Adaptive Optics (AO)

(but also intro to image formation and atmospheric turbulence)

Marcel Carbillet [marcel.carbillet@oca.eu]

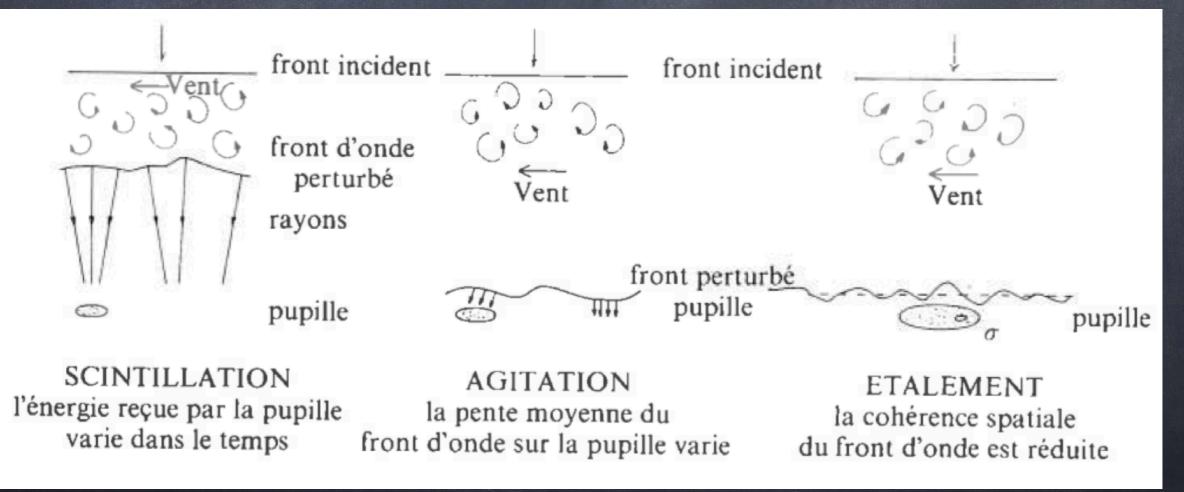
<u>lagrange.oca.eu/carbillet/enseignement/M1-optiQ/</u>

Menu

- High-angular resolution imaging in astronomy
- Atmospheric turbulence
- Numerical modelling of perturbed wavefronts
- Formation of resulting images (+detection noises)
- AO error budget
- Post-AO point-spread function morphology
- Wavefront sensors
- Deformable mirrors
- Reconstruction and control of the command
- Numerical modelling of a complete AO system

The image formed through turbulent atmosphere (optically speaking) is degraded:

- Scintillation (due to intensity fluctuation in the pupil).
 Agitation (due to angle-of-arrival variation).
- Spreading (due to a loss of spatial coherence).



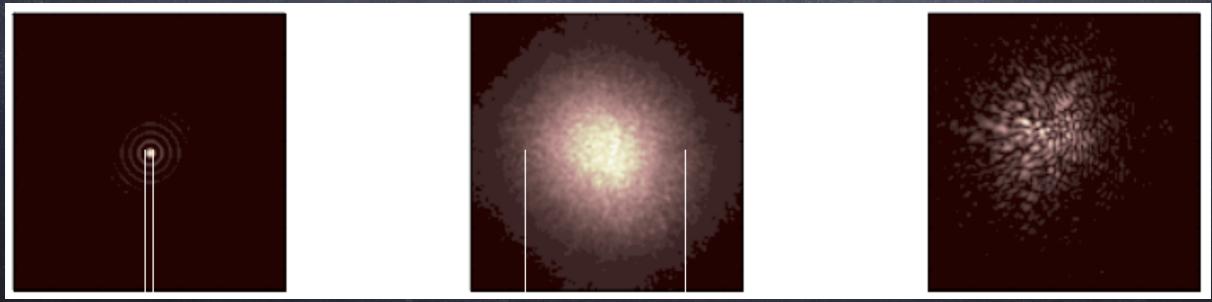
(Illustration from Pierre Léna, Astrophysique – Méthodes physiques de l'observation, CNRS Éd. (2me éd.), p.177)

The object-image relation between the intensity $I(\alpha)$ in the image plane (i.e. the focal plane of the telescope) and the brightness $O(\alpha)$ of the object (in the sky) is a relation of convolution implying the point-spread function (PSF) $S(\alpha)$ of the whole ensemble telescope+atmosphere, with α the angular coordinates in the focal plane:

$$I(\vec{\alpha}) = O(\vec{\alpha}) * S(\vec{\alpha})$$

 $I(\vec{\alpha}) = O(\vec{\alpha}) * S(\vec{\alpha})$

This relation is valid notably at the condition that the system is invariant by translation (everything happens within the isoplanatic domain)...

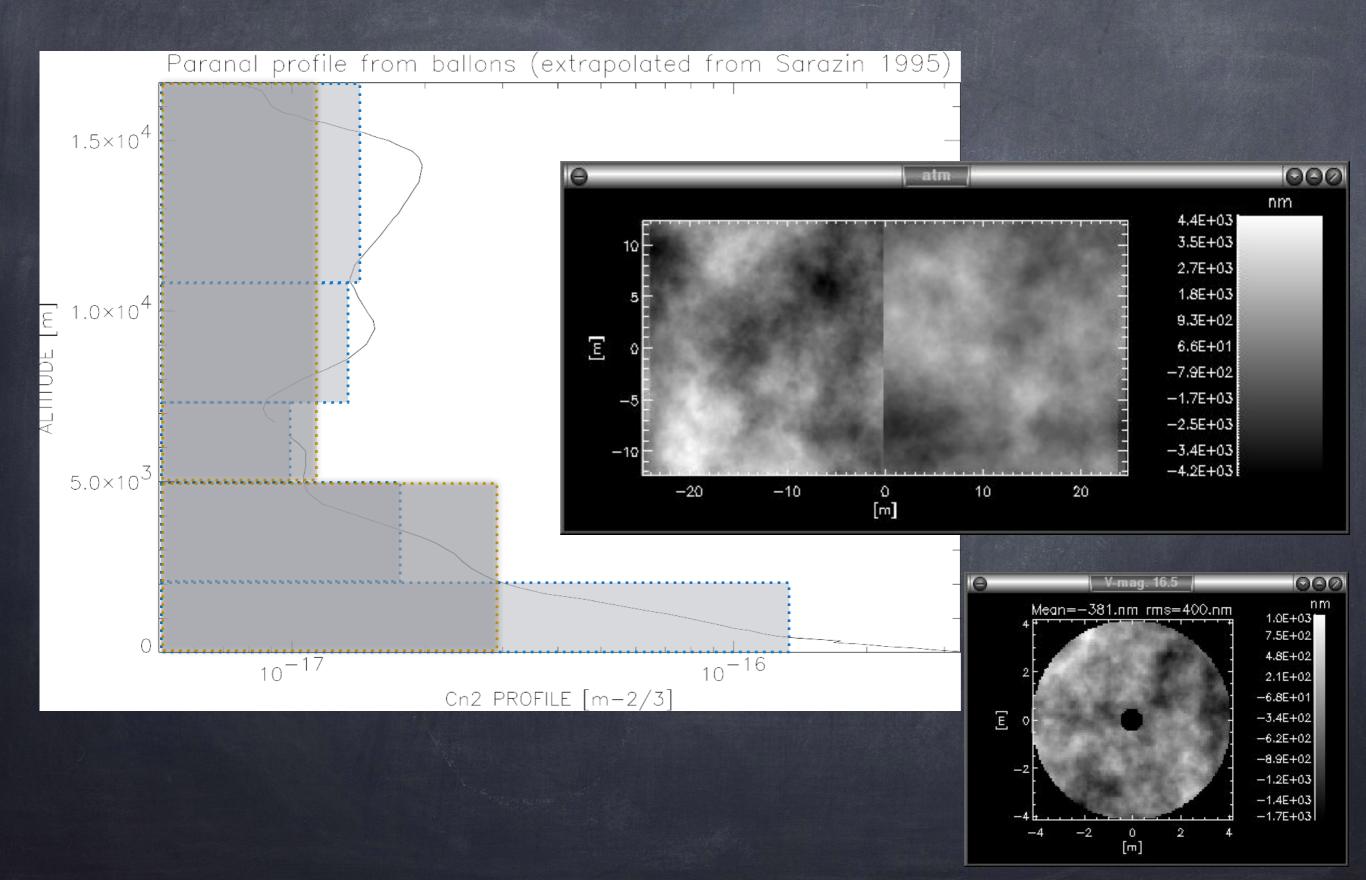


 λr_0

λ/D

Some orders of magnitude concerning the turbulent atmosphere:

	$\lambda = 500 \text{ nm}$	$\lambda = 2.2 \ \mu m$
Fried parameter (r ₀)	→ 10 cm	60 cm
velocity of the turbulent layers (v)	→ 10 m/s	id.
=> image FWHM (ε≈λ/r₀)	→ 1"	~1"
=> evolution time ($\tau_0 \propto r_0/v$)	$\rightarrow 3 \text{ ms}$	18 ms





entrance pupil

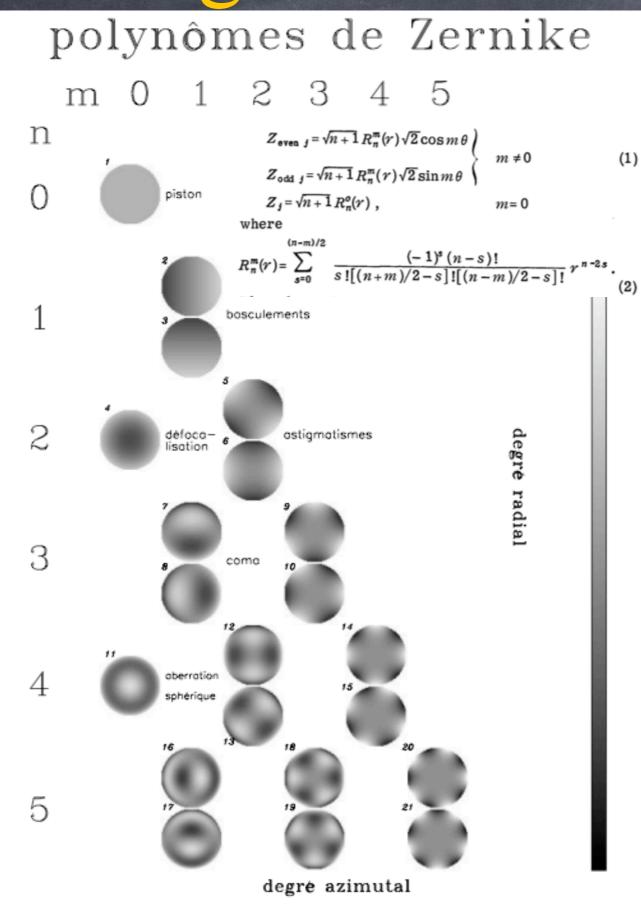
image on the focal plane

The wavefront is, modulo $\lambda/2\pi$, proportional to the phase $\Phi(r)$ of the wave $\Psi(r)$ which has went through the turbulent atmosphere before reaching the telescope:

$$\Psi(\vec{r}) = A(\vec{r}) \exp\{\imath \Phi(\vec{r})\}$$

Note that this phase can be decomposed following a base of polynomials, for example Zernike ones:

$$\Phi(\vec{r}) = \sum_{i} a_i \, Z_i(\vec{r})$$



entrance pupil

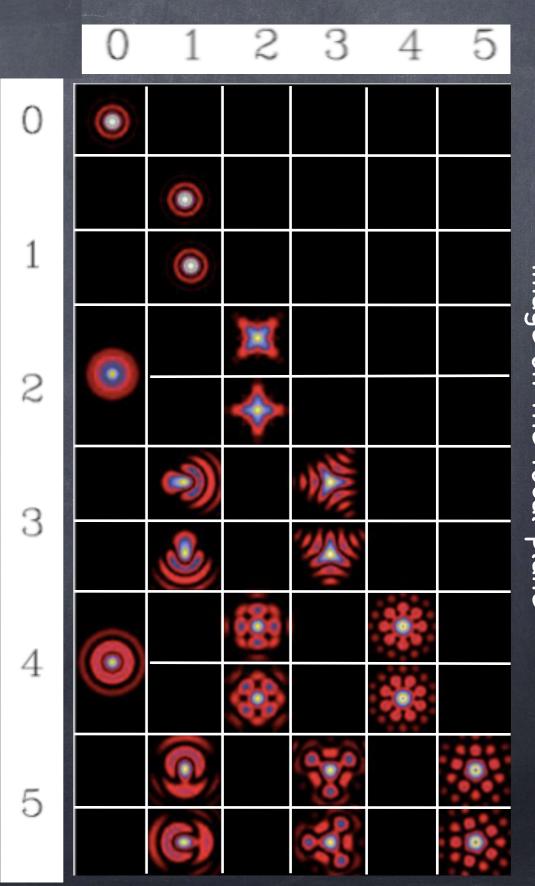


image on the focal plane

turbulence intensity [m^{1/3}]

Number of speckles for $r_0=10$ cm and D=1 m?...

Images & turbulence – 11 ro in band H knowing ro at 500nm ?... $r_0 = 0.185 \ \lambda^{rac{6}{5}} \ \cos(\gamma)^{rac{3}{5}} \ \left[\int_0^\infty C_n^2(z) \ dz
ight]$ $r_0^{\text{H}=1.65\,\mu\text{m}} = r_0^{500\,\text{nm}} \left(\frac{1.65}{0.5}\right)^{\frac{3}{5}} \simeq 0.42$ Number of speckles for $r_0=10$ cm and D=1 m?... $N_S^{500\,\mathrm{nm}} \simeq 0.34 \,\left(\frac{1.0}{0.1}\right)^2 \simeq 34 \, N_S^\mathrm{H} \simeq 0.34 \,\left(\frac{1.0}{0.42}\right)^2 \simeq 2$

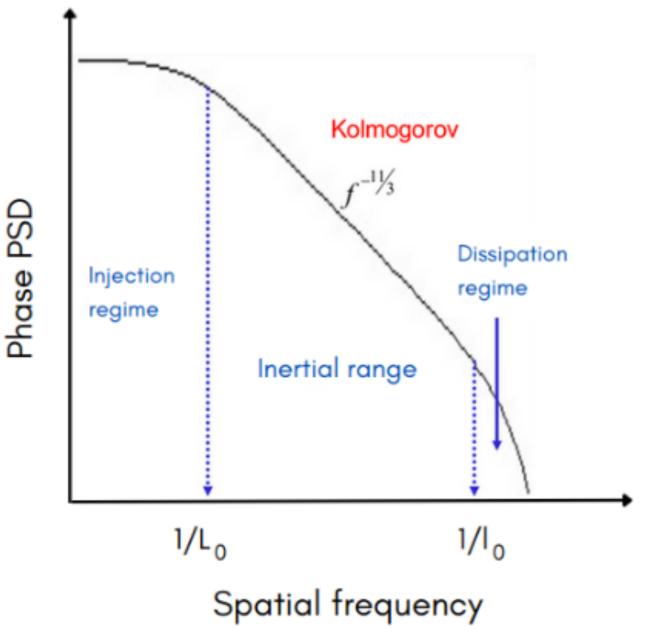
$$\Phi_{\varphi}(\vec{\nu}) = 0.0228 \ r_0^{-\frac{5}{3}} \left(\nu^2 + \frac{1}{\mathcal{L}_0^2}\right)^{-\frac{11}{6}}$$

Power Spectral Density (PSD) of the phase, function of the spatial frequency

Kolmogorov/von Kármán model

- Kolmogorov : outerscale of turbulence \mathcal{L}_0 is infinite.
- One can refine the model by considering also *lo*.
- \exists other models with a finite \mathcal{L}_0 (and a non-zero ℓ_0).

$$\Phi_{\varphi}(\vec{\nu}) = 0.0228 \ r_0^{-\frac{5}{3}} \left(\nu^2 + \frac{1}{\mathcal{L}_0^2}\right)^{-\frac{11}{6}}$$

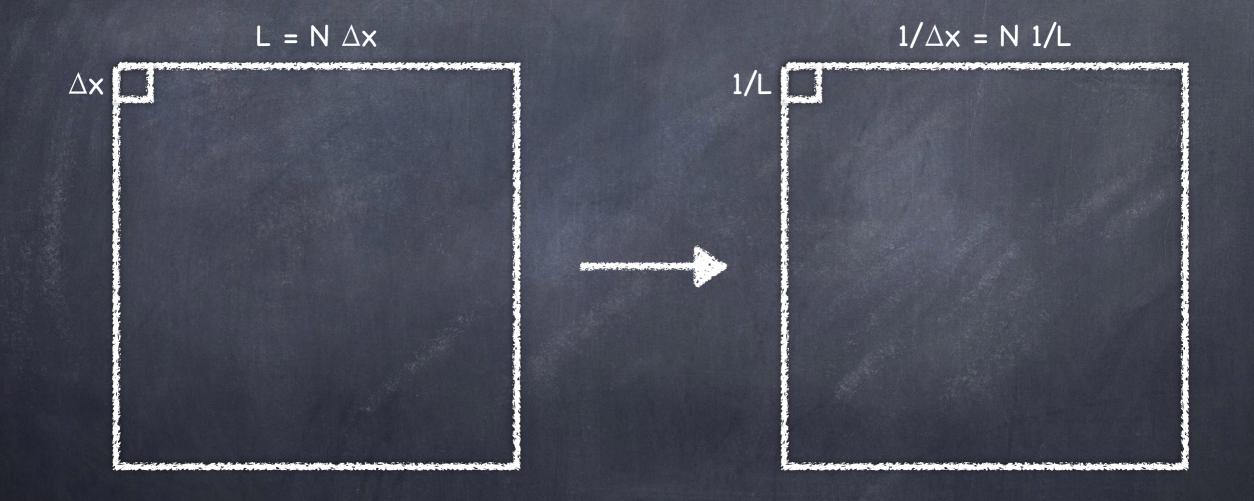


Energy cascade:

wind shear => turbulent energy injected into the system via a large eddy (\mathcal{L}_0) which splits into smaller and smaller eddies (ℓ_0) , and is finally viscously dissipated.

Interval $[\ell_0, \mathcal{L}_0]$ = inertial range.

(A reminder of discrete Fourier transform (DFT)...)



$$\Phi_{\varphi}(\vec{\nu}) = 0.0228 \ r_0^{-\frac{5}{3}} \left(\nu^2 + \frac{1}{\mathcal{L}_0^2}\right)^{-\frac{1}{6}}$$

11

Which, numerically written, and by considering wavefronts made of 'dim' pixels corresponding to 'L' meters, becomes: (re-writing - ``de-dimensionalizing'' - the equation with L₀=L₀ L/L and v=v L/L...)

freq = findgen(dim)
dsp = .0228*(L/r0)^(5/3.)*L^2*(freq^2+(L/L0)^2)^(-11./6)

And which (with the right frequency scale) can be plot with:

plot_oo, 1./L*findgen(dim), dsp, XR=[1/L/1.2,dim*1/L*1.2], /XS

=> make a function that computes $PSD(L_0, r_0, \dim, L)$ and plot it for different $[r_0, L_0] \dots$ [with, for example: dim=1000, L=100., r0=0.1, L0=100.,10.,1.]