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Generalized Fried parameter after adaptive optics
partial wave-front compensation
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Atmospheric turbulence imposes the resolution limit attainable by large ground-based telescopes. This limit
is l/r0 , where r0 is the Fried parameter or seeing cell size. Working in the visible, adaptive optics systems
can partially compensate for turbulence-induced distortions. By analogy with the Fried parameter, r0 , we
have introduced a generalized Fried parameter, r0 , that plays the same role as r0 but in partial compensation.
Using this parameter and the residual phase variance, we have described the phase structure function, esti-
mated the point-spread function halo size, and derived an expression for the Strehl ratio as a function of the
degree of compensation. Finally, it is shown that r0 represents the diameter of the coherent cells in the pupil
domain. © 2000 Optical Society of America [S0740-3232(00)01605-7]
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1. INTRODUCTION
Random aberrations on the pupil of the telescope due to
atmospheric turbulence determine the angular resolution
of ground-based telescopes. The compensation of the
wave-front degradation before detection (adaptive optics)
and the extraction of diffraction-limited information from
the image series (speckle interferometry) are the two
techniques able to overcome this limitation. The main
advantage of adaptive optics systems is that they perform
a real-time correction.1–3 A wave-front sensor measures
the instantaneous aberrations, and, using this informa-
tion, a deformable mirror changes its shape to compen-
sate for this distortion. Although adaptive optics sys-
tems with a large number of subapertures in the wave-
front sensor and a large number of actuators in the
deformable mirror provide the best results, they are com-
plicated and expensive, and they stress current technol-
ogy to its limit. In contrast, the use of simpler adaptive
optics systems has great potential application. In this
paper imaging with partially compensated adaptive op-
tics systems (fewer than one actuator per atmospheric co-
herence diameter4–6) is analyzed.

We will consider that the correction system compen-
sates pure Zernike polynomials. However, it is shown
that the main results remain valid when a limited
amount of noise affects the system performance. For sys-
tems based on curvature sensing, a straightforward appli-
cation of the results obtained here is not possible, al-
though the wave-front structure function is very similar
to that obtained from the Zernike polynomials
compensation.7 This fact suggests that the fundamental
conclusions of this paper can be applied to actual systems,
but a more detailed analysis is required for each particu-
lar case.

Uncompensated wave fronts can be characterized with
use of the Fried parameter r0 , which corresponds to the
diameter of the atmospheric coherence area. In an
equivalent way, it is possible to define a generalized Fried
parameter r0 corresponding to compensated wave fronts.
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A relationship among r0 , the correlation length, and the
residual phase variance after compensation is introduced.
From it, it is possible to derive an a priori estimate of r0 ,
in terms of the number of corrected polynomials and the
Fried parameter r0 .

Using r0 and the residual phase variance, we will de-
scribe the phase structure function, estimate the point-
spread function (PSF) halo size, and derive an expression
for the Strehl ratio. In contrast to other methods,8–10

this procedure is applicable to any degree of correction.
This expression for the Strehl ratio can also be obtained
from a generalization of Goodman’s model for speckle.11

The advantage of this model is that it provides, from the
residual phase variance and r0 , the statistics of the light
intensity at the image plane.12 Furthermore, we will
demonstrate that r0 represents the diameter of the coher-
ent cells in Goodman’s model. Theoretical developments
for the correlation length, the generalized Fried param-
eter, the PSF halo width, and the Strehl ratio are checked
with a standard simulation procedure to obtain the struc-
ture function and the light intensity distribution at the
image plane as a function of the compensation. It is
shown that results remain valid even when a limited level
of noise is involved in the compensation process.

Thus the introduction of the generalized Fried param-
eter makes it easier to understand the physics underlying
the image-formation process after atmospheric degrada-
tion and adaptive optics compensation, by analogy with
the uncompensated case. Furthermore, some interesting
conclusions can be derived that may be useful for devel-
oping procedures to calibrate adaptive optics systems or
improving detection techniques.

2. GENERALIZED FRIED PARAMETER
This section describes the wave-front decomposition into
Zernike polynomials, the phase structure function of the
2000 Optical Society of America
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wave front, the generalization of the Fried parameter,
and the behavior of the phase correlation length.

A. Wave-Front Description
Optical wave fronts are two-dimensional functions that
can be decomposed into Zernike polynomials that are
separable in angle and radius and form an orthogonal ba-
sis. We will use the definition given by Noll,13

f~r,u! 5 (
i51

`

aiZi~r,u!, (1)

where ai are the coefficients of the corresponding Zernike
polynomials (Zi). The effect of partial compensation on
the wave front is that some of the decomposition coeffi-
cients vanish. The residual distortion in the compen-
sated wave front may be estimated with the Noll expres-
sion for the average variance over the wave-front surface
once the first j Zernike terms have been corrected,

D j 5 (
i5j11

`

^uaiu2& 5 coef ~ j !S D

r0
D 5/3

, (2)

where ^...& denotes an ensemble average and coef( j) is the
corresponding coefficient given by Noll.

B. Structure Function
The phase structure function is defined as

Df~r 2 r8! 5 ^@ f~r! 2 f~r8!#2&. (3)

For apertures larger than 1 m, even in the best seeing
sites, the phase fluctuation has a Gaussian distribution
because of the central limit theorem. Its mean value is
zero, and hence it is fully described by its second moment.
The fact that the structure function is the second moment
for differential phase fluctuation completely specifies the
spatial statistics of phase fluctuation. Based on the
Kolmogorov14 theory of turbulence, it is possible to show
that in the absence of compensation the phase structure
function may be written as

Df~r ! 5 6.88S r

r0
D 5/3

, (4)

where r0 is the Fried parameter15 and r 5 uru. After
compensation, the corrected wave front is no longer spa-
tially stationary, and consequently the structure function
depends on both r and r8. However, when the compen-
sation increases, the wave front tends very quickly to be
spatially stationary,16,17 and an average phase structure
function can be defined, as is shown in Eq. (25). Now we
consider the next approximated expression,

Df~r ! 5 2D jF1 2
^ f~r8!f~r 1 r8!&

D j
G 5 2D j@1 2 g ~r !#,

(5)

where g (r) is the normalized phase autocorrelation func-
tion. This approximation is more precise for a high de-
gree of correction or large separation between points.

It is known18 that the shape of the structure function
varies as a function of the degree of the compensation.
As the separation between points becomes arbitrarily
large, the autocorrelation function tends to zero and the
structure function saturates to 2D j . However, for small
separation distances the curve still follows the 5/3 power
law7,19 and can be fitted by use of the following expres-
sion,

Df~r ! 5 6.88S r

r0
D 5/3

, (6)

where the value of the parameter r0 varies as a function
of the degree of compensation. This behavior suggests
that r0 is equivalent to the Fried parameter but corre-
sponds to partially compensated wave fronts. We denote
r0 as the generalized Fried parameter. This analogy will
lead us to several interesting results in the following sec-
tions.

C. Correlation Length
The phase correlation length in the wave front, lcorr , can
be obtained from the structure function.20 It is defined
as the distance value for which the structure function
leaves the 5/3 power behavior and reaches the constant
value 2D j . In this point it is fulfilled that

6.88S lcorr

r0
D 5/3

5 2D j . (7)

It is interesting to note that the parameters D j and r0 are
determined by the number of corrected polynomials and
by the value of the ratio D/r0 . However, the correlation
length lcorr is completely determined by the number of
corrected polynomials (in D units), as can be deduced
from previous studies.20 In Section 5 we obtain a fitting
of the correlation length as a function of the number of
corrected polynomials, which remains valid indepen-
dently of the value of D/r0 . Hence the generalized Fried
parameter can be theoretically obtained from lcorr and D j ,
i.e., from the number of corrected polynomials and the ra-
tio D/r0 .

3. STREHL RATIO FROM GENERALIZED
GOODMAN’S MODEL
The image-formation process for speckle proposed by
Goodman11 has recently been generalized to the case of
partially compensated images.12,21 An essential modifi-
cation is introduced in Goodman’s model. The phase dis-
tribution is no longer uniform in the interval (2p, p) after
compensation but becomes a Gaussian distribution of
variance D j . In this section we use this model to obtain
the Strehl ratio; in Section 4 this expression will be com-
pared with another one derived from the analysis of the
PSF halo, and we will demonstrate that the size of the co-
herent cells in this model is described by the generalized
Fried parameter.

The light intensity at the PSF core is obtained from the
complex amplitude of the field at this point, which results
from the sum of contributions from many elementary ar-
eas (cells) in the wave front. As an approximation, let
the phase screen consist of coherent and independent cor-
relation cells of diameter r. The number of these cells is
then proportional to (D/r)2. We can consider that each
cell contributes a phasor whose amplitude is proportional
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to the cell area. We assume that, in partially corrected
wave fronts, these phasors fulfill the following conditions:

1. Amplitude and phase of elementary phasor are in-
dependent of each other and independent of amplitudes
and phases of any other cell.

2. The phase distribution function is assumed to be a
zero-mean Gaussian function of variance D j that de-
creases when the number of corrected polynomials in-
creases:

P~ f! 5 S 1

2pD j
D 1/2

expS 2
f2

2D j
D . (8)

The variance D j can be directly determined from Noll’s ex-
pression, Eq. (2), once the degree of compensation to be
performed has been determined.

The characteristic function corresponding to the prob-
ability density function of the phase, Mf(v), can be
evaluated as its Fourier transform:

Mf~v! 5 E
2`

`

exp~ jvf!P~ f!df 5 expS 2
D jv

2

2 D . (9)

Let Ar and Ai be the real and the imaginary parts of the
resultant field at the central point of the image plane de-
fined by

Ar 5
1

AN
(
k51

N

uakucos fk ,

Ai 5
1

AN
(
k51

N

uakusin fk , (10)

where N is the number of independent cells, ak /AN the
amplitude, and fk the phase of the kth elementary pha-
sor. The mean and the variance of both the real and the
imaginary parts can be obtained from the phase charac-
teristic function11:

^Ar& 5 āMf~1 !AN, ^Ai& 5 0,

sr
2 5

a2

2
@1 1 Mf~2 !# 2 ~ ā !2Mf

2~1 !,

s i
2 5

a2

2
@1 2 Mf~2 !#. (11)

From now on we will assume that a2 5 (ā)2 5 (ak)2,
since we are not considering scintillation. The energy in-
coming at the PSF core can be expressed as

^E& 5 ^Ar&
2 1 sr

2 1 ^Ai&
2 1 s i

2

5 @1 1 ~N 2 1 !exp~2D j!#~ ā !2.
(12)

The core intensity will then be ^I& 5 ^E&/acore , where

acore 5 pS lf

2D D 2

(13)

is the minimum area obtainable from a diffraction-limited
telescope.
The Strehl ratio is the ratio between the energies at the
core with and without turbulence. With Eq. (12) and
taking into account that in the absence of turbulence D j
5 0,

SR 5
@1 1 ~N 2 1 !exp~2D j!#

N
. (14)

Finally, we note that this model can also provide the light
intensity statistics12,21 and the photon statistics22 at the
image plane. The a priori knowledge of the light inten-
sity statistics at the image plane can be a useful tool in
analyzing the system behavior.

4. STREHL RATIO FROM THE HALO
ANALYSIS
In this section the Strehl ratio is obtained from the halo
analysis and is compared with that derived in Section 3.
We demonstrate that the size of the coherent cells in the
compensated wave front is described by the generalized
Fried parameter.

The Fried parameter gives a measure of the maximum
resolution attainable in uncompensated long-exposure
images. Thus the PSF size is proportional to l/r0 . As
compensation increases, the image becomes a bright core
surrounded by a speckled halo.11,19,23 The halo width
(v0) can be obtained [equivalently to Eq. (7.20) in Ref. 24]
from

E
image

Ihalo~x!dx 5
p

4
v0

2Ihalo~0!. (15)

The left-hand side of Eq. (15) is the total energy at the
halo. To estimate its value, we will use the expression of
the structure function shown in Section 2. From Eq. (5)
an approximated expression for the optical transfer func-
tion (OTF) can be found:

OTF 5 OTFTEL exp~2Df/2!

5 OTFTEL exp@2D j~1 2 g!#

5 OTFTEL$exp~2D j! 1 exp~2D j!@exp~gD j! 2 1#%.

(16)

As the separation between points becomes arbitrarily
large, the autocorrelation function tends to zero, and
hence the first term is the asymptote to which the OTF
falls, whereas the second represents the rise above that
asymptote. Assuming that the OTF of the original tele-
scope is much wider than the second term, an approxi-
mated expression for the PSF becomes

PSF 5 PSFTEL exp~2D j!

1 FT$exp~2D j!@exp~gD j! 2 1#%. (17)

The first term (coherent energy) can be interpreted as a
diffraction-limited core of the PSF and the second as a
much broader halo. Thus the coherent energy is approxi-
mately a fraction exp(2D j) of the total energy, and,
consequently, the total energy in the halo is @1
2 exp(2Dj)# times the total energy, ET .
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Then the first term of Eq. (15) can be estimated as

E
image

Ihalo~x!dx 5 ET@1 2 exp~2D j!#. (18)

On the other hand, v0 5 (lf/2r0) is the average diam-
eter of the halo (where f is the focal length of the system)
and Ihalo(0) is the intensity of the halo at the core and can
be estimated from the difference between the total inten-
sity at the core @I(0)# and the coherent intensity at the
core @IC(0)#. The total and coherent energy at the core
can be calculated by multiplying these intensities by the
core area:

E~0! 5 I~0!pS lf

2D D 2

,

EC~0! 5 IC~0!pS lf

2D D 2

. (19)

After these considerations Eq. (15) can now be written
as

Et@1 2 exp~2D j!# 5
p~lf/2r0!2

p~lf/2D !2 @E~0! 2 Ec~0!# (20)

from this expression and, considering that all the coher-
ent energy is at the PSF core, Ec(0) 5 ET exp(2Dj), the
energy at the image core will be

E~0! 5
ET

~D/r0!2 $1 1 @~D/r0!2 2 1#exp~2D j!%, (21)

where (D/r0)2 is the number of speckles in the image.
Thus the Strehl ratio is

SR 5
1

~D/r0!2 $1 1 @~D/r0!2 2 1#exp~2D j!%. (22)

If we compare Eq. (22) with Eq. (14), we realize that the
number of coherent cells N is equal to (D/r0)2. Hence
Two special cases can be considered. In the case of low
compensation (large values of D j), the value of exp(2Dj)
can be neglected and

SR '
1

N
5 S r0

D D 2

' S r0

D D 2

. (23)

That is, there is no contribution from the peak of the PSF,
and the whole image is speckled. On the other hand, for
a large number of corrected polynomials and taking into
account that r0 , D, we can obtain

SR ' exp~2D j!. (24)

Then most of the incoming energy comes to the peak of
the PSF, and no energy is directed to the surrounding
halo. This expression is the same as that derived from
diffraction theory8 for a high degree of compensation.

Hence a procedure to obtain the Strehl ratio from the
number of corrected polynomials and the ratio D/r0 has
been developed. It has the advantage that it is appli-
cable in any degree of compensation, in contrast to other
methods.8–10

5. SIMULATION AND DISCUSSION
A. Simulation Procedure
To generate the phase structure function and to check the
theoretical models introduced throughout the paper, we
use a standard procedure to simulate wave fronts with
different degrees of compensation proposed by Roddier.18

It is assumed that the atmosphere, which follows a Kol-
mogorov power spectrum, produces changes only in the
phase of the electromagnetic field; scintillation is ne-
glected. The wave front is decomposed into Zernike poly-
nomials that allows us to control the degree of correction.
Wave fronts are simulated with 560 Zernike polynomials.
The number of samples in the entrance pupil is 128
3 128. The phase structure function is calculated from
the simulated wave fronts using the following expression,
the generalized Fried parameter r0 5 r represents the di-
ameter of the coherent cells in Goodman’s model, as could
have been expected from the analogy with the Fried pa-
rameter r0 , which is sometimes called the seeing cell size.

A similar result is obtained by Hardy19 from the analy-
sis of the Strehl ratio in the halo, although he uses an ap-
proximated expression given by Yura25 to estimate the
peak intensity at the halo and does not consider the evo-
lution of the Fried parameter with compensation. It is
interesting to state that we have obtained two identical
expressions for the Strehl ratio with two completely dif-
ferent methods. One is based on the wave-front distribu-
tion explained in the generalized Goodman model,
whereas the other relies on the structure function analy-
sis.
Df~r! 5

K E @ f2~r8! 1 f2~r8 1 r!#P~r8!P~r8 1 r!dr8 2 2E f~r8!f~r8 1 r!P~r8!P~r8 1 r!dr8L
E P~r8!P~r8 1 r!dr8

, (25)
where P(r) is the pupil entrance function, which is equal
to 1 inside the pupil and zero outside it. The first inte-
gral in the numerator is twice the correlation between
f2(r) and P(r), the second one is twice the autocorrela-
tion of @P(r)f(r)#, and the denominator is the autocorre-
lation of P(r). All these terms are easily calculated by
use of the Fourier transform properties. The structure
functions are obtained after averaging a series of 104

frames.
The light intensity long-exposure PSF for the different

degrees of compensation is obtained from the squared
modulus of the Fourier transform of the field at the en-
trance pupil:

PSF~x! 5 ^uFT$P~r!exp@if~r!#%u2&. (26)
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Furthermore, the light intensity is also obtained by aver-
aging a series of 104 experiments.

To check the effect of the noise involved in the compen-
sation process on the behavior of the structure function,
we analyzed several cases. Figure 1(a) shows the struc-
ture function for 100 corrected polynomials (solid curve)
and D/r0 5 38.4. This curve was obtained by assuming
that no error is involved in the compensation process. It
is compared with the structure function after compensa-
tion of 100 coefficients when each coefficient is affected by
a 10% error (circles). The two curves are very close and
follow a 5/3 power law for small values of r, so that the
value of r0 is the same in both cases. Furthermore, Eq.
(7) can be used to obtain an estimate of the correlation
length (lcorr), providing good results when the theoretical
residual phase variance is used. This behavior corre-
sponding to 100 corrected polynomials was also obtained
for a wide range of compensation levels. Hence results
obtained by simulating compensated wave fronts by as-
signing a zero value to the Zernike coefficients can be ap-
plicable to systems affected by limited noise.

B. Correlation Length Fitting
Using the simulation procedure stated in Eq. (25), we ob-
tained the structure function for different degrees of com-

Fig. 1. (a) Structure function of the wave-front phase for D/r0
5 38.4 and 100 (solid curve) corrected polynomials, assuming
perfect compensation. It is compared with the structure func-
tion with 100 compensated polynomials when each coefficient is
affected by a 10% error (circles). Dashed curve, reference line
with a 5/3 slope. (b) Structure function of the wave-front phase
for D/r0 5 38.4 and 1 (short-dashed curve), 6 (solid curve), 21
(circles), 41 (long-dashed curve), and 81 (triangles) corrected
polynomials.
pensation. Figure 1(b) shows the structure function
Df(r) for uncompensated wave fronts (short-dashed
curve), which follows a 5/3 power law. The structure
function for 6 (solid curve), 21 (circles), 41 (long-dashed
curve), and 81 (triangles) corrected polynomials are also
included. It can be seen that in corrected wave fronts the
structure function follows a 5/3 power law for distances
smaller than the correlation length and saturates to the
2D j value that can be estimated with Eq. (2). Thus for
small spatial distances the only effect of compensation is
to increase the generalized Fried parameter.

From the analysis of the structure function it is pos-
sible to obtain the value of the correlation length as a
function of the degree of compensation. Figure 2 shows
the evolution of lcorr as a function of the degree of compen-
sation. When the number of corrected polynomials in-
creases, the value of lcorr decreases. This behavior does
not depend on the initial value of r0 but rather only on the
value of the telescope diameter D and on the number of
corrected polynomials. This can be seen in Fig. 2, where
the series corresponding to r0 5 1 matches that of r0
5 1/38.4, both with the same value of D. Then the be-
havior of lcorr can be described by a generic curve fitted to
the values of lcorr obtained from the simulated structure
functions. The fitted curve is given by

lcorr ' 0.286j20.362D, (27)

where j is the number of corrected polynomials.

Fig. 2. Correlation length values obtained from the structure
function series for r0 5 1/38.4 (circles), for r0 5 1 (crosses), and
for values of the fitting curve expressed by Eq. (27) (solid curve)
as a function of the number of corrected polynomials.

Fig. 3. Value of r0 in the compensated wave front as a function
of the number of corrected polynomials for D/r0 5 38.4. Solid
curve, values obtained from Eq. (28); circles, values obtained
from the fitting of the structure function.
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Fig. 4. Solid curves, cross sections of the simulated PSF for a fixed value of D/r0 5 38.4 and (a) 11, (b) 21, (c) 41, and (d) 81 corrected
polynomials. Dashed curves, cross section of PSF simulated with no compensation and a value D/r0 5 D/r0 , where r0 is obtained from
Eq. (28) with r0 5 1/38.4 and j 5 (a)11, (b) 21, (c) 41, and (d) 81 corrected polynomials.
C. PSF Analysis
Consequently, from the telescope diameter, the Fried pa-
rameter, and the number of corrected polynomials, we can
estimate the average phase variance and the correlation
length using Eqs. (2) and (27), respectively. Then from
Eq. (7) we can derive the generalized Fried parameter:

r0 5 S 3.44

D j
D 3/5

lcorr 5 S 3.44

coef~ j !
D 3/5

0.286j20.362r0 . (28)

It is important to note that the improvement in the halo
resolution, described by the ratio r0 /r0 , depends only on
the number of corrected polynomials.

It is possible to fit the simulated structure function for
distances smaller than the correlation length with the
theoretical expression given by Eq. (6) so that values of r0
are obtained as a function of the degree of compensation.
Figure 3 shows a series of values of r0 obtained from the
fitting of the structure function together with those ob-
tained with Eq. (28). It can be seen that the two series of
data fit quite well.

Fig. 5. Strehl ratio from simulated images (circles) compared
with the theoretical values obtained from Eq. (22) (solid curve)
[where r0 is estimated from Eq. (28)] and with approximated val-
ues obtained from Eq. (23) (crosses) and Eq. (24) (triangles).
Now we will verify that the generalized Fried param-
eter gives the halo width. Figure 4 shows simulated
PSF’s for a fixed value of D/r0 5 38.4 and different levels
of compensation: 11, 21, 41, and 81 corrected polynomi-
als (solid curves). For each compensation level a halo of
width l/r0 (dashed curves) is also included [this PSF of
width l/r0 is obtained by simulating uncompensated
wave fronts with D/r0 5 D/r0 , where r0 is given by Eq.
(28)]. It is possible to see that the width of the halo in
the first series of PSF’s is similar to that of the second se-
ries. This allows us to state that the value of r0 obtained
from the fitting of the structure function is inversely pro-
portional to the halo width. For a low number of cor-
rected polynomials, when the bright core cannot be distin-
guished from the speckled halo, the two PSF’s are the
same, and hence the effect of compensation is just a de-
crease in the ratio between the telescope diameter and
the Fried parameter. In this case, the improvement in
image resolution is inversely proportional to
j0.362* coef( j)0.6. For higher degrees of correction the co-
herent peak emerges from the speckled halo as predicted
by Eq. (17).

The Strehl ratio from simulated images (circles) is
shown in Fig. 5. It is compared with values obtained
from Eq. (22), where r0 is estimated from Eq. (28) (solid
curve). There is a good fit between theoretical and simu-
lated values for the whole range of corrected polynomials
even when other approximated estimates fail. This con-
firms the validity of our method. Furthermore, the ap-
proximation stated in Eq. (23) behaves well in low com-
pensation. Finally, we verify that our expression tends
to a well-known result from diffraction theory, Eq. (24),
for a great number of corrected polynomials. Our
method has the advantage that it is applicable for any de-
gree of correction. To make this more evident, Fig. 6
shows the relative error in the estimation of the Strehl ra-
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tio. The Strehl ratio relative error with Eq. (22) (solid
curve) is compared with those obtained from approxi-
mated expressions given by Eq. (23) (crosses) and Eq. (24)
(triangles). While Eqs. (23) and (24) behave well only for
low and high compensation, respectively, Eq. (22) gives
an accurate estimate of the Strehl ratio for the whole
range of corrected polynomials.

6. CONCLUSIONS
A series of concepts involved in the image-formation pro-
cess when partial compensation with an adaptive optics
system is performed over a wave front has been devel-
oped. By analogy with the Fried parameter, r0 , we have
introduced a generalized Fried parameter, r0, that plays
the same role as r0 but in partial compensation. Using
this parameter and the residual phase variance, we have
described the phase structure function, estimated the
point-spread function halo size, and derived an expression
for the Strehl ratio. In contrast to other methods, this
procedure is applicable to any degree of correction.

This expression for the Strehl ratio can also be ob-
tained from a generalization of Goodman’s theory for
speckle; in this case, r0 represents the diameter of the co-
herent cells. This model provides, from the residual
phase variance and r0 , the statistics of the light intensity
in the image plane. The a priori knowledge of the light
intensity statistics at the image plane may allow the de-
velopment of procedures to improve the image analysis or
the system calibration.

We have obtained an expression for the correlation
length in terms of the number of corrected polynomials,
provided that the correlation length does not depend on
the atmospheric conditions but only on the degree of com-
pensation and the telescope diameter. As a result, we
have seen how the value of r0 increases and the correla-
tion length decreases with compensation. This informa-
tion may be used as a way to calibrate the accuracy of the
adaptive optics system.

Results were checked with a standard simulation tech-
nique based on a perfect compensation of Zernike polyno-
mials because of the limited effect of noise involved in
compensation on the wave-front structure function. The
fairly good fit between theoretical and simulated values

Fig. 6. Relative error in the estimation of the Strehl ratio from
the theoretical expression given by Eq. (22) (solid curve) [where
r0 is estimated from Eq. (28)] and from the approximated expres-
sions given by Eq. (23) (crosses), and Eq. (24) (triangles).
confirms that the models used in the theoretical develop-
ment work properly at least to perform this sort of analy-
sis.
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