Images & turbulence - 25

On the Difference between Seeing and Image Quality: When the Turbulence Outer Scale Enters the Game

Patrice Martinez¹ Johann Kolb¹ Marc Sarazin¹ Andrei Tokovinin²

1 ESO

² Cerro-Tololo Inter American Observatory, Chile

We attempt to clarify the frequent confusion between seeing and image quality for large telescopes. The full width at half maximum of a stellar image is commonly considered to be equal to the atmospheric seeing. However the outer scale of the turbulence, which corresponds to a reduction in the low frequency content of the phase perturbation spectrum, plays a significant role in the improvement of image quality at the focus of a telescope. The image quality is therefore different (and in some cases by a large factor) from the atmospheric seeing that can be measured by dedicated seeing monitors, such as a differential image motion monitor.

of telescope diameters and wavelengths. We show that this dependence is efficiently predicated by a simple approximate formula introduced in the literature in 2002. The practical consequences for operation of large telescopes are discussed and an application to on-sky data is presented.

Background and definitions

In practice the resolution of groundbased telescopes is limited by the atmospheric turbulence, called "seeing". It is traditionally characterised by the Fried parameter (r_0) – the diameter of a telescope such that its diffraction-limited resolution equals the seeing resolution. The well-known Kolmogorov turbulence model describes the shape of the atmospheric long-exposure point spread function (PSF), and many other phenomena, by this single parameter r_o . This model predicts the dependence¹ of the PSF FWHM (denoted ε_0) on wavelength (λ) and inversely on the Fried parameter, r_o , where r_o depends on wavelength (to

A finite L_0 reduces the variance of the low order modes of the turbulence, and in particular decreases the image motion (the tip-tilt). The result is a decrease of the FWHM of the PSF. In the von Kàrmàn model, r_0 describes the high frequency asymptotic behaviour of the spectrum where L_0 has no effect, and thus r_0 loses its sense of an equivalent wavefront coherence diameter. The differential image motion monitors (DIMM; Sarazin & Roddier, 1990) are devices that are commonly used to measure the seeing at astronomical sites. The DIMM delivers an estimate of r_0 based on measuring wavefront distortions at scales of ~ 0.1 m, where L_0 has no effect. By contrast, the absolute image motion and long-exposure PSFs are affected by large-scale distortions and depend on L_0 . In this context the Kolmogorov expression for ε_0^1 is therefore no longer valid.

Proving the von Kàrmàn model experimentally would be a difficult and eventually futile goal as large-scale wavefront perturbations are anything but stationary. However, the increasing number of esti-

REPORT

- Preliminary measures
- + introduction
- + PSD(r0, L0) plot
- $+$ => ccl on the influence of r0 and L0
- + rms(r0, L0) plot or table
- $+$ => ccl on the influence of r0 and L0
- + image formation and FWHM(r0 or lambda, possibly L0)
- $+$ => ccl on the influence of r0 or lambda (and poss. L0)
- + => comparison with the 'seeing' lambda/r0
- $+$ (more to come...)

Images & turbulence — 26

-> Detection noises:

• At first: *photon noise* (or *shot noise*), poissonian, actually a transformation of the image.

$$
p(n) = \frac{N^n e^{-N}}{n!}
$$
, with : $N = \frac{L\Delta t}{h\nu}$, $L =$ luminosity, $\Delta t =$ time exp.

 $p(n)$ = probability to detect n photons when N are expected

For large N: ~gaussian…

$$
p(n) \simeq \exp\left(-\frac{(n-N)^2}{2N}\right)
$$

Images & turbulence — 27

-> Detector noises:

• At first: *photon noise* (or *shot noise*), poissonian, actually a transformation of the image.

• At last: *read-out noise* (*RON*), gaussian with zero mean and rms σe [e-/px], additive noise.

• In between: *dark current noise*, *amplification noise* & *exotic dark current noise* in the case of EMCCDs, noise due to the *calibration* of the *flat field*, *'salt & pepper' noise* ('hot' and 'cold' pixels), etc.

Images & turbulence — 28

- Photon noise (Poisson) if keyword_set(PHOT_NOISE) then begin idx=where((image GT 0.) AND (image LT 1E8),c)
- ; For values higher than 1E8, should one if (c NE 0) then for i=01, c-11 do \$; really has to worry about photon noise ? noisy_image[idx[i]]=randomn(seed_pn,POISSON=image[idx[i]],/DOUBLE) endif

image formation with noise:

1- 'add' photon noise on one short-exp. PSF (in function of N…), 2- long-exp. PSF (100N photons!), 3- 'add' photon noise on the long-exp. PSF, 4- compare long-exp. & short-exp. noisy images (and 'clean' images), 5- compare also with the sum of the (100) short-exp. noisy images…

REPORT

```
- Preliminary measures
+ introduction/context
+ PSD(r0, L0)
+ => influence of r0 and L0
+ rms(r0, L0)
+ => influence of r0 and L0
+ FWHM(r0 or lambda=>r0, L0)
+ => influence of r0 and L0
+ => comparison with the "seeing" lambda/r0
+ noisy images
```