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Abstract

We analyze, in the framework of high angular resolution imaging, a novel image reconstruction method denoted as
PSE (which stands for power spectrum extended). It works in the Fourier space, combining the information from
both the average power spectrum of the images and a phase estimation from an ad-hoc shift-and-add process. PSE
allows to perform image reconstruction up to the diffraction limit of the telescope from a series of short-exposure
frames, with a refined lucky-imaging selection process. The method is well adapted to partially corrected adaptive-
optics images, in particular in case of low Strehl corrections, and/or small diameter telescopes. In this paper we
analyze the PSE technique by means of Monte-Carlo simulations and compare it with the ISFAS lucky-imaging
method. Comparative performances were investigated using three metrics: Strehl ratio for reconstructed point-like
sources, intensity ratio for binary stars, and least-square distance between images for a simulated artificial satellite.
We found that PSE provides an improvement of a factor ∼2 over ISFAS on the Strehl ratio in the case of faint
point sources. It seems also to give better images reconstruction on some kinds of extended objects (planets or
binary stars with small magnitude difference). PSE has also the advantage to be very fast and well adapted to real-
time image reconstruction.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Artificial satellites (68); Astronomical
methods (1043)

1. Introduction

Atmospheric turbulence limits observations of astronomical
objects and artificial satellites from ground-based telescopes as
soon as the Fried parameter r0, defining the length of the spatial
coherence areas on the incoming perturbed wave front Fried
(1966), becomes smaller or of the order of the telescope
diameter D. In a long-exposure image formed at wavelength λ,
the diffraction-limited resolution λ/D (0 1 in the visible with a
1 m aperture) is so overcome by the turbulence-induced
resolution λ/r0 (1″ with a typical 10 cm r0).

As demonstrated by Labeyrie in its seminal paper Labeyrie
(1970), this turbulence-induced (variable in time) blurring
effect can be frozen when taking short exposures. The results
are (non averaged) speckle patterns, but still contain the high
angular resolution (HAR) information which can be uncovered
in the Fourier space. The speckle interferometry (SI) method
Labeyrie (1970) hence computes the power spectrum of both
the images of the observed object and a reference star in order
to deduce a quantity, the visibility, which belongs to the
observed object characteristics only. But, the power spectrum
being a modulus squared, any asymmetric information is lost.
The necessity to retrieve, in addition to the modulus of the
Fourier transform (FT), its phase, is hence at the heart of the
HAR techniques. Some advanced speckle processing

algorithms exist, such as the Knox-Thompson method Knox
& Thompson (1974) or the bispectrum technique Weigelt
(1991), but they turn out to be quite heavy in terms of
computation time.
The retrieval of HAR information can also be helped by

lucky imaging (LI), the idea behind LI being that there is an
interestingly non-null probability to obtain a short-exposure
image with a resolution close to the diffraction limit Fried
(1978). With the advent of very low read-out noise camera in
the visible Basden et al. (2004), Baldwin et al. (2001) first
proposed an LI algorithm composed of an image selection
stage followed by a simple method, shift-and-add (SaA) Baba
et al. (1985). The combination of LI and adaptive optics (AO)
correction (see, e.g., mackay et al. 2012), which primary goal is
to enhance image quality, represents hence a quite natural idea
since, as pointed out by Femenía et al. (2011), such an
association permits to use a large fraction of data in the image
selection and/or equivalently to keep better quality images.
In the present article, we analyze a novel LI method, the

power spectrum extended (PSE) technique, combining SI for
the reconstruction of the modulus of the Fourier transform of
the image of the observed object, and an estimation of the
corresponding phase from an ad-hoc SaA method, together
with a proposed selection of the best short exposures.
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Preliminary results using PSE were already presented else-
where Cottalorda et al. (2019), Aristidi et al. (2020), including
a presentation on the results obtained on simulated post-AO
data Cottalorda et al. (2020). Here, we rather focus on a
detailed description of the method itself and its analysis, using
numerical simulations.

The paper is organized as follows. The global scheme and
different steps (selection, alignment, reconstruction in the
Fourier space) of PSE are described in Section 2. A comparison
of the performance obtained with respect to one of the most
efficient LI algorithm, “Image Synthesis based on the Fourier
Amplitude Selection” (ISFAS) Garrel et al. (2012), is presented
in Section 3, on simulated point-spread functions (PSF) first,
and then on simulated images of binary stars and an artificial
satellite. Eventually, a summary and a conclusion are given in
Section 4.

2. The Method

PSE is a LI method which works on time series of short-
exposure images of an object which is then tentatively
reconstructed up to the diffraction limit of the telescope. It
combines a LI process and a SI technique, the main idea being
to compute a SaA image from a selection of short-exposure
frames, and to replace the modulus of the FT of this image by
the square root of the average power spectrum of individual
frames Labeyrie (1970), which contains more information than
a simple SaA. Hence, and this is one of the originality of the
PSE method, the reconstruction of the modulus and the phase
of the FT of the image are performed separately. In addition,
and in order to improve the global reconstruction process, we
propose the amelioration of two important steps of the LI
process: the frame selection and the centroid calculation.

The PSE algorithm can be divided into five steps, detailed
here below.

1. Selection of the best images, using a criterion based on
the evaluation of an instantaneous Fried parameter
(Section 2.3).

2. Alignment of short-exposures in the time series. We
propose an alignment based on the phase difference of the
FT of successive images (Section 2.4).

3. On selected images: computation of the average power
spectrum. The square root of the power spectrum is then
taken as an estimate of the modulus of the FT of the
object.

4. On selected images: add all frames to obtain a SaA
image, and take the phase of its FT.

5. Using the modulus and phase above, invert the FT to
obtain the PSE reconstructed image.

The idea of point (iii) is that the square root of the power
spectrum contains more information than the modulus of the
FT of the long-exposure image, thus leading to a reconstructed

image with more details. However, it should be noted that there
is no compensation of the speckle transfer function (STF) in
our present algorithm, as it is done in Labeyrie’s original
speckle interferometry technique. Indeed, PSE belongs to the
LI family where STF compensation is generally not made (see
for example Garrel et al. 2012). STF compensation could
however be considered with PSE in the future, using either a
modeling such as in Tokovinin (2010), or by subtracting the
cross-spectrum of images separated by a temporal lag greater
than the coherence time, as proposed by Worden et al. (1977)
and used routinely for speckle observations with the PISCO
speckle camera Scardia et al. (2019).
In the following, the algorithm is tested on images distorted

by turbulence, both from numerical simulations and real
observations (Section 2.1). The simulations performed are
described in Section 2.2, while a detailed description of the
steps of the method are presented in the two subsequent
subsections.

2.1. Application on Observations Data

We present in this section an application of the PSE method
on real speckle data. Figure 1 shows two examples of image
reconstruction, on a binary star and on the planet Saturn. The
binary star βDel (Figure 1, left) was observed in the R-band
with the 2 m Bernard-Lyot telescope at the Pic du Midi, France
(see Aristidi et al. 1997 for details on these observations). The
image cube contains 320 short-exposure frames, with a ratio
D/r0; 15. The reconstruction was made from a selection of
the 20% best frames, i.e., 64 images. Despite this small number
of instantaneous images, and the high D/r0 ratio, we can see
that the binary star image appears well restored by PSE.
For the image of Saturn (Figure 1, right), observations were

performed in the visible (λ= 700 nm) with a 35 cm telescope.
The image cube contains 1000 short-exposure frames, with an
exposure time of 50 ms, from which we selected the 20% best
images. The angular diameter of the planet together with its
rings is about 45″, which is much larger than the isoplanatic
angle. The image of the planet shows details close to the
diffraction limit of the telescope.

2.2. Simulations

The simulated data used in this paper were generated by
means of the Software Package CAOS Carbillet et al.
(2005, 2016), part of the CAOS Problem-Solving
Environment, and considering one of the two 1.04 m
telescopes of the “Centre Pédagogique Planète Univers”
(C2PU) Bendjoya et al. (2012), at the plateau de Calern,
Observatoire de la Côte d’Azur, France. These data consist in
cubes of 1000 short-exposure images of a point-source in the
visible-red spectral domain, with 4 pixels per resolution
element λ/D, and for various turbulence conditions. These
conditions are characterized by Fried parameters r0 values of
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7.5 cm, 12 cm, 15 cm, 18 cm, 22 cm, and 30 cm at the
observation wavelength (700 nm), corresponding to D/r0 ratios
from ∼3.5 to ∼14. The vertical repartition of the turbulence for
these simulations is detailed in Table 1, together with the other
relevant physical and numerical parameters.

In order to compare the PSE method with other LI
techniques, we did simulations which can be targeted as
optimistic, in the sense that neither a possible readout noise nor
a realistic temporal evolution of the images are taken into
account. In fact, we have considered that in the case of
EMCCD cameras in which we are particularly interested,
readout noise becomes negligible. Also, images are considered
as instantaneous with respect to temporal evolution of
turbulence, and images are statistically independent (no
temporal evolution of the deformed wavefronts and hence the
subsequent images is considered). We also did consider the
monochromatic case only: there is no modeling of the smearing
effect due to the actual width of the spectral filter in use (a
bandwidth was nonetheless considered for the conversion from
photon numbers to magnitudes in the examples given here-
after). In the other hand, we did have considered the lack of low
spatial frequency suffered by the FFT-based numerical
methods permitting the simulation of atmospherically perturbed
phase screens Lane et al. (1992), Sedmak (1998), and the right
number of subharmonics Carbillet et al. (2011) have been
added in order to overcome this well-known problem.

To check the performances of the method in case of low-light
levels, photon noise was also introduced on the short-exposure
frames. We have so tested different numbers of photons per
image N: 100, 1000, 10,000, and 100,000. We eventually chose
N= 100 photons/image as our low photon level case, and, since
we found no significant difference between N= 10,000
photons/image and N= 100,000 photons/image, we chose
N= 10,000 as our high photon level case. In the case of a
1 m telescope in R band with a bandpass Δλ= 100 nm, an

exposure time of 10ms, and an overall efficiency (including
instrumental transmission) of 30%, the case N= 10,000
(respectively N= 100) corresponds to a magnitude of 8.7
(respectively 13.7).
Figure 1 (left) shows an example of a short-exposure PSF

without photon noise. Images of observed objects (double stars
and a simulated artificial satellite) were obtained by convolu-
tion of the extended object with each short-exposure image,
photon noise being introduced after the convolution. Figure 2
shows an example of an image of an artificial satellite of
angular size 10 λ/D (∼1 4) with r0= 20 cm at the two
selected light levels: N= 10,000 photons/image (middle) and
N= 100 photons/image (right).

Figure 1. Left: PSE image of the double star β Del, from a set of 324 speckle images in the visible (654 nm), at the focus of a 2 m telescope. The selection rate for this
reconstruction is 20%. Right: PSE image of Saturn from a set of 1000 images at a wavelength of 700 nm at the focus of a 35 cm telescope.

Table 1
CN
2 Profile Model Adapted from Voyez et al. (2014) and Other Parameters

Considered for the Simulations

turbulent atmosphere
Fried parameter r0 (at 500 nm) 5–20 cm
turbulent layers’ altitudes [0, 0.5, 3, 6, 10, 13, 16.5] km
turbulent layers’ relative CN

2 [69, 10, 4, 6, 9, 4, 2, 2] %
wave front outer-scale 0 27 m

observing telescope
diameter D 1.04 m
number of pupil pixels 128 × 128
⇒ wave front pixel size 0.8125 cm
obscuration ratio 0.26

image formation
imaging wavelength λ 700 nm
number of image pixels 128 × 128
image pixel size Δx 0 035 ( l

D4
)

⇒ field of view 4 48
number of photons per image N [100, 10,000]
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2.3. Selection and Classification

Image selection is a very important part of LI algorithms. It
is often made by estimating a Strehl ratio on a bright star in the
field Garrel et al. (2012), but this method is not suitable for
extended objects. We propose here an image selection based on
the estimation of an “instantaneous Fried parameter”, an idea
already used in speckle data processing Aristidi et al. (1997).

Indeed, for Kolmogorov turbulence, the speckle transfer
function W(u, v) exhibits a low frequency part which can be
expressed, for low angular frequencies (∣∣ ∣∣ <

l
u r0 ), as Fried

(1966), Roddier (1981):

( ) ∣∣ ∣∣ ( )l
= -

u
W u v

r
, exp 6.88 . 1

0

5
3

⎜ ⎟

⎧
⎨
⎩

⎛
⎝

⎞
⎠
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⎬
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Inverting this relation makes it possible to obtain an estimate of
the Fried parameter:

∣∣ ∣∣
{ ( )}

( )l= -ur
W u v
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with ∣∣ ∣∣ = +u u v2 2 the modulus of the spatial frequency
vector.

Within our data processing, we hence compute an estimate
of W(u, v) as the power spectrum of individual frames, and
obtain an instantaneous Fried parameter. Several estimations of
r0 are calculated on both directions u and v and averaged.

This classification was tested on simulations described in
Section 2.2. A data cube of 6000 images of a point-source with
various turbulence conditions was generated and classified
using our criterion based on the instantaneous Fried parameter.
Results are shown in Figure 3. It is a plot of the estimated value
of r0 as a function of the actual value of the Fried parameter
used in the simulations. Both parameters show a good
correlation, and there is a clear linear relation in between
them. However, they are not equal: our method provides only
a relative estimator of r0, but this is sufficient for image
classification. To study the pertinence of our classification, we
calculated the Strehl ratio of reconstructed PSFs corresponding

to different values of the estimated r0. The results are displayed
in Figure 4 (left). One can see that large r0 values correspond to
large Strehl ratios, as expected. In order to compare our
selection method with the classical selection by means of the
Strehl ratio, we applied both methods to the same data on PSF
images. The result is shown in Figure 4 (right), which displays
the Strehl ratio of the reconstructed image as a function of the
selection rate. We found that the two selection processes are
equivalent for objects where a point-like source dominates,
with a slight advantage for the Strehl selection in the case of
low selection rate.
The method applies also to extended objects. In this case, the

power spectrum in Equation (1) is multiplied by a function of
u. This function is the object square visibility and is the same
whatever the turbulence conditions. In that case the r0 deduced
from Equation (2) is no more a Fried parameter, but has small
(respectively high) values for poor (respectively good)
turbulence conditions. Therefore, it provides also a relative
estimator to classify images.

Figure 2. Simulation of a short-exposure with r0 = 20 cm. Left: PSF without photon noise. Middle: corresponding image of a satellite with 10,000 photons/image.
Right: same object and same PSF but with 100 photons/image.

Figure 3. Instantaneous Fried parameter estimated on simulated short-exposure
PSF images (Equation (2)) against theoretical r0 values used for the simulation.
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2.4. Alignment of Short-exposure Frames

In LI techniques, the alignment of the short-exposure frames
is generally based on the centroid calculated around the
brightest pixel of the image Baldwin et al. (2001). A correct
alignment is indeed critical for image reconstruction, and the
centroid method does not give good results in some cases, for
example in the case of a double star with a similar magnitude
for both components, but also for homogeneous extended
sources.

As an illustration of this problem, we applied both LI and
PSE on short-exposure images of the binary star i Boo,
observed with the telescope Epsilon of C2PU in the near-
infrared (H band, see Aristidi et al. 2020 for more details on

these observations), a binary star with a small magnitude
difference (Δm= 0.09). Figure 5 (left) shows the reconstructed
image using an LI algorithm based on the centroid computa-
tion. We notice the presence of a ghost image of the
companion, evidently due to a bad alignment. In order to
avoid such an artifact, we propose here a method to align
images which works in the Fourier domain.
The underlying idea is to take advantage of a property of the

FT. In fact, shifting an image by a quantity Δr is equivalent to
multiply by a phase term within the Fourier space:

[ ( )] [ ( )] · ( )·+ D = p D r r rI I e , 3u ri2

with [ ]  the FT of å, I(r) the image intensity distribution,
r= (x, y) the spatial position vector, u= (u, v), the spatial

Figure 4. Left: Strehl ratio of reconstructed PSFs as a function of the estimated Fried parameter. Right: Strehl ratio of reconstructed PSFs as a function of the selection
rate, with both a classical Strehl selection and our proposed r0-based selection method.

Figure 5. Reconstructed images of the binary star i Boo, based on short exposures obtained with one of the 1.04 m telescopes of C2PU. Left: LI reconstruction using a
classical SaA method based on the centroid. Right: same but with our alignment method.
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frequency vector, Δr the spatial shift vector. From
Equation (3), one can then write the phase of the cross-
spectrum Φ as the phase difference between the FT of the
shifted image and the FT of the non-shifted image:

( ) ( ) ( ) · ( )j j pF = - = D+Du u u u r2 , 4r r r

where jr(u) is the phase of the FT of I(r).
To align two successive images, we hence compute the

phase of their cross-spectrum and perform a linear fit on the
spatial frequency directions u and v in order to estimate their
relative shift Δr. The second image is then aligned to the first
one by multiplying its FT by the correcting term e−2 i π u·Δ r. To
align all frames of the image cube, we also chose to perform a
gliding alignment: the second image is aligned with the first,
the third image is aligned with the second, and so on.

The alignment process was tested on simulated PSF cubes
from different values of r0, with our two photon noise levels,
and for 50 independent realizations. Each PSF was shifted by 4
pixels in both directions x and y. The shift was then estimated
from the slope of the phase of the cross-spectrum and an
ensemble average was computed on the set of 1000 images and
of 50 realizations of the photon noise. Figure 6 (left) shows the
estimated shift as a function of the ratio D/r0 for the two values
of N. In the case of high-light level, the estimation is accurate
(∼0.05 pixel) for all the D/r0 ratios, while for the case of low-
light level, the error is clearly superior and spectacularly grows
with the largest value of D/r0. If one compares this alignment
method with a classical centroiding algorithm (see Figure 6,
right), it appears that the two methods show equivalent
performance in terms of Strehl ratio.

This alignment process also performs very well on extended
objects. Figure 7 shows an application to real data. The processed
image cube consists of 1000 snapshots of the planet Mars, taken
with a 0.35 m diameter telescope at λ= 700 nm. The left image

is reconstructed via a classical LI process based on the centroid,
with a selection of 20% of the images. As it can be seen, the
center of individual images is not estimated correctly, resulting
into a completely blurred reconstructed image. On the contrary,
the right-hand side image shows the convincing result of using
our cross-spectrum-based alignment process.

2.5. Recovery of the Modulus of the FT

In order to recover the modulus of the FT of the image of the
observed object, we use the Labeyrie’s SI technique Labeyrie
(1970). We compute the average power spectrum of selected
short-exposure images and take its square root to obtain the
modulus of the FT.
The power spectrum for an image limited by the photon

noise is the sum of two terms, the power spectrum of the object
and a constant bias term Goodman (1985), Aime & Aristidi
(1992). In order to subtract the bias, we compute the median of
power spectrum values beyond the cut-off frequency.
A comparison is provided by Figure 8. We used simulated

PSF cubes (see Section 2.2) for different ratios D/r0, and
reconstructed the diffraction-limited image (here an Airy disk)
by a classical SaA algorithm with no image selection. We
compare the modulus of the FT of the resulting image with the
square root of the power spectrum, for the two light level
regimes. The gain is noticeable in the high frequency part,
indeed for 10,000 photons/image and D/r0= 8.7, we have a
ratio of ∼5 between the two quantities.

2.6. Recovery of the Phase of the FT

In the PSE processing, the phase of the FT of the object is
obtained from the image reconstructed by a shift-and-add
process applied to selected (see Section 2.3) and aligned (see
Section 2.4) short-exposure frames. One of the main ideas

Figure 6. Left: measured shift as a function of the ratio D/r0 characterizing the data, and for two values of the number of photons/image: N = 100 (circles) and
N = 10,000 (triangles). To improve the visibility, we applied a small horizontal shift to the points corresponding to N = 10,000 (triangles). The error bars show the
resulting rms from 50 independent photon noise realizations. Right: Strehl ratio against the selection rate for both the conventional centroiding alignment and our
proposed alignment method.
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behind LI is that for low turbulence conditions (e.g., low D/r0
ratio), the dominant effect is the tip-tilt. Hence short-exposure
frames still contain information about the shape of the observed
object. By correcting the tip-tilt (i.e., by applying an SaA
algorithm to short-exposure frames), it is possible to recover an
image of the object. In the PSE processing, the phase of the FT
of this SaA image is taken as the estimate of the phase of the
FT of the object.

We performed a numerical simulation to illustrate the
performances of this phase estimation. We generated a cube
of 1000 short-exposure images of a binary star with an intensity
ratio of 5 and an angular separation of 4λ/D for two turbulence
conditions (D/r0= 3.47 and D/r0= 8.68) and our two light
levels. We calculated the phase of the shift-and-add (PSE with
no image selection) image in all four cases, and compared it

with the phase of the long-exposure image (without tip-tilt
compensation). Results are shown in Figure 9. For the high-
light level case (left), the phase shows a sinusoidal curve which
agrees perfectly with the theoretical phase (black crosses) up to
the telescope cut-off frequency for both D/r0 ratios. The phase
of the long-exposure image (labeled LP within the figure) does
also show a sinusoidal behavior, but only in the low frequency
part of the graph. For the low-light level (right), the phase still
agrees with the theoretical sinusoid but the agreement is better
when the turbulence is low (D/r0= 3.47).

3. Comparison with ISFAS

ISFAS is a LI technique Garrel et al. (2012) which can be
considered one of the most efficient. It has common points with

Figure 7. Reconstructed images of Mars, based on 1000 short-exposure images at the focus of a 0.35 m telescope, at λ = 700 nm. Left: LI reconstruction using an
alignment based on the centroid, with an image selection rate of of 20%. Right: PSE reconstruction (alignment based on the slope of the phase of the cross-spectrum),
with the same image selection rate.

Figure 8.Modulus of the FT of the image reconstructed by a shift-and-add process from a simulated PSF cube of 1000 short-exposure frames, compared to the square
root of the power spectrum used for PSE. Left: 10,000 photons per image. Right: 100 photons per image.
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PSE as it operates in the Fourier plane. In the ISFAS method,
the selection is performed on the modulus of the FT, frequency
by frequency. For selected images, an average of complex
Fourier transforms of images is calculated for each frequency.
Before the selection, each modulus is convolved with a small
spatial Gaussian kernel to average the photon noise. The
reconstructed image is then obtained by taking an inverse
Fourier transform. In this section, we make a comparison
between images reconstructed by PSE and images recon-
structed by ISFAS, for different kinds of simulated objects
(PSF, binary stars, artificial satellite). We also compare
performances of both algorithms for different numbers of
photons and selection rates.

3.1. Results on Simulated PSF

Our first comparison is based on simulated PSF cubes
(Section 2.2). For this comparison we use the Strehl ratio as the
metrics for the quality of reconstructed images, since the Strehl
ratio is a classical metrics to estimate the quality of
reconstruction in LI techniques (see for example Baldwin
et al. 2001; Basden et al. 2004).

The Strehl ratio S can be estimated by means of Equation (5)
of Tokovinin (2002):

( )
p

l
=

D
S

I

I D x

4
, 5max

tot

2
⎛
⎝

⎞
⎠

with Itot and Imax respectively the total and maximum intensity,
and Δx the pixel size in radians.

Figure 10 shows an example of reconstructed PSF obtained
from a data cube as presented in Section 2.2 The selection rate
was 10% and the number of photons per image was N= 100.
Both images are near the diffraction-limit and show the first
bright Airy ring, but the Strehl ratio is higher for PSE (Strehl
ratio of 0.55 for PSE against 0.2 for ISFAS).

Figure 11 shows the Strehl ratio of reconstructed PSF as a
function of the selection rate for N= 100 and N= 10,000
photons per image. We can notice that the Strehl ratio for PSE is
higher than ISFAS, both for low- and high-light levels. Indeed
for a selection rate of 10% in the case of low-light level, we
obtained a Strehl ratio of 0.55 for PSE against 0.2 for ISFAS—
with N= 10,000, the Strehl ratios were respectively 0.59 and
0.41. We can also notice that the Strehl ratio obtained by both
techniques decreases as the selection rate increases. However
this drop is more pronounced for ISFAS (especially at high-light
level), which appears to be more sensitive to image selection.

3.2. Results on a Simulated Double Stars

Our second comparison is based on the relative photometry
of binary stars, which are a prevailing science case for passive

Figure 9. Phase of the FT of the image reconstructed from a simulated cube of 1000 short-exposure images of a binary star with an intensity ratio of 5 and a separation
of 4λ/D. Left: high-light level (10,000 photons/image), right: low-light level (100 photons/image). Curves labeled as PSE denote a reconstruction by the PSE
algorithm. Curves labeled as LP denote the long-exposure image, and black crosses the theoretical phase.

Figure 10. Cut of the reconstructed PSF from a simulated image cube
containing 6000 short-exposure frames with different turbulence conditions
(r0 ä [5–20]cm), with a selection rate of 10% and 100 photons per image. Blue
curve: PSE (Strehl ratio of 0.55), red curve: ISFAS(Strehl ratio of 0.20).

8

Publications of the Astronomical Society of the Pacific, 134:074501 (11pp), 2022 July Cottalorda et al.



HAR techniques. A widely accepted metric of performance for
this case is the precision of determination of binary star
parameters Lillo-Box et al. (2014), Tokovinin (2010). In a
previous communication Aristidi et al. (2020), we applied the
PSE algorithm to double stars observed in the infrared with a
1 m telescope, and compared the precision on astrometric
parameters (angular separation and position angle) with other
techniques (ISFAS, SaA and SI). In this paper, we focus on the
determination of the relative photometry, i.e., the intensity ratio
between the two stars. Our study is based on simulated cubes of
double stars, with a separation ρ= 10λ/D and an intensity ratio
α between 0.05 and 1. The ideal binary object is modeled by
the sum of two impulse functions δ(x)+ α · δ(x− ρ) with x the
angular position vector in the image. We applied the two
algorithms (PSE and ISFAS) to simulated cubes under two
photon noise levels, 100 and 10,000 photons per image, and a
selection rate of 20%. The estimation of the intensity ratio α

was made by using a classical aperture photometry technique
Howell (1989) on each star on reconstructed images.

The results are presented in Figure 12. We show the
estimated intensity ratio αesti as a function of the theoretical
ratio αtheo, for ISFAS and PSE and for the two number of
photons/image. Both methods perform well at high light level,
excepted for ISFAS in the case α= 1. This is a consequence of
the “ghost” effect described in Section 2.4. At low light level,
however, PSE shows more instability and tends to under-
estimate the intensity ratio for small values of α.

3.3. Results on a Simulated Satellite

In this section we present an application of the PSE
technique to a simulated satellite. The object is an artificial
satellite with an angular size of ∼10 λ /D. This size was
chosen so that the satellite remains smaller than the isoplanatic
angle, typically a few arcsec at this wavelength. The

diffraction-limited image of this satellite is shown in
Figure 13 (left). Both PSE and ISFAS algorithms were applied
to simulated short-exposure frames of the satellite under
different photon noise levels. Reconstructed images are shown
in Figure 13 for N= 10,000 photons per image. The PSE
output appears to be more faithful to the diffraction-limited
image, in particular the halo is smaller than for the ISFAS
image, and high resolution details such as satellite edges appear
more clearly.
To quantify the quality of the reconstruction, we used a

metrics based on a relative least-square distance d between the
reconstructed image and the satellite diffraction-limited image:

( ( ) ( ))

( )
ò

ò
=

-r r r

r r
d

I I d

I d
,

DL

DL

2

2

where I(r) (resp. IDL(r)) is the reconstructed image (resp. the
diffraction-limited image) normalized so that its integral is
equal to 1, and r= (x, y) the angular position vector.
Figure 14 shows the distance d as a function of the selection

rate for the two methods, both for N= 100 and N= 10,000
photons per image. We can notice that the distance is lower for
PSE than for ISFAS in all cases. Hence the PSE image appears
closer to the diffraction-limited image than the ISFAS one. For
example, at low-light level, and with a selection rate of 10%,
we get a distance d= 0.6 for PSE against d= 0.7 for ISFAS.

3.4. Computational Speed

Computation time is a challenge for real-time image
reconstruction. In particular, LI algorithms need a first analysis
of the whole data set for image selection before doing the actual
reconstruction. The whole process can be somewhat slow. It

Figure 11. Strehl ratio for reconstructed PSF for PSE and ISFAS as a function
of the selection rate, at high-light level (10,000 photons per image) and low-
light level (100 photons/image).

Figure 12. Intensity ratio αesti estimated on reconstructed images as a function
of the modeled value αtheo, for the two reconstruction algorithms PSE and
ISFAS, and for two number of photons per images (N = 100 and N = 10, 000).
The selection rate is 20%.
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appears that PSE has the advantage to be very fast, compared to
ISFAS.

In this section, we compare computational speed for the two
methods, estimating the time of reconstruction of the object
from a simulated data cube of 6000 short-exposure images with
various turbulence conditions, as described in Section 2.2. We
made these simulations at low-light level (N= 100 photons per
image).

This benchmark was realised on a PC equipped with an
Intel® CoreTM i7-8850H processor, with a frequency of
2.60 GHz and 32 GB memory. The programming language
was Python. The computation time was determined for
different selection rates.

Results are presented in Figure 15. We have plotted the time
of execution per image against the selection rate. We can notice
that PSE is faster than ISFAS for low selection rates. As an
example, for a selection rate of 10%, we get 3.4 ms per image
for PSE against 25.3 ms for ISFAS. This is a gain of CPU time
of a factor ∼7, which opens interesting perspectives for near
real-time PSE processing.

4. Summary and Discussion

In this paper, we have analyzed the LI technique PSE for
reconstruction of images distorted by atmospheric turbulence.
It mixes a shift-and-add algorithm with speckle techniques. We
also propose new ideas to select and align short-exposure
frames. The application of these techniques to real speckle data,
shown in Section 2.1, looks encouraging. This technique can
also be applied to post-AO short exposure images, and first
attempts were presented in Cottalorda et al. (2020).
The performance of the technique was investigated by means

of numerical simulations, with different turbulence regimes, at
high- and low-light levels, and for different kinds of objects.
The PSE technique looks promising, and provides satisfactory
image reconstruction for low D/r0 ratios. PSE improves three
main steps of the LI processing: the image alignment, the
image selection, and use of the average power spectrum on
instantaneous images to replace the modulus of the long-
exposure image. It provides images with more details than
classical LI algorithms as high angular frequencies are

Figure 13. Reconstructed image of a simulated artificial satellite from 6000 short-exposure frames with different r0 (5–20cm) and 10,000 photons per image. The
selection rate was 20%. Left: diffraction-limited image of the satellite. Middle: ISFAS reconstruction. Right: PSE reconstruction.

Figure 14. Distance d for the PSE and the ISFAS techniques, both for N = 100
and N = 10,000 photons per image. Figure 15. CPU time per image for the reconstruction of a PSF using PSE and

ISFAS algorithms, as a function of the selection rate (see text for details).
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enhanced. It also solves centering problems with extended
sources or double stars with low magnitude difference. Its
performances appear to be similar or superior to the ISFAS
method for extended objects or images of PSFs. But ISFAS
seems to perform better for relative photometry of double stars
having a large intensity ratio.

One of the main advantages of PSE is the speed of
reconstruction: a few milliseconds are required to process an
image, this opens the possibility to perform near real-time
image reconstruction, which is particularly interesting for
rapidly changing objects such as moving artificial satellites.
Another advantage is its simplicity: it is very easy to implement
and this could be interesting for educational purposes too.

A drawback of PSE is the lack of compensation of the STF
in the power spectrum of images, as it is done in speckle
processing, but this is a criticism that can be made to other LI
or SaA algorithms. There is room for improvement here, and
we plan to work on this point in the future.

The authors wish to thank deeply the anonymous referee for
his thorough reading of the manuscript. This work is part of the
PhD thesis work of Éric Cottalorda, done within the framework
of a CIFRE convention between Ariane Group and the Centre
National de la Recherche Scientifique (CNRS) through its
Lagrange laboratory (Université Côte d’Azur, Observatoire de
la Côte d’Azur, CNRS).
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