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When equipped with adaptive optics, the coming generation of large 6-10-m telescopes can combine huge light
grasp with very sharp images. We describe a specific design concept for recovery of diffraction-limited images
in the 1.6- and the 2.2-1km atmospheric windows, yielding 0.05-arcsec resolution for an 8-m telescope. Our goal
has been to achieve this performance routinely by not requiring above-average atmospheric conditions or the use
of unusually bright nearby stars. Atmospheric blurring is sensed with a sodium laser beacon of a few watts.
Image motion is sensed by starlight, with a quadrant detector that is sensitive to the broad infrared band in
which photon flux is typically largest and the field star has been sharpened by laser-beacon correction that is
shared with the science target. A detailed performance analysis shows that for typical conditions Strehl ratios
of >25% are expected at 2.2 /im, with the probability of finding a sufficiently bright field star exceeding 50%.

1. INTRODUCTION

We are in a period of rapid and innovative progress in
adaptive optics. The technique suggested 40 years ago by
Babcock' for sensing and correcting atmospheric blurring
of starlight in real time is now being developed at several
telescopes. Adaptive correction holds its greatest prom-
ise when it is used to recover diffraction-limited resolution
with the new generation of telescopes with -8-m aperture
and when it is located at high-quality sites. In the next
few years we should see U.S. astronomers with several
such telescopes in addition to the newly completed Keck
10-m segmented-mirror telescope. The present study has
as its first major goal the adaptive correction of the first
of the new large telescopes with a continuous-mirror
surface.

Astronomical telescopes undertake a great variety of
observations. Sources under study vary over 10 orders of
magnitude in brightness and are recorded at all wave-
lengths that are transmitted by the atmosphere. As a re-
sult, almost any adaptive correction that yields improved
image sharpness can be used to the benefit of some type of
observation. Relatively simple low-order systems that
sense the aberrations in starlight can bring dramatic im-
provements to some infrared observations. Results from
operational adaptive systems for astronomy have therefore
been obtained almost exclusively in this area. The atmo-
spheric windows in the infrared that are most attractive
for astronomy are the H band , which extends from 1.4 to
1.8 /-tm in wavelength, and the K band, which extends
from 2 to 2.5 jAm. Array detectors for this region are
approaching the high performance that has already been
achieved below 1 m with silicon CCD's, and atmospheric
thermal background is not problematic, at least below
2.3 ,um. Astronomers at the 3.5-m European Southern
Observatory New Technology Telescope2 and at the 3.6-m

Canada-France-Hawaii Telescope3 4 have achieved near-
diffraction-limited resolution in these bands with bright
reference stars. Our own program with the current 6.9-m
segmented and dilute Multiple Mirror Telescope (MMT)
aperture recently used phase measurements in a closed
adaptive system to recover the full-diffraction-limited
beam profile of a bright star, 0.075 arcsec FWHM at the
2.2-Am wavelength. 5

The goals for military adaptive-optics systems have
been more restricted and far more ambitious than for
astronomy, typically consisting of optical correction of
fast-moving targets observed from sites with relatively
strong atmospheric blurring. To probe the detailed struc-
ture of the optical wave-front aberration, artificial starlike
beacons are produced by the atmospherically scattered
light of powerful laser beams that are directed toward the
program object. The details of successful results with
1-m-class telescopes over the past 10 years have recently
been declassified and have been reported by Fugate et al.,6

Primmerman et al.,7 and Sandler et al.'
We have studied by analysis and telescope experiments

how laser-beacon methods could best be adapted in the
near future to correct 8-m-class astronomical telescopes.
These studies have led to a specific design concept based
on well-established technology, to be implemented first at
the 6.5-m MMT upgrade. At a later date it would be ap-
plied at the 8-m size, including the Large Binocular Tele-
scope with twin 8.4-m apertures, which will give the
highest-resolution compound adaptive system, with the
resolution of a 23-m baseline.9 The design and the calcu-
lated performance of a single 8-m system are the subjects
of this paper.

Our goal for image quality is not simply a sharpening of
the atmospherically blurred image but specifically to get a
significant amount of optical energy into the diffraction-
limited beam profile, under normal, not exceptional, at-
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mospheric conditions. We recognize that this is a diffi-
cult task, especially when the source to be corrected may
be undetectable except with very long exposures. Even
under the best laboratory conditions and with ideal laser
interferometry, it is not easy to stabilize, to test, and to
correct an 8-m mirror to better than 0.05-arcsec accuracy.
Recovering such wave-front quality in the face of large
and complex aberrations that change on a time scale of
milliseconds is an extraordinary challenge. It requires a
system that is optimized to develop and to use wave-front
information to the maximum advantage. There are many
potential sources of residual error that, when compounded,
could defeat the high-resolution goal. The analysis and
control of these errors are the main thrust of this paper.
Some of the most important errors to control are those
originating at the telescope itself. Here we assume that
these have been reduced to the point that the inherent
wave-front quality at the best sites are realized. Tele-
scopes based on rigid honeycomb mirrors with controlled
temperature, such as that being made for the MMT, are
designed to meet these goals in practice.

Allowing for all sources of residual image degradation,
we aim for a Strehl ratio S in the final image of S > 0.25
under typical conditions and S > 0.5 under favorable con-
ditions. Even at 0.25, deconvolution will permit the pro-
duction of images showing faint objects at the diffraction
limit. The analysis given below estimates the contribu-
tion to the total mean-square wave-front error from each
of the individual sources, particularly those associated
with imperfect sampling of the atmospheric column to
the program project by both the field-star light and the
laser light.

The remainder of the paper is structured in the follow-
ing manner. Section 2 gives an overview of the system
design concept. Section 3 sets out the types of error that
arise in the adaptive-correction system and how these
combine to affect overall performance. Section 4 summa-
rizes the optical properties of the atmosphere. We give a
prescription for vertical distributions of turbulence that
are believed to be representative of typical conditions at
the best sites for use in the subsequent analysis. Sec-
tion 5 deals with the accuracy of determining the wave-
front tilt at the program object from images of a star.
Contributions to the total error from the difference in
light paths and from photon and detector noise, and the
probability of finding field stars that are bright and close
enough, are calculated. Section 6 deals with similar er-
rors from the laser beacon, resulting from differences in
the light paths (because of the finite beacon altitude) and
from different noise sources. In Section 7 the overall
system performance is calculated. We show that good
performance in the H and the K bands is predicted, meet-
ing the goals set out above.

2. SYSTEM OVERVIEW

A conceptual layout for the adaptive system is shown in
Fig. 1. In brief, the elements are as follows:

Laser Beacon
We envisage the laser beacon to be a commercially avail-
able dye laser of a few watts of power, tuned to the sodium-
resonance line.0"" The collimated beam of -0.5-m di-

ameter is directed along the line of sight by a flat in front
of the telescope secondary mirror. The beacon for wave-
front reconstruction is produced by resonance scattering
by sodium atoms in the mesospheric layer at a 90-km alti-
tude. The power requirement is modest because adequate
sampling for wave-front correction in the infrared is pro-
vided by relatively large subaperture sizes of -1 m, and
sensing is with a CCD of high quantum efficiency and
low readout noise. The aberrations caused by the finite
height of the beacon are not a serious problem for correc-
tion in these infrared bands (see Section 6).

Adaptive Mirror
Our goal for lowest emissivity in the infrared is to make
the secondary mirror adaptive, thus avoiding the need for
pupil-reimaging optics and making adaptive correction
available for all instruments, including spectrographs as
well as imaging arrays. For convenience, we analyze a
segmented mirror made up of 52 square segments that are
controlled in piston, tip, and tilt (see Fig. 12 below). Note,
however, that our system design is compatible with adap-
tive mirrors made from continuous flexible face sheets.

Imaging Detector
For imaging of program objects in the H and the K bands
the best detector currently available is the NICMOS3 ar-
ray," a 256-pixel square array of HgCdTe. It has high
quantum efficiency and a readout noise of 30 electrons
rms. Sampling at -0.015 arcsec/pixel would yield a field
of 3.75 arcsec for one array. Because the isoplanatic
fields of 15-30-arcsec diameter that are to be realized by
8-m telescopes are much larger, they will require the use
of mosaics and larger individual devices.

Field-Star Motion Sensor
Atmospherically induced image motion must be corrected
and is not sensed by the laser beacon.0 " The program

-0-
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IMAGE OF
SCIENCE OBJECT
(NICMOS3 DETECTOR
OR SPECTROGRAPH)
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TILT DETECTOR 1.25-2.3in
(IR QUAD CELL) BAND

WAVE-FRONT LASER
COMPUTER WAVE-FRONT

(TRANSPUTER ARRAY SENSOR
OR DSP CHIP) (32 x 32 CCD)

Fig. 1. Conceptual layout of the adaptive-optical system for cor-
recting 8-m telescopes at A = 1.6 to A = 2.2 ,.m. DSP, digital
signal processor. Refer to the text for an explanation of the
components.
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object itself may provide an adequate source, or, if it is too
faint, motion must be sensed from a nearby field star.3

Our concept calls for sensing image motion in a broad in-
frared band from 1.25 to 2.3 gim, where the photon fluxes
are typically highest. An improvement over existing
infrared detector noise is projected for a quad-cell array
with the desired readout noise of 5 electrons rms. The
infrared field-star images benefit from image sharpening
provided by the beacon, as we show below. Under these
conditions one can utilize close guide stars that at optical
wavelengths would be too faint and too blurred for useful
centroid measurement. In this way much fuller than
usual sky cover is obtained (see Section 5).

Laser Wave-Front Sensor and Wave-Front Computer
The wave-front sensor is a Shack-Hartmann sensor,1 1"3

which forms some 52 images of the laser star from differ-
ent subapertures of the full pupil, with each 1-m subaper-
ture mapping onto a 2 X 2 array of CCD pixels. Optics
that allow for the alignment of each image at a pixel inter-
section are described by Wittman et al. 3 The centroid
displacement of each image is proportional to the local tilt
over the subaperture.

We envisage the use of a 32 32 pixel CCD detector of
the type that is being developed by Geary,'4 which should
yield readout noise as low as 3 electrons rms for a 1-ms
readout time. Quantum efficiency Ž0.9 will be achieved
with the thinning and the coating methods developed by
Lesser et al.15

The wave-front computer will perform a 52 104 ma-
trix multiply to yield the 52 piston values from the 52 x-
and the 52 y-slope values. We budget 0.25 ms to perform
the computation, which we project can readily be achieved
with a transputer array or with one of the new commer-
cial digital signal processor chips.

3. WAVE-FRONT ERRORS

A. Strehl-Ratio Formulas
The adaptive system that is outlined in Section 2 is used
to measure and to correct for the wave-front distortion
caused by turbulence between the telescope and the sci-
ence object. The distortion can be pictured as a rapidly
changing phase surface consisting of a global tilt, or a
wedge, which causes random image motion on the science
detector, in addition to random amounts of focus and
astigmatism and higher modes, down to a spatial scale of
-1 m. These latter modes lead to blurring of the science
image by broadening the point-spread function of the tele-
scope. Superposed on these distortions are still higher
frequency components of small amplitude, which disperse
energy into the wings of the optical point-spread function
but are of little consequence in the infrared. No adaptive-
optics system is perfect, so there will be residual wave-
front errors during operation of the system that combine
to degrade the ideal Airy pattern. In this section we
summarize the most important errors, which are then
quantified in the remainder of the paper.

To establish notation, we assume that the wave front at
point x at the pupil is

IPx) = A e x + (x), (1)
A

where 0 is the atmospheric wedge and 4D(x) is the higher-
order wave-front distortion. Let the estimated tilt ob-
tained with field-star photons be 0, and let the estimated
higher-order wave front that is obtained with laser-star
photons be 4>(x). Then the instantaneous uncertainty in
the value of the wedge is

0 = e - 0,
and the uncertainty in the higher-order wave front is

+(x) = @(x) - (x).

(2)

(3)

We assume that the errors [Eqs. (2) and (3)] have zero
mean, which means that the relative alignment of the
science and the tilt detectors is calibrated, and we remove
the overall piston of the wave front before moving the
deformable-mirror actuators. The total wave-front error
4i can then be written as

qf(x) = 2i -x + +(x).
A

(4)

Based on our goal of recovering diffraction-limited per-
formance, we take the far-field Strehl ratio to be the mea-
sure of performance. To define the Strehl ratio, let I(r)
be the illumination of the detector at point r in the focal
plane for a point-source object. The intensity in the ab-
sence of aberrations is Idl(r), the diffraction-limited Airy
pattern. For an aberrated wave front the Strehl ratio is
defined as3

M(I(r))
Idl(rc)

(5)

where r is the position of the detector pixel at the maxi-
mum of the Airy pattern and where () indicates a long-
exposure ensemble average over many realizations of
atmospheric turbulence and measurement noise. The
Strehl ratio in the presence of a wave-front error [Eq. (4)]
is

s = 16 exp[- 4 DP(xx')j(x)w(x')dxdx'

where w(x) is the telescope pupil function:

W() {1 if X < D/2
0 otherwise

and where

D*(x, x') ([qf(x) - (x')] 2)

(6)

(7)

(8)

is the structure function for the residual error i.
Equations (6)-(8) provide an exact expression for calcu-

lating the expected Strehl ratio [Eq. (5)] for the residual
error [Eq. (4)]. However, the expression is not convenient
for design analysis, since it leads to a complicated formula
involving correlations of the wave-front error over the
pupil. A simpler, physical model sheds more light on the
effect of wave-front errors on Strehl ratio, and past expe-
rience with simulations has shown that it leads to a good
approximation for the exact Strehl ratio for the conditions
we treat in this paper. The simple model treats the atmo-
spheric tilt and the high-order wave-front errors sepa-
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rately. The tilt causes smearing during long exposures by
causing the image to jitter about point r,. If we model the
error in estimating the atmospheric wedge as a Gaussian
random variable and assume that the main Airy envelope
approximates a Gaussian profile of width A/D, then the
on-axis reduction of intensity is

SO = 1 (9 crS6 7r2 / \ 2()
2 (A/DJ

In Eq. (9), c2 is the mean-square tilt error:

a. 2- 1 [(o.X)2 + ( Y)2], (10)
2

corresponding to the average mean-square residual jitter
that is measured along the axes of the infrared centroid
detector. Strictly put, Eq. (9) is appropriate to cases in
which the high-order errors have been partially corrected
so that a significant fraction of the energy is within the
first Airy disk. The rms error as contains contributions
from several error sources, which we discuss below in
Subsection 3.A.

The effect of high-order wave-front errors is to reduce
the on-axis peak intensity by dispersing energy out of the
central Airy disk. Taking qi in Eq. (8) to be the residual
high-order error ¢, we find that

D,(x,x') = 2Uo2 - 2(0 (x)4)(x)), (11)

where ao, is the rms error over the pupil:

a = [D2 f w(x)(02(x))dx]. (12)

Inserting Eq. (11) into Eq. (6) with Ai 4, we find the
higher-order Strehl ratio to be

S = exp( -c-,62) + f6 I exp[-(-P(x)P(x))]

X w(x)w(x')dxdx'. (13)

We take the first term on the right-hand side of Eq. (13) as
our approximation to the high-order Strehl ratio:

So= exp(-cr,2). (14)

The second term on the right-hand side of Eq. (13) repre-
sents a correction to the Strehl ratio that introduces
spatial correlations of high-order wave-front errors.
Equation (14), which neglects these correlations, is a good
approximation for a random mix of errors totaling o '
1 rad, which will be mostly true for our analysis. Bear in
mind, however, that Eq. (14) will tend to overestimate the
degradation in the Strehl ratio, since it amounts to over-
counting especially the highest-frequency errors, but we
consider this to be a tolerable error for our system design
analysis.

Relying on our approximation that tilt and high-order
errors work independently to degrade the Strehl ratio, to
estimate the total system Strehl ratio S for the correction
of both tilt and high-order wave-front errors we multiply
the tilt and the high-order Strehl ratios:

S = SS". (15)

We now proceed to describe the major contributions to cr
and o,.

B. Tilt Errors
There are three major sources of error in correcting for
the effects of atmospheric jitter:

1. Anisoplanatism
The field star that is used for tilt sensing will often be
displaced in angle from the center of the science object.
Thus the light from the star will encounter a slightly dif-
ferent atmospheric wedge than will light from the science
object. Although there is a high degree of overlap be-
tween the two wedges, the small difference means that
the centroid position recorded on the tilt detector of Fig. 1
will not be the true tilt. We call the rms value of off-axis
sampling error co.SO-

2. Centroid Uncertainty
Except for the brightest field stars, the centroid of the
field star will be measured imperfectly because of photon-
counting statistics in the light of the star and the sky
background and because of readout noise for the infrared
quadrant detector. The rms measurement uncertainty,
which we call cronoise, will depend on the size of the field-
star image, the photon flux from the field star and the
sky, and the properties of the detector.

3. Temporal Decorrelation
The atmospheric wedge will change with time, as one real-
ization of optical turbulence evolves into another. The
motion of the field-star image during integration and
the time delay between measuring and correcting for the
wedge will thus introduce a tilt error with the rms value

time

The total one-axis mean-square tilt error is taken to be
the sum of the above error sources:

Co 2 = (ois0) 2 + (noise) 2 + (co time)2 (16)

which is used with Eq. (9) to calculate the tilt Strehl
ratio So.

C. High-Order Wave-Front Errors
The laser spot that is projected at 90 km will provide
backscattered photons for measuring the shape of the
wave front that is to be applied to the deformable mirror.
There are several sources of error in this process:

1. Cone Error for Laser Star
The wave front from a laser star samples the turbulent
layers by accumulating phase distortion along a spherical
wave path with a 90-km radius of curvature. Thus the
rays from the laser star sweep out a cone instead of the
desired cylindrical column of air between the telescope
and the science object. Because of this effect the local
tilts that are measured by the Shack-Hartmann centroids
do not correspond to the true atmospheric tilts but rather
contain errors that accumulate linearly with the height
of the turbulent layers. The result is to introduce an
error into the measured wave front with the rms value
I son . The cone error sets the fundamental limit to
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how accurately a telescope can be corrected with a single
laser beacon.

2. Reconstruction Error
The Shack-Hartmann centroids contain measurement
uncertainties because of photon-counting statistics and
CCD noise, which depend on the number of backscattered
sodium photons and hence on the laser power as well as
the spot-image profiles for each subaperture. This leads
to an rms error a-pd in the wave-front phase-difference val-
ues that are derived from the measured slopes. These
errors in turn propagate through the wave-front recon-
struction process, resulting in an rms wave-front error
0 ,rec in the final reconstructed wave front.

3. Temporal-Decorrelation Errors
Just as the atmospheric wedge decorrelates as described
above, so do the wedges over each subaperture. This ef-
fect places limits on the Shack-Hartmann integration
time and on the delay time between sensing the laser light
and having the deformable mirror settle to the shape of
the new reconstructed wave front. We call the rms error
that is associated with the time delay -,,time.

4. Wave-Front Fitting Error
Because of its finite number of actuators, the deformable
mirror will not conform exactly to the shape of the atmo-
spheric wave front. Also, the spatial-frequency compo-
nents of turbulence with scale lengths less than the
segment size will remain uncorrected. We call the result-
ing wave-front error the fitting error and use fit to de-
note its rms value.

5. Higher-OrderAnisoplanatism
Wave-front sampling errors arise for those parts of the
program object that are displaced from the axis of the
laser backscatter cone. The rays from the laser star then
sample a wave front that is slightly offset with respect to
the wave front over the telescope. We call the rms high-
order anisoplanatic error o-,,'-.

The total high-order wave-front error is

0r 2 = ( cone)2 + ( rec)2 + (time)2 + (. iso)2. (17)

Note that Eqs. (14) and (17) show that the Strehl ratio
can be computed as the product of individual Strehl ratios
for each error source. For example, we refer to the
cone-effect Strehl ratio, which means the quantity
exp[- (0 .cone)2].

4. ATMOSPHERIC CHARACTERIZATION

A. Atmospheric Parameters
To predict and to optimize the performance of any
adaptive-optics system it is necessary to model the turbu-
lence in the atmosphere, including its variation with
height. Standard models for atmospheric turbulence have
been developed that are appropriate for the sites used for
military experiments. The sites for astronomical tele-
scopes do not suffer from the same degree of low-altitude
turbulence. In this section we describe the model atmo-
spheres that are believed to be appropriate for the very-
large-telescope sites.

We begin with a short introduction to the parameters
that characterize atmospheric wave-front aberrations.
These are modeled on the basis of Kolmogorov turbu-
lence'6 as applied to the atmosphere. The validity of this
description, at least in broad terms, is verified by many
experiments, including our own over the 7-m aperture at
the MMT.

The spatial scale of turbulent wave-front distortion at
wavelength A is characterized by a coherence length r,
given by'7

ro0
5 3 = 0.423k2 sec(f I C,2(z)dz, (18)

where k = 2T7r/A and C"2(z) is the index-of-refraction struc-
ture constant16 at altitude z. In Eq. (18), f is the zenith
angle, so that z sec(e) is the line-of-sight distance to a tur-
bulent layer at altitude z. The normalization is such that,
over any random patch of size r across the pupil, the wave-
front error consists of 1 rad rms of tip-tilt plus a small
(0.36-rad rms) higher-order residual error. Thus an image
of a star through the patch would be diffraction limited
except for image motion. For telescope diameter D >>
ro, the random patches are out of phase, leading to an rms
high-order wave-front distortion

o-0, = 0 O3 ) (19)

The rms magnitude of the one-axis global atmospheric tilt
is also a function of Dro:

a = 043D -) (20)

The parameter r weights equally the turbulence at all
heights in the atmosphere. However, when adaptive cor-
rection is to be made, the variations of turbulence and
wind speed with height become significant factors. Sup-
pose the wave front from one star has been perfectly cor-
rected at a given instant, at an image of the telescope
pupil. The wave front of a nearby star at angle 0 follows a
slightly different path through the atmosphere and will
therefore not be perfectly corrected. In the limit of large
D/ro the resulting wave-front error is given by'9

0.0iso (0) (21)

for Kolmogorov turbulence. The size of the isoplanatic
angle 0o is given by

00-5/3 = 2.91k2 seC813({) f C2(Z)Z513dz. (22)

In practice Eq. (21) does not hold for the finite values of
Dlro that are of interest here. In this case the total wave-
front error is a complicated function of both 0 and Dro,
and we must resort to numerical evaluation of the error.
Examples are given in Section 5.

The temporal evolution of turbulence is such that, for
the same star, a perfect correction at one instant will be
in error at a later time At by an amount

Atime (At)56 (23)
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Fig. 2. Turbulent index-of-refraction profiles used in our analy-
sis and simulations. Gray curve, MK model derived from data in
Ref. 21. Solid black curve, MMK model with the 4-km MK layer
moved to 10 km. Dashed curve, version of the Hufnagel-Valley
model used in Ref. 23.

where

to = 0.31-
vw

and v-, is an effective turbulence-weighted wind speed20

for all the turbulent layers:

f Cn2(z)V 5.1 3 (z)dz
V 5 3 = . (24)

f C2(z)dz

Equation (23) is exact only when VAt is much less than
the subaperture size. Adaptive correction must be per-
formed on time scales At < to to limit the degradation
from rapidly changing turbulence profiles that are caused
by atmospheric winds.

The turbulence power spectrum'6 obeys a k"' 3 power
law, where k is the Fourier wave number, so that in the
spatial domain low-order wave-front errors are larger in
magnitude than are high-spatial-frequency errors. For
instance, in the Zernike representation' 8 global tilt ac-
counts for 87% of the mean-square turbulence-induced
wave-front error, with focus and astigmatism accounting
for the next 7%. The remaining 6% is nearly evenly dis-
tributed down to the Zernike mode whose spatial fre-
quency corresponds to 1hro. The stronger low-order modes
have effectively larger isoplanatic angles and decorrelation-
time constants because the correlation of two shifted but
overlapping wave fronts increases as the spatial scale of
the wave front grows.

We note that r, 00, and to all depend on wavelength as
the A615 power. This has serious implications for the com-
plexity of adaptive systems. The coherence length affects
system design through the number of actuators, (r/4)
(D/ro)2 , and their required stroke and also dictates guide-
star brightness and laser power by defining the size of col-
lection subapertures. The isoplanatic angle limits the use
of guide stars by setting limits on the off-axis angle for a
given degree of correction and on the size of the corrected
image. The decorrelation time determines permissible

integration times, placing a lower limit on the useful flux
level for a guide star, putting strict limits on the response
speed of the deformable mirror and on the required laser
power, and setting the computational speed required for
the wave-front processing.

B. Model Atmospheres for Good Astronomical Sites
We investigated three model turbulence profiles, shown in
Fig. 2. What we call the Mauna Kea (MK) model was
taken from scintillation detection and ranging (scidar)
data that were obtained on Mauna Kea, as reported in
Ref. 21. We supplemented the reported values of C,,2 at a
higher altitude with a strong layer at 4 km to give an ro of
18 cm at A = 0.5 Am. For our calculations we assume
that the 8-m telescope is located at a site 3 km above sea
level. The MK model gives a value of 00 = 3 arcsec at
A = 0.5 Am for the isoplanatic angle and is the most be-
nign of our models in its representation of high-altitude
turbulence.

The turbulence at 8-15 km plays the most important
role in determining adaptive-system performance.
Beland2 2 recently presented C,2 data that were obtained
from balloonborne microthermal measurements over a
variety of sites worldwide at different times of the year.
One feature of the data was the variability of the strength
of turbulence in the 8-12-km region, where C,2 values
ranged over almost an order of magnitude from 10-16 m-213

to 10-17 m-213, depending on location, jet stream conditions,
and time of year. Since the MK model has a relatively
thin, weak layer at 10 km, we invented a fictitious modi-
fied Mauna Kea (MMK) model, which brings the added
ground layer to as high as 10 km, resulting in a stronger,
thicker midaltitude layer. The MMK model gives ro=
15 cm and 00 = 1.3 arcsec at A = 0.5 ,m. We believe that
it is pessimistic enough to set an upper bound on the
deleterious effects of midaltitude turbulence on system
performance under most conditions.

Finally, for comparison we also show the version of the
Hufnagel-Valley (HV) family of profiles that were used in
the original research of Valley and Wandzura23 on off-axis
decorrelation of Zernike modes. The HV model that is
used here corresponds to ro = 18 cm and 00 = 1.5 arcsec at
A = 0.5 gm. We show that it is midway between the MK
and the MMK models in predicting the performance
degradation arising from 8-15-km turbulence.

We conclude this section by summarizing in Table 1 the
values of ro, 00, and to for the MK and the MMK models at
wavelengths of 0.5, 1.6, and 2.2 ,um. The assumed wind
speeds were iv= 25 m/s for the MMK model and V. =
15 m/s for the MK model. We believe that, with
ro = 18 cm, relatively weak high-altitude turbulence, and
relatively low wind speed, MK represents somewhat better
than average conditions at a good site, whereas MMK is
somewhat worse than average.

5. ANALYSIS OF TILT ERRORS

A. Off-Axis Error
A procedure for calculating the isoplanatic error in esti-
mating low-order wave-front distortion was developed by
Valley and Wandzura.23 As shown in Appendix 1, the
mean-square error for estimating tilt in one axis with an
off-axis field star is

Sandler et al.

lo-16



Vol. 11, No. 2/February 1994/J. Opt. Soc. Am. A 931

Table 1. Atmospheric Parameters for the MK and the MMK Turbulence Models at A = 0.5, A = 1.6,
A = 2.2 ,um

Parameter MK MMK
A = 0.5 m A = 1.6 Ium A = 2.2 m A = 0.5 Ium A = 1.6 Ium A = 2.2 m

ro (m) 0.18 0.72 1.06 0.15 0.61 0.89
Oo (arcsec) 3.0 12.0 17.7 1.3 5.2 7.7

to (s) 3.6 14.4 21.2 1.8 7.2 10.6
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0
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150 200

The corresponding plots for the MMK model are shown in
Fig. 4. Note that since o is an angular uncertainty its
absolute magnitude is independent of wavelength. [The
wavelength dependence of r cancels the A2 term in
Eq. (25).] In units of A/D, then, it exhibits a linear depen-
dence on A, as is shown in Figs. 3(a) and 4(a). Figure 3(b)
shows that for bright stars, for which anisoplanatism is
the dominant error, the permissible field separation for a
tilt Strehl ratio of 0.5 is 15 arcsec in the visible and
1 arcmin at 2 /rm. For the MMK model, with its strong
layer at 10 km, these angles are halved, as is illustrated in
Fig. 4(b).

B. Tilt-Image Centroiding Error
The tilt-image centroiding error will set magnitude limits
for tilt field stars and thus determine sky coverage. We

2

-JI
a:

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

a
;:
M0
wr
I-
-J
F;

10

8

6

4

2

0
0 50 100 150 200

ANGLE(ARCSEC)

(b)
Fig. 3. Rms off-axis tilt error, and corresponding Strehl ratios
versus field-star angle, for three wavelengths. The curves are
for D = 8 m and the MK turbulence model. (a) The rms angular
error (one axis) is in units of A/D. (b) The Strehl ratios were
computed with Eq. (9).

(ufiso)2= -(0448)( - F)(D) (D) ' (25)

where 2 is a correlation parameter taking on the values
r2 = 1 for perfect (on-axis) correlation and F2 = 1/2 for no
correlation between the field-star and the science-object
atmospheric wedges. The correlation parameters for MK
and MMK turbulence are plotted versus field-star angle in
Fig. 15 of Appendix 1 below.

The rms one-axis tilt errors, obtained by averaging er-
rors that are perpendicular and parallel to the direction of
separation, for A = 0.5 ,um, A = 1 Lkm, and A = 2 ,/m are
given in Fig. 3(a) for the MK model. Figure 3(b) shows
the corresponding Strehl ratio, computed with Eq. (9).
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(a)

weakly with wavelength. However, during operation of
adaptive correction with a laser pointed at the program
object, image width is itself a strong function of wave-
length and angular distance from the program object. It
follows that there may be a strong advantage in measuring
a given field-star centroid in the infrared, where the iso-
planatic angle is larger and the image sharper.

In Section 6 we show that the high-order laser correc-
tion results in near-diffraction-limited correction of the
science object in the H and the K bands. Thus the wave
front in the object direction will be nearly flat, so that the
dominant source of beam spread in the field-star direction
is off-axis anisoplanatism. Figure 5 shows simulated im-
ages at three wavelengths of a field star 25 arcsec from
the laser-star direction, assuming that the laser star has
completely flattened the on-axis wave front. To generate
the images, we performed Monte Carlo simulations with
ten Kolmogorov phase screens spaced between 3 and
20 km. Rays from the field star were traced through the
screens to generate the wave-front errors. The images
were computed by Fraunhofer propagation of the aber-

(b)

(a)

(c)

Fig. 5. Simulated images of guide stars at a 25-arcsec field angle
for (a) A = 2 lm, (b) A = 1.5 pm, and (c) A = 0.7 m, obtained
with the MK turbulence model. The stars were imaged through
an 8-m telescope that was precorrected in the target-object direc-
tion with a sodium laser guide star.

anoise is given by

(b)
(26)

show in Appendix 2 that where w is the FWHM of the
image in units of the diffraction-limited image width A/D
and where the value of the parameter a that is appropriate
for our situation is 0.7.

The desired values of a0noise are small, being limited to
<<A/D. From Eq. (9), if the Strehl ratio from measure-
ment error alone is to be higher than 0.6, then the rms
centroid error must be less than 0.015 arcsec for H-band
imaging and 0.02 arcsec for the K band.

The photon flux that is needed to produce such accurate
centroiding varies as the square of the image width, in the
limit of a low-noise detector. Natural images that are
formed through atmospheric distortion vary in width only

(c)
Fig. 6. Same data and conditions as for Fig. 5, obtained with the
MMK turbulence model.

nroise = CYWA 1 ( 4n 2 /2
0., oie aWD \N/K + 
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(a) (C)

(b) (d)

Fig. 7. Simulated 1.45-Am images of field stars at (a) 20-arcsec and (b) 50-arcsec separation from the science target, for D = 8 m and
MK turbulence. A sodium laser beacon in the direction of the science target has been used to correct the telescope. For comparison,
(c) the diffraction-limited image at 1.45 /im and (d) the uncorrected short-exposure image are also shown.

rated wave front to the far field. The wavelengths for
Figs. 5(a), 5(b), and 5(c) are, respectively, 2, 1.45, and
0.7 ,um, and all three correspond to MK turbulence. At
2 ,um the image is diffraction limited, except for high-
frequency scattered light in the wings. At 1.45 ,um
there is still a strong core, with the image width being
0.05 arcsec. In the red, the image is severely speckled
because the laser-star wave front is completely decorre-
lated from the field-star wave front. Figure 6 shows the
corresponding three images for MMK turbulence at a field
angle of 25 arcsec. While interpreting these images we
should keep in mind that even modest improvements in
image width can significantly affect the tilt Strehl ratio,
because of the strong dependence of the Strehl ratio on a,
as given by Eq. (9).

On the basis of the estimates of image-width degrada-
tion, we assume that the field-star image centroids will be
measured in a band extending from 1.25 prm, below which
broadening becomes a problem, to 2.3 ,um, just short of
the limit at which thermal emission becomes trouble-
some. We calculate representative images at the wave-
length 1.45 m, near the bottom of the band. Here the
diffraction-limited width is A/D = 0.0375 arcsec.

Figure 7 corresponds to the MK model; diffraction-
limited and uncorrected images are shown, along with the
averages of 50 simulated short-exposure images at field-
star angles of 20 and 50 arcsec. The image at 0 =
20 arcsec is nearly diffraction limited wth 0.042 arcsec
FWHM (w = 1.2); the image at 0 = 50 arcsec has FWHM
of 0.11 arcsec (w = 3). Figure 8 shows the same field

stars as are seen through MMK turbulence, at 10 and
25 arcsec. The image widths are, respectively,
0.042 arcsec (w = 1.2) and 0.12 arcsec (w = 3.5).

The actual image widths will be influenced by the
degree of correction that is provided by the laser beacon.
Monte Carlo simulations show that the effect of these re-
sidual errors is on average to increase the image widths
by -10%. In the final analysis, compared with centroid-
ing in the visible with short-exposure image widths of
0.6 arcsec, one can achieve improvements in image widths
by a factor of 5-15 for 20-30-arcsec field angles and
factors of 2-6 out to 1 arcmin by combining the use of
infrared field stars with a single laser star in the target
direction.

The reason the infrared images remain diffraction lim-
ited at moderate field angles and retain a strong central
core even out to 1 arcmin is illustrated in Fig. 9. In Fig. 9
we plot the Strehl-ratio degradation for correction of focus
through second-order astigmatism as a function of field-
star angle for the MK model [Fig. 9(a)] and the MMK
model [Fig. 9(b)]. We generated these curves by applying
the formalism described in App. 1 to Zernike modes be-
yond tilt. The Strehl ratios at 2 ,um for these modes still
exceed 0.6 out to 1 arcmin for MK and out to 25 arcsec for
MMK. Similar calculations for coma and spherical aber-
ration also indicate tolerable Strehl-ratio degradation.
Thus, as one extends the laser wave-front correction to
larger angles, the higher-frequency distortion (scale length
1-2 r) begins to decorrelate quickly, but the dominant
low-order modes are still well corrected.
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(a) (c)

(b) (d)

Fig. 8. Simulated 1.4 5-Mm images of field stars at (a) 10-arcsec and (b) 25-arcsec separation from the science target, for D = 8 m and
MMK turbulence. A sodium laser beacon in the direction of the science target has been used to correct the telescope. For comparison,
(c) the diffraction-limited image at 1.45 ±m and (d) the uncorrected short-exposure image are also shown.

C. Field Stars
Our goal, which is set out in Section 1, is to effect adaptive
correction of faint objects without requiring unusually
bright stars nearby. We now evaluate the required flux
levels and the probability of finding field stars that are
adequately bright and sufficiently close.

We can summarize what we have learned from the opti-
cal properties of the atmosphere as follows:

1. Wave-front tilt that is accurate enough for Strehl
ratios from tilt anisoplanatism alone >0.6 at the program
object is shared by field stars within a radius depending
on the atmospheric model and the wave band to be cor-
rected. From Figs. 5 and 6, we find that for model MK
rH = 37 arcsec and rK = 57 arcsec, whereas for model
MMK rH = 16 arcsec and rH = 25 arcsec.

2. With the laser-beacon system operating for the pro-
gram object, the infrared images of field stars within
these radii are partially corrected. Thus at radii of
50 arcsec (MK) and 25 arcsec (MMK) the images widths
are 0.12 arcsec and reduce to 0.05 arcsec at half these radii.
The appropriate wave band for field stars is 1.25-2.3 gim.

3. The temporal evolution of atmospheric turbulence
sets a limit to the useful integration time for centroid
measurement.24 25 The centroid uncertainty that is due
to atmospheric decorrelation has an rms value of otime,
given by Eqs. (All) in Appendix 1, with angular variables
being replaced by time variables. Thus, when we apply
Eqs. (All) to temporal tilt decorrelation, Oo is replaced by
to, and the angular variable 0 becomes the time delay T be-

tween sensing and correction. To compute the tilt Strehl
ratio that is due to temporal correlation, we use the aver-
age mean-square centroid error in the x and the y direc-
tions [Eq. (10)], which results in the following expression
for a0 time:

aetime = 0.177 T r 6 A .
toD D (27)

Contributing to the delay T are the finite integration time
of field-star photons, the detector readout time, and the
control-loop response time.

4. Another property of the atmosphere is background
airglow emission, which contributes to the noise in cen-
troid measurement. From the compilation of photometric
results given by Angel2 6 we find that, in the chosen band
for sensing field stars (H plus half each of J and K),
the sky flux is 9000 (photons/m2 )/s from a 1 arcsec X
1 arcsec area of sky. Given an 8-m telescope of total
quantum efficiency 7) = 0.4 (optics plus detector) and
square pixels of 0.15 arcsec on a side, the number of de-
tected photo-electrons is (1833/pixel)/s.

A final parameter that is needed to complete noise esti-
mates is the readout noise of the infrared quad cell. The
best existing NICMOS3 detectors operate with a readout
noise of 30 electrons rms. Readout arrays by Amber Elec-
tronics have measured noise of •5 electrons rms. We as-
sume that a quad cell with an rms noise of 5 electrons will
be realized in time for the 8-m telescope systems. We find
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the total rms background noise n in Eq. (26) by combining
in quadrature this readout noise with the sky noise, equal
to (1833To)"2.

We now calculate from Eq. (27) the accuracy of centroid
measurement for an infrared field star of a given photon
flux or a given magnitude and image width. Since photon
noise dominates, we would like to make long integrations.
However, since decorrelation errors increase with time,
the optimum integration time is chosen for any given star
flux so as to equate the decorrelation error given by
Eq. (27) and the noise error from Eq. (26). The combined
error from both sources can then be expressed as an rms
centroid error in seconds of arc or as the Strehl ratio from
these causes alone. In Table 2 we give these errors for
three star fluxes, 400, 1000 and 2500 (photons/m2 )/s in the
1.25-2.3-Am band. These fluxes correspond to H magni-
tudes of 18.2, 17.2, and 16.2, respectively. Two widths
that are appropriate to the inner field of near-diffraction-
limited resolution (0.05 arcsec) and to the edge of the use-
ful field of shared tilt motion (0.12 arcsec) are used, and
the errors for correction in each of the H and the K bands
are given. We see that optimum integration times range
from 4 to 16 ms and that, to keep the Strehl ratio -80%
from motion measured from an image with 0.12-arcsec
broadening, the flux limits are (1600/m 2 )/s (H = 16.7)
for the H-band correction and (750/m2)/s (H = 17.5) for
the K band.

We note that for an infrared quad cell with n = 10 elec-
trons rms noise the limiting fluxes increase to (2200/m2)/s
(H = 16.3) for the H band and (1100/m 2)/s (H = 17.1) for
the K band. Thus sources brighter by -0.5 H magnitude

are necessary for achievement of the 0.8 Strehl-ratio goal
for this higher noise level.

The limiting fluxes for infrared field stars can be com-
pared with the corresponding fluxes that are required for
centroiding with visible field stars. Since the infrared
adaptive system uses 1-m subapertures and a single so-
dium beacon, it will provide negligible correction of the
visible field-star image, even at the smallest field angles.
Thus the width of the short-exposure visible quad cell im-
age will be limited by seeing, equal to 0.5 arcsec FWHM.
For an assumed quad-cell CCD with 3 electron noise, we
find that fluxes of 9000 (photons/m2 )/s (K-band correc-
tion) and 17,000 (photons/m2 )/s (H-band correction) are
now necessary for achievement of the 0.8 tilt Strehl-ratio
goal for combined noise and temporal-decorrelation errors.
Compared with the required infrared fluxes of (750/m2)/s
and (1600/m2 )/s, respectively, we see that flux limits of an
order of magnitude higher are imposed for accurate cen-
troiding with visible field stars. We also note that fluxes
are typically higher in the 1.2-2.3-,um region, providing
an additional advantage to using infrared field stars.

We must make an important distinction between the
limiting flux levels for two modes of operation. If the
program object has no stellar component, a random field
star is more likely to be found toward the edge of the field
of well-correlated motion, and the higher fluxes that are
computed for a width of 0.12 arcsec are appropriate. How-
ever, if the program object contains a stellar component
that can be at or near the laser-beacon direction, then con-
siderably fainter fluxes will actually give a better result.
For such objects there is no error from tilt anisoplanatism,
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Fig. 9. Strehl ratios corresponding to the angular decorrelation of focus and astigmatism over an 8-m telescope, as a function of separa-
tion of the field star from the science target, for A = 0.5, A = 1, and A = 2 ,um. (a) MK turbulence, (b) MMK turbulence.

Table 2. Tilt Errors from the Combined Effects of Temporal Decorrelation and Measurement Noisea

Parameter Star Flux [(photons/m2 )/s]
400 1000 2500

Image width (arcsec) 0.05 0.12 0.05 0.12 0.05 0.12
Integration time (s) 10.0 16.1 6.6 10.8 4.4 7.4
Rms centroid error (arcsec) 0.0103 0.0167 0.0068 0.0112 0.0046 0.0077
Corrected wave band H K H K H K H K H K H K
Strehl ratio (%o) 75 85 54 69 87 93 72 83 94 97 85 91

'The table gives the integration length that is necessary to balance decorrelation and measurement noise. The corresponding combined error, equal to
[(.Ko.ise)2 + (.t'e)2] 12, is expressed in rms motion (arcsec), and the corresponding Strehl ratio is computed from Eq. (9) with D = 8 m. The calculation is
for different star flux levels, assuming a constant background sky flux of 9000 [(photon/s)/m23/arcsec2 incident at the telescope. The quad-cell pixel size is
0.15 arcsec with readout noise of 5 electrons rms, and the overall system quantum efficiency is 40%.
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and the Strehl ratios given in Table 2 for an image width
of 0.05 arcsec correspond to the total contribution from all
sources of image-motion error. If quad-cell pixels were
set at 0.05 arcsec, the flux limits become (100/m2)/s (H =
19.7) for correction of the H band and (50/m2)/s (H = 20.5)
for the K band. These limits correspond to visual magni-
tudes of -22, so faint that many objects of high scientific
interest contain such natural reference sources. Ex-
amples are distant galaxies with active nuclei, globular
clusters, and nearby galaxies.

For other small faint objects with no stellar component,
such as normal galaxies at cosmological red shifts, we
must evaluate the probability of finding field stars. The
density of stars depends strongly on galactic latitude. For
the half of the sky that is defined by bands 30° above and
below the galactic plane, field stars are numerous, whereas
at the galactic poles the density is 2.6 times lower. The
densities of stars with the above flux values may be esti-
mated by extrapolation to the infrared from the densities
at the 0 .9-,gm wavelength given by Bahcall and Soniera27

and from the model of Wainscoat et al.2" At 300 latitude
the density of all stars down to H magnitude 17, 18, and
19 is -3900, -5800, and -8200, respectively, per square
degree. At the pole the corresponding values are 1450,
2200, and 3200, respectively, per square degree. The
probability of finding stars within the radii given above
for the two wave bands and atmospheric models at the re-
quired flux levels may be derived from Poisson statistics,
as follows.

Consider first the situation for correction of the K band.
Within the 57-arcsec radius that is required in the MK
model for a0 s 5 corresponding to a Strehl ratio >60% from
tilt anisoplanatism alone, the probability of finding at least
one star brighter than the 750 (photons/m2)/s deduced
above is 75% at the galactic pole and 97% at 30° latitude.
For the narrower field of a 25-arcsec radius for the MMK
model, the corresponding probabilities are 25% and 50%.

The probabilities are somewhat lower for finding stars
to correct the H band but high enough to be of great scien-
tific value. Again, we assume that the image width is
0.12 arcsec (conservative because the radii are smaller),
and now a flux level of 1600 (photons/m 2)/s is required.
Under the MK-model atmosphere the probability of find-
ing one or more stars within a 37-arcsec radius is now
33% at the pole and 65% at 30° elevation. For the MMK
model the corresponding probabilities are 8% and 19%,
respectively.

The above probabilities are that a field star will be found
so that (aonise) 2

+ (oiSO)2 alone corresponds to a Strehl
ratio of 80%. It follows that, with the same probabilities,
the Strehl ratio for image motion that combines all the
effects of tilt anisoplanatism, photon noise from the star
and the sky background, detector readout noise, and tem-
poral decorrelation will be no worse than 48%. If brighter
or nearer stars are found, the overall tilt Strehl ratio will
be better.

6. HIGH-ORDER WAVE-FRONT CORRECTION

A. Cone Effect
Wave-front measurements that are made with laser stars
suffer from an error source that is not present in field-
star measurements. Recall from Section 3 that the wave

front from a laser star samples the turbulent layers by ac-
cumulating phase distortion along a spherical wave path,
with a radius of curvature H where H is the altitude of
the beacon. Consider a layer at altitude h, with distortion
d(x). Instead of measuring the desired high-order phase
CF(x) corresponding to parallel ray paths across the projec-
tion of the pupil at h, the beacon measures D(x'), where
x' = x(1 - h/H). Thus the turbulence is sampled across
an aperture of diameter D(1 - h/H), and turbulence out-
side the cone thus generated is not measured. The rather
complicated expression for the tilt-removed rms cone
error, integrated over all layers, can be summarized by
the formula29

cone. ID \516

do 
(28)

where the parameter do scales with wavelength as A66.
The error given in Eq. (28), sometimes called focus aniso-
planatism, contains no tilt component, since the laser-star
photons follow the same path up and back down through
the atmospheric wedges. The parameter do has a nearly
linear dependence on beacon altitude, so the Strehl-ratio
improvement with increasing altitude is appreciable. At
A = 0.5 Am, turbulence models used by the U.S. defense
community predict that do - 1 m at 15-20 km (Rayleigh
backscatter) and that do = 4-5 m at 90 km (resonant so-
dium backscatter). We have calculated do at a 90-km bea-
con altitude for the models shown in Fig. 2, finding that
do 4.2 m (MK), do = 2.7 m (HV), and do = 2.3 m
(MMK). Just as for off-axis anisoplanatism, discussed in
Section 5, the stronger turbulence at 8-12 km substan-
tially increases the magnitude of focus anisoplanatism.

The wavelength dependence of do saves the day for
relatively simple laser-star infrared adaptive optics.
Figure 10 shows the Strehl-ratio degradation resulting
from the cone effect for an 8-m telescope as a function of
wavelength. {We have extended the simple Strehl-ratio
approximation [Eq. (15)] beyond its limits to show the
steep drop at shorter wavelengths. The Strehl-ratio val-
ues are not strictly accurate below 0.3.} One can see from
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the figure that at A = 2 um the Strehl ratio exceeds 0.8
for MK turbulence and 0.6 for the MMK model. At A =
1.6 ,um these values decrease to 0.76 and 0.45, respectively.

In V and R the degradation is much more severe, and
one has to resort to the use of multiple Rayleigh or sodium
stars,30 possibly supplemented by field-star measurements
of low-order distortion. To investigate this possibility we
looked at the modal dependence of Eq. (28). Figure 11
shows the mean-square cone error at A = 0.5 ,um decom-
posed into Zernike components. We generated each point
by averaging the results of Monte Carlo simulations, so
there is some scatter in the data because of statistics.
There are several points of interest. First, -1/3 of the
total phase power is in the first 10 modes, with the re-
maining power being broadly distributed out to the highest
modes. Thus the cone effect leads to high-frequency
errors that one would not hope to correct with natural
stars. Second, since these errors correspond to the vis-
ible, they must be divided by 16 at A = 2 um, leading to
small focus and astigmatism errors. Third, by inspecting
Figs. 10 and 11 we see that the use of infrared field
stars becomes advantageous at 1 um, where the highest-
frequency errors are tolerable and where the field star can
be used to clean up the residual focus and astigmatism
(modes 4,5,6). In the visible, however, the high-frequency
errors are so large that multiple sodium stars will be
needed, effectively limiting the patch below each star to
<do. In this case infrared field stars may also be useful,
since an analysis of multiple spot methods indicates that
residual low-order errors can result from spot-position
uncertainty.

B. Reconstruction Error
In our design the scattered sodium photons are used for
visible Shack-Hartmann centroiding to determine the
local wave-front tilts over 1-m subapertures. Different
geometries have been studied in the past for arranging the
subapertures with respect to the actuator points.3 We
are currently investigating new circular geometries that
are appropriate for phasing an adaptive secondary. Here
we analyze the case of square subapertures of width d =

1 m, arranged as shown in Fig. 12, where the subaperture
maps onto the quad cell that is used for centroiding. The
slope measurements are used directly as tilt commands
for the mirror segments. To obtain the piston commands,
one converts the slope measurements to phase differences
across subapertures and then integrates them with a
least-squares reconstructor. In Appendix 3 we describe a
simple reconstruction algorithm for determining the pis-
tons from the phase-difference measurements and show
that the reconstruction error is given by

(cj. rec)2 = G prd2, (29)

where o-pd is the rms phase-difference measurement noise
in radians. The value of O-pd depends on the laser power,
the subaperture size and geometry, and the detector
sensitivity.

Several different sodium lasers are being developed
and are being tested by the defense and the astronomical
communities. Fugate is testing a 10-W, 840-Hz laser3 2 for
use in hybrid sodium-Rayleigh experiments. This laser
was developed by Lincoln Laboratory and uses a sum-
frequency approach3 3 consisting of a nonlinear combina-
tion of two YAG lines. Lawrence Livermore National
Laboratory is exploring the use of a much more powerful
laser with enough power for correcting down to the
visible.3 4 Kibblewhite's group'0 has pioneered the use of
sodium lasers in astronomy, and he favors a sum-frequency
approach with a laser-diode-pumped front end. Kibble-
white's initial experiments at Yerkes Observatory used a
commercial cw dye laser, producing -1 W of power. The
strength of return measured by Kibblewhite for 450 mW
of power was equivalent to a magnitude-12 source, inte-
grated over a 100-nm spectral bandwidth. This corre-
sponds to a flux of -150 (photons/m2)/ms, which agrees
well with Fugate's data3 2 of 285 (photons/m2)/mJ.

To calculate the required laser power, we need to know
how the slope measurement error 0

'pd depends on the laser
power and the imaging wavelength. Since o-d is the edge-
to-edge phase-difference error in the radius, it is related
to the accuracy of the measured Shack-Hartmann cen-

Fig. 12. Arrangement of the square 1-m subapertures that were
used for our simulations of wave-front correction. There are
eight subapertures across the 8-m telescope, giving a total of 52.
Enlargements of adjacent subapertures i and i + , j, with the
measured wave-front slopes in the x direction being indicated by
the dashed lines, are also shown.
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troids by

4 6
5 A0aNpd 2 ir-g /d iA (30)

where a 0S is the angular centroid error resulting from
photon-counting statistics and readout noise [given by
Eq. (26) with D = d = 1 m], Ao = 0.589 gm is the laser
wavelength, and A is the science-imaging wavelength.
Combining Eqs. (26), (29), and (30), we obtain for the
mean-square reconstruction error

47r 2Ga, (w 4 2\ k /A 2
(0ce)2 = 2 1 + N A (31)

In Eq. (31) the number of detected photons is

N = 300TPA-q, (32)

where r is the integration time (milliseconds) for laser
photons, A is the area (square meters) of the subaperture,
71 is the total efficiency, and P is the number of watts of
laser power.

To calculate the reconstruction error as a function of
laser power and integration time for the A = 1 m2 sub-
apertures, we use the value G = 0.5 for the geometry
given in Fig. 12 and the reconstruction algorithm that is
described in Appendix 3. The detector is the 32 x 32
low-noise CCD that is discussed in Section 2, which will
have quantum efficiency >0.8 at the sodium wavelength
and n = 3 noise electrons/pixel for a 1-ms readout time.
With assumed beam-train losses of 0.6, this gives a total
efficiency of 0.48. The width of the laser spot, broadened
during uplink through turbulence, will be 0.7 arcsec at the
quadrant detectors, for a width factor w = 6 in Eq. (26).
The appropriate value for a is 0.7. Inserting these values
into Eqs. (31) and (32), we find that

(0,e) 24/ +0.25N10.589\2 (3
Pr Pr A )

where A is the science wavelength in micrometers. For
an integration time = 1 ms, Eq. (33) yields (re )2 =

0.1 rad 2 for P = 3 W at A = 1.6, m and forp = 1.5 W at
A = 2.2 Am. Thus, to keep the Strehl-ratio degradation
from reconstruction errors >0.9 in both the H and the
K bands, a 3-W sodium laser is required. A 4-W laser will
provide a 30% margin for conditions of poorer seeing or
lower atmospheric transmission.

C. Fitting Error
The wave-front fitting error describes the accuracy to
which a deformable mirror can fit a Kolmogorov wave
front. The error can be written as

a fit =cnitq 516 (34)

where d is the subaperture width and the coefficient cft
depends on the type of mirror. For a segmented mirror
controlled by one Shack-Hartmann centroid per segment,
Cfit 0.54.5 Thus, for the MK model, (lt)2 = 0.50 radW
and (afit) 2

= 0.26 rad2 , respectively, for A = 1.6 Am and
A = 2.2 ,um. For the MMK model the corresponding val-
ues are 0.66 rad2 (A = 1.6 Mm) and 0.35 rad 2 (A = 2.2 Mm).

D. Temporal-Decorrelation Errors
The temporal-decorrelation error given by Eq. (23) con-
tains errors for all spatial frequencies of turbulence. For
a small time delay, however, the contribution from global
tilt decorrelation is small. To see this, consider the worst-
case MMK value VlJj = 25 m/s and a time delay At = 4 is.
Then VWAt = 0.1 m, which is 1/10 the subaperture width
and 1/80 the full diameter of the telescope. Thus we can
use Eq. (23) to estimate OQtnt.

For the delay time we take a total of At = 3 ms for mea-
suring and correcting the high-order wave front. We use
1 ms to integrate photons from the laser beacon, as dis-
cussed above in Subsection 6.B. Another 1 ms is used to
read out the Shack-Hartmann CCD. The remaining 1 ms
is divided among wave-front reconstruction (200 As),
interface communication (400 gs), and deformable-mirror
response (400 ts). With this timing budget we find that
(tatime)2 = 0.038 rad 2 for MK turbulence at A = 2.2 Am,
increasing to 0.073 rad2 at A = 1.6 Atm. For MMK turbu-
lence the values are (a-,,time)2 = 0.12 rad2 (A = 2.2 pm) and
(v t'mT) = 0.23 rad 2 (A = 16 Mm).

E. High-Order Anisoplanatism
Equation (21) gives the total wave-front error that arises
from using a beacon at angular separation e from the sci-
ence object. In Section 4 we calculated the contributions
to iso corresponding to tilt, focus, and astigmatism
errors and found that even for 6 >> 00 these low-frequency
modes remain partially corrected. Whereas there will be
high-frequency contributions to ,iSO for field-star wave-
front sensing as 0 approaches or exceeds 00, the predomi-
nant source of anisoplanatism for laser beacons arises
from pointing and tracking the beacon. These errors can
place modest demands on the tracking system for defense
applications involving slewing the beacon ahead of the tar-
get. For infrared astronomy, however, the demands are
much less stringent. Consider, for example, the worst
case given in Table 1, namely, 00 = 5.2 arcsec for the
MMK model at A = 1.6 Am. As long as the pointing of
the beacon is accurate to within 1 arcsec of the science
object, from Eq. (21) we find that (a,-iSO)2 ' 0.05 rad2 .
The requirement becomes even more modest at longer
wavelengths and for MK turbulence, so we will consider
this error negligible.

E Summary of High-Order Wave-Front Errors
Table 3 summarizes the high-order wave-front errors that
are derived in this section. Each error source is listed

Table 3. Error Sources for Correcting the High-
Order Wave-Front across an 8-m Telescope at

A = 1.6 pum and A = 2.2 una

Parameter MK MMK
A = 1.6 pm A = 2.2 tum A = 1.6 m A = 2.2 m

(a cne)2 0.28 0.15 0.77 0.41
(agec)2 0.10 0.10 0.10 0.10
(aotim.)2 0.073 0.038 0.23 0.12

(0Ofit)? 0.50 0.26 0.66 0.35

0-,12 0.95 0.55 1.76 0.98
so 0.39 0.58 0.17 0.37

'The value of acre' assumes a 1.5-W sodium laser for A = 2.2 Am and a
3-W laser for A = 1.6 m.
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(a)

(b)

(c)
Fig. 13. Contours of phase distortion corresponding to a Monte
Carlo simulation of wave-front correction for D = 8 m and A =
2 gm. (a) Kolmogorov distortion across the telescope (0.4 wave
rms) before adaptive correction. (b) The reconstructed wave-
front corresponding to tilt and piston phasing of 1-m subaper-
tures. (c) The residual wave-front error after correction (0.11
wave rms), obtained by differencing (a) and (b).

along with its value for MK and MMK turbulence. For
each turbulence model the errors are tabulated separately
for A = 1.6 m and A = 2.2 ,um. Also listed for each case
are the total high-order error ap2 and the corresponding
Strehl ratio.

We performed Monte Carlo simulations of high-order
wave-front reconstruction with a laser beacon at 90 km.
We generated the wave front that was accumulated by light
from the beacon by integrating over ten Kolmogorov phase
screens, and we constructed slope measurements for the
subapertures that are shown in Fig. 12. Measurement
noise of magnitude ° pd was added to the slope values, and
an iterative algorithm [Eqs. (A20)-(A23) below] was used
to reconstruct the wave front. We modeled the effect of
temporal decorrelation by shifting the reconstructed wave
front by an amount vAt. A sample reconstruction is pic-
tured in Fig. 13. Figure 13(a) is a gray-scale contour

plot of the phase at A = 2.2 Am over the 8-m pupil, for a
realization of MK turbulence. The rms value is ro =
2.5 rad. Figure 13(b) shows the reconstructed phase
contour, and Fig. 13(c) is the residual error corresponding
to the difference between Figs. 13(a) and 13(b). The re-
sidual rms error for this realization is 0.7 rad, which
agrees well with the ensemble average value oa = 0.74 rad
that is given in Table 3. Figure 14 shows the same phase
profiles displayed as three-dimensional plots. From
Figs. 13(c) and 14(c) we can see that the residual error
consists mostly of high frequencies, with the exception
being near the edges of the aperture, where the cone-
effect errors are largest.

7. TOTAL SYSTEM PERFORMANCE AND
CONCLUSIONS

Bringing together the results of Sections 5 and 6, we show
in Table 4 the overall performance, combining the effects
of tilt and high-order errors by multiplication of Strehl ra-
tios (Section 3). The values of S4. are taken from Table 3.
Two values of SO are shown for each wave band. As dis-
cussed in Section 5, S8 = 0.48 is appropriate for the com-
bined errors of tilt anisoplanatism and noise when a
random field star must be used, and the corresponding
probabilities of finding stars that are bright enough for
this accuracy are tabulated. S = 0.8 is appropriate when
the corrected field can be centered on a star in the pro-
gram object and there is no error from tilt anisoplanatism.
A Strehl ratio of 0.8 corresponds to a faint centered star
with H = 19.7 (for correction in the H band) or H = 20.5
for the K band.

The projected values for the overall Strehl ratio give the
image quality that is expected at the center of the field
defined by the direction of the laser beacon. For the MK
model these values meet our desired goal of S 2 0.25 for
the Kband. The H-band performance exceeds our goal for
the case of a program object tilt star. The H-band value
S = 0.20 for a random tilt star falls short of our goal, but
only marginally. Under the poorer conditions of the MMK
model, the H-band Strehl ratios decrease to 9-14%, but
the K-band images still come close to or exceed the goal.
We conclude that H-band observations are best undertaken
when high-altitude turbulence is at the MK level or better.
Not only is the Strehl ratio good, but the probability of find-
ing guide stars is high. Under the poorer conditions of the
MMK model, K-band observations still remain possible.

To investigate the sensitivity of predicted performance
to varying atmospheric conditions, consider the situation
in which the value of C 2 is multiplied at every altitude by
a constant. For instance, multiplying C,,2 by 0.65 results
in a 30% increase in the values of r, Oo, do, and to, as
might be expected during periods of better seeing. Con-
versely, multiplying Cn,2 by 1.95 results in a 30% decrease
in these parameters, encountered during periods of worse
seeing or during correction far off zenith. Under such
conditions the cone, the time-delay, and the fitting errors
in Table 3 are multiplied by the same factor that is multi-
plying C 2, either 0.65 or 1.95. The reconstruction error
varies as r 2 , so this error is multiplied by either 0.45
(30% better seeing) or 1.69 (30% worse seeing). The net
effect of these variations is to change the MK high-order
Strehl ratio to 71% on the upper end and to 35% on the
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(a) (b)

(C)
Fig. 14. Three-dimensional plots of the phase distortion in radians, corresponding to the phase contours shown in Fig. 13. (a) Uncor-
rected phase; (b) reconstructed phase; (c) difference of (a) and (b).

Table 4. Contributions to the Total Strehl Ratio for the H (A = 1.6 1am) and the K (A = 2.2 Aum)
Wave Bands'

Parameter MK MMK
A = 1.6 m A = 2.2 m A=1.6 Am A= 2.2 Ium

Sd, 0.39 0.58 0.17 0.37
SO 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8
S 0.20 0.31 0.29 0.46 0.09 0.14 0.19 0.30

Ppole 33% 75% 8% 25%
P30. 65% 97% 19% 50%

'The high-order Strehl ratios So, are taken from Table 3. The tilt Strehl ratios So are appropriate if one is using a field star (50%o) or a faint star that is
coincident with the laser beacon (80%o) as analyzed in Section 5. The total Strehl ratios are given by S = SOS4 . The probabilities for finding at least one
sufficiently bright field star within the required angle to give a 50% tilt Strehil ratio are given for the galactic pole (Ppole) and for 30° galactic latitude (P30.).

lower end, for A = 2.2 Am. For A = 1.6 Am, the 48%
Strehl ratio in Table 3 changes to 55% for better conditions
and to 16% for worse conditions. For the MMK model the
higher (lower) Strehl ratios are 54% (15%o) for A = 2.2 pum
and 33% (3o) for A = 1.6 pAm.

Under the same transformations of Cn2 the values of So
in Table 4 also change, from 50% to 61% (34%) for random
field stars and from 80% to 85% (66%) for field stars that
are coincident with the laser beacon. Combining these
variations with those given above for the high-order Strehl
ratios, we find that for the MK model the total Strehl

ratios for a random field star range from 43% for better
conditions to 12% for worse conditions, at A = 2.2 Aum,
compared with 29% for the unperturbed MK Cn2 profile.
For the MMK model at A = 2.2 Am, the Strehl ratios range
from 33% to 5% around the unperturbed mean of 19o.
Similar variations in the expected Strehl ratio occur for
A = 1.6 Aum and for the cases that use a faint star within
the program object. We conclude that approximately
±50% variation in the Strehl ratio occurs for 30% varia-
tions in the seeing, assuming that the changes in the
strength of turbulence occur evenly for all layers.
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It is worth noting the Strehl ratio alone does not tell the
whole story. Residual high-order wave-front errors spread
energy from the diffraction peak into a profile that is
much more centrally peaked than is the original atmo-
spheric blur. The profiles of images with o > 1 will not
be unlike those outside the isoplanatic angle that are
shown in Fig. 8. The effect of errors in image motion
are even more benign. This can be seen from Table 2,
in which in the worst case of guiding by a field star at
160 (photons/m2)/s the motion is only 0.018 arcsec rms,
and thus the broadening does no more than increase the
image width by a factor of 1.4 to 0.070 arcsec. The frac-
tion of energy within this width is given by So, not by the
lower combined Strehl ratio.

The scientific potential for a system that performs at
the levels at which we calculate is immense, as we discuss
below. We are encouraged because the proposed system is
relatively simple and because it uses components that are
at, but not beyond, the state of the art. One laser suf-
fices, whose power requirements of 3-4 W are readily
achieved. We call for a high-performance CCD for the
Shack-Hartmann sensor, and such devices are currently
being tested. The infrared broadband quad-cell tector,
critical for access to the faintest close guide stars, calls
for 5 electrons rms readout noise, already proven in read-
out arrays. Our preference for adaptive correction at
the secondary mirror will require a significant advance,
but the projections in this paper do not depend on it.
More conventional relay optics and adaptive mirrors can
be used.

Based on these calculations and on current experience
with the segmented MMT, we plan to implement the sys-
tem for the new 6.5-m mirror. Depending on experience
with this first implementation, there are two possible im-
provements while staying within the limitation of a single
laser. The first of these is to upgrade the beacon system
and the adaptive-mirror hardware. We could improve the
H-band performance under the poor conditions of the
MMK atmosphere by halving the size of the subapertures
to 0.5 m and by halving the laser integration time. In
this way the temporal and the decorrelation errors could
both be reduced to 0.1 rad2 . The overall Strehl ratio at H
would then be increased to 30% for even the worst case of
Table 4. The price is an eightfold increase in laser power,
to 16-32 W, and a quadrupling of the number of subaper-
tures to 208. This upgrade represents a significant in-
crease in cost and complexity and is probably best delayed
until the conditions at a given site are well understood. It
is hoped that conditions as bad as those of the MMK
model will be infrequent. On the other hand, we may
find that with such improvements and under good condi-
tions diffraction-limited imaging in the J band centered
at 1.25 ,tm becomes attractive.

A second improvement is possible if low-altitude topo-
graphic turbulence is weak at the site and if the telescope
and the enclosure do not add appreciably to the high-
frequency wave-front distortion. Under these conditions
our assumption that correction is made at an image of the
telescope entrance pupil is not optimum. Correction that
is made at a pupil corresponding to the mean height of
turbulence could easily result in an increase in the isopla-
natic angle by a factor of 2. Furthermore, if the high-
altitude turbulence is dominant, the wave front that is

measured by the Shack-Hartmann sensor can be applied
at increased scale to the adaptive mirror, thus avoiding
some of the cone-effect error. These changes would result
in a substantial increase in the Strehl ratio, the isopla-
natic field, and the probability of finding guide stars. For
this reason it is most important to control the mirror and
local seeing in large telescopes if adaptive optics is to
reach its limits.

In principle, turbulence at different levels can be distin-
guished and measured through the use of multiple bea-
cons and triangulation. Such methods would further help
in the infrared and will be necessary for the production of
widely applicable systems for optical correction. How-
ever, they will involve a large increase in complexity in
what is already difficult and should probably await further
experimentation and optimization on smaller telescopes.

The results of this study show that adaptive optics is
likely to have a profound effect on the use of an 8-m class
telescope in the infrared. Given that diffraction-limited
resolution can be achieved with the aid of faint and com-
mon stars, adaptive correction could become the rule
rather than the exception. The combination of huge light
grasp and sharp images provided by a large telescope
working at its diffraction limit is an enormous advantage.
The isoplanatic angle, which is independent of telescope
size, is highly resolved by big telescopes. Thus fields of at
least 20-arcsec diameter imaged with 0.05-arcsec resolu-
tion contain 160,000 spatial-resolution elements.

The resolution of the Hubble Telescope after it is fitted
with correcting optics will also be 0.05 arcsec. By
combining data, researchers will produce maps of uni-
formly high resolution over nearly a decade of wavelength.
Later the Hubble is to be fitted with its own infrared in-
strument, NICMOS. Its imaging resolution will be 3-4
times poorer and its light-gathering power an order of
magnitude less, but it will have the advantage of a well-
calibrated and a uniform response, with no limitation on
field angle and much darker sky in the absence of airglow,
which is up to 100 times the natural background. We see
that the ground-based telescope's strength will be in spec-
troscopy and detailed imaging, whereas the Hubble's
strength will be in accurate photometric measurements,
especially of diffuse and faint objects such as highly red-
shifted galaxies.

APPENDIX 1: ANISOPLANATISM IN
ESTIMATING ZERNIKE COEFFICIENTS
WITH OFF-AXIS FIELD STARS
The use of an off-axis field star to determine phase cor-
rection introduces an isoplanatic error in the phase deter-
mination. The error depends on the degree to which the
phase fluctuations over the two paths are decorrelated.
Let T denote the object wave front and T the phase esti-
mate as determined from the reference source. Then the
mean-square error is

(o iso)2 = 4 f w(x)([T(x) - (X)]2)dx,

which may be written as

(-,piso)2 = 2(1 - r)rv2,

where F is the normalized covariance of the phase:

(Al)

(A2)
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r = Ds f Jw(x)(P(x)T(x))dx. (A3)

We wish to estimate off-axis errors in Zernike coeffi-
cients. Thus we decompose both target and off-axis wave
fronts into Zernike modes:

P(r) = 2 aZ. W (A4)

T(r) = , bZn, (r). * W)

If we define rF = (anbn)/(an2), then the quantity

An= 2(1- r)(a2) (A6)

represents the error that is due to correcting a given
Zernike mode with the sampled coefficients b rather
than with the true coefficients an. Given a model for the
atmospheric index-of-refraction structure constant C 2,
the normalized correlation for a given Zernike mode may
be evaluated as

f Y(z6)Cn2(z)dz
IF (0) = ,(A7)

f Cn2(z)dz

where the integration is carried out over altitude z and
where y is the normalized correlation function for a
single turbulence layer at altitude z. The function yn may
be expressed as

-Y"(ZO) = Cjm(A) _ c* Jm(A) (A8)

where A = zD. The + is appropriate for terms of even
parity, the - for terms of odd parity; m is the azimuthal
order of the Zernike mode, and 2j + m is the radial order.
The quantity CymJm(A) is given by

CjM~IJ(A)= (-) .+J'8'r2CRs(m,m')[(2j + Iml + 1)

X (2j' + ml + 1)] 112 dZZ- 3 Jm-m'1(2zA)

X Jj+JmJ+(Z)J 2 i'+ImJ+(Z), (A9)

where, for m > m' and m, m' positive, (m, m') = 1 and
s(m,-m') = (-1)m'.

For a layer of Kolmogorov atmospheric turbulence
of thickness and structure constant C 2, ,e = 5/3 and
C = 0207k2Cn2 & Closed-form expressions for A > 1 and
A = 0 are given in Ref. 23; a closed-form expression for
0 c A C 1 is found in Ref. 36.

We now apply Eqs. (A6)-(A9) to the Zernike tilt modes.
A point of distinction is in order between centroid tilt,
which is related to the average slope of the wave front, and
Zernike tilt, which corresponds to the best-fit plane over
the pupil. Strictly speaking, since we are interested in
centroid tilt, our analysis should be applied to off-axis
errors in this quantity. However, because the two types
of tilt have very similar variances (10% discrepancy) and
since the formalism we use below has already been pre-
sented in Ref. 20 for Zernike tilt, we choose to analyze the
off-axis error in estimating Zernike tilt.

The longitudinal tilt error (along the x axis joining the
science object and the field star) has a different correla-
tion coefficient than does the lateral tilt (along the y axis,
perpendicular to the field-star direction). For the longi-
tudinal tilt, we have from Eq. (A6)

/D 5,3
A2 = 2(0.448)(1 - 2) --

ro
(AlO)

where the factor (0.448)(D/ro)51 3 is the uncorrected one-
axis mean-square tilt for a Kolmogorov phase spectrum.' 8

Equation (25) in Section 5 for uoiS follows from Eq. (A10).
It is useful to have working formulas for the angular

isoplanatic errors in the longitudinal and the lateral direc-
tions, which we denote by o-o and o-y, respectively. By
expanding Eq. (A10) and using Eqs. (A7)-(A9), we derive
the following expressions:

= 0.0472 - -)
(Ak/D)2 00o \ro/

(AID)2 = 0.0157 ) (-)

( \4( D -7/3
- 0.0107 -1- I

00o( ro /
(Alla)-0.00214( -) (P-)

00 rO

(Allb)

The leading terms in Eqs. (All), quadratic in 0, are valid
out to field angles 0 0.5(D/ro)Oo; the sum of the qua-
dratic and the fourth-order terms is accurate out to 0 '
(D/ro)Oo. For large angular separation the tilt correlation
I2 approaches 1/2, so that the total expected tilt contribu-
tion to the phase error approaches the uncorrected value.
We note here that no a priori knowledge of C"2 is assumed,
so that an optimal estimation of a given Zernike coeffi-
cient is not made. Hence the variance of the error that is
due simply to using the measured off-axis coefficients
may exceed the error in the absence of correction. If the
measurement of the coefficients is supplemented by a
knowledge of Cn2, then an optimal estimate can be made,
substantially reducing the error at large field angles. In
this paper we have restricted ourselves to consideration of
the isoplanatic error without optimal estimation.

Correlation functions for two different models of turbu-
lence for various modes are illustrated in Fig. 15. The
horizontal axis is appropriate for an 8-m-diameter tele-
scope. The correlation functions for the MMK model
[Fig. 15(b)] fall off more rapidly than do those for the
MK model [Fig. 15(a)] because of the strong 10-km layer.
In fact, since most of the turbulence in the MMK model
is located in one layer at 10 km, the integrated correla-
tion functions are approximately the correlations for a
single layer.

APPENDIX 2: CENTROIDING ERROR

In this appendix we estimate tilt errors that are due to
centroiding uncertainty that is introduced by photon
counting and detector noise. Tyler and Fried37 deter-
mined the theoretical limit to the angular resolution of a
quadrant detector in terms of the optical transfer func-
tion of the system and the object irradiance. The expres-
sion for the angular measurement error with a point
source is
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from diffraction limited to uncorrected images, a varies
from 1.1 to 0.6. For the cases considered in Section 5,
a 0.7.

APPENDIX 3: PISTON RECONSTRUCTION
ALGORITHM
The Shack-Hartmann measurements correspond to edge-
to-edge slope values across the subapertures, as is pictured
in Fig. 12. The phase difference in the x direction across
subaperture ij with midpoint ri is

Ao.vx = 4 wij(r)VCD(r)dr + n,t. d Jrd (A16)

1.0
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Fig. 15. Correlation parameter rn of Eqs. (A6) and (A7) for
Zernike modes over an 8-m aperture as a function of off-axis
field-star angle, for (a) MK turbulence and (b) MMK turbulence.
The correlation parameters for the tilt, the focus, and the coma at
A = 0.5 m, A = 1.0 Am, and A = 2.0 m are shown.

where wij(r) = w(r - rij) is a window on the subaperture
and nij is the measurement noise (assumed to be white
noise) with variance OJpd

2. The phase difference A4- is
equal to ds.;f, where sf is the x slope across the subaper-
ture. The least-squares reconstruction algorithm as im-
plemented for the telescope will derive the 52 pistons from
the 104 phase-difference measurements with an optimal
algorithm that takes into account the finite detector area
and Kolmogorov statistics and employs a noise filter.
(For examples of optimal phase reconstruction, see
Ref. 39.) For the purpose of studying different geometries
and SNR's, however, we have treated the traditional case
of discrete points, as is shown in Fig. 12. In this approxi-
mation the slopes are related to the desired phases by

Di+lj - bij 2 (Si+,,jx + SijX). (A17)

To determine the ij we minimize the quantity

O.noise = A/D

4SNR H(xD, O)dx
(A12)

ii

where H is the optical transfer function 8 of the imaging
system. The factor SNR is the signal-to-noise ratio:

N
SNR = (4n2 + N)"2 (A13)

where N is the number of detected photons and n is the
rms readout noise per pixel from the sky background and
the detector. For a point source that is imaged through
Kolmogorov turbulence with a circular lens of diameter D,

H(xD,0) - exp - 3 .4 4 - (1 - 1/3
W ~ro/ 

X [cos-(x) - x(l - X2)1/2]. (A14)

The numerical evaluation of Eqs. (A12) and (A14) results
in Eq. (26) for the rms centroid error, which we repeat
here:

noise = W ( 4n2)12 (A15)
D VN 

In Eq. (A15), w is the FWHM of the image in units of the
diffraction-limited image width A/D, and the parameter a
depends on D/ro. For Dro = 1 through Dlro = 8, ranging

- d (Si++,fx + SiP)J

+ [A - 2 (Sidj+l1 + Sij)1
cD~ l- (ij --( L + s~)

with respect to an arbitrary phase element Dkl.

sults in a Poisson differential equation

VDij = V Sij,

I

(A18)

'his re-

(A19)

where the Laplacian and the divergence operators corre-
spond to finite-difference operations among grid points.
Equation (A19) can be solved with matrix inversion, al-
though a zero-mean constraints on the output phases is
required because of the invariance of the measurements
with respect to the addition of an arbitrary overall pis-
ton. For our simulations, however, we used the iterative
successive overrelaxation algorithm that is described
in Ref. 31, which is useful for exploring different cases
quickly, since a new inverse does not have to be computed
each time.

The successive overrelaxation algorithm updates the
phases at time t, 4?ij(t), by means of

Dij(t + 1) = 'ij(t) + w[Djj(t) + bij/gij- Fij(t)], (A20)

where
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Fig. 16. Value of the noise propagator G, given in Eq. (29), for
phase reconsruction over the subaperture arrangement that is
shown in Fig. 12, as a function of increasing Zernike-mode index.

Fij(t) = [+j(t) + &Di-1,j(t) + cDj+A(t) + cbij-4 (t)], (A21)

bi = (-, j - s + s,j-? - s.-Y),

gj = 2, i = 1 or n,j = 1 or nj,

3 1i = I or ni, j = 2 to nj-1
i = 2 to ni - 1 j = 1 or nj

= 4 otherwise.

(A22)

(A23)

In Eq. (A23), n is the last subaperture in row n, and n is
the last subaperture in column j. In Eq. (A20), w is a
relaxation parameter, 1 cv 2.

The reconstruction error is defined as

O = [k I - ii)2) 2 (A24)

The mean-square reconstruction error can be expressed
in units of noise variance:

(a rec)2 = GOcpd2 . (A19)

In Eq. (A25), G is the noise propagator or gain. It is well
known3 1'4 0 that solutions to Eq. (A19) have propagators
that are less than unity for small- to moderate-sized grids.
In our case, by performing reconstructions of simulated
data and by calculating the error with Eq. (A24), we find
that G = 0.5. The noise propagation can be analyzed in
terms of Zernike modes to show how accurately the slopes
integrate for varying scale sizes. Figure 16 shows the in-
crease in G as Zernike modes are successively added. To
calculate the value of G for a given mode m, subtract the
value shown for that mode from the value for the previous
mode m - 1. From the figure we can see that slope re-
construction results in considerable smoothing, since only
-20% of the reconstruction error is in the highest spatial
frequencies. Approximately 60% of the error is in tilt
(which can be removed), focus, and astigmatism. This re-
sult has implications for dim natural sources, where upd
could become an appreciable fraction of a wave. However,
in Section 6 we showed that this is not the case for
laser stars.
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