[Happer 1982, Foy & Labeyrie 1985]

(Keck Observatory)

https://www.youtube.com/watch?v=3BpT_tXYy_I

Specific LGS errors:

1- Cone effect (focus aniso.)
 2- Tip-tilt indetermination
 3- Perspective elongation

In addition (Na LGS case):

Rayleigh backscattering until ~35km,
variation of the Na layer column density (seasonally: a factor ~5! but also short time) and of the centroid height.

Science w/LGS: solar system bodies, YSO (circumstellar material), brown dwarves, Galactic novae, starbust galaxies, AGN, radio galaxies, gravitational lenses, clusters of galaxies, etc.

1- Cone effect

- LGS formed at finite altitude (H_{LGS}), with H_{LGS}=90-100km for a Sodium (Na) LGS, and H_{LGS}=10-20km for a Rayleigh LGS.
- If h_{layer}>H_{LGS}, the turbulent layer is not sensed.
- Even when $h_{layer} < H_{LGS}$, the outer portions of the turbulent layer are not sensed (with if $h_{layer} \neq 0$).
- The turbulent layer at altitude h_{layer} is also sampled differently by the LGS and the observed object at infinity (if $h_{layer} \neq 0$)
 - => the laser beam diameter is reduced by a factor (1-h/H)
 - => there is a differential « stretching » between the laser wavefront and the object wavefront, and:

$$\sigma_{\rm cone}^2 = \left(\frac{D}{d_0}\right)^{\frac{5}{3}}$$
, with $d_0 \sim 2.91 \ \theta_0 \ H_{\rm LGS}$

For example: $\theta_0 \sim 2.5$ ", *H*=90km => d_0 ~ 3.2m.

Multiple beacons => focal anisoplanatism decreases ! [see Nature cover 01/2000, Ragazzoni]

2- Tip-tilt indetermination => tip-tilt anisoplanatism error (= anisokinetism error)

$$\sigma_{\mathrm{TT\ aniso.}}^2 \sim 0.1 \ \left(\frac{\theta}{\theta_0}\right)^2 \ \left(\frac{D}{r_0}\right)^{-\frac{1}{3}}$$

3- Perspective elongation => SH spots elongation (Na: 10–15km@90–100km, 589nm, Rayleigh: ~2km@10–20km, 355nm)

$$S = \frac{I_{\text{post AO}}[0,0]}{I_{\text{perfect}}[0,0]}$$

where *I[0,0]* is the intensity of the PSF at the optical center of the field (K. Strehl, Zeit. Instrumenkde 22, 213 (1902)).

$$S \simeq \exp\{-\sigma_{\rm post~AO}^2\}$$

in the framework of the Maréchal's approximation, where the variance (in radians²) is supposed to be small enough...

-> see also page 4 of Carbillet et al., MNRAS (2017)

Approximation which neglects tip-tilt: ratio of the maxima

Ratio of the values at the centre of the image \approx ratio of the OTF (see for example the paper by Roberts et al.)

Eq.10 of Tokovinin, PASP (2002):

$$S = \frac{I_{max}}{I_{tot}} \frac{4}{\pi} \left(\frac{\lambda_{CCD}}{D\Delta x} \right)^2$$

Strehl ~7%

58

GGTau-type object: central binary + circumbinary ring

no correction corrected (SR = 64%) Airy pattern Imaging wavelength : $2.2 \mu m$

Turbulence : $r_o = 1m$ à $2.2 \mu m$, wind speed = 10m/s, telescope : D = 8mSystem (NAOS) : 144 sub-aperture, 185 actuators, 500Hz temporal sampling frequency

LBT672 - bande V - Strehl=0.68

See also Jolissaint et al. (JOSAA, 2006) and Jolissaint (JEOS, 2010)

Réduction du nombre de speckle Concentration des photons dans le coeur cohérent

Wide-field AO case: anisoplanatism...

No AO

classical AO (1 DM, 1 NGS) MCAO (2 DM, 5 NGS)

(bande J, champ de 1', simu. B.Ellerbroek, Gemini Obs.)

