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We describe new solutions permitting us to overcome the well-known problems encountered when em-
ploying the two main classical methods for numerical modeling of atmospherically perturbed phase
screens. The first method, the fast-Fourier-transform-based numerical method, suffers from a lack of
low frequencies. Subharmonics adding is an already-known solution to this problem, but no criterion
has been defined up to now in order to precisely determine how many subharmonics are necessary
for each given case of physical and numerical characteristics. We define two criteria and show their prac-
tical efficiency. The second, Zernike-based, method suffers, a contrario, from bad behavior of the phase
screens at high spatial frequencies. To overcome this problem, due to numerical instability, we developed
an algorithm based on an alternative definition of the Zernike polynomials, involving the recurrence
definition of the Jacobi polynomials, as well as the relationship between the Zernike and the Jacobi poly-
nomials. The methods described and used in this paper have been implemented within the freely dis-
tributed software package CAOS. © 2010 Optical Society of America
OCIS codes: 010.1300, 010.1330, 070.7345, 350.1260.

1. Introduction

Turbulence is mainly located within a few relatively
narrow layers, at least in good astronomical sites.
The finite number of turbulent layers is a conse-
quence of a modelization of the profile of the struc-
ture constant of the refraction index fluctuations,
C2

nðhÞ, where h is the altitude, to an ensemble of dis-
crete values. Each of these values corresponds to a
turbulent layer of the atmosphere, and each turbu-
lent layer can be physically simulated as a random
phase screen, whose power spectrum follows a von
Karman/Kolmogorov model.

The first step for building a turbulent atmosphere
is, hence, to generate the phase screens that will si-

mulate the behavior of each turbulent layer. Two
methods are usually considered:

1. the fast-Fourier-transform (FFT)-based meth-
od, suffering, however, from a lack of low frequencies;

2. the Zernike-polynomials-based method, suffer-
ing a contrario from possible bad behavior of the
phase screens at high spatial frequencies.

An already-known solution to the first problem
consists of boosting the low-spatial-frequencies
[1,2] by adding subharmonics to the FFT-computed
phase screens. But the number of low frequencies
to be added is not actually defined in the literature.
Section 2 details the two criteria we have defined for
this scope and shows their efficiency.

In Section 3 we show how the second problem can
be overcome by considering an alternative definition
of the Zernike polynomials for high orders.
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In fine, a brief summary and concluding remarks
are given in Section 4.

2. Fast-Fourier-Transform-Based Method with
Subharmonics Adding

The well-known FFT method allows us to generate
phase screens φð~rÞ, where ~r is the two-dimensional
position within the phase screen, assuming usually
either a Kolmogorov or a von Karman spectrum
Φφð~νÞ, where ~ν is the two-dimensional spatial fre-
quency, from which is computed the modulus of
~φð~νÞ, the Fourier transform of φð~rÞ. Assuming the
near-field approximation and small phase perturba-
tion [3], the von Karman/Kolmogorov spectrum is
given by

Φφð~νÞ ¼ 0:0229r
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where r0 is the Fried parameter and L0 is the wave-
front outer scale (infinite for the Kolmogorov model).
Within the framework of the classical FFT-based
technique, a turbulent phase screen φLð~rÞ of physical
length L is obtained by taking the inverse FFT of
~φLð~νÞ, the modulus of which is obtained from Eq.
(1) by applying the definition of the power spectrum,
which is

Φφð~νÞ ¼ lim
L→∞
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and which phase is random and uniformly
distributed.

The obtained phase screen is thus numerically
written

φLði; jÞ ¼
ffiffiffi
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where i and j are the indices in the direct space, k and
l are the indices in the FFT space, {} stands for either
real part of or imaginary part of, ı is the imaginary
unit, and θ is the random uniformly distributed
phase (between −π and π). The factor

ffiffiffi
2

p
comes from

the fact that here we use both the real and imaginary
parts of the original complex generated FFT phase
screens, which are independent one from the other
[4]. This kind of phase screen suffers, however, from
the lack of spatial frequencies lower than the inverse
of the necessarily finite length L of the simu-
lated array.

In order to compensate from this lack of low fre-
quencies, the technique of subharmonics adding
was proposed by Lane et al. [1]. This technique con-

sists of generating additional low frequencies and
adding their effects to the already-sampled frequen-
cies. If one divides the lower unsampled spatial fre-
quency content in three harmonics, thus adding the
effect of 3 × 3 ¼ 9 bidimensional spatial frequencies
at each step, the subharmonics screens are numeri-
cally written in this case as

φ3nLði; jÞ ¼
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where kS and lS are the indices in the discrete Four-
ier transform (DFT) space and n is the number of
subharmonics added.

A tricky point remains of defining when to stop the
iterative process of subharmonics adding. In their
original paper, Lane et al. [1] add 5 subharmonics
for a Kolmogorov screen over a pupil of 1 m × 1 m
in order to match the theoretical structure function.
Later on, Sedmak [2] adds 10 subharmonics to Kol-
mogorov screens and a number of subharmonics that
gives a physical size comparable with, or a bit larger
than, the outer scale of turbulence L0 in the case of
von Karman screens. In a successive paper, Sedmak
[5] also gives a thorough overview of the practical
methods employable for adding subharmonics, with
some refinement as well. Nevertheless, no real quan-
titative criterion for the number of subharmonics to
be added has been defined in the literature, and we
therefore treat this point hereafter.

A. Subharmonics-Adding Issue

We have investigated the question of how many
subharmonics have to be added and defined two
aid-to-decision criteria that are able to recommend
a minimum number of subharmonics to be added
in order to obtain a given precision.

Assuming that the number of computed phase
screens is sufficiently large (ideally infinite), the de-
cision criteria can be based on the computation of the
ratio between theoretical relevant quantities and
will-be-obtained quantities.

In the general case of von Karman turbulence, two
candidates well fit the role of decision quantities: the
integrated power over the whole range of frequencies
and the structure function computed for a relevant
space lag. In the case of an infinite wavefront outer
scale (Kolmogorov model), the integrated power is in-
finite, so the only valid criterion becomes the struc-
ture function ratio.

1. Integrated Power Ratio

The total theoretical integrated power is obtained by
integrating the power spectrum over the whole range
of theoretically present frequencies, i.e., from 0 to
infinity. This gives
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While the will-be-obtained integrated power will not
include frequencies lower than the lowest sampled
one, which gives
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so that the integrated power ratio αΦ obtained is
simply

αΦ ¼ ð1þ ν2limL2
0Þ−

5
6: ð7Þ

This already means that, because in the subhar-
monics-adding process νlim ¼ 1

3nL, if the length of the
screens L is chosen to be equal to the outer scale L0,
this is not enough to guarantee that a sufficient num-
ber of low frequencies will be added. In fact, in that
case α ¼ 2−

5
6 ≃ 0:561, which is definitely smaller

than 1.
Let us, hence, deduce a formula for the number of

subharmonics to be added. From the last equation,
one has
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from which we can immediately deduce that even by
taking a phase screen length L equal to the outer
scale L0, 1% accuracy is obtained only by adding
at least two subharmonics (see Fig. 1).

2. Structure Function Ratio

Because the FFT-based phase screens are circularly
periodic, the largest relevant structure function
space lag ρ is equal to L=2. On the other hand, the
definition of the structure function Dφð~ρÞ is

Dφð~ρÞ ¼ 2
Z

Φφð~νÞ½1 − cosð2π~ν~ρÞ�dν; ð9Þ

where the integral is made over the whole range of
present frequencies, that means from 0 to infinity
for the ideal case, and from νlim to infinity for the
simulated case (assuming also an ideal frequency
behavior).

In the Kolmogorov case (L0 infinite), the theoreti-
cal structure function is well known to be

Dφð~ρÞ ¼ 6:88

� ρ
r0

�
−5
3

; ð10Þ

while the will-be-obtained one is to be deduced from
Eq. (9). The structure function ratio αD is, thus, a
function of n and L, the expression of which is

αDðn;LÞ ¼ 0:0131L−5
3

Z
∞

1
3nL

ν−8
3½1 − cosðπLνÞ�dν: ð11Þ

In the von Karman case, both structure functions
are to be deduced from Eq. (9), and the resulting ratio
αD becomes a function of n and L, but also L0.

Figure 2 clearly shows the result of the computa-
tion of αD for n ranging from 0 to 10, and L ranging

Fig. 1. Integrated power ratio αΦ versus the number of subharmonics to be added n (left) and number of subharmonics to be added n
versus the ratio L=L0 (right). The integrated power ratio αΦ is computed for a screen length L equal to the wavefront outer scale L0. Note
the values 0.561 for n ¼ 0 and 0.99 for n ¼ 2, reported in the text. The number of subharmonics to be added is computed for a requested
accuracy of 1% (αΦ ¼ 0:99). Note that n ¼ 0 for L0=L ≤ 0:1, and it becomes nearly 6 for L0=L≃ 100.
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from 0 m to 250 m for both models (Kolmogorov and
von Karman with L0 ¼ 20 m).

This result shows that Kolmogorov phase screens
always need the same number of subharmonics for a
given requested accuracy, whatever the screen length
L. A good number seems to be 9, after which there is
a saturation effect of the attainable accuracy. For von
Karman screens, it is obviously dependent on L0, but
it is also obvious that von Karman screens always
need fewer subharmonics to be added for the same
ratio αD.

3. Zernike-Polynomials-Based Method Using Jacobi
Polynomials

When the Zernike polynomials method is used, the
phase screens φðr; θÞ are generated as the sum of
the first N ¼ ðjmax − 1Þ Zernike polynomials Zjð rR ; θÞ:

φðr; θÞ ¼
Xjmax

j¼2

cjZj

�
r
R
; θ
�
; ð12Þ

where r and θ are the polar coordinates on the pupil
of radius R. The Zernike polynomial is expressed as a
multiplication between a radial component Rm

n ðρÞ
and an azimuthal component [sinðmθÞ or cosðmθÞ],
as described by Noll [6], where n and m represent
the radial and azimuthal orders, respectively. The
piston term (j ¼ 1) is not considered because the
point-spread function is not depending on it.

For each phase screen realization, an independent
set of the coefficients cj has to be obtained with the
correct statistics stated by the N ×N covariance
matrix [7]: Cj;j0 ¼ hcjcj0 i. Only a small portion of the
matrix has no zero elements, so sparse matrix algo-
rithms can be used when implementing the method
in order to allocate less memory and increase the
code speed [8].

To obtain good behavior of the phase screens at
high spatial frequencies, jmax must be large enough
to take into account polynomials with a number of
oscillations over the pupil diameter comparable to
the chosen sample (usually at least two or three pix-
els per r0). In these conditions, jmax can be as large as,

for example, a few thousands in the visible for 8 m
class telescopes.

The usual definition formula for the Zernike radial
component Rm

n ðρÞ [6] fails when computing polyno-
mials with high radial order, because the formula
involves differences between large terms that should
produce a result around the unit value. For instance,
when double precision arithmetic is used, numerical
instability starts to be evident for j≳ 1030, when the
largest coefficients of the radial component of
the corresponding Zernike polynomial have values
around 1 × 1015, close to the inverse of the floating
point precision.

To overcome this problem, we developed an algo-
rithm based on an alternative definition for Zjðρ; θÞ,
involving the relationship between the Zernike ra-
dial component Rm

n ðρÞ and the Jacobi polynomials
Pα;β
k ðxÞ [9] and using both the Jacobi polynomials

definition and their recurrence relationship from
Magnus et al. [10], as follows:

Rm
n ðρÞ ¼ ρmPð0;mÞ

ðn−mÞ=2ð2ρ2 − 1Þ; ð13Þ

where

Pα;β
k ðxÞ ¼ ½C1P

α;β
k−1ðxÞ − C2P

α;β
k−2ðxÞ�

C0
; ð14Þ

Pα;β
0 ðxÞ ¼ 1; ð15Þ

Pα;β
1 ðxÞ ¼ ðαþ β þ 2Þ=2xþ ðα − βÞ=2; ð16Þ

C0 ¼ 2kðαþ β þ kÞðαþ β þ 2k − 2Þ; ð17Þ

C1 ¼ ð2kþ αþ β − 2Þð2kþ αþ β − 1Þð2kþ αþ βÞx
þ ðα2 − β2Þð2kþ αþ β − 1Þ; ð18Þ

Fig. 2. Structure function ratio αD versus the number of subharmonics to be added n and the screen physical length L, for the Kolmogorov
model (left) and the von Karman model (right, with L0 ¼ 20 m).
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C2 ¼ 2ðkþ α − 1Þð2kþ αþ βÞðkþ β − 1Þ: ð19Þ
Figure 3 illustrates the problem of precision ex-

posed above, showing the result of both methods
(the classical method and the method proposed here)
for j ¼ 1030, as a function of the (normalized) radial
distance, while Fig. 4 shows an example of phase
screen generated using our method. The structure
function (computed from 400 phase screens of 256 ×
256 pixels, i.e., 8 m × 8 m, with jmax ¼ 4186 and
r0 ¼ 1 m) is here, again, in very good agreement with
the theoretical method (Kolmogorov here).

4. Summary and Concluding Remarks

We have described new solutions permitting to over-
come the well-known problems encountered when
employing the twomain classical methods for numer-
ical modeling of atmospherically perturbed phase
screens, namely the FFT-based and the Zernike-
based methods.

Concerning the FFT-based numerical method, we
have defined two criteria permitting us to precisely
chose the number of subharmonics needed in order to
overcome the lack of low frequencies inherent to this
method and show their practical efficiency.

Concerning the Zernike-based method, we have
developed an algorithm based on an alternative de-
finition of the Zernike polynomials, involving the re-

currence definition of the Jacobi polynomials as well
as the relationship between the Zernike polynomials
and the Jacobi polynomials.

The whole code implemented for and used in this
paper (the FFT-based method with subharmonics
adding and aid-to-decision tools, making use of the
two criteria defined in this paper and permitting
us to choose the number of subharmonics to be
added, and the Zernike-polynomials-based method
with the use of Jacobi polynomials) has been imple-
mented within the freely distributed software pack-
age CAOS [11] and, more precisely, within the ATM
(which stands for “ATMosphere building”) module of
this AO-dedicated package. CAOS is itself developed
within the homonymic CAOS problem-solving envir-
onment (PSE) [12]. Both CAOS and the CAOS PSE
are downloadable from the dedicated website http://
fizeau.unice.fr/caos.

Theauthorswish to acknowledgeEnricoMarchetti,
who implemented a preliminary version of the
subharmonics-adding code. Thanks are also due to
SimoneEsposito for prolific discussions on the subject
and to the two anonymous reviewers of this paper for
their useful remarks.
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