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Abstract. The value of adaptive optics (AO) for astronomy no
longer needs to be demonstrated. To match the extreme require-
ments of astronomy in terms of resolution and sensitivity re-
quires us to optimize an AO system to a great variety of situ-
ations. In particular, this paper addresses the case of low flux
levels and shows that the final image quality can be improved by
adapting the spatial and temporal correction performance of the
AO system. The wavefront is considered as a weighted sum of
spatial modes. Each mode has an individual behavior character-
ized by its signal to noise ratio and correlation time. Taking this
into account leads us to attribute a specific, optimized correction
bandwidth to each mode. To apply this optimization method to a
practical use of adaptive optics, one proposes a scheme where all
the required inputs are collected by the AO system itself. The
method becomes entirely independent of theoretical assump-
tions about the turbulence.

Key words: atmospheric effects — methods: data analysis — tele-
scopes — techniques: miscellaneous

1. Introduction

Recent developments have shown the application of adaptive
optics (AO) to astronomical observation and its great potential
for the use of large ground based telescopes as well as for multi-
aperture interferometry (Léna 1994a; 1994b). A number of po-
tential strategies remain open for discussion in the design of the
most efficient instrument. While the unanimous goal is to com-
pensate for the atmospheric turbulence and ultimately restore
an image being diffraction limited or close to it, a number of
parameters do restrict what can be practically achieved in terms
of energy concentration in the diffraction limited core of the
image: vertical and temporal structure of the atmospheric turbu-
lence, magnitude of the reference source, wavelength of sensing
and wavelength of observation, performance of the wavefront
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sensor, isoplanatic field, etc. Some of these limitations may be
relaxed by the prospect of using an artificial star as reference
(Fugate et al. 1991; Primmerman et al. 1991), a possibility al-
ready demonstrated, but even then most of the considerations
developed here still apply. In addition to these basic external
parameters, some internal system parameters such as sampling
frequency and time lag in the servo loop also influence the final
image quality.

The perturbed wavefront over the pupil may be considered
as the superposition of spatial modes with increasing spatial
frequency and showing different temporal behaviour, while a
correcting system is described by its number of degrees of free-
dom, ranging from a few (Roddier et al. 1991) to several hundred
in systems developed for Defense applications (Fugate 1992).

It has been suggested (Léna 1990) to consider a strategy
using a modal control of the AO system, where the latter is op-
timized for any given particular observation by an adjustment
of its internal parameters: temporal response, number of cor-
rected modes or others. The goal is to obtain the best image
quality, measured with a criterium to be defined, using at best
all the available information. In other words, the system is not
only adaptive to the instantaneous state of the atmospheric tur-
bulence, but its internal configuration is also adaptive to the
particular observation being carried out. This modal control is
an extensive concept already explored.

Most of the AO systems work in closed loop. They con-
sist of a wavefront sensor, a real-time processor and one or
several deformable mirrors. A control matrix defines the con-
trol voltages applied to the mirror. The goal is to optimize this
matrix in terms of system characteristics and observing con-
ditions. The optimization parameters may be determined from
measurements made before closing the loop, as the turbulence
may be non-stationnary, and more generally the observing con-
ditions may change with time. Although a number of articles
deal with optimum reconstruction methods or matrices (Fried
1977; Southwell 1980; Wallner 1983) most of them address the
open-loop case.

This paper discusses the theory in the closed loop case, fo-
cusing on the temporal aspects of the problem, and presents a
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method of applying itto areal case. Section 2 gives the overview
of modal control optimization. In Sect. 3, a physical approach
and detailed analysis of an optimization scheme are given. Sec-
tion 4 enumerates the parameters and instrumental constraints
encountered in a practical case, namely an AO system installed
on atelescope for astronomical observation. Section 5 describes
the optimization behavior, as seen from the observer’s point of
view, i.e. in terms of parameters such as seeing conditions or
wind velocity.

2. Modal control

This section recalls the overall components and general config-
uration of an AO system and defines some important concepts
to be used later.

2.1. Vocabulary and notation

Mirror controls stands for the set of driving signals applied to
the mirror.

The term measurement stands for the wave-front slope mea-
surements, i.e. the set of the displacements of the spots of the
Shack-Hartmann wavefront sensor (WES).

Modes will be used to name any family of functions M;(z, y)
representing some spatial wave-front deformations over the
pupil area. The mirror modes are a special case, described in
Sect. 2.2.4.

Table 1 summarizes the notation.

2.2. The modes
2.2.1. The perturbed wavefront

Neglecting scintillation (Roddier 1981), the instantaneous elec-
tric field amplitude is assumed to be constant over the pupil
and is simply characterized by its phase ¢(z,y) defined over
the pupil area. It is convenient to expand ¢ on some basis of
functions M;(z, y) so that it can be written at any given time

¢, y) =Y z.Myx,y)

i=1

M

The Zernike polynomials (Noll 1976) and the Karhunen-
Loeve polynomials have been widely used for this purpose
(Wang et al. 1978) but any other basis -orthonormal or not-
of modes M; may be of interest.

Then any incident wavefront becomes a vector z whose com-
ponents are zi, ..., Zx. The z; are time-dependent variables.
The vector z belongs to a vector space & of an infinite number
of dimensions.

2.2.2. The mirror

Let us assume a deformable mirror with g actuators correspond-
ing to a degrees of freedom. These actuators can physically be
distributed along the beam into several independent mirrors (for
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Table 1. Notation

Quantity  Signification

T,y cartesian coordinates in the pupil plane

r,0 polar coordinates in the pupil plane

o(x,y) phase deformation

<> time average value of ...

u vector u (bold character)

Ui ith component of u

& vector space of the functions defined over the
pupil area

A “mirror space”: see Sect. 2.2.4

D interaction matrix between the mirror and
the sensor

Do see 2.2.3

D* (DtD)~' D, mode control matrix

Ut transpose of a matrix U

Ut inverse of a matrix U

u’ transpose of a vector u

To(N) Fried’s parameter at wavelength A

q number of measurements on the WFS

S measurement vector from the WFS

a number of degrees of freedom of the mirror
a dimension of the mirror space .#%

zZ control vector of the modes

n noise vector on the centroid position

m noise vector on the mode coefficients

J,f variance (or spectrum level) of the noise on
the centroid position
() propagation coefficient of the noise, from the

WFS to the 5* mode coefficient
T sampling period

Reor rejection transfer function, called correction
transfer function here

Hcor ”hcor”2

hn transfer function between the noise input and
the noise sent on the mirror mode controls

H, ]

example one or several deformable mirrors and a tip-tilt ded-
icated mirror). The wavefront phase variation induced by an
actuator deformation under a given voltage is called the actua-
tor influence function. It is important that the phase variations
be linear in terms of the applied voltages. This assumption is
usually well verified for existing mirrors when the amplitude is
kept reasonably low (a few micrometers).

Hence, the set of the phase deformations the mirror can pro-
duce is composed of all the linear combinations of the actuator
influence functions. It is a vector space, subspace of & . Imme-
diately a question arises, what is the dimension of this subspace.
Owning a degrees of freedom, the dimension is a if the a ba-
sic influence functions are linearly independent. Although this
may be true from a theoretical point of view, they may not be
sufficiently independent in the practical case. A typical example
of this situation occurs when the deformable mirror is abie to
produce a tilt, as does the tilt mirror.
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Hence some redundant configurations may exist ; they re-
duce the dimension of the generated subspace, i.e. the actual
number of degrees of freedom. The choice between the useful
and the redundant modes is imposed by the system capability to
produce them correctly or not. Finally, this leads us to choose a
basis for the mirror subspace. It is essential to restrict the mirror
controls to a set of modes corresponding to some basic vectors
of the actual generated subspace in & .

2.2.3. Limitations introduced by the sensor

The wavefront sensor is the element of the system that measures
the perturbed wavefront. For simplicity the choice is made of a
Shack-Hartmann type, composed of a lenslet array conjugated
with a pupil plane and making images on a detector. The dis-
placement of each spot is measured from a reference position
corresponding to a plane wave. This displacement is propor-
tional to the averaged phase gradient over the subaperture. This
quantity is called the wavefront slope. The set of the g slopes can
be written as a vector s of dimension ¢ forming the input vector
to the system. An important condition is that s be linear in terms
of the incident wavefront. Then there exists a linear relation
between & and the vector space of s. Let associate an interac-
tion matrix Do, with this linear map so that Dy,.z = s. This
matrix should theoretically have an infinite number of columns
characterizing the sensor response to the basic vectors of & .

The more practical, classical interaction matrix D is ex-
perimentally measured on the system itself and determines the
relation between the mirror and the sensor. It characterizes the
same linear map as D, but is restricted to the mirror control
subspace. It will be used below to compute the control matrix
(2.3.1).

A limitation introduced by the sensor is that some mirror
deformations can produce a null or a very small response on the
WES because the sensor cannot detect them with a sufficient
accuracy -a piston mode for example. The locution invisible
modes will be used to refer to those modes. They correspond to
the eigenvectors of (D?.D) having a zero eigenvalue, or very a
small one in the practical case.

2.2.4. The mirror modes

The goal is to work in a mirror subspace free of redundant
modes, and free of invisible modes. The useful set of mirror
controls is the vector space ..Z% which is a subspace of &, gen-
erated by the mirror controls and excluding the redundant and
invisible modes. The first step is to determine a basis containing
no redundant vectors. The second step is to measure the inter-
action matrix D’ between this basis and the sensor. Hence, the
invisible modes can be extracted by computing the eigenvalues
and eigenvectors of (D'.D") (Boyer et al. 1990). The last step
is to build a basis of the orthogonal complement of the subspace
of the invisible modes, this complement being the mirror space
A6.Its dimension will be called a’. The term mirror modes will
be used for any basic vector set of this space. There exist an in-
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finite number of such choices. Some examples are described by
Gendron (1993).

2.3. The control matrix
2.3.1. Definition

From now on, D will refer to the interaction matrix between the
mirror modes and the sensor. The mirror is controlled from the
measurements by a relation z = D*.s where D* is called the
control matrix. The control matrix can be found from the least-
square solution minimizing ||s—D.z||, leading to the generalized
inverse of D

Dt =(Dt*.D)~'.Dt )
which can always be found here because D has full columnrank,
due to the suppression of the invisible modes (see 2.2.4). Note

that this matrix ensures the minimization of the measurement
norm, which is characteristic of a closed loop system.

2.3.2. The wave-front sensor noise

Due to the finite number of photons available for wavefront
sensing, noise appears on the wavefront sensor measurements.
It is convenient to define the noise as the error on the wave-
front phase difference between the edges of the subaperture.
Two noise regimes are usually distinguished: quantum noise
and detector read-out noise. In the case of a Shack-Hartmann
type sensor equipped with a photon noise limited detector, the
noise expression (Rigaut 1992) is

2w

2 2\
o ()= 5w

3

where N is the number of photoelectrons per frame and unit
area. The noise is independent of the subaperture size. It be-
comes less simple in the case of a read-out noise limited detector
and is given as

16 o g
o2 (rd*) = 3 [—G ; 63]

in (Rousset et al. 1987), where o, is the electronic noise ex-
pressed as the number of equivalent photoelectrons, G5 the av-
erage value of the peak of the image, n, the number of pixels in
one direction used for centroiding, e the ratio between the spot
diameter and the subaperture width.

In any case the noise has quite a number of interesting prop-
erties: it is additive, has a zero average and a flat temporal spec-
tral density so that it can be fully characterized by its spectrum
level or its variance; it is uncorrelated between two subapertures
and between two orthogonal measurements in one subaperture.
It will be assumed that the noise variance is the same for each
subaperture.

“4)
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2.3.3. Noise propagation through the control matrix

In order to evaluate the signal-to-noise ratio (SNR) character-
istics of the modes it is convenient to introduce the noise prop-
agation coefficients. They are defined as the ratio between the
noise variance propagated through the control matrix and the
input noise variance. Let m = D*n, where n is the noise vec-
tor on the centroid position, and obeying the properties listed
above. The covariance matrix < n.n? > reduces to a diagonal
matrix with o2 on the diagonal, and this leads to the covariance
matrix of m:

<mm® >= D*. < n.n > .D* = ¢2.(D*.D*) )
Using Eq. (2) leads to

<mm' >=¢2(D'.D)”! (6)
Moreover, the variance of the ith component of m can be written
as < mf >= p(i).02, where the searched coefficients p(i) are
the diagonal terms of (D.D)~!:
p(i) = (D".D)y;’ )

Rigaut (1992) has derived an expression of the p(:) for the
Zernike polynomials, when the number of subapertures tends
towards infinity. In order to establish that the p(z) are nearly
independent of the number of subapertures, the propagation co-
efficients have been computed for Shack-Hartmann sensors with
various numbers of subapertures, from 5 x 5 to 15 x 15. The co-
efficient p(7) converges very rapidly towards the theoretical limit
when the number of subapertures increases. In fact, it reaches
this limit as soon as the mode is sufficiently well sampled by the
Shack-Hartmann grid. This condition of correct sampling must
always be filled for the modes to be corrected.

In Sect. 3.1 the theoretical value for the noise propagation
coefficients on the Zernike polynomials will be used. For the
polynomials of the form Zy ,(r,8) = Py(r).cos(pd), Rigaut
(1992) gives

D,p = 0.295 (k + D729 if k=p ®)
Prp=0.186(k+1)7>® if k#p

3. The optimization scheme
3.1. A physical approach

This section gives a heuristic justification of the possibility to
optimize the modal control, derived from the actual physical
constraints, and describes the resulting command.

When a faint star is used as reference, the noise may in-
crease indefinitely. For a very faint star, it may still be possible
to correct for the tip-tilt, while higher order modes of high spa-
tial frequencies will be difficult to reconstruct because they are
buried in the WFS noise. This nevertheless requires a careful
analysis, since the noise is a decreasing function of the mode
order, as shown in Eq. (8).

What really matters is the signal-to-noise ratio (SNR) for
each mode, SN R;. It can be computed for the Zernike modes
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Table 2. Normalized signal to noise ratios of the Zernike polynomials

Zernike mode SNR;
tilt 1.0
defocus (Z4) 0.191
astigmatism (Zs)  0.119
coma (Z7) 0.0906
sph. abb. (Z11) 0.0561
Zgo (10" order)  0.0132

by using the Eq. (8) and the expression of their variance in the
atmospheric turbulence derived by Noll (1976). The turbulent
modal spectrum drops off faster than the noise modal spectrum,
so that the SNRs decrease with the mode order. As an example,
the SNR for some different Zernike polynomials are given in
Table 2 with a tilt SNR normalized to unity.

In order to be efficient, the correction should only be applied
to the modes known with a sufficient SNR. The variance over
the pupil area of the phase residual error is chosen as the image
quality criterium. The modes are orthogonal, and the total error
is the sum of the errors on each mode. Assuming that it is pos-
sible to act on any polynomial independently of others, the best
correction is obtained when the phase residual error is reduced
to a minimum for each mode. A mode has to be corrected only
if the correction brings an improvement, i.e. if the error on this
mode after correction is smaller than without correction.

How to compute the residual error ? As demonstrated in
Sect. 3.2 this error is mainly the sum of two terms: the first one
is the remaining uncorrected phase left by the system due to the
finite correction bandwidth, and the second represents the noise
introduced in the loop. It may be noticed that both quantities are
functions of the system bandwidth. The first term is a decreasing
function tending towards 0, the second increases. It may then
be that the sum reaches a minimum somewhere.

Hence the idea of modal filtering can be carried further:
this is developed in Sect. 3.2, where a method to optimize the
correction bandwidth for each mode is presented. This leads
to an adaptive system, where the actual number of degrees of
freedom is tuned in terms of the observing conditions. Open-
loop WES data taken on the reference source just before closing
the loop are used to establish the latter and derive any parameter
required for the optimization.

3.2. Loop description

The servo system works in closed loop, with a frequency trans-
fer function hyg(f) for the wavefront sensor detector, and
heys(f) for the system. A first order transfer function is as-
sumed, including an integrator in the closed loop and a time
delay between the measurement and the action correspond-
ing to the WFS detector read-out time and the computation
time. The actuator transfer function of the actuators is as-
sumed to be perfect, equal to 1. The expressions of the two
functions heys and hwss are heys(f) = e 27f /2ix.f and
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Corrected wavefront Z- Noise
n
WFS detector
Deformable mirror Shack-Hartmann transfer function
5 s
z 1y D, h{D -
Turbulence
input
+
h'y ® G D
System transfer function Filtering Matrix Control Matrix

Fig. 1. Schematic representation of the control loop

huwts(f) = sinc(w. f.1.).e~*™ T, where T, is the sampling pe-
riod and 7 the time delay. The open loop transfer function is
then hol(f) = hwfs(f)'hsys(f)~

In addition to the control matrix a diagonal filtering matrix
G is applied. This means that the i** mode reconstructed by D*
will be filtered by the i** coefficient g; of G. In a closed loop
system, this coefficient directly controls the mode correction
bandwidth.

The input turbulent wavefront is z. It is a vector, as described
in Sect. 2.2.1. The corrected wavefront is denoted z’. The wave-
fronts z or 2’ are time-dependent variables. They should be writ-
ten z(t) -or Z(f) if expressed in the Fourier space. However, z
will refer to them whatever the context, for the sake of brevity.
The following equation can be derived from the loop figure:

2 =2 — ho(f).G.D* Doz’ + heys(f).G.D* 9)

The columns corresponding to the mirror modes are iden-
tical in D and in D,. Moreover, Eq. (2) leads to D*.D =
Identity. Hence the columns of D*.Dq, corresponding to the
mirror modes form an identity matrix and any vector u of the
space .Z6 obeys the relation

D* Deou=D""Du=u (10)

This relation is false for u ¢ ..Z4. Figure 2 makes this clearer.

Equation (10) allows us to invert Eq. (9) to find the corrected
wavefront z’ as a function of the input turbulence, the noise, and
the system characteristics.

h l(f)G hs s(f)G
2=2— —2"""  D*"Dypz——2-""_Dtn (11
1+ ho(f).G *° 1+ ho(f).G
The notation 1 stands for the identity matrix, and % stands for

A.B~! when A and B are diagonal matrices. Let us define the

matrix S as S = D*.D,, and express the i** component z; of
/

z.
. 1 ' hot(f)-g:
5 T ha(Dg " T+ ha(Dogi’ ;»1 S
_ sys(f) gi D 12
1+ hol(f) gi Z ( )

=1

The right hand side of Eq. (12) comprises three terms. The first
one is the corrected mode, corresponding to the uncorrected
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+
D X
D D’ -
=]
AN
Mirror modes D
oo
1\ 0 +
0\\1 D D,
-
+
D D

Fig. 2. Matrix product D*.D. There is no cross-coupling between
the mirror modes, each of them is perfectly identified by the system.
This allows to control each mode separately

mode filtered by the rejection transfer function. The second
term indicates the aliasing effects. It is only influenced by the
modes orthogonal to the mirror subspace. The validity of the
term ‘aliasing’ has already been discussed by Hermann (1981)
or Southwell (1982). It is simply used here by analogy with the
Fourier transform, to express that the modes of the orthogonal
complement to the mirror space in & (high spatial frequencies)
may produce a response on the WES (because of the incom-
plete WES sampling), which will be interpreted by the system
as mirror modes (lower frequencies). It is worth noticing that
these errors are filtered by the closed loop transfer function.

Finally, the third term indicates the noise introduced in the
system, which corresponds to the input noise propagated on the
mode coefficient and filtered by a function nearly equal to the
closed loop transfer function.

This equation demonstrates the possibility to modify the
transfer function of a particular mode via g;, without disturbing
the other modes. It can easily be understood that under strong
noise conditions the optimization will consist in tuning the gain -
i.e. tuning the bandwidth- to reduce the induced noise and jointly
the aliasing effect, to the detriment of the mode correction qual-
ity. The second term is usually small compared with the first,
since the AO system is obviously designed to apply a useful cor-
rection. When the noise is important, the sum of the first poorly
corrected term and the third term dominates in the equation
compared with the aliasing term, whose importance is reduced
by the noise optimization itself. It will consequently be assumed
that the aliasing term of Eq. (12) can be neglected when work-
ing in a low flux regime. Then this equation can be rewritten

z: = hcor(f7 gi)-zi - hzn(fv gt) Z D:]n.] (13)
J

where hgo, is the rejection transfer function, i.e. the correction
transfer function, and h,, the transfer function between the white
noise in input and the noise actually sent to the active com-
ponent. Since the noise is not correlated with the signal, the
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Rejection transfer function Hcor(f)
T T
St 4
O b P e
g St
Z
g 10 Fe=200Hz
) -
§ Te=5ms
g delay = 3.5 ms ]
g -15
220 4
225 N
|
0.1 1 Frequency (Hz) 10 100
Noise tranfer function Hn(f)
T T
5+ 4
(4]
8 °r
2
O
E 0f
S Fe =200 Hz
5 .15+ Te=5ms
delay = 3.5 ms
20 b
=25 J
1 L
0.1 1 Frequency (Hz) 10 100

Fig. 3. Representation of the square modulus (expressed in decibels) of
the functions He,, and H, in terms of the frequency (expressed in Hz),
with the gain g as parameter. The loop includes a CCD, an integrator
and a time delay. The conditions are a frame rate of F'e = 200 Hzand a
time delay of 7 = 3.5 ms. The input turbulence power spectral density
is multiplied by the function Hco -usually called rejection transfer
function- on output. The noise is multiplied by H,

variance of 2] is
< 21/;2 > = /Hcc;(f, g?,)“zl(f)uzdf

+ [ ot g lmi s (14)
The functions H.,, and H, stand for the squared modulus of
heor and hy, and m;(f) is the noise on the mode 4.

The quantitative behavior of H, and H, versus the gain is
illustrated by the simulation presented in Fig. 3.

4. Practical implementation of the optimization

The previous section has shown that it is possible to minimize
the residual phase errors on z; by a proper choice of the gain g;.
In Eq. (14), 2} depends on the noise on the mode coefficient m;
and on the state of the atmosphere z;. In principle, the optimiza-
tion is possible when these quantities are properly known for a
given observation. It is therefore appropriate to derive a method
to estimate them in open loop before applying the correction,
assuming they are constant over the time interval considered.

E. Gendron & P. Léna: Astronomical adaptive optics. I

4.1. Estimation of the noise

The problem is to evaluate the noise variance on the centroid-
ing. Although some expressions of the noise variance have been
derived (see 2.3.2), the actual regime of any real wavefront sen-
sor is usually a superposition of quantum and read-out noise.
In addition, let us enumerate some of the factors affecting the
noise level above these fundamental noise sources: the applica-
tion of a threshold on the sensor image, the spot widening by
the intensifier point spread function, the intensifier gain disper-
sion, the observation of dissymetrical extended objects, the sky
background -changing with the proximity of the moon, or the
object colour. This points to the need for a reliable, empirical
method to directly measure the total noise.

The sensor gives a field of vectors measuring the phase
gradient over the pupil aperture. Any function ¢ verifies
rot(grad(¢)) = 0. Hence a field of vectors v for which rot(v) #
0 is impossible to observe. Does this mean that some wavefront
slope configurations cannot exist with a Shack-Hartmann ? Un-
fortunately, due to the extended size of the subapertures, the
microlenses average the phase gradient and make any arrange-
ment of the field vector possible. Nevertheless, some config-
urations are generated by the turbulence with an infinitesimal
probability. It is possible to find those special configurations
by diagonalizing the theoretical covariance matrix < s.s* >
of the slope measurements s. The correlation coefficients be-
tween two slopes can be computed with Eq. (24), presented in
the Appendix. The diagonalization provides eigenvectors which
are orthogonal and uncorrelated measurements. The eigenvalues
indicate the variance of these configurations in the atmospheric
turbulence. Hence the eigenvector associated with the lowest
eigenvalue is the linear combination of the measurements for
which the variance of the excitation by the turbulence is mini-
mal. The basis change matrix B is the transpose of the matrix of
the eigenvectors, for which B.Bt = B*.B = Identity. More-
over, B.B! is also the noise propagation matrix, any p(z) is
equal to 1 ; the eigenvalue is proportional to the SNR of the
eigenvector.

Let examine a practical case of noise evaluation witha7 x 7
subapertures Shack-Hartmann. Figure 4 exhibits the last eigen-
vector corresponding to this Shack-Hartmann geometry, com-
puted from Eq. (24). The following conditions are assumed: a
telescope of 3.6 m diameter, 7,(A) = 10 cm at A = 500 nm, an
overall atmosphere, telescope and system transmission of 0.3, a
detector efficiency of 0.1 over a spectral range of 400 nm, a sam-
pling rate of 200 Hz, and a quantum noise limitation allowing us
to use Eq. (3) for arough numerical estimate. To obtaina SN R;
of 1 on the eigenvector previously discussed, i.e. that associated
with the lowest eigenvalue, a% leads to N = 1600 photocounts
per frame and per subaperture, corresponding to a magnitude
my = 7.5. For example, if m! = 11, the atmospheric impact
on the eigenvector becomes negligible compared to the WFS
noise effect, hence the measurement of the eigenvector fluctu-
ation variance leads to a noise estimate with a 4% accuracy, as
deduced from m}, — m,.
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Fig. 4. Eigenvector of the covariance matrix of the slope measurements,
associated with the smallest eigenvalue. The eigenvalue is proportional
to the eigenvector SNR. For reference stars fainter than m, =~ 10
the SNR is so low that measuring the variance of this eigenvector
in the atmospheric turbulence is equivalent to measuring the noise
variance. Here the Shack-Hartmann has 7 x 7 subapertures, and the
central obstruction is 40% of the pupil diameter

The possibility to obtain a correct estimation of the noise
level is hence demonstrated: in any case of noise regime (quan-
tum noise, readout noise or other), it is simply deduced by mea-
suring the variance of the fluctuations of the last eigenvector
on a sequence of uncorrected wavefront slopes recorded on the
reference object.

4.2. Estimation of the residual error
4.2.1. The residual error

The function Heo(f, g) and Hy(f, g) only depend on the sys-
tem characteristics: they can be measured or computed from a
theoretical model. The term p(i) is deduced from the control
matrix. By recording a temporal sequence of uncorrected wave-
front slopes from the Shack-Hartmann data before closing the
loop, it is possible to deduce the noise o2. It is also possible
to reconstruct the temporal evolution of the mode coefficients,
simply by multiplying by the control matrix D*. The temporal
evolution of each mode is obtained, and a Fast Fourier Trans-
form provides ||2;(f)||?. This quantity is the sum of the mode
power spectrum density ||z;(f)||? and the noise || m;(f)||?, being
both still unknown.

Due to the strong decrease of the turbulent spectrum at high
frequencies, it is hopeless to fit the actual spectrum value un-
der the noise, as it is hopeless to estimate the real noise at low
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frequencies where turbulent effects dominate (Fig. 5). The pos-
itive counterpart of this negative point is that the high frequency
part of the turbulent spectrum shape being under the noise, it
has no weight in the value of < 2/> >. In the same way, the
low frequency noise also only has a weak impact on it, since
turbulence dominates. Hence Eq. (14) can be rewritten:

<> = / Heolf, 90-(12:DIP — p(6).02)df

#0003 [ H (S, 904 (15)
where each term is known. The only difference from Eq. (14) is
that the random noise power spectral density has been replaced
by a constant function with the appropriate amplitude p(i)o2.
The reason why < 2/ > can be rewritten is not because the
function ||2;(f)||* — p(z).02 is an estimate of || z;||?: this assump-
tion would be false. However, the integrals are very close to each
other ; this will be shown by computing the difference § between
the true value (Eq. (14)) and this approximation (Eq. (15)).

4.2.2. Uncertainty on the estimate of the residual error

Making the assumption that the functions are known at some K
discrete frequency samples fj, the notations will be simplified:
my, stands now for the noise power spectral density at the k"
frequency sample fi. Hcory and Hny are the values of the
square modulus of the transfer functions at the same point. The
average of the my, is the noise variance p(i).c2, and the variance
around this average value is p*(i).c%. The quantity to evaluate
is the difference between Eq. (14) and Eq. (15). Computing the
mean square value gives

6% =< (% ;(Hcork — Hnyg).(my, — p(i).c))? > (16)

Since the my, are not correlated, the expression becomes

N2
§= 1_)(_%}(.:0_,1 Z(Hcor;c — Hny)?
k

)

Moreover, the functions H,, and H, always vary in an opposite
way (Fig. 3): one equals 1 when the other is close to 0 and
vice versa. This allows us to simplify Eq. (17), assuming that
(Hcory — Hng)? =~ 1.1t gives

5= P03

VK

This expression shows that the uncertainty is independent of
the gain g;, and that the error can be lowered by increasing
the number of points. A sampling frequency of 200 Hz and
10 seconds of turbulence recording provide K = 1000 points
for the power spectrum estimate. This gives an error standard
deviation about 30 times lower than the noise level.

(18)
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4.3. Error minimization

Hence comes the gain optimization: the residual error can be
computed from Eq. (15). In order now to optimize the gains, it
is more convenient to differenciate Eq. (15) with respect to g;
under the integrals and to solve the equation:

d< 21/;2 > 0= dHcor
dgi T d

dH,
) n
+p(z).0n./—dgi af

The quantltles H :an be computed analytically, although they
take a rather complex expression.

Solving Eq. (19) can be done by any method, for example
the zero can be searched by dichotomy between two limits g; = 0
and the maximum g; ensuring loop stability (2.3 dB maxi. for
the closed loop transfer function). The following section puts
this method into practice.

&P - pG).od)] df

(19)

4.4. Simulations

In order to illustrate the validity of the above approach, simu-
lated cases are presented here. The atmospheric behavior often
departs from a perfect Kolmogorov spectrum with infinite outer
scale and full stationarity. As a matter of fact, numerous obser-
vations carried out with a particular system (the Come-On-Plus
AO system, Rousset et al. 1993) give realistic inputs for the be-
havior of z;. This will be treated in great detail in a forthcoming
paper. Here the approach is restricted to a simple, ideal analytic
description of the atmosphere.

4.4.1. Atmospheric model

A theoretical curve made of two power laws will be used for the
mode fluctuation power spectra. The theoretical shapes are in
f~2/3 and f~11/3 respectively at low and high frequencies. The
limit between the two domains is set by the cutoff frequency
fe- There exist a number of simulations and theoretical expla-
nations, or measurements of the power spectral density of the
fluctuations of the modes (Clifford 1971 ; Hogge et al. 1976 ;
Greenwood et al. 1976 ; Greenwood 1978 ; Fields 1983 ; Acton
et al. 1992 ; Madec et al. 1992 ; Roddier et al. 1993). They do
not always agree on the basic phenomenon. While some (Madec
et al. 1992 ; Roddier et al. 1993) agree on a theoretical high-
frequency behavior in f~'7/3, the most common values usually
found are in f~%/3 to f~'1/3. As stated in Greenwood (1978),
“the spectral density could be almost anything”, since it depends
on the wind velocity distribution along the C?2 profile. Then, the
choice of spectrain f~2/3 and f~"'/3 for low and high frequen-
cies respectively, although somewhat arbitrary, may represent
a good compromise among what can usually be measured at
various sites. Figure 5 shows a simulation of the temporal spec-
trum of a particular mode (astigmatism) under 0.83” seeing
conditions with a noise variance corresponding approximately
to a flux of 6 photocount m™2 frame™! with a quantum noise
limited detector.
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Fig. 5. Simulated spectrum of the astigmatism mode fluctuations, with
7% and f~''/3 power laws, and a cutoff frequency of 1 Hz. The
variance corresponds to a r, of 12 cm on a 4 m telescope. Units are
rd?Hz~! at 500 nm. The noise variance is 2.2 rd?’Hz ™!, corresponding
to a flux level of 6 photocounts m~2 frame ™" with a quantum noise
limited detector
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Fig. 6. Astigmatism residual phase error, expressed in rd? at 500 nm
in terms of the correction bandwidth. The closed loop conditions are
a 200 Hz sampling frequency, 2 ms time delay, an integrator in the
loop. The noise variance is 2.2 rd?, corresponding to a flux level of
6 photocounts m~? frame ™" with a quantum noise limited detector

4.4.2. Results

Figure 6 shows the result < z§2 > of Eq. (15) in terms of the
correction bandwidth, applied to the data shown on Fig. 5. The
closed loop conditions are detailed in the caption of Fig. 6. It
clearly demonstrates the need for an optimization: a gain of a
factor 2 on the residual error appears between the maximum
(25 Hz) and the optimum bandwidth where the minimum of the
error is reached, around 14 Hz (the correction bandwidths are
given at 0 dB for the rejection transfer function). This optimum
is very close to the intersection between the turbulent spectrum
and the noise level.
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Fig. 7. Values of the optimized bandwidth in the same conditions as for
the previous figure. The various values have been computed for some
different noise realisations. The horizontal line indicates the averaged
value
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Fig. 8. Values of the optimized bandwidth in terms of the noise level.
The input turbulence is a simulated spectrum of the astigmatism mode
fluctuations, with some f~%/3 and f~"'/* power laws and a cutoff
frequency of 1 Hz. The r,(500 nm) is 12 cm, on a 4 m telescope. Units
of the noise variance are rd* at 500 nm. The closed loop conditions are
a200 Hz sampling frequency, 2ms time delay, an integrator in the loop

The test can be repeated keeping the same turbulence spec-
trum, but taking another random trial of the noise. The noise
level is unchanged. The optimum gain is always found to be at
the same location with a good accuracy. Moreover the hollow
is sufficiently flat and smooth so that the errors on the deter-
mination of g; have a negligible impact. Figure 7 illustrates the
dispersion of the optimized gain values.

The impact of the noise level can now be studied. Fig-
ure 8 shows the values of the optimized bandwidth in terms
of the noise variance. The turbulence conditions are the same
as on Fig. 5, only the noise level is changed, from 0 to 7 rd? (at
500 nm).
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Fig. 9. Values of the optimized bandwidth in terms of the reference
object magnitude. The input turbulence is a simulated spectrum of the
Zernike astigmatism mode (n = 2, m = 2) fluctuations, with f —2/3
and f~'"/3 power laws and a cutoff frequency of 1Hz. The closed
loop conditions are a 200 Hz sampling frequency, 2 ms time delay,
an integrator in the loop. The quantum noise limitation has been as-
sumed. The global optical throughput is 0.3, the quantum efficiency 0.1
on a spectral bandwidth of 400 nm. The telescope diameter is 3.6 m.
76(500 nm) = 12 cm

This section has shown that it is possible to follow the ap-
proach described in Sect. 4.3, simply by feeding the equations
with some quantities measured with the system before closing
the loop. The optimum gain value found with this method is
stable and reliable.

5. An observer’s point of view

The above presentation discussed the optimization in terms of
the quantities used in Sect. 3.2. The user of an AO system has
a slightly different point of view, as he currently refers to com-
mon quantities such as the magnitude of the star, the seeing
conditions, the wind velocity, etc. It is appropriate to show at
least qualitatively how these parameters impact on the concept
of optimization developed in this paper. These parameters are
the reference object magnitude my, the r, value, the wind ve-
locity, the system sampling frequency and the anisoplanacity.
It is assumed here for simplicity that the WES is working in a
photocounting regime in the V band.

5.1. The magnitude of the reference object

The magnitude of the reference object used to measure the wave-
front is the most influential parameter since it imposes the noise
variance. Figure 9 is the same as Fig. 8, but translated in magni-
tude units. As expected, the optimum bandwidth decreases with
the magnitude because of the loss in SNR. For the 60" Zernike
polynomial (n = 10, m = 4) the points have to be shifted 2.4
magnitudes towards the left.
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5.2. The seeing conditions

The seeing conditions are characterized by the FWHM of the
distorted image, equal to 0.97%. The r, variations not only in-
fluence the turbulent spectrum shape but also the noise level,
since the image width is affected. Assuming the turbulence to
be Kolmogorov, the amplitude of the atmospheric fluctuations
is proportional to 53, Assuming Eq. (3) to be valid, the noise
level is proportional to ;2. The optimum bandwidth only de-
pends on the noise level position with respect to the turbulence,
and this varies as r(],/ 3 Ifthe intersection is on the —11 /3 slope,

the optimum bandwidth will vary proportional to 7o VI A To
variation from 20 ¢cm to 5 cm only makes a variation of 12% on
the bandwidth, which is negligible.

In conclusion, the optimized gains are roughly independent
of the seeing conditions.

5.3. The wind velocity

Modifying the wind velocity changes the mode cutoff frequency.
In order to keep the variance of the mode fluctuations constant,
the increase of f, has to go with a decrease of the global ampli-
tude. On a log-log scale, this displaces the turbulent spectrum
along a direction parallel to —1 decade/decade giving an op-

timum bandwidth proportional to fc8 /M §f the intersection is on

the —11/3 slope and fc_‘/2 if on the —2/3 slope. Here things
become extremely dependent on the spectrum shape, i.e. on
the turbulence spatio-temporal characteristics. This cannot be
treated with a model as simple as the one described in this para-
graph: the evolution of the wind speed may modify the spectrum
shape in various ways. The phase distortion comes from the con-
tributions of different sources: several turbulent layers and dome
seeing. Each of them may vary independently of the other, and
modify the turbulence structure in a random manner.

5.4. The sampling frequency

With a quantum noise limited detector, the noise variance is
proportional to the sampling frequency. This implies that this
noise level on the mode spectrum is a constant independent of
the sampling rate. The turbulence power spectrum is also in-
dependent of the sampling rate. Hence the choice of the best
sampling rate is only linked to the system properties and not to
the outer parameters. This leads us to make use of the maxi-
mal sampling frequency since the larger the sampling rate, the
easier it will be to achieve the required bandwidth. But a limi-
tation occurs when the number of photocounts per frame is so
small that Eq. (3) becomes false: when no photon is received,
the centroid of the spot cannot be determined. The noise takes
another expression, depending on how the system reacts when
no signal is received. As a conclusion, the sampling rate has to
be set as high as possible, as soon as the lack of photons does
not become a limitation for the system.

It is worth noticing this reasoning becomes false with aread-
out noise limited detector: in this case the noise level increases
with the sampling frequency.
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5.5. The problem of isoplanicity

This paper has ignored the case where the reference object is
distinct from the object to be imaged, although this in practice is
a useful observing mode. Although it is possible to theoretically
derive the effect of this anisoplanatic angle on the z, (Abitbol
1991), the derivation of this effect from actual AO system mea-
surements has not yet been explored. It is therefore not possible
to use the same approach as that given in Sect. 3.2, and the issue
has been left aside in this paper.

6. Conclusion

The concept of modal control is not entirely new in AO theory,
but its use as a tool for optimizing the system performance in
astronomy on closed loop systems had not been investigated
before.

We have demonstrated the need for the optimization: at low
flux level, the image quality, characterized by the phase residual
error, can be improved by reducing the system correction per-
formance. In particular the temporal correction bandwidth of
each mirror mode has to be adjusted. The goal was to derive an
optimization method using data and parameters exclusively de-
rived from the AO system itself. No assumption is made on the
turbulence structure ; everything is measured. Unfortunately,
because of this restriction the case of the anisoplanatism prob-
lem, although similar, had to be left aside. For simplicity the
study has been limited to the case of a Shack-Hartmann type
wave-front sensor, but the method can be extended to any linear
Sensor.

The optimization process has been shown to be reliable,
with no convergence problem. An optimized control matrix is
computed before closing the loop, without requiring any extra
real-time computation when the loop is closed. This leads to a
flexible system where the number of degrees of freedom is grad-
ually adjustable in terms of the observing conditions, from a full
correction to a simple tilt correction at the limiting magnitude
of the instrument.

However, there is no interest to keep on testing the method
on simulated data since it is designed to be used on real sys-
tems. Simulated data do not properly take into account the ef-
fects of the dome seeing or the convection phenomena on the
primary mirror. These effects may strongly depart from a Kol-
mogorov distribution. Fortunately, observations carried in 1992-
1993 with the AO system Come-On-Plus provide a wealth of
experimental data. They are the basis of a forthcoming paper
which will compare the reality with the theoretical predictions
made in the present one on the basis of simple assumptions.
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Appendix

Assuming the amplitude of the electric field is constant over the
pupil area, the deviation angle s of the image is derived from
the phase gradient by

A
s=— Vo (20)
2m Aperture
Using the theorem of the gradient leads to
A
s=—/ d(M))n(M)dl @2n
27S e}

The angle s is supposed to be measured along a particular di-
rection. The integral is curvilinear along the aperture contour
C, S is the aperture area, n(M) is the component of the vec-
tor normal to the contour at point M directed along the axis of
measurement.

The correlation between the angles of arrival of two subaper-
tures is computed. The subapertures are defined by the subscript
7 and j.

< 8385 >= Ef/;‘i—@
/C /C < Q(M).p(M") > ny(M)n;(M)dldl (22)
One can write
< §(M).pM') > = —%D¢(MM’)
. <¢>2(M)>+ < (M > 23)

2 2

where Dy(MM') is the phase structure function value, and
M M’ stands for the distance between the points M and M’.
The two last terms are constant and vanish in the curvilinear
integral. Equation (22) becomes:

A
< SiSj > = _871'2—51,53
/ / D¢(MM')ni(M)nj(M)dl dl’ 24)
Ci JC;
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