

AO partial correction...

TT bad correction => agitation => image blurring

HO bad correction => coherence loss => coherent core reduced, more intense halo

Hence, for a given Strehl ratio, one should have:
- NGS AO => better resolution,

- LGS AO => better encircled energy...

Are other improvements possible ? - Example #1 WFS: replace CCDs with EMCCDs ?...

Are other improvements possible ? - Example #2 WFS: add a TT sensor ?...

Are other improvements possible ? - Example #3

Image reconstruction: take into account the quality
 of correction within deconvolution process ?...
 (=> Strehl constraint)

Fig. 2. Left: final error on the reconstruction of the PSF. Right: final error on the reconstruction of the object. Both plots are made as a function of the SR of the image data and comparing the simple IBD (rhombuses) to the Strehl-constrained IBD (asterisks). A gain of up to a factor ~10 is achieved for the poorer SR.

Are other improvements possible ? - Examples - 4

Image reconstruction : improve again resolution ?...
(=> Computational Super-Resolution)

(HD 87643 observed with NACO/VLT, super-resolution algorithm of Anconelli et al. (A&A 2005))

Hower of Isalper (bs for bouillonement) => on fit défor (es é 12 ms de phise (chieven = une pouche + 215.) 2-dessous du $\int_{post-A0}^{2} = \int_{auso.}^{2} + \int_{ttt.}^{2} + \int_{meas.}^{2} + \int_{aus.}^{2} + \int_{tep}^{2} + \int_{kep.}^{2} +$ télescoper pett un tops de l'odre to b seconde ... (Hriddel) S = S. St. Shire Starp Suppa (Miriddel) 20150. ftt. Smain. Solare Starp Suppa 245 S 10 m/s x 180 m = 1/5m \$S= exp{-52} Light Light All predm Light 0 299 dizzines de mis $Ici: - dijet = etailegride => T_{zuiso}^2 = O(=1S = 1) \begin{bmatrix} \sqrt{N} \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \nabla^2 X = S_{Mys}$ D Mag. - prode to be original non-uses => $p_{cPA}^2 = 0$ (=> $S_{NPA} = 1$) - T² Fiff., T² rostent constants (rot d=d fixes) Ti = Ti K / Sent 12 V2(18, on fonction de N. Et, dans un pertons. 2, 52 + 62

about the gain of the pure integrator command law...

End-to-end AO modeling with the Software Package CAOS -1

Table 1. The 31 modules of the Software Package CAOS, version 7.0.

e

E S

Module	Purpose
Optical turbulence & image formation	
ATM - ATMosphere building	-builds the turbulent atmosphere (FFT+subharmonics, Zernike)
	(see also utility PSG - Phase Screen Generation)
SRC - SouRCe definition	-characterizes the guide star/observed object
GPR - Geometrical PRopagator	-propagates light from source to telescope through atmosphere
IMG - IMaGing device	-forms an image of the observed object (+detector noises)
Wavefront sensing	
PYR - PYRamid wavefront sensor	-simulates the pyramid wavefront sensor
SLO - SLOpe computation	-computes the slopes from the pyramid signals
SWS - Shack-Hartman Wavefront Sensor	-simulates the Shack-Hartmann (SH) wavefront sensor
BQC - Barycentre/Quad-cell Centroiding	-compute the signals from the SH spots centroiding calculus
IWS - Ideal Wavefront Sensing	-applies "ideal" wavefront sensing (see text)
TCE - Tip-tilt CEntroiding	-computes and reconstructs tip-tilt
Wavefront reconstruction, control & correction	
REC - wavefront REConstruction	-reconstructs the wavefront
TFL - Time-FiLtering	-applies time-filtering after wavefront reconstruction
SSC - State-Space Control	-applies state-space control
DMI - Deformable MIrror	-simulates the behavior of a deformable mirror (DM)
TTM - Tip-Tilt Mirror	-simulates the behavior of a tip-tilt mirror
Calibration	
CFB - Calibration FiBer characterization	-defines a fiber to be used for calibration purpose
MDS - Mirror Deformation Sequencer	-generates a sequence of DM modes or influence functions
SCD - Save Calibration Data	-saves the calibration data (interaction matrix+set of deformates)
Wide-field AO	
AVE - signals AVEraging	-averages measurements from various wavefront sensors
COM - COMbine measurements	-combines measurements from various wavefront sensors
DMC - Deformable Mirror Conjugated	-corrects at different conjugated altitudes
Other modelling modules	
LAS - LASer characterization	-defines laser projector characteristics
NLS - Na-Layer Spot definition	-characterizes the Sodium-layer behavior
IBC - Interferometric Beam Combiner	-combines the light from two apertures
COR - CORonagraphic module	-simulates various coronagraphs (Lyot, Roddier&Roddier, FQPM)
AIC - Achromatic Interfero-Coronagraph	-simulates the Achromatic Interfero-Coronagraph
BSP - Beam SPlitter	-splits the light beam
Other utility modules	
WFA - WaveFront Adding	-adds or combines together wavefronts
ATA - ATmosphere Adding	-adds or combines together atmospheres
IMA - IMage Adding	-adds or combines together images
STF - STructure Function	-calculates the structure function and compares to theory

End-to-end simulation of a complete AO system: calibration

End-to-end simulation of a complete AO system: running... 00 X CAOS Application Builder – 7.1 Run File Edit Modules VM Help Project name: SimulSH_1m Status: unmodified 50 Iterations: DIS 010 GPF REC 007 TFL 008 BQC D M 004