(Noll: residual error - 4)

Exercice 1: Compute the Noll error and then the corresponding maximum Strehl ratio in J ($1.25 \mu \mathrm{~m}$) for a 10×10 AO system [$D=1 \mathrm{~m}$, r0@500nm $=10 \mathrm{~cm}$]

(Noll: residual error - 5)

$$
\mathrm{J}=(\mathrm{N}+1)(\mathrm{N}+2) / 2
$$

Here: $\mathrm{N}=10$ => J = 11x12/2= 66 Zernike modes (piston included)

$$
\Delta_{J} \simeq 0.2944 J^{-\sqrt{3} / 2}\left(\frac{D}{r_{0}}\right)^{5 / 3}, J \geq 20
$$

Here: $\Delta_{\mathrm{J}}=0.2944 \mathrm{~J}-\sqrt{3} / 2(1 / 0.3)^{5 / 3} \approx 0.0589 \mathrm{rad}^{2} \quad($ for $\lambda=1.25 \mu \mathrm{~m})$

$$
S=\exp \left(-\Delta_{\mathrm{J}}\right)
$$

Here: $\mathrm{S} \approx \exp (-0.0589) \approx 0.94$, i.e. $\approx 94 \%$ Strehl ratio (at $\lambda=1.25 \mu \mathrm{~m})$.

(Noll: residual error - 6)

```
; call with: IDL> @Exo2
Diam =1.0
r0 =0.3
N= = 10
J = (N+1)*(N+2)/2-1
Noll = .2944*J^(-sqrt(3)/2)*(Diam/r0)^(5./3)
S = exp(-Noll)
; see result with: IDL> print, S
```

batch: all the variables defined are accessible

```
; call with: IDL> .rn Exo2_main
Diam =1.0
r0 =0.3
N = 10
J = (N+1)*(N+2)/2-1
Noll = .2944*J^(-sqrt(3)/2)*(Diam/r0)^(5./3)
S = exp(-Noll)
end
; see result with: IDL> print, S
```

main: idem («.rn»: run new)

```
```

; call with: IDL> .rn Exo2_proc

```
```

; call with: IDL> .rn Exo2_proc
; with, e.g: Diam=1.0, r0=0.3, N=10, S undefined
; with, e.g: Diam=1.0, r0=0.3, N=10, S undefined
pro Exo2_proc, Diam, r0, N, S
pro Exo2_proc, Diam, r0, N, S
J = (N+1)*(N+2)/2-1
J = (N+1)*(N+2)/2-1
S = exp(-Noll)

```
```

S = exp(-Noll)

```
```

Noll $=.2944 *]^{\wedge}(-s q r t(3) / 2) *($ Diam/r0)^(5./3) function Exo2_func, Diam, r0, N
end
; see result with: IDL> print, S

```
; call with: IDL> .rn Exo2_func
                                    IDL> print, Exo2_func(Diam, r0, N)
```

 ; with, e.g: \(\begin{aligned} & \text { IDL> print, Exo2_func(Diam=1.0, r } 0=0.3, \mathrm{~N}=10\end{aligned}\)
 \(\mathrm{J}=(\mathrm{N}+1) *(\mathrm{~N}+2) / 2-1\)
 Noll \(=.2944 *]^{\wedge}(-s q r t(3) / 2) *(\text { Diam } / r 0)^{\wedge}(5 . / 3)\)
 S \(=\exp (-\) Noll)
 procedure: the input/output parameters are accessible, not the variables defined inside the procedure

I
-
return, S
end
function: no output parameters, variables defined not accessible, results of the function returned.

(Noll: residual error - 7)

Exercice 2: Which mirror configuration for a (minimum, other errors excluded) goal Strehl ratio of 30% in band $J(1.25 \mathrm{um})$?
[knowing that: r0@500nm=10cm, $D=8 \mathrm{~m}$]
[and: nb of Z modes=($n+1)(n+2) / 2$, $n=$ radial order]

(Noll: residual error - 8)

- Fried parameter in band J:

$$
\mathrm{r} 0[\mathrm{~J}]=0.1(1.25 / 0.5)^{6 / 5} \approx 0.3
$$

- What we want is hence:

$$
0.3=\exp \left\{-0.2944 \mathrm{~J}-\mathrm{sqrt}(3) / 2(\mathrm{D} / \mathrm{r} 0)^{5 / 3}\right\}
$$

(Thanks to Maréchal and Noll...)
Then: $\mathrm{J} \approx 109$ (minimum)

- But: $\mathrm{J}=(\mathrm{N}+1)(\mathrm{N}+2) / 2-1 \Rightarrow 13<\mathrm{N}<14$

Hence: $\mathrm{N}=14$ (which corresponds to $\mathrm{J}=119$) in order to have the minimum required...

(Noll: residual error - 9)

Remark:
One will often prefer to start from the evaluation of the rms on the residual wavefront $(\sigma[\mathrm{m}]) \ldots$

$$
\sigma[\mathrm{m}]=\lambda / 2 \pi \sqrt{\Delta_{J}}
$$

Here: $\sigma[\mathrm{m}]=r m s$ of the residual wf

$$
=1.2510^{6} / 2 \pi \sqrt{\Delta_{J}} \approx 4.8310^{8} \mathrm{~m} \approx 48.3 \mathrm{~nm}
$$

And then:

$$
\mathrm{S} \lambda=\exp \left\{-(2 \pi / \lambda \sigma[\mathrm{m}])^{2}\right\}
$$

Here: $\mathrm{S}_{1.25 \mu \mathrm{~m}}=\exp \left(-(2 \pi / 1.25 \mu \mathrm{~m} \sigma[\mathrm{~m}])^{2}\right) \approx 0.94$.

(Noll: residual error - 10)

Exercice 3: Find the (linear) number of subapertures (and actuators), considering a Fried configuration, corresponding to a fitting-erroronly Strehl ratio in J of 30\% [D=8m, r0@500nm=12cm].
-> For next session: solve this exercice !!
(IDL batch, and also function)

