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ABSTRACT. The theory of the differential image motion monitor (DIMM), a standard and widely spread
method of measuring astronomical seeing, is reviewed and extended. More accurate coefficients for computing
the Fried parameter from the measured variance of image motion are given. They are tested by numerical
simulations that show that any DIMM measures Zernike tilts, not image centroids as generally assumed. The
contribution of CCD readout noise to image motion variance is modeled. It can substantially bias DIMM results
if left unsubtracted. The second most important DIMM bias comes from the used exposure time, which is typically
not short enough to freeze image motion completely. This effect is studied quantitatively for real turbulence and
wind profiles, and its correction by interlaced short and long exposures is validated. Finally, the influence of
turbulence outer scale reduces image size in large telescopes by 10% or more compared to the standard theory;
new formulae to compute FWHM and half-energy diameter of the atmospheric point-spread function that take
into account outer scale are provided.

1. INTRODUCTION

Ground-based astronomy is severely limited by the atmo-
spheric optical turbulence, often calledseeing(Young 1974).
Much effort has been invested in the search for good sites and
in studies of image quality at existing sites. With the advent
of adaptive optics and interferometry, the importance of good
seeing increases even more. A worldwide search for new sites
with superb seeing is in progress for the next generation of
extremely large telescopes (Andersen, Ardeberg, & Gilmozzi
1999).

Image degradation in the terrestrial atmosphere is broadly
understood theoretically in the framework of the Kolmogorov
turbulence model (Tatarskii 1961; Roddier 1981). In this model,
a single parameter—typically Fried’s parameter (Friedr0

1965)—is sufficient to describe all seeing effects. This param-
eter can be measured from the image motion in a small
telescope.

The differential image motion monitor (DIMM) is now a
universally accepted instrument for seeing measurements. The
Fried parameter is estimated from the variance of the differ-
ential image motion in two small apertures, usually cut out in
a single larger telescope pupil by a mask (Fig. 1). This approach
has a practical advantage of being insensitive to shake and
tracking errors, at least to first order.

The DIMM concept was introduced by Stock & Keller
(1960). Its modern implementation is described by Sarazin &
Roddier (1990) and Vernin & Mun˜oz-Tuñon (1995). Nowa-
days, many observatories build DIMMs using cheap CCD cam-
eras and amateur telescopes. Without being exhaustive, I cite
here Wood, Rodgers, & Russell (1995), Sagar et al. (2000),

Ehgamberdiev et al. (2000), and Boccas et al. (2000)1 as proof
of DIMM’s success and proliferation. I take parameters of the
Cerro Tololo Inter-American Observatory (CTIO) DIMM (ap-
erture diameter 6 cm, baseline 19 cm, CCD pixel size 0�.77)
as representative for these instruments. A good theory of
DIMMs was published by Martin (1987). This paper continues
the work of Martin by considering additional effects.

The difference of the tilts over two DIMM subapertures is
proportional to the second derivative of the wave front, or
curvature. Thus, a DIMM is a form of curvature sensor. Another
instrument to deduce seeing from wave-front curvature is
described by Roddier, Graves, & Limburg (1990). On the other
hand, the DIMM can be viewed as a Shack-Hartmann (S-H)
sensor with only two apertures; extensive studies of these sen-
sors are partially applicable to DIMMs (van Dam & Lane 2000;
Irwan & Lane 1999). Other methods to measure such asr0

absolute image motion or the shearing interferometer (Dainty
& Scaddan 1975; Roddier 1976) are not immune to pointing
errors, making them unsuitable for use as robust site-testing
instruments.

The DIMM’s success and widespread implementation has
led to some confusion. A DIMM is often thought to be a robust
and self-calibrated instrument that always measures the seeing
correctly. However, a number of subtle instrumental effects in
DIMMs do bias the results. As long as site comparison was
based on identical instruments, their systematic errors were of
secondary importance. Now there is a strong need to compare
seeing measures obtained by teams using different equipment.

1 M. Boccas et al. 2000, Description of CTIO DIMM,
http://www.ctio.noao.edu/telescopes/dimm/dimm.html.
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Fig. 1.—Differential image motion monitor (DIMM). Atmospherically dis-
torted wave fronts are detected by two subapertures. The coordinates of the
two images (spots) on short-exposure CCD frames are determined by some
centering algorithm. The variance of the coordinate difference is used to com-
pute the seeing with the help of a turbulence model. Instrumental effects that
bias seeing measurements include propagation, shifts of wave fronts during
exposure, CCD noise, centering method, and data reduction procedures.

Accurate calibration and debiasing of DIMM results becomes
critical for site comparison and for prediction of telescope
seeing.

Early comparisons of telescope seeing with “DIMM seeing”
have shown their good agreement. Nowadays, the quality of
large telescopes has increased significantly, and they are, gen-
erally, nearly free from both optical defects and locally gen-
erated seeing. Image quality in telescopes such as the VLT is
sometimes found to be better than the “seeing” measured by
a local DIMM, calling for a better interpretation of DIMM
data. This article addresses the problem by taking into account
both DIMM biases and the effects of turbulence outer scale.

The article is structured as follows. In § 2, I review the
relation between differential image motion in DIMMs and
the Fried parameter within the framework of the standardr0

(Kolmogorov) turbulence model and provide updated formulae
for DIMM data reductions. In § 3, I show how to correct DIMM
data for the two most important biases, finite exposure time
and centroiding noise. This section contains the results of nu-
merical simulations of DIMM operation. Then in § 4, the image
size in large telescopes is addressed for the von Ka´rmán tur-
bulence model and an engineering formula to compute seeing
is suggested to replace the standard (infinite-scale) relationship.
The conclusions and practical recommendations are given in
§ 5. The Appendix gives additional insights into DIMM inter-
actions with the atmospheric turbulence spectrum.

2. RELATIONSHIP BETWEEN DIFFERENTIAL
IMAGE MOTION AND r0

2.1. Centering Algorithms

The theory of the DIMM assumes that the centers of images
formed by subapertures are defined as centers of gravity, also
called centroids, G-tilts (Tyler 1994), or angle-of-arrival fluc-
tuations. They are related to wave-front gradients averaged over
subapertures. If is the light intensity distribution in aI(x, y)
stellar image at the telescope focal plane (with background
subtracted), its centroid in thex-direction, , is defined to bexG

�1x p I xI(x, y) dx dy, (1)G tot �
whereI tot is the total flux (the integral of image intensity). For
a discrete (pixelized) CCD image, the integral is replaced by
the sum over all pixels.

The centroid is the optimum position estimator for a Gaus-
sian image profile that gives the lowest possible error for a
perfect detector with only Poisson noise and zero readout noise
(Irwan & Lane 1999). However, even for a perfect diffraction
image, this is no longer the case because the intensity of image
wings does not decrease fast enough. The readout noise con-
tributes additional centroid error. Hence, it is not possible to
computetrue image centroids in either a DIMM or an S-H
wave-front sensor.

Two centroiding methods, thresholding and windowing, are
commonly used in practice. Forthresholding, the integration
(or summation) in equation (1) is extended only over pixels
where , where is the peak intensity in theI(x, y) 1 gI Imax max

image andg is the relative threshold. There is an alternative
way of thresholding: first, the threshold is subtracted from the
image, then the centroid is computed for nonnegative pixels:

′ ′x p x I I , (2)� �ZT ij ij ij′ ′1 1I 0 I 0

where . This kind of thresholding reduces the′I p I � gIij ij max

weight of pixels in the image wings and is closer to an optimal
fit.

In thewindowingmethod, only the pixels within some radius
from image center are taken into account. The center itself
must be known, at least approximately. Usually, the coordinates

of the brightest pixel are taken as window center. The∗ ∗x , y
centroid is thenxW

x p x I I . (3)� �ZW ij ij ij
window window

The centering window can be of any shape, but here I consider
only a circular window of radiusr. It is reasonable to selectr
equal to the radius of the first dark ring in the Airy image,
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Fig. 2.—Displacement of the image center computed by different methods
(without noise) as a function of the coma aberration.Solid line: true centroid;
dashed line:thresholding with ;dash-dotted line:windowing withg p 0.2

; dotted line:Gaussian fit.r p 1.22l/D

rad, in order to minimize the effects of truncation at1.22l/D
window border. The larger the window, the closer will bexW

to .xG

Windowing and thresholding are similar: when there is no
noise, cutting the image at some reasonable threshold is equiv-
alent to cutting off image wings with a circular window, pro-
vided that the image has circular symmetry. Between those two
methods, I prefer windowing because it leads to a simpler noise
model (see below). Theoretically, the best way to estimate im-
age position in the presence of noise would be to fit the expected
image profile to the observed one. Our numerical simulations,
however, show that the gain of fitting over thresholding or
windowing with optimally chosen parameters is not dramatic,
so here we do not consider fitting any further.

It is usually assumed that the shape of images in a DIMM
is close to that of an Airy disk and that it does not change, in
which case the various centering methods differ only in pre-
cision. This assumption is wrong. DIMMs often work in the
regime when atmospheric distortions within subaper-D/r ≥ 10

tures cannot be neglected. Astigmatism and defocus do not
shift the spot centers, and the largest remaining term of random
aberration is coma. In Figure 2, the image-center shifts pro-
duced by the different methods are plotted as a function of the
coma coefficient . The true centroid is a linear function ofa6

, being simply proportional to the average wave-front gra-a6

dient over aperture. But the other “centroids” react to coma
much less and with opposite sign!

The maximum intensity of an aberrated image corresponds
to that location in the field where the rms residual aberration
is minimal. This location is found by the tilt of the least-squares
fit plane, called Zernike tilt or Z-tilt (Tyler 1994; Sasiela 1994).
In the numerical experiment shown in Figure 2, the Z-tilt
remains zero. We see that windowing or thresholding is closer
to Z-tilt than to centroid (G-tilt).Therefore, image motion as
measured in DIMMs corresponds to Z-tilts, not to G-tilts as
generally believed.

The difference between atmospheric G- and Z-tilts is small
but far from negligible. For , the rms coma coefficientD/r p 10

is 0.08 rad. We see from Figure 2 that a 1 rad coma moves
the G-centroid by , hence the difference between0.8192l/D
G- and Z-tilts approaches 0�.1 at 10 cm apertures. This effect
has been discovered by Vernin & Mun˜oz-Tuñon (1995) through
numerical modeling; they called it “thresholding noise” and
estimated its variance to be about 15% of the atmospheric
differential image motion.

Thresholding noise cannot be quadratically subtracted from
the measured variance of image motion because atmospheric
coma is partially correlated with atmospheric tilts (Wang &
Markey 1978). I explicitly take this effect into account by
considering that a DIMM actually measures Z-tilts instead of
G-tilts. With this modified definition of the DIMM signal, the
thresholding noise disappears, but the theoretical formulae must
be changed accordingly.

2.2. Formulae for r0

The formulae used to compute seeing from image motion
variance are usually taken from Sarazin & Roddier (1990).
Previous analyses were published by Fried (1975) and Martin
(1987). The variance of the differential image motion (in2jd

square radians) is related to the Fried parameter , the wave-r0

length l for which this parameter is given, and to the sub-
aperture diameterD as

2 2 �5/3 �1/3j p Kl r D , (4)d 0

where all quantities are in the same units (meters) andK is a
constant. It must be noted that the product is independent2 �5/3l r0

of the wavelengthl. Differential and absolute image motion
is completely achromatic, and the response of the CCD, the
stellar spectrum, etc., are irrelevant for seeing measurements.
This is why there are usually no spectral filters in DIMMs.

The FWHM of the long-exposure seeing-limited point-e0

spread function (PSF) in large telescopes is computed with the
standard formula:

0.2 0.6
20.98l D jd

e p p 0.98 , (5)0 ( ) ( )r l K0

which is commented upon in § 4. Herel is the imaging wave-
length; it is well known that and . It is com-6/5 �1/5r ∝ l e ∝ l0 0

mon practice to express DIMM results as seeing in the sense
of equation (5) (forgetting sometimes to specify at which wave-
length this seeing was computed). Keeping this tradition, the
DIMM seeing should be always interpreted this way.I strongly
suggest to adopt a wavelength of 0.5mm as standard for seeing
data computation.
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Fig. 3.—Comparison of the coefficients for longitudinal (top) and transverse
(bottom) image motion and .Solid line:Zernike tilts, eq. (8);dashed line:K Kl t

G-tilts, eq. (7); dotted line: Sarazin & Roddier (1990) formulae, eq. (6).
Asterisks show the results of numerical integration by Martin (1987): data
from his Table 2 multiplied by 0.340. Vertical lines are the results of my
numerical simulation with windowing centroids and 2000 realizations; bar
length reflects the�1 j statistical error of simulation.

Fig. 4.—Relative contribution of spatial frequencies to the longitudinal dif-
ferential image motion for G-tilt (solid line) and Z-tilt (dashed line) according
to eqs. (A3) and (A4). The baselineB is equal to in this example. The3D
maximum contribution comes from spatial periods around 4D–20D. The dotted
line shows the additional filter resulting from the propagation over aF(z, f )
distance of 16 km ( cm, mm) as described in the Appendix,D p 6 l p 0.6
eq. (A5).

The constantK depends on the ratio of aperture separation
B to their diameterD, i.e., , on the direction of imageb p B/D
motion (longitudinal, i.e., parallel to apertures vector, or trans-
verse, i.e., perpendicular), and on the type of tilt considered.
The widely used equations (13) and (14) from Sarazin & Rod-
dier (1990) were derived from a crude approximationB k D
and imprecise coefficient:

′ �1/3K p 0.358(1� 0.541b ),lG

′ �1/3K p 0.358(1� 0.810b ). (6)tG

G-tilt.—Useful formulae for the covariance of the G-tilt were
given recently by Conan et al. (2000). I take their main equation
(9) for the case for the covariance, a particular case ofB 1 D
their equation (8) for the variance ( , see also their eq.B p 0
[27]), and find their difference up to the second term in .B/D
The result is

�1/3 �7/3K p 0.340(1� 0.570b � 0.040b ),lG

�1/3 �7/3K p 0.340(1� 0.855b � 0.030b ). (7)tG

The coefficient 0.340 is also given by a number of other
authors (Martin 1987; Tyler 1994). As shown in Figure 3, the
new formulae give an excellent match to the exact coefficients
computed by Martin (1987) by direct integration.

Z-tilt.—The formulae for differential Z-tilt are given in the
book by Sasiela (1994) where a convenient series expansion
is provided in equation (7.65). Limiting the development to

two terms inb,

�1/3 �7/3K p 0.364(1� 0.532b � 0.024b ),lZ

�1/3 �7/3K p 0.364(1� 0.798b � 0.018b ). (8)tZ

Miraculously, these formulae are closer to the approximate
coefficients given by Sarazin & Roddier than to the true co-
efficients for G-tilt. Equation (8) must be now used to compute
seeing from differential image motion, but the difference in
coefficients compared to equation (6) is small.

In Figure 3, all three sets of coefficients are plotted for lon-
gitudinal and transverse image motion. I also simulated atmo-
spheric wave fronts, computed the variance of spot centroids
(with windowing), and compared the results with the formulae
to show that the DIMM signal is indeed close to Z-tilt.

2.3. DIMM as a Spatial Filter

A DIMM is not sensitive to wave-front perturbations that
are either smaller than its apertures or larger than its baseline.
Therefore, it acts as a spectral filter and isolates from the tur-
bulence spectrum a particular frequency band. This filtering is
slightly different for G- and Z-tilts. In Figure 4, an example
of these filters for longitudinal image motion is given. The
formulae are given in the Appendix.

It is important to note that the DIMM is insensitive to the
low-frequency part of any turbulence spectrum and hence is
not affected by the turbulence outer scale. The formulae in
Conan et al. (2000) actually include the effects of the turbulence
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outer scale . The most significant correction to andL K K0 lG tG

is for m and cm, i.e., totally�4pD/L ≈ 10 L p 20 D p 100 0

negligible (see also Borgnino, Martin, & Ziad 1992). It means
that a DIMM measures the Fried parameter reliably even forr0

non-Kolmogorov turbulence.

3. DEBIASING DIMM DATA

3.1. Noise Bias

Even if the pair of images in a DIMM is absolutely steady
(no turbulence), the measured image motion is still not zero
because coordinates of the spots are determined with some
errors. Thisnoise varianceadds to the atmospheric image mo-
tion variance and makes the apparently measured seeing worse.
Here I estimate this bias and propose a cure.

CCDs are most frequently used as image detectors in
DIMMs. Their pixels are geometrically very stable: the errors
in measured centroids come from the noise in the light inten-
sities: Poisson noise of the signal itself, additive readout noise
(RON) of the CCD, and variations of the pixel sensitivity (flat
field) that are usually left uncorrected.

Simulations show that in current DIMMs, the rms RON of
10–20 electrons gives the major contribution to the noise var-
iance. Fortunately, this noise component is easy to model for
window-limited centroids. LetR be the rms readout noise and

be the total flux in the stellar image, both measured in theI tot

same units (ADUs or electrons). RON is independent of signal,
and a straightforward development of equation (3) leads to the
centroid variance:

2R2 2¯j p (x � x) . (9)�R ij2I windowtot

Here is expressed in CCD pixels and is computed for onejR

spot only; must be subtracted from the measured variance22jR

of differential image motion in a DIMM to remove the bias
due to RON. Summation is performed only within the selected
window, the average coordinate is zero if is counted fromx̄ x
window center. This equation was given by Vernin & Mun˜oz-
Tuñon (1995) for the case of a square window; here it is general.

The contribution of RON to the image motion variance is
inversely proportional to thesquareof the stellar flux. Thus,
going to fainter stars or shortening the exposure time can have
a strong effect on this bias. The noise is also proportional to
the fourth power of window size, which strongly favors se-
lecting the smallest possible window for centering.

A nice feature of equation (9) is that all quantities are either
known or easily measurable. Indeed, the sum of square coor-
dinates depends only on the radius of the centering window.
RON R can be measured in ADUs by taking dark frames,
subtracting the same bias frame as used for actual spot images,
and computing the variance of the resulting frame. Note that

does not depend on the shape of the spots!2jR

On the other hand, thephoton-noise variance does depend2jp

on the size of spots. It is very useful to monitor the optical
quality of any DIMM by measuring the Strehl ratio of both
spots. If Imax is the maximum pixel intensity in a spot andI tot

is the total flux (sum over all pixels), the Strehl ratioScan be
estimated as

2I 4 lmax CCDSp , (10)( )I p DDxtot

where is the CCD pixel size in radians, supposed to beDx
much smaller than the Airy spot size. The wavelengthlCCD

here must approximate the maximum CCD sensitivity, e.g.,
mm. Ideally, we should obtain with goodl p 0.7 Sp 1CCD

optics; in practiceS is always less than 1 because of finite pixel
size, aberrations, etc., and typical empirical values are between
0.4 and 0.7.

The photon noise variance is equal to the second moment of
the intensity distribution in the spot di-2 �1 2¯z p I � (x � x) Itot ij ij

vided by the total number of photoelectrons in the imageN.
The justification for this is simple: 1 photon measures a co-
ordinate with a variance of ,N photons improve the result2z

like N repeated measurements. Practically, a conversion factor
from ADUs to electrons must be known to deduceN from

. For an ideal Airy spot, the second moment is infinite,2I ztot

but windowing removes this problem because the sum extends
over a limited number of pixels only.

The parameter can be computed for real spots, but I2z

suggest a simplified approach. If the image shape remains the
same while only its size changes, is proportional to .2 �2z S
With this approximation the photon noise variance for one spot
(in square radians) is

2(0.70l/D)2j ≈ 0.5 . (11)p NS

The coefficient 0.70 was adjusted from simulations to obtain
correct photon noise values with ideal Airy spots and a window
of optimum radius. The multiplier 0.5 is not needed for dif-
ferential variance (two spots).

In Figure 5, the results of DIMM simulations are shown.
The CCD pixel size was 0�.74, close to typical. The lowest line
corresponds to the photon noise alone: even for a third-
magnitude star and a relatively small 6 cm aperture, remainsjp

small compared to . It can be seen that can be relativelyj jR R

well modeled by equation (9). Noise in the simulations is still
a bit higher than the model, presumably because the additional
error that comes from window centering is not accounted for
by the model.

The third source of noise is the nonuniformity of the CCD
sensitivity over the field (flat field). In modern CCDs, the am-
plitude of sensitivity variations is typically only a few percent.
For the actual stellar fluxes, the relative Poisson noise in
individual pixels is larger than this, so the flat-field effect can
be neglected together with the Poisson noise.
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Fig. 5.—rms noise of differential image motion as a function of window
radius and rms readout noise RON in electrons.Solid lines:Results of sim-
ulation for a 3 mag star, 10 ms exposure time, cm, cm.D p 6 B p 19.3
Dashed lines:Noise models as a sum of curve and RON contributionRON p 0
from eq. (9). The vertical line marks the optimum window radius of

.1.22l/D

Fig. 6.—Relative attenuation of the variance of differential image motion
produced by a single turbulent layer is plotted against the relative aperture
shift during exposure for the case (asterisks). Squares denoteVt/D B/D p 3
the variance attenuation with double exposure. The line depicts the variance
corrected by the modified exponential prescription (eq. [12]). The four panels
correspond to different combinations of baseline orientationw and wind di-
rectionv with respect to the image motion direction:a: (0�, 0�); b: (0�, 90�);
c: (90�, 0�); d: (90�, 90�).

The relative assessment of noise sources is detector-specific.
For directly illuminated CCDs, the RON contribution domi-
nates and must be subtracted from the measured variance using
equation (9). But in DIMMs with intensified CCDs (Vernin &
Muñoz-Tuñon 1995), the RON can be neglected, while Poisson
noise and, probably, flat-field noise are the main components.

3.2. Exposure Time

The theory of the DIMM presumes that image motion is
measured with infinitely short exposures, i.e., the spots are
completely “frozen” during the exposures. In reality, DIMMs
use a finite exposure time between 5 and 20 ms. The effect is
important: for a wind speed of 40 m s�1 as often found in the
upper atmosphere, a turbulent layer moves 40 cm during a
10 ms exposure, considerably averaging the image motion com-
pared to the 10 cm apertures of a typical DIMM. Martin (1987)
pointed out the critical role of the exposure time in DIMMs
and derived formulae to compute a reduction in image motion
variance for G-tilt. The results for Z-tilt should be similar, given
the similarity of respective spatial filters (Appendix).

At the majority of sites, the main contribution to seeing
comes from the lowest layers with typically slow winds. At
such sites, the seeing measured with 10 and 20 ms exposure
time would be similar, giving a misleading impression that
10 ms exposure is short enough to freeze image motion. But
at some other sites the situation may be different, so a com-
parison between sites based on exposure-biased seeing can be
suspect.

Reduction of image motion variance depends on the relative
drag of a wave front moving with speedVduring exposureVt/D
time t for aperture diameterD. It also depends on the baseline

length, on the wind direction relative to the baseline, and on
which component of image motion (longitudinal or transverse)
is measured. Less reduction is experienced by the longitudinal
component for the wind direction perpendicular to the baseline.
Thus, a north-south baseline orientation is recommended be-
cause westerly winds in the high atmosphere are predominant
at midlatitude sites.

If we are not able to reduce the exposure time to that needed
to freeze the seeing, we can take data with double exposures
to control this effect and, hopefully, to correct it. This is the
idea of interlaced exposuresas implemented in some DIMMs
(Sarazin 1997). Lete1 be the seeing measured with some ex-
posure timet, ande2 be the seeing with double the exposure
time 2t. Long and short exposures are interlaced so that data
are not affected by seeing variations.

If the measured seeing decays with exposure time exponen-
tially, as , then the correct (zero-exposure) seeingexp (�at)
would be obtained by multiplication ofe1 by . This cor-e /e1 2

rection can be applied to image motion variance instead of
seeing with the same result. I found that this prescription often
“overshoots” and propose a milder “modified exponential”
correction law:

1.75 �0.75e p e e . (12)corr 1 2

The actual dependence of variance attenuation on exposure
time is not exponential, so the correction can be only approx-
imate. How good is it? In Figure 6, the attenuation of variance
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Fig. 7.—Left: Attenuation of the differential image motion variance due to the finite exposure timet is plotted against the ratio of image motion variance
measured with 2t andt. Asterisks: ms; diamonds: ms. All four combinations of directions are plotted jointly for the 11 profiles, giving 44 pointst p 5 t p 10
for each exposure. The dotted line shows the general trend.Right: Ratio of seeing corrected with modified exponential prescription to the true seeing for pairs of
5 and 10 ms exposures (asterisks) and 10 and 20 ms exposures (diamonds).

with single and double exposure time for baseline isB p 3D
plotted as a function of relative shift . The calculationsVt/D
were done by computing the integral in equation (14) of Martin
(1987). The line shows the corrected variance according to the
prescription in equation (12). Much of the exposure-time effect
is removed, with small overcorrection at low wind speed and
undercorrection at high wind speed.

Terrestrial atmosphere is a collection of turbulent layers mov-
ing with different speeds in different directions. Calculations
such as those in Figure 6 should be repeated for each layer
and then averaged with weights proportional to the turbulence
strength in each layer. I performed such calculations for 11
profiles of turbulence and wind speed measured at Cerro
Paranal (Chile) in 1992 during the PARSCA campaign (Fuchs
& Vernin 1996). Wind direction is not known, so I assumed
that all layers move in the same direction, which was taken to
be either parallel or perpendicular to the baseline. For each
wind direction, the attenuation of longitudinal and transverse
variance was computed, so 11 profiles provided a total of 44
variance estimates for each exposure. I adopted DIMM param-
eters cm and cm and computed the varianceD p 6 B p 19
attenuation for exposure times of 5, 10, and 20 ms. The results
are shown in Figure 7.

It is evident from Figure 7 that uncorrected seeing can be
severely biased. In the worst case, the “10 ms” variance is only

of its true value. Even 5 ms is not short enough if seeing is1
2

to be measured to better than 10%. Most of this bias can be
removed with modified exponential correction; the remaining
error in seeing is under 5% in most cases and, moreover, is no
longer systematic.If Paranal profiles are representative of
good astronomical sites, these calculations validate the inter-
laced-exposure technique.

There are, however, two problems with this method. First,
at shorter exposures, the bias in variance caused by the RON
is 4 times larger than at longer exposures, being inversely pro-

portional to the square of stellar flux. If this effect is not taken
into account, the increase of the variance at shorter exposures
is erroneously taken as being of atmospheric origin and pro-
vokes overcorrection. Subtraction of noise variance is man-
datory for the interlaced-exposure technique to work.

The second problem concerns low accuracy of seeing values
obtained by the interlaced-exposure technique. If the seeing is
stationary during accumulation of image-motion variance, the
variance is measured with a relative rms error of and the�1/2M
seeing (variance to the power 0.6; eq. [5]) with a relative error
of , whereM is the number of data points (spot im-�1/20.6M
ages). During 1 minute, some 10 ms exposures canM p 6000
be taken, but in practice only can be achieved becauseM ∼ 300
the CCD readout rate limits the data flow. With the interlaced-
exposure technique, we reduceM twice and further amplify the
variance of measured seeing by times2 21.75 � 0.75 p 3.625
when applying equation (12). Thus, corrected seeing is now
measured with a relative rms error of ,1/20.6 [(2# 3.625)/M]
which increases 2.7 times as a result of interlaced-exposure
correction.

The loss of statistical accuracy can be avoided by a more
reasonable strategy, however. Wind structure in the atmosphere
changes only slowly, on a timescale of hours. The seeing bias
must also change slowly, permitting some averaging. Let

be the correction factor needed to obtain zero-0.75c p (e /e )1 1 2

exposure seeinge0 from e1 according to equation (12). Then
the correction factor for double-exposure seeing would be

. Now we can combine both short- and1.75c p c e /e p c2 1 1 2 1

long-exposure data in a final corrected seeing estimate:

1.75e p 0.5(c e � c e ). (13)0 1 1 1 2

Smoothing of over time can be done by any technique,c1

e.g., by running-box average. Archival seeing data that contain
bothe1 ande2 can be reprocessed in order to obtain better (less
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noisy) seeing statistics. For real-time DIMM data processing,
I suggest to average the correction factors recursively. Some
initial guess for is used at the start of the night. Whenc1

new data arrive, we compute the instantaneous correction
, but instead of applying it directly to the data,′ 0.75c p (e /e )1 1 2

we only adjust the average correction recursively:

new current ′c p (1 � g)c � gc . (14)1 1 1

With a reasonably small gain, e.g., , the system wouldg p 0.05
average the corrections over∼ data points and thus�1g p 20
would be able to track the variations in the seeing “speed”
without noise penalty.

4. SEEING IN LARGE TELESCOPES: THE
INFLUENCE OF OUTER SCALE

4.1. Kolmogorov Model

Suppose that the parameter is measured correctly by ar0

DIMM. How can it be used to predict the size of long-exposure
seeing-limited images in large ( ) telescopes?D k r0

The standard theory based on the Kolmogorov turbulence
model (Roddier 1981) leads to a relation between , the phaser0

structure function , and the optical transfer function (OTF)D (r)f

of a large telescope:T ( f )0

5/3D (r) p 6.88(FrF/r ) , (15)f 0

T ( f ) p exp [�0.5D (lf )], (16)0 f

where is the spatial frequency (in inverse radians) andl isf
the imaging wavelength. The corresponding atmospheric PSF
is obtained from the OTF by a Fourier transform (FT). There
is no analytic expression: the PSF must be computed numer-
ically. The FWHM of the atmospheric PSFe0 is given by
equation (5). Similarly, the diameter of the circle that contains
one-half of the total PSF energy (full width at half-energy,
sometimes also called d50) is found to beb0

b p 1.15l/r . (17)0 0

4.2. von Kármán Model

The von Kármán turbulence model introduces an additional
parameter, the wave-front outer scale (Borgnino 1990; ZiadL0

et al. 2000). Physically, the outer scale is related to the largest
size perturbations, but the “geophysical” local turbulence outer
scale should not be confused with the optical parameterL 0

that describes wave-front statistics after propagation throughL0

the whole atmosphere. Nobody has actually verified this model,
but it gives a better description of wave-front statistics at scales
of a few meters than the standard model. Typical values of

are around 20 m, with a scatter from∼10 m to few hundredL0

meters (Ziad et al. 2000); does not depend on wavelength.L0

The analytic expression for the phase structure function

in the von Kármán model can be found in (Conan 2000;
Consortini & Ronchi 1972)

5/6
�5/3G(11/6) 24 6 r0D (r ) p G[ ]f ( )11/6 8/3 ( )2 p 5 5 L0

5/65 2pr 2pr
�1/6# 2 G � K , (18)[ ]5/6( ) ( )( )6 L L0 0

where is the modified Bessel function of the third kind,K (x)5/6

or McDonald function, and is the gamma function. TheG(x)
corresponding OTF is obtained from equation (16). InT ( f )vK

the limit (Kolmogorov model), equation (18) trans-L p �0

forms to equation (15).
The FT of formally does not exist because at largeT ( f )vK

, the OTF does not go to zero [ saturates]. It means thatf D (r )f

there remains some coherence of wave fronts at large baselines,
and in an infinitely large telescope the PSF will contain a delta
function at its center. In a telescope of finite size, the central
core will be diffraction-limited. Of course, this situation is not
physical, and such coherent cores in seeing-limited images were
never observed, despite a lone voice to the contrary (Griffin
1973). See also the dispute between McKechnie (1992) and
Tatarskii & Zavorotny (1993) on this topic.

To circumvent the mathematical difficulties, I subtract from
the (small) constant level that it reaches at the limit ofT ( f )vK

the computing grid, renormalize the remaining OTF, and take
the FT. The result should be a good approximation to the seeing-
limited PSF in large telescopes (it does not depend on telescope
diameter, like in the case of Kolmogorov model). The effect
of finite can be understood as an increase of wave-frontL0

coherence at small baselines.
The FWHM and half-energy diameter of the von Ka´rmán

PSF were computed as a function of . With good seeingL /r0 0

( cm at 0.5mm) and a typical m,r p 15 L p 20 L /r p0 0 0 0

at mm and at 2.2mm. Compared to133 l p 0.5 L /r p 220 0

the standard theory, the FWHM is reduced by 21% in theevK

visible and by 1.9 times at 2.2mm—quite a difference! The
“improvement” of the half-energy diameter is lessbvK

significant.
A rough idea about the effect of outer scale can be obtained

if one presumes that the image motion is greatly reduced for
finite . Of course, the amount of image motion depends onL0

the telescope diameter, hence it is system-dependent, whereas
the image improvement is not. Still, I can model the effect as
a quadratic subtraction of some component from the image
width. This leads to an approximation

2 0.356e rvK 0≈ 1 � 2.183 , (19)( ) ( )e L0 0

which was obtained by fitting to the numerical results. This
approximation turns out to be very good, with relative errors
within �1% for . A similar formula for half-energyL /r 1 200 0
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TABLE 1
Biases in DIMM Data

Effect Seeing Bias
Typical Effect

(%)

Thresholding. . . . . . . . . . . . . . . . . . . Decrease ∼9
RON in CCD . . . . . . . . . . . . . . . . . . Increase 0–100
Finite exposure. . . . . . . . . . . . . . . . Decrease 10–20
Near-field approximation. . . . . . Decrease !10
Outer scale. . . . . . . . . . . . . . . . . . . . . Negligible !1

diameter is good to�1% for :b L /r 1 10vK 0 0

2 0.347b rvK 0≈ 1 � 1.534 . (20)( ) ( )b L0 0

When measured by a DIMM is used to predict image sizer0

in large telescopes, the effects of outer scale are significant in
the visible range and much more so in the infrared. The spatial
spectrum of a wave front is most certainly different from the
von Kármán model, so the equations (19) and (20) should be
considered as only first-order approximations to reality. Still,
this approximation is better than the standard infinite-scale
theory.

Equations (19) and (20) shouldnotbe used to convert DIMM
data into seeing because they contain an additional parameter

. Instead, knowing the DIMM seeing as defined above andL0

the wavelength of observations, the image size in large tele-
scopes can be predicted using these relations and adopting some
plausible values for .L0

Unlike the DIMM, some seeing-measuring techniques (in-
terferometer or absolute image motion) are sensitive to outer-
scale effects. If the results of these techniques are interpreted
in the framework of the standard Kolmogorov model, a better
prediction of seeing in large telescopes might result. Unfor-
tunately, all these methods are sensitive to telescope pointing
errors and for this reason are not practical.

5. CONCLUSIONS AND RECOMMENDATIONS

The aim of this paper is to clarify various aspects of
the—now standard—seeing measuring technique using the
DIMM. The first point is that the interpretation of DIMM data
as seeing is not trivial. Differences between DIMM seeing and
image size in large telescopes are to be expected, especially in
the infrared, because turbulence does not entirely conform to
the standard infinite-scale model. What the DIMM really mea-
sures is the Fried parameter , which is traditionally expressedr0

in terms of seeing. Keeping in line with this tradition, I suggest
to use always one and the same equation (5) for a standard
wavelength of 0.5mm in order to make the conversion of seeing
back to possible.r0

The second important conclusion is that several instrumental
effects can bias DIMM data in a systematic way. Table 1 sum-
marizes these biases. None of them has a dramatic influence
on the measured seeing (except CCD noise under some
unfavorable circumstances).

The last two effects in Table 1 are not very important, but
still deserve mentioning. Propagation along a distancezreduces
the image motion for the layers that are in the “far field” for
DIMM apertures [ ]. This leads to some underesti-1/2D ≤ (lz)
mation of any high-layer contribution to seeing (Appendix).
The influence of outer scale can be totally neglected: a DIMM
measures the Fried parameter reliably even for non-r0

Kolmogorov turbulence.

In most of the currently working DIMMs, these effects are
usually neglected. Some partial compensation of biases may
occur, however. When DIMM seeing is compared to the tele-
scope seeing, the latter is also biased: increased by turbulence
inside the dome and decreased by outer-scale effect. An agree-
ment between DIMM and telescope seeing to better than 10%
may thus be fortuitous.

The methods to take into account the two most important
biases (finite exposure time and noise) are proposed here and
studied by means of numerical modeling. The following rec-
ommendations for DIMM designers and users can be formu-
lated as a result of the present work:

1. Make the DIMM apertures and baseline as large as fea-
sible. It reduces both exposure time effects and noise bias.

2. Control the optical quality of DIMM by computing and
archiving the Strehl ratio (eq. [10]).

3. Use a centroiding algorithm with a window radius of
or slightly larger.1.22l/D

4. Measure the readout noise of the CCD and subtract the
noise variance from the measured image motion variance
according to equation (9).

5. Use as short an exposure time as allowed by the hardware
and noise. If this exposure is still not short enough, debias the
data with the interlaced-exposure technique. In doing this,
average the correction factors (eqs. [12] and [14]) to avoid the
loss of accuracy.

6. Use the correct coefficients (eq. [8]) to derive fromr0

image motion. Always compute and seeing (eq. [5]) for ar0

standard wavelength of 0.5mm and at zenith.
7. Use equation (19) to predict image size in large telescopes.

It is true that DIMM is a simple and robust method to mea-
sure the seeing. However, achieving an absolute accuracy of
10% or better requires particular care. I hope that this work
will help to better calibrate DIMM data and thus to increase
their value.

This work was stimulated by M. Sarazin during numerous
and fruitful discussions with the author. Some ideas were im-
plemented and tested at the CTIO DIMM jointly with E. Bustos,
H. E. Schwarz, and M. Boccas. S. Baumont and H. E. S. have
kindly checked the manuscript and formulae.
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APPENDIX

SPATIAL FREQUENCY FILTERING IN DIMMs

The response of DIMMs to wave-front corrugations of different spatial scales is considered here. For G-tilt, the filter in frequency
space includes the gradient operator along thex-axis, , the factor to convert it to angles, the aperture averaging factor�2pif l/(2p)x

, and the “difference” operator corresponding to the two DIMM apertures. The latter is an FT of the sum of two2J (pDf )/(pDf )1

delta functions with opposite signs displaced by and from coordinate origin and is equal to . Thus, theB/2 �B/2 2 sin (pf B)x

spectral filter is equal toFG

2J (pDf )1F p �if l sin (pf B). (A1)G x x
pDf

Here , where is the spatial frequency vector with components .f p FfF f f , fx y

For differential Z-tilt, we have to replace the combination of gradient and aperture averaging with the Fourier transform of the
Zernike polynomial number 2 (tilt along thex-axis), . A factor must again be introduced to pass from24f J (pDf )/(pf D) 2l/(pD)x 2

Zernike amplitude to angle. The term corresponding to the difference between two apertures remains the same. Thus,

l J (pDf )2F p 8f sin (pf B). (A2)Z x x2pD pf D

Variance of differential image motion is computed as an integral over spatial frequencies of the product of the filter square
modulus and the turbulence power spectrum, which is proportional to for the Kolmogorov turbulence model. I omit2 �11/3FFF f
wavelength and other proportionality terms to underline the difference between the two tilts. Integration over angle in frequency
plane can be done analytically (cf. eq. [13] in Martin 1987), leaving only the integration over the modulus of the frequency.
Usually the dimensionless frequency is used. I considered above only the longitudinal image motion ; for anq p Df (w p 0)
arbitrary directionw, the integrand for G-tilt looks likeIG

22J (pq) 2J (2pbq)1 1�2/3 2I (q) p q 1 � 2 cos wJ (2pbq) � cos (2w) , (A3)G 0[ ] [ ]pq 2pbq

while for Z-tilt the integrand has the form

2J (pq) 2J (2pbq)2 1�2/3 2I (q) p 64q 1 � 2 cos wJ (2pbq) � cos (2w) . (A4)Z 0[ ] [ ]2 2p q 2pbq

Comparison of and gives a clear idea on the relative contribution of different spatial frequencies to the differential imageI IG Z

motion (Fig. 4). Z-tilt contains somewhat more higher frequency power and hence can be more affected by finite exposure time
than G-tilt.

Additional spectral filtering comes from the propagation: diffraction converts part of turbulent energy into scintillation, with
phase fluctuations and image motion correspondingly reduced. Maximum reduction does not exceed a factor of 2, however. Given
the distance to the layer,z, the integrand must be multiplied by the additional diffraction term :F(z, f )

2 2F(z, f ) p cos (plz f ). (A5)

In Figure 4, this term is overplotted for the worst-case situation of a high layer and small DIMM apertures. In this case,
longitudinal image motion variance is 0.76 times that of a low layer of the same intensity. Increasing the aperture size to 10 cm
brings the reduction factor to 0.83, which still corresponds to an 11% bias on seeing. Fortunately, turbulence in the upper atmosphere
seldom dominates the overall integral, so this effect for realistic turbulence profiles will be almost negligible.
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