_ron,npx,npy,/NORMAL,/DOUBLE)*sigma_ron
```

```
; Force to zero negative values
if keyword_set(POSITIVE) then begin
    idx=where(noisy_image LT 0, c)
    if (c GT 0) then noisy_image[idx]=0.
endif
```

noisy_image = addnoise(input_image,

PHOT_NOISE=phot_noise

DELTA_T=delta_t, EXODARK=exodark, GAIN_L3CCD=gain_l3ccd, FFOFFSET=ffoffset, SIGMA_RON=sigma_ron, POSITIVE=positive, OUT_TYPE=out_type

img formation w/noise:

 'add' photon noise on one short-exp. PSF (in function of N...),
 long-exp. PSF (100N photons!),
 'add' photon noise on the long-exp. PSF,
 compare long-exp. & short-exp. noisy images (and 'clean' images).

Images & turbulence - 27

[IDL> restore, 'PSF_r0=10cm_L0=10m_lambda=500nm.sav [IDL> help % At \$MAIN\$ CUBE_PSF FLOAT = Array[128, 128, 100] SHORTEXP DOUBLE = Array[128, 128] Compiled Procedures: \$MAIN\$

Compiled Functions:

[IDL> shortexp=cube_PSF[*,*,0] [IDL> total(shortexp) 0.19702147 [IDL> shortexp=shortexp/total(shortexp)*100. [IDL> total(shortexp) 99.999664 [IDL> .r addnoise % Compiled module: ADDNOISE. [IDL> shortnoisy=addnoise(shortexp, /PHOT_NOISE)

comparison: visually or by means of a least mean square distance...

img formation w/noise:

1- 'add' photon noise on one short-exp. PSF (with N photons/img), 2- long-exp. PSF (=> with 100N photons), 3- 'add' photon noise on the long-exp. PSF, 4- compare long-exp. & short-exp. noisy images (and 'clean' images). 5- possibly compare also with stacked image (from the 100 short-exp. noisy images)

REPORT

```
- Preliminary measures
+ introduction/context
+ PSD(r0, L0)
+ => influence of r0 and L0
+ rms(r0, L0)
+ => influence of r0 and L0
+ FWHM(r0 or lambda=>r0, L0)
+ => influence of r0 and L0
+ => comparison with the "seeing" lambda/r0
+ noisy images
```

Adaptive optics - 01

Adaptive optics -02

Adaptive optics - 03

Some orders of magnitude concerning AO systems:

	@500nm	@2 . 2µm
spatial sampling (WFS analysis elements size) → d ≈ r ₀	≈ 10 cm	≈ 60 cm
number of WFS analysis elements (≈ number of D → N ∝ (D/d)², with D=10m	M actuators) ≈ 7500	≈ 200
temporal sampling $\rightarrow f \propto 10 v/r_0$	≈ 1 kHz	≈ 0.2 kHz