Imaging through turbulence

(image formation, atmospheric turbulence, intro to adaptive optics)

Marcel Carbillet
[marcel.carbillet@oca.eu]

lagrange.oca.eu/carbillet/enseignement/M1-MAUCA/

Menu

- High-angular resolution imaging in astronomy
- Atmospheric turbulence (reminder)
- Numerical modelling of perturbed wavefronts
- Formation of resulting images (+detection noises)
- (Introduction to speckle interferometry)
- Introduction to adaptive optics (AO)
- AO error budget
- Post-AO point-spread function morphology
- Anisoplanatic error study (ideal AO system)

Preliminarily

- launch IDL (or IDLDE=IDL+interface), with Tunnelblick or the like (VPN) running if necessary (wifi).
- test it:

IDL> print, 'hello' IDL> plot, [1,2], [1,2]

- test it more: IDL> $x x=$ findgen (50) IDL $>y y=2 * x x+1$ IDL> plot, xx, yy

Images \& turbulence - 1

The image formed through turbulent atmosphere (optically speaking) is degraded:

- Scintillation (due to intensity fluctuation in the pupil).
- Agitation (due to angle-of-arrival variation).
- Spreading (due to a loss of spatial coherence).

(Illustration from Pierre Léna, Astrophysique - Méthodes physiques de l'observation, CNRS Éd. (2me éd.), p.177)

Images \& turbulence - 2

The object-image relation between the intensity $I(\alpha)$ in the image plane (i.e. the focal plane of the telescope) and the brightness $O(\alpha)$ of the object (in the sky) is a relation of convolution implying the point-spread function (PSF) $S(\alpha)$ of the whole ensemble telescope + atmosphere, with α the angular coordinates in the focal plane:

Images \& turbulence - 3

 $I(\vec{\alpha})=O(\vec{\alpha}) * S(\vec{\alpha})$This relation is valid notably at the condition that the system is invariant by translation (everything happens within the isoplanatic domain)...

Images $\&$ turbulence - 4

Some orders of magnitude concerning the turbulent atmosphere:

$$
\lambda=500 \mathrm{~nm} \quad \lambda=2.2 \mu \mathrm{~m}
$$

Fried parameter (r_{0})
velocity of the turbulent layers (v)
=> image FWHM $\left(\epsilon \approx \lambda / \mathbf{r}_{0}\right)$
=> evolution time ($\tau_{0} \propto_{\mathrm{r} 0} / \mathrm{v}$)
$\rightarrow 10 \mathrm{~cm}$
$\rightarrow 10 \mathrm{~m} / \mathrm{s}$
$\rightarrow 1$ "
$\rightarrow 3 \mathrm{~ms}$

60 cm
id.
~1"

18 ms

Images \& turbulence - 5

Images \& turbulence - 6

Images \& turbulence - 7

entrance pupil
image on the focal plane

remembering eq. 2.17 from the course of Éric Aristidi:

$$
I(x, y)=\frac{1}{\lambda^{2} F^{2}}\left|\hat{f}_{0}\left(\frac{x}{\lambda F}, \frac{y}{\lambda F}\right)\right|^{2}
$$

directly coming from (eq. 2.16):

$$
f_{F}(x, y)=\frac{e^{i k F}}{i \lambda F} e^{\frac{i \pi \rho^{2}}{\lambda F}} \hat{f}_{0}\left(\frac{x}{\lambda F}, \frac{y}{\lambda F}\right)
$$

Images \& turbulence - 8

The wavefront is, modulo $\lambda / 2 \pi$, proportional to the phase $\Phi(r)$ of the wave $\Psi(r)$ which has went through the turbulent atmosphere before reaching the telescope:

$\Psi(\vec{r})=A(\vec{r}) \exp \{\imath \Phi(\vec{r})\}$

Note that this phase can be decomposed following a base of polynomials, for example Zernike ones:

Images \& turbulence - 9

polynômes de Zernike

$$
\begin{array}{lllllll}
\mathrm{m} & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Images \& turbulence - 10

turbulence intensity $\left[\mathrm{m}^{1 / 3}\right]$

$r_{0}=0.185 \lambda^{\frac{6}{5}} \cos (\gamma)^{\frac{3}{5}}$
 $\left[\int_{0}^{\infty} C_{n}^{2}(z) d z\right]$

 dimension of ro ? value in band H knowing ro at $500 \mathrm{~nm}(10 \mathrm{~cm})$?...

Number of speckles for $\mathrm{ro}=10 \mathrm{~cm}$ and $\mathrm{D}=1 \mathrm{~m}$?...

Images \& turbulence - 11

ro in band H knowing ro at 500 nm ?...

$$
r_{0}=0.185 \lambda^{\frac{6}{5}} \cos (\gamma)^{\frac{3}{5}}\left[\int_{0}^{\infty} C_{n}^{2}(z) d z\right]^{-\frac{3}{5}}
$$

$$
r_{0}^{\mathrm{H}=1.65 \mu \mathrm{~m}}=r_{0}^{500 \mathrm{~nm}}\left(\frac{1.65}{0.5}\right)^{\frac{6}{5}} \simeq 0.42
$$

Number of speckles for $\mathrm{r}_{\mathrm{O}}=10 \mathrm{~cm}$ and $\mathrm{D}=1 \mathrm{~m}$?...

$$
N_{S}^{500 \mathrm{~nm}} \simeq 0.34\left(\frac{1.0}{0.1}\right)^{2} \simeq 34 \quad N_{S}^{\mathrm{H}} \simeq 0.34\left(\frac{1.0}{0.42}\right)^{2} \simeq 2
$$

Images \& turbulence - 12

$\Phi_{\varphi}(\vec{\nu})=0.0228 r_{0}^{-\frac{5}{3}}\left(\nu^{2}+\right.$ $\overline{\mathcal{L}_{0}^{2}}$

Power Spectral Density (PSD) of the phase, function of the spatial frequency

Kolmogorov/von Kármán model

- Kolmogorov : outerscale of turbulence \mathscr{L}_{0} is infinite.
- One can refine the model by considering also l.
- \exists other models with a finite \swarrow_{0} (and a non-zero ℓ_{0}).

Energy cascade: wind shear \Rightarrow turbulent energy injected into the system via a large eddy (\swarrow_{0}) which splits into smaller and smaller eddies (b_{0}), and is finally viscously dissipated. Interval $\left[\ell_{0}, \ell_{0}\right]=$ inertial range.

(A reminder of discrete Fourier transform (DFT) ...)

Images \& turbulence - 13

$\Phi_{\varphi}(\vec{\nu})=0.0228 r_{0}^{-\frac{5}{3}}\left(\nu^{2}+\frac{1}{\mathcal{L}_{0}^{2}}\right)^{-\frac{11}{6}}$

Which, numerically written, and by considering wavefronts made of 'dim' pixels corresponding to 'L' meters, becomes: (re-writing - "de-dimensionalizing" - the equation with $\mathrm{L}_{0}=\mathrm{L}_{0} \mathrm{~L} / \mathrm{L}$ and $\mathrm{v}=\mathrm{v} \mathrm{L} / \mathrm{L}$...)

```
freq = findgen(dim)
dsp = .0228*(L/r0)^(5/3.)*L^2*(freq^2+(L/L0)^2)^(-11./6)
```

And which (with the right frequency scale) can be plot with:
plot_oo, 1./L*findgen(dim), dsp, XR=[1/L/1.2,dim*1/L*1.2], /XS
$=>$ make a function that computes $\operatorname{PSD}\left(L_{0}, r_{0}, \operatorname{dim}, L\right)$ and plot it for different $\left[r 0, L_{0}\right] \ldots$ [with, for example: dim=1000L, L=100., r000.1, L0=100.,10.,1.]

