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d, (V) =0.0228 ry

Which, numerically written, and by considering wavefronts

made of ‘dim’ pixels corresponding to ‘I meters, becomes:
(re-writing - “*de-dimensionalizing” - the equation with Lo=I [./LL and v=v L/L...)

freg
dsp

findgen(dim)
L0228*(L/r@)A(S/3.)*LA2*(fregr2+(L/LO)A2)A(-11./6)

And which (with the right frequency scale) can be plot with:
plot_oo, 1./L*findgen(dim), dsp, XR=[1/L/1.2,dim*1/L*1.2], /XS

=> make a function that computes PSD(Zy, rs, dim, 1) and
plot it for different e, Bpl . et for Pl i T00OL 1100 6-0.1/1.02100.,10.,1.]
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Example of a function that computes the sum of two parameters:

function sum_of_two_parameters, parl, par2
result=parl+par2

return, result

end

Compile and run the function (written, e.g., in a file sum2.pro):

idl > .r sum2

—> % Compiled module: SUM_OF_TWO_PARAMETERS
idl > res = sum_of_two_parameters(2,1)

idl > print, res
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function dsp_theo, dim, L, r@, LO

freq = findgen(dim)
dsp .0228%(L/r0)~(5/3.)*%L*2x(freq~2+(L/L0)~2)"~(-11./6)

;to be plotted afterwards with:

;plot_oo, 1. /L*flndgen(dlm), dsp, XR=[1/L/1.2,dim*1/L*1.2], /XS, $
- TIT='PSD(LO)', XTIT='spatial frequency [1/m]', YTIT='PSD'
;oplot , 1. /L*flndgen(dlm), dsp, LINE=1

;playing, e.g., with L0=100.,10.,1., or r@=.05, .1, .2
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return, dsp
end
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Preliminary measures

introduction

PSD|(r@, LO) plot

ccl on influence of r@ and LO
(more to come...
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-> For next time: read Aime : >
(Sec. 1 & Sec. 2) and Maire RSEILL Jerome Maire, PhD

(Chap.1)... Introduction thesis (in French), chap.1
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than short ones can do, but they cannot be so formed as to take
away the confusion of the Rays which arises from the Tremors of
the Atmosphere.
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Abstract

This paper gives an introduction to speckle techniques developed for high
angular-resolution imagery in astronomy. The presentation is focussed on
fundamental aspects of the techniques of Labeyrie and Weigelt. The formalism
used is that of Fourier optics and statistical optics, and corresponds to graduate
level. Several new approaches of known results are presented. An operator
formalismis used to identify similar regions of the bispectrum. The relationship
between the bispectrum and the phase closure technique is presented in an
original geometrical way. Effects of photodetection are treated using simple
Poisson statistics. Realistic simulations of astronomical speckle patterns
illustrate the presentation.
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-> Perturbed wavefront generation

The well-known FFT method allows us to generate
phase screens ¢(7), where 7 is the two-dimensional
position within the phase screen, assuming usually
either a Kolmogorov or a von Karman spectrum
®,(v), where v is the two-dimensional spatial fre-
quency, from which is computed the modulus of
@(V), the Fourier transform of ¢(¥). Assuming the
near-field approximation and small phase perturba-
tion [3], the von Karman/Kolmogorov spectrum is
given by

. s, 1\7%
D, (v) = 0.0229r,° (u + E_% :
where ry is the Fried parameter and £, is the wave-
front outer scale (infinite for the Kolmogorov model).
Within the framework of the classical FFT-based
technique, a turbulent phase screen ¢y, (7) of physical
length L is obtained by taking the inverse FFT of
@1, (V), the modulus of which is obtained from Eq.
(1) by applying the definition of the power spectrum,
which is

@, (7) = lim (<I¢L(V)|2))

L—oo L2

. -3 1
= |1 (v)| = Lry*+/0.0228 (u2 + 22

0

and which phase is random and uniformly
distributed.

(From Carbillet & Riccardi, sec. 2: read
it as well...)

(the same manipulation as before is
applied here in order to obtain the
numerical formulation here below.)

The obtained phase screen is thus numerically
written

oL(i,j) = vV2v0.0228 (%)G{FFTl Kkz 412

)

where i and j are the indices in the direct space, £ and
[ are the indices in the FFT space, {} stands for either
real part of or imaginary part of, 1 is the imaginary
unit, and 6 is the random uniformly distributed
phase (between —r and z). The factor v/2 comes from
the fact that here we use both the real and imaginary
parts of the original complex generated FFT phase
screens, which are independent one from the other
[4]. This kind of phase screen suffers, however, from
the lack of spatial frequencies lower than the inverse
of the necessarily finite length L of the simu-
lated array.




