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1. INTRODUCTION

Simulation tools are critically important for the develop-
ment of adaptive optics (AO). They serve a wide range of
purposes, including assisting with the design of a new
system, debugging an existing system, or predicting the
feasibility of a science program on a given system. How-
ever, all these applications do not require the same level
of accuracy in the results, and therefore the same degree
of fidelity in the modeling.

High-fidelity modeling is usually based on numerical
methods: The physical properties of each element of the
AO system are modeled numerically and can be repre-
sented as a block, with one or several inputs/outputs and
one or several parameters. For example, the wavefront
sensor (WFS) block takes a phase map as input, produces
a set of measurements as output and has several param-
eters, e.g., those specifying the number of subapertures,
the pixel size of the detector, etc. Then, the simulation
links all the blocks together and executes them sequen-
tially. This approach can potentially model all the optical
effects from the source to be observed to the focal plane of
the science instrument, and is therefore sometimes called
end-to-end (E2E) simulation. Since some blocks are sto-
chastic in nature, for example the simulation of atmo-
spheric turbulence, the whole simulation has to be iter-
ated over many time steps, where new realizations of the
stochastic processes are computed for each time step. This
is called the Monte Carlo (MC) approach. In order to gen-
erate results that are characteristic of the system under
study, many iterations have to be completed, and the re-
sults for all the iterations analyzed statistically. For ex-

ample, the end result of one iteration is usually an instan-
taneous point-spread function (PSF), and by averaging
several seconds’ worth of instantaneous PSF, one gets an
estimate of the long-exposure PSF characteristic of the
performance of the AO system. With this type of method,
the full statistical description of the PSF is in fact avail-
able, including all the statistical moments of the complex
electromagnetic field, which can be very useful for special-
ized applications such as coronagraphy.

It is worth noting in this framework of high-fidelity,
E2E MC methods, that the actual level of modeling of
each component can vary greatly. For example, the WFS
can be modeled using either geometrical optics or diffrac-
tion optics, the latter being more accurate, but more com-
putationally intensive. So, several simulation codes ex-
ploring different complexity trade-offs have been
proposed in the past (see Le Louarn! for a review). How-
ever, all these codes have in common that, for a given
level of modeling, their computational complexity in-
creases greatly with the size of the AO system (i.e., num-
ber of actuators). Astronomical AO systems for the cur-
rent generation of 8 m telescopes typically require from a
few hundred to a few thousand actuators. Computing a
single long-exposure PSF for such a system using a few
seconds worth of AO simulated data can already take sev-
eral hours on a high-end personal computer. The ongoing
studies for the next generation of telescopes (30—100 m)
may require days for the computation of a single PSF,
which is clearly impractical unless some parallelization
schemes are implemented.

Analytical modeling approaches are interesting alter-
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natives to numerical modeling. The objective here is to
compute directly the long exposure PSF or/and its second-
order statistics (see for instance Fusco and Conan®) using
analytical expressions without requiring any iteration.
Only first-order modeling is possible; however, the compu-
tational complexity is much reduced. In fact, there are
many applications for which high-fidelity modeling is not
important, but computation time is critical. This is the
case, for example, when doing the initial design of an AO
system, where the AO parameter space (number of actua-
tors, number of guide stars, sampling time, etc) has to be
explored quickly in order to make the initial trade-offs.
More complex modeling through numerical methods can
be used afterwards, but only in a few promising cases.

In this paper, we present a method for the analytical
modeling of the long-exposure, AO-corrected optical
transfer function (OTF) from which the long-exposure,
AO-corrected PSF can be obtained via a single numerical
Fourier transform. Our approach follows a preliminary
derivation from Rigaut et al.® that we later expanded in
two dimensions® in order to model the two-dimensional
structure of the PSF, not just its one-dimensional average
profile. The method is based on the modeling of the re-
sidual AO-corrected, phase spatial power spectrum from
which, as we will show, a good approximation of the long-
exposure OTF can be calculated. In this preliminary
work, though, correlation between anisoplanatism and
servo-lag AO error was not taken into account, nor was
the two-dimensional structure of the WFS aliasing error.
These issues are addressed and solved in this paper.

The main objective of this paper is to present the prin-
ciple of the phase spatial power-spectrum method, its as-
sumptions and limitations. As a support to the demon-
stration of the method, we develop here the simplest AO
system mode: single deformable mirror (DM) with square
actuator geometry, single natural guide star (NGS), and a
Shack—Hartmann type WFS in an open-loop configura-
tion. This model already includes the five most fundamen-
tal limits of any NGS-based AO system: fitting error, WFS
aliasing, angular anisoplanatism, servo-lag, and WFS
noise. On this theoretical basis, it is possible to develop
more sophisticated modeling, including for instance
closed-loop AO, laser-guide-star AO, etc. Actually, some of
these new developments have already been published [see
for instance ground-layer AO (GLAO) spatial power spec-
trum modeling by Tokovinin® and Jolissaint et al.% and
segmented telescope active optics modeling in the spatial
frequency domain by Jolissaint and Lavigne’], but with-
out discussion of the principle of the power spectrum
method. We hope the current paper will provide such a
reference analysis. It is worth noting that Ellerbroek®
very recently published an interesting description of AO
modeling in the linear and spatial frequency domain, as
we do here, but using a different formulation and a some-
what more sophisticated approach.

In Sections 2 and 3, we show the relationship between
the long-exposure OTF and the residual phase spatial
power spectrum (PS). In Section 4, we derive the analyti-
cal model of the phase PS for the classical AO configura-
tion introduced above. In section 5, we present PAOLA
(Performance of Adaptive Optics for Large or Little Aper-
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tures), an IDL-based code that implements our method
and that has already been used for several studies.>*

2. OPTICAL TRANSFER FUNCTION OF
TELESCOPE WITH ADAPTIVE OPTICS

In this section, we explain how the long-exposure OTF of
the system “telescope and adaptive optics” (TSC+AO) is
calculated from the product of the AO and telescope
OTFs. This topic has already been addressed by Conan®®
and Véran,'® but we revisit it here in the context of our
analytical model, including static aberrations.

The instantaneous phase can be written as the sum of a
static g and a zero-mean, space-time-dependent turbulent
term &¢

o(r,t) = (r) + op(r,t). 1)

The OTF of an optical system is given by the phasor au-
tocorrelation in the pupil. So it becomes, for the TSC
+AQO, long-exposure OTF (the time average of the instan-
taneous OTF),

1

OTFy,(f) = 5 f f (exp{i[ S¢(r,t) - do(r + p,t) ]},
R2

P
x expli[g(r) - g(r + p) }P(x)P(r + p)d°r,
(2)

where the frequency in the focal plane is associated with
a position in the pupil plane through f=p/\, A being the
optical wavelength. P(r) is the pupil transmission mask
(1 in the pupil, 0 outside) and S,, the pupil area. We as-
sume here that the amplitude fluctuations of the electro-
magnetic field are negligible within the pupil, as if the
phase-turbulent perturbation were occurring so close to
the pupil that the amplitude change due to Fresnel propa-
gation can be neglected. This so-called “near-field approxi-
mation” is very common in AO, and can be proved to be
satisfactory in most cases.!” With the assumption that the
time-variable component of the phase d¢ has Gaussian
statistics, which is a good assumption even in the case of
an AO-corrected residual phase, it can be shown!” that
the time average can be moved into the exponential, to
get

1
OTFsys(f) = S_ J f eXP[— 1/2<Fi(r’pyt)>t]
P Rr2

X expf{i[@(r) - @(r + p)J}P(r)P(r + p)d*r,
(3)

where F (r,p,t)=¢(r,t)-¢(r+p,t) defines the statistical
increment of the turbulent phase.

A. Turbulent Phase Optical Transfer Function

Locally, the turbulent phase (no AO correction) can be
considered stationary. So, the increment will depend only
on the distance p between two points, and not on the ab-
solute location r of these points: F (r,p,t)=F(p,t). In
this case, we can define a variance for the statistical in-
crement, which is commonly called the structure function,
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here the phase structure function. As the turbulent phase
is isotropic, only the modulus of p is of importance, and it
can be shown'” that

D, (p) = 6.883877(p/ro)*?, (5)

where r is the Fried parameter,'® a measure of the coher-
ent scale of the turbulent phase at the given wavelength.
As a consequence, the exponential of the structure func-
tion can be removed from the integral, Eq. (3), and we ob-
tain

1
OTFsys(f)=eXp[—D¢(>\f)/2]S— f f expli[o(r)
P Rr2

- 3(r + MO }P(r)P(r + \N)d?r
= OTF g ([f) OTF (), (6)

so that the final OTF is given as a product of two compo-
nents: The first one carries the second-order statistic of
the zero-mean turbulent phase, and defines the turbulent
atmosphere OTF,;,,; the second one, the static OTFy,
carries the contribution of the telescope (diffraction limit
and static aberrations) and the science instrument (CCD
OTTF, for instance). The fact that the OTF can be split this
way makes it very simple to compute the long-exposure
PSF for a given telescope.

B. Adaptive-Optics-Corrected Phase Optical Transfer
Function

In the AO-corrected case, the phase is not stationary in
the pupil,15 so the location dependence r in the increment
and in the AO-corrected structure function remains
DY(r,p)=(F(r,p,t)). A p-dependent-only structure func-
tion cannot be defined. So, if we want to split the global
OTF between an AO and a telescope component, we have
no choice but to assume that the phase is corrected homo-
geneously everywhere in the R2 plane, as if the DM were
infinitely large. In that approximation, the corrected
phase is stationary, and it is possible to define a structure
function that is a function only of the separation vector
between points in the telescope pupil. Unlike the noncor-
rected case, though, this stationary structure function,
which we will write D:(p) [r average of Dz"(r,p) within
the pupil], is not necessarily isotropic: One can consider
for instance the case of an off-axis correction, better in the
direction of the NGS than in the perpendicular direction.
Removing the structure-function exponential from the in-
tegral Eq. (3), we can now write the system’s OTF as

1
OTFSyS(f)%exp[—D:()\f)/Z]S—ff exp{i[e(r)
P R2

- g(r + \O)}P(r)P(r + M)d2r
= OTFado(f)OTFtsc(f) . (7)

What is the effect of this stationarity assumption? Equa-
tion (7) implies that we approximate the average of the
exponential of Di’(r, p) by the exponential of the average
D (p). Using Jensen’s inequality®**—which states that for
a convex function f (as the exponential is), the function of

Jolissaint et al.

the average of an interval [a,b] is always smaller than
the average of the function in this interval, i.e.,
fla,b])) <({f(a),f(b)])—we find that the total OTF given
in Eq. (7) underestimates the real OTF. Using numerical
simulation, Véran®! basically found the same result. He
found also that the OTF error increases with the focal
plane angular frequency and with D/ry but decreases
with the order of correction, and that the absolute error,
in the worst case, is of the order of 0.02 on the Strehl ra-
tio. So, we think it is reasonable, keeping in mind the ob-
jective of our model, to accept this approximation.

3. RELATIONSHIP BETWEEN PHASE
STRUCTURE FUNCTION AND PHASE
POWER SPECTRUM

In developing Eq. (4), it happens that the phase structure
function is related to the phase autocorrelation'® B o
D ,(p)=2[B,(0)-B,(p)]. Now, as the phase autocorrelation
is the Fourier transform (FT) of the phase PS, it is easy to
show that

D (p) =2J f [1-cos2nf- p)IE{se}(H)Af,  (8)
RZ

where Z{d¢} denotes the phase spatial PS. This equality
is of general use, and applies either to the turbulent
phase or the AO-corrected phase (assuming stationarity).

The AO structure function can be computed by numeri-
cal integration of Eq. (8) [via fast Fourier transform
(FFT)] once an analytical expression for the phase PS is
known. Then the system total OTF can be computed us-
ing Eq. (6) or Eq. (7). The central point of the analytical
approach is then the calculation of the residual phase
spatial PS, E{5¢}. We develop this in Section 4.

4. ADAPTIVE OPTICS RESIDUAL PHASE
POWER SPECTRUM

In this section, we develop the calculation of the residual
phase PS in two dimensions, following the same proce-
dure as Rigaut et al.® did for the one-dimensional case.
Note that only the zero-average, residual turbulent phase
S¢ is of interest here; the static phase is taken into ac-
count in the telescope OTF.

A. Principle of the Power Spectrum Method
The fundamental equation of AO is our starting point:

80,(x,0,t) = S, (r, 0,1) — 5g,(r,0,t), )

meaning that the residual of the corrected phase J¢, is
given, when looking in a field direction angle 6, by the dif-
ference between the atmospheric turbulent phase J&¢,
seen in that direction and the on-axis turbulent phase es-

timated from the on-axis NGS, 8¢,. The fundamental lim-
its of AO systems make this residual phase nonzero, and
five components can be identified: First, the WFS has a
finite spatial sampling, set by the subaperture size Awpg
as seen from the pupil plane, so spatial frequencies above
the WFS Nyquist frequency fywps=(2Awrs)™! are not
sensed, and cannot be corrected. Now, even if the WFS
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does not have such a limitation, the DM will be able to
correct only the phase fluctuations below its cutoff fre-
quency fpy=(2Apy) "L, where Apy is the actuator pitch, as
seen from the pupil plane. As a consequence, the highest
spatial frequency the AO system will be able to correct is
defined by the minimum of both WFS and DM cutoff fre-
quencies. In most systems, though, the subaperture size
matches the DM actuator pitch, and we have Ayrg=Apy
=A. Here, we will assume this is the case, and will define
the cutoff frequency of the AO system with fyo=(2A)71.
Also, we will assume that the filtering is a perfect high-
pass: complete filtering below fo, and complete transmis-
sion above. These uncorrected high spatial frequencies
are transmitted to the output of the AO system, and make
for the first and larger error term, frequently referred to
as the fitting error. Second, the non-sensed high spatial
frequencies (above fpo) are aliased in the low-frequency
domain of the WF'S, making for the second most impor-
tant source of error, the phase aliasing error. Third, to get
a good signal-to-noise ratio (SNR) on the phase measure-
ment, the WFS has to sense for a certain integration time
At, which is a trade-off between getting enough NGS pho-
tons and not averaging too much the phase high-temporal
fluctuations. In other words, the integration time is cho-
sen to minimize the added contributions of the WF'S noise
and time averaging. Moreover, the reading of the WFS
CCD, the phase reconstruction, and the DM’s surface up-
date takes some time (roughly one sampling period), cre-
ating a time lag between phase measurement and correc-
tion. The phase error term associated with both time
averaging and time lag is called the servo-lag error. The
fourth error term is naturally due to the WFS noise, and
is called the noise error. Finally, as turbulence is highly
anisoplanatic (the isoplanatic patch is of the order of a
few arc seconds in the visible wavelengths), there will be
an isoplanatic error for off-axis science targets. Of course,
there might be other unexpected sources of residual phase
errors (vibrations, for instance) but these are not due to
the fundamental limits of AO systems, and can be
avoided, in principle, by a proper design of the system. We
will then not consider these potential sources of error in
this paper, even though it is certainly possible to model
some of them analytically.

The time sequence of the AO loop is split in a WF'S in-
tegration time A¢, immediately followed by a delay ¢ due
to WF'S reading and phase reconstruction. So the phase is
corrected at a time At+¢ after the beginning of the WFS
measure. As the ideal scheme would be to apply the cor-
rection in the middle of the integration time, the total
servo lag is t;=At/2+¢.

Let us write M as the measurement operator in the pu-
pil plane. Its exact formulation depends on the WFS type,
but for now we can keep a general notation. The measure
m(r,t) is the application of M on the phase averaged over
the integration time, plus the WFS noise v(r,?):

At/2
m(r,t) = M —f 8o, (r,0,t" +t —t,)dt’ ¢ + v(r,)
At —At/2

= M{8¢,(r,0,t)} + v{r,t}, (10)

where the overline represents the average over the WFS
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integration time At of the time-lagged phase. Note that
this finite time average should not be confused with the
exposure time average, which is defined here for the full
AO exposure time, assumed infinite. Finally, the WFS
measure is sent to the reconstructor R to get an estima-
tion of the on-axis turbulent phase (recall that we assume
an on-axis NGS and an off-axis science target):

5o (1,0,8) = RAM[ gy (r,0,8) ]} + Riv(r,8)}.  (11)

Now the phase, whatever its origin, can be written as a
Fourier decomposition, where the coefficients are given by

the phase FT, 5¢(f ,t), and the basis functions by the infi-
nite set of complex exponentials, exp[27i(xf,+yf)]:

Se(r,t) = f J So(f,t)exp[2i (xf, + yf,)1d*f.  (12)
R2

The space vector defined by the set of the complex expo-
nentials can be split into two subspaces: a low-frequency
(LF) one associated with the spatial frequencies the AO
system can correct, below [, and a high-frequency (HF)
one associated with the spatial frequencies the system
cannot correct, above fao.

Let us decompose the phase into its projection onto
these two subspaces: d¢orp defines the LF component,
S¢pr the HF one:

¢ = S¢rp + OyF. (13)

Splitting the atmospheric phase into its two components
according to Eq. (13), and inserting it into the fundamen-
tal equation of AO, Eq. (9), it becomes, with Eq. (11)

5(pr(r’ 0’ t) = 5‘pLF,a(r’ 0’ t) + 5‘)DHF,a(r’ 0’ t)

= RAIM[(Serr,q + denr,q)(r,0,0)]} - R{v(r,0)}.
(14)

Here comes another model assumption: The reconstructor
is able to reconstruct perfectly the LF term of the phase
from its measurement myp=M{S¢ry}, allowing us to
write

R(myy) = RIM[Serr]} = derr. (15)

The application of the measurement operator M on both
Sorr and the noise is separated, and the aliasing term in-
volves only the HF term S¢pp. This assumption is then
quite reasonable. By use of Eq. (15), Eq. (14) can now be
written as the sum of five terms (the five errors intro-
duced above:

5§Dr(r, oyt) = 5‘PHF,a(r, oyt) + 5‘PLF.a(r, o,t) - 5‘PLF.a(r,0,t)

OPHF,q SPLF, 0
+ 5‘PLF,a(r’0’t) - 5‘PLF,a(r’0,t)
OpLF s
- RIM[Sgrp J1r,0,8) - R{v(r,t)} ~ (16)
O¢LF HF SeLFn

where we have subtracted and added the on-axis LF
phase to make the anisoplanatism and the servo-lag
terms appear individually. The first term on the right-
hand side of Eq. (16) is the fitting error depp, (high fre-
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quency); the second term is the phase anisoplanatism
o¢17,p; the third term is the phase servo lag d¢rpg; the
fourth term is the phase aliasing d¢pppp, and the last
term is the phase noise d¢rp,. The latter four terms are
low-frequency ones.

Let us now develop the residual phase PS. It is defined
by the modulus square of the residual phase FT, averaged
over the (infinite) exposure time:

E(8¢,)(f) = (| 5¢,(£, 0,0)|) = (| S¢np o £, 6,0)2)
+(|6eLp o(£, 0,02 + (| Serp (£,0,0)[2)

+ (| Sppr p(f, 0,2)[2) + (| Sepp o (£,0)|?) + CS.
(17)

Let us analyze the cross-spectrum (CS) terms. First, we
note that among the ten possible CS terms, those includ-
ing the noise term vanish, because the noise is in prin-
ciple not correlated with the other phase terms. Second,
as we have split the spatial frequency space into two dis-
tinct LF and HF domains, products between LF and HF
spectra do not overlap, so they automatically vanish. So
do the associated CS terms. Finally, only the correlation
between anisoplanatism and servo lag is left:

CS = (Sovp of, 0,0) 6y p ,(£,0,8))
+(Sorp of, 0,8) Sorr o(£,0,0)), (18)

where * denotes complex conjugation. In the following
subsections, we derive the expressions for the individual
PS of each of the five error terms, plus the aniso—servo
CS.

B. Power Spectrum Models of the Piston-Filtered
Turbulent Phase

We recall here the expressions for the most commonly
used turbulent phase PS: the Kolmogorov model, which
holds for an infinite extension of the turbulence at every
scale from zero to the infinite,

K550, }(F) = 0.0229r5%3F 113, (19)
0

and the Hill-Andrew model (an improvement of the Von
Karman model), which takes into account the effect of

both the outer and inner scales (Lg,[() of turbulence:??
TAZ{S,)(f) = 0.0229r7(F2 + /LG~
X[1 + 3.43f1, + 0.538(f1,) 6]
X exp(— 3.625(3). (20)

The PS for individual layers can be written by replacing
the global Fried parameter r, by the layer’s value. Note
that the phase average over the entrance pupil of the tele-
scope (the piston mode) cannot be seen by the AO system,
and does not participate in image formation. Conse-
quently, such a mode must be filtered out by simple mul-
tipliciab)tion of the turbulent phase PS with the piston
filter
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2J,(7Df) ]2
—, (21)

Fp(f)=1_|: wDf

where D is the telescope pupil diameter.

C. Fitting-Error Power Spectrum

According to our assumption, the AO system is able to cor-
rect perfectly the phase aberrations at every spatial fre-
quency below f, and reflects the HF phase to the output
of the system. The PS of the HF phase (fitting error) is
then simply the truncated, piston-filtered, turbulent
phase PS (any model M) set to zero in the low-spatial-
frequency domain:

E{Senr.q}(f) = par(E)F,(F )M E{Se ) (F), (22)

where the mask uyyp is 1 for frequencies above fjo and 0
elsewhere. For the particular case of a Shack—Hartmann
and DM with square lenslets/actuators geometry, the LF
domain is defined by |f,,|f;|<fao (a square); other WFS
geometry will give other LF domain boundaries (for in-
stance, a disk for a curvature-sensing WFS). Here, a
square geometry will be considered.

D. Anisoplanatism Power Spectrum

Let us define 8¢,[h] as the phase aberration due to a tur-
bulent layer at an altitude & relative to the entrance pu-
pil. As seen from the pupil plane, at an angle @ from the
optical axis (science object position in the field), this
phase aberration becomes 8¢, (r, 0,t)= ¢, [h](r+h6,t). If
there are N turbulent layers, the total atmospheric phase
aberration becomes

N
S (r,0,8) = >, 8@ [h,](r +h,0,t). (23)

n=1

Now, we can compute the FT of the phase anisoplanatism
d¢ry,e- With Eq. (23), and using the shift theorem of the
FT, it becomes:

N
Sorp £, 0,8) = >, Sorp [, )£, D) [exp2mih,f- 6) - 1],

n=1

(24)

from which we can get the angular anisoplanatism PS
(using the assumption that the turbulent layers are inde-
pendent):

N
5{5‘PLF,0}(£ 0) = 2,U«LF(f)Fp(f)E ME{5<Pa[hn]}(f)
n=1

X[1 - cos(27h, f- 6)], (25)

where the mask upp=1-pugr is 1 for |f,],|f,|<fao and 0
elsewhere, and where MZ{8¢,[h,]} is the turbulent-phase
PS of layer n (Subsection 4.B).

E. Servo-Lag Power Spectrum

We compute now the PS of the phase servo lag d¢pp . Let
us assume that the time scale of the turbulent flow dy-
namical evolution is much longer than the total time lag
of our AO system. With the assumption that the turbu-
lence is stratified in N independent horizontal layers, the
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phase at each layer output can be seen as a frozen screen
propagated horizontally at constant velocity and direction
across the telescope beam—the so-called Taylor hypoth-
esis. Projected in the pupil plane, a 7 time-shifted phase
at altitude 2 can be seen as the same phase spatially
shifted in the direction backward to the wind, —v, by the
distance crossed during the time 7:8¢,[h](r,t+7)
=8¢y[h])(x—v[h]7,t). For N layers, the total phase aberra-
tion in the pupil plane becomes

N
8a(r,t+ 1) = >, ¢ [h,)(x = VR, ]7,t). (26)

n=1

Now, we can compute the FT of ¢y ;. From its definition
in Eq. (16), it becomes

Sours(£,t) = Serp o(£,8) — FlOprpo(1,1)}. (27)

Let us develop the time-lag-shifted term of Eq. (27). We
first replace the time-lagged-shifted phase S¢ by its defi-
nition in Eq. (10). Then, by use of Eq. (26) and the shift
theorem of the FT, it becomes:

N A2
HpLpq(r,t)}= > SpLr ol h,](E,t)
n=1 —At/2

Xexp[— 2mi(t' - t)f - v(h,)]dt'. (28)

Realizing that the integral over +A¢/2 is in fact a time-
domain FT of the door function I1(¢'/At), we find

N
FoLpa(r,0)} = 2, Sovpalh,](E,t)
n=1
xsinc[Atf - v(h,)lexp[2mit,f- v(h,)].
(29)

Finally, substituting Eq. (29) into Eq. (27), and using
5‘PLF,a(fat)=2n6¢LF,a[hn](f’t), we find

N
Serrs(f,t) = 2 Sprpolh,(£,t)
n=1
X{1 - sinc[A¢f - v(h,,)]lexp[2mit,f - v(h,)]},

(30)

from which it is easy to compute the servo-lag PS:

N
E{0¢LpsH(F) = pip(E)F,(F) 2 ME{Sealh, JH(F)

n=1
X {1 -2 cos[2m7t;£- v(h,)]
xsinc[Atf - v(h,)] + sinc?[Atf - v(h,)]}.
(31)

F. Total Aniso-Servo Power Spectrum

As we have seen above, anisoplanatism and servo-lag er-
rors are not independent, and their cross spectrum must
be taken into account. We will not give here the expres-
sion for this CS. It is instead much easier to compute the
total PS of the combination of both effects, E{5¢pys}
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=E{0¢Lr o} + E{0pLr s} +CS, starting from Eq. (16), but
without the subtraction/addition of the on-axis LF phase.
We have

E{804}(£) = (| SLp o(f, 0,0)|) + (| Serr o(£,0,8)[%)

— 2 Re{(3p1p.a(f, 0.0) 500, (£,0,0)}. (32)

Using Eq. (29), calculating the Fourier transform of Eq.
(23), and assuming that the turbulent layers are indepen-
dent, we find

N
E{0gsH(F) = pip(®)F,(H) 2 VE{Se R, 1)

n=1
X (1-2cos{2nf-[h,0-t,v(h,)]}
xsinc[Atf - v(h,)] + sinc?[Atf - v(h,)]).
(33)

It is easy to see that Eq. (33) transforms into Eq. (25)
when the integration time is null (no servo lag), and into
Eq. (31) when the science target is on-axis (no
anisoplanatism).

G. Shack-Hartman Wavefront-Sensor-Measurement
Operator M

To compute the other terms of the phase PS (aliasing and
noise), we need an explicit expression for the measure-
ment operator M, whose structure depends on the type of
WFS. Here, we restrict the discussion to the Shack—
Hartman-wavefront-sensor (SH-WFS) case. Other types
of WF'S can be chosen, though, using the same spatial fre-
quency approach to derive a measurement operator (see
for instance Verinaud?* for the pyramid WFS case).

The SH-WFS-measurement operator is a two-
component, two-dimension discrete distribution that
implements the derivative of the phase in both x and y di-
rections, averaged over the lenslets area. Let us consider
the x component of the measurement. It may be written
as

m(r) = M{d¢(r,t)},

o 1
= E(r,t)*P[H(x/A)H(y/A)] III(x/A). (34)

The convolution with the “door-functions” product ex-
presses the averaging of the phase on square lenslets of
width A, and the product with the comb function III ex-
presses the spatial sampling of the phase on a A-pitch
square grid. In principle, we would multiply on the right
by the pupil transmission function P(r), but as we are as-
suming here that the phase is homogeneously corrected
everywhere in the (x,y) plane associated with the pupil
plane, it is equivalent to assume that the telescope diam-
eter is infinite, so this term is unnecessary. Now, let us
compute the FT of Eq. (34). We find

m(£,t) = A%2 wi[fxgg\o(f,t)sinc(Afx)sinc(Afy)] # [TI(Af),
(35)

where the convolution with the comb function expresses
the repetition of the term in brackets in a regularly
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1/A-spaced grid in the spatial frequency domain, and is
responsible for the aliasing of the HF phase component
into the LF domain |f|,|f,|<fao (which always occurs, as
the turbulent-phase PS is not bounded toward the high
spatial frequencies). In the spatial frequency space, the
measure is then equivalent to the application—on the in-
stantaneous phase-amplitude spectrum—of the two-
component operator

M = A22mi[f sinc(Af,)sinc(Af,)] = TII(Af).  (36)

H. Shack-Hartman Wavefront-Sensor-Reconstruction
Operator R

Now, we need an expression for the phase-reconstruction
operator, or reconstructor, in particular its FT, R. Basi-
cally, it must be equivalent to the inverse of the

measurement-operator FT, M, without the aliasing part
(as the reconstructed phase is by definition in the LF
space), and its exact formulation will depend on the re-
construction algorithm. Here, we will assume a least-
square-estimate (LSE) algorithm. It will still be possible
to implement other algorithms, as long as practical ana-
lytical expressions are available, following the same pro-
cedure as presented here. Note also that in our open-loop
approach, temporal transfer functions are assumed to be
1, and limited to the temporal frequency range <1/(2At).

The LSE-reconstructed phase ¢, is determined by the
minimization of the quadratic distance €? between its own

measurement M{5p,}—but without WFS aliasing—and
the actual phase measurement m(r,¢)=[m,(r,t);m,(r,?)],
subject to aliasing, WF'S noise, and servo-lag error:

€& = {m(r,t) - M[ 30, (r,0,6)].}2
+{my(,8) = M[ 30, (r,0,£)],12. (37)

Of course, this minimization can also be done in the Fou-
rier space, and in that case we get the reconstructed
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phase FT 8¢, instead: Replacing Eq. (37) by its FT coun-
terpart, and using Eq. (36) but without the III function,

we find, after differentiating &2 relative to 75;,1 and setting
the result equal to zero,

1 (£,0)f + my (£,0)f,

20 bl) = G P sinc(Af)sine(,)

=R - [1in,(x,8);770,(x, )],

(38)

which can be written as a dot product between the mea-
surement vector m(f,#) and a two-component function
representing the reconstructor in the spatial frequency
domain,

R = #/[27if? sinc(Af,)sinc(Af,)]. (39)

Now, we have everything we need to compute the last
components of the residual phase PS, i.e., the WF'S alias-
ing and noise PS.

I. Wavefront-Sensor-Aliasing Power Spectrum

The phase aliasing error is defined in Eq. (16) as
SoLr ar=R{AM| Seur 1} where we recall that the overline
represents the processes of both time lagging and time av-
eraging during the WF'S integration. Let us now compute
its FT. We first note that the time lagging and averaging
transform here is exactly as in the phase servo-lag FT, Eq.
(30),

N
Serrur(f,t) = 2 FIRM[ Sppr o[h,](r,0)]}

n=1
Xsinc[Atf - v(h,)]lexp[2mit, £ - v(h,)],
(40)

and is not affected by the aliasing, which makes sense:
WFS aliasing is a geometrical process and does not affect
the dynamical properties of the phaselike time averaging/
shifting. Let us now develop the FT term within Eq. (40).
With Eq. (36) and Eq. (39), it becomes

f{RM[(s@HF,a[hn]]} = [2 mfz SinC(Afx)Sinc(Af;/)]_l(A2{[fx&)\DHF,a SinC(Afx)Sinc(Afy)] * III(Af)}fx

+ Az{[fy &\DHF’G sinc(Afy)sinc(Af,)] = III(Af)}f,). (41)

The next step is to replace the comb function by its Dirac
distribution development,

1 k l
(A = > 5<fx - h- X) (42)

k=

and with the equality

sinc[Af(,,) - (&,[)] (= 1)(k’l)Af(x,y)
SinC(Af(x,y)) - Af(xa) - (k’l) ’

(43)

whence we finally find for the aliasing amplitude spec-
trum
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EQ\DLF,HF(ﬁ t)
N

o
= upp(f) 2 >

sinc[Atf - v(h,)]lexp[2m7it,f - v(h,)]

= fx fy
_ 1)\k+1
ng_x {( b (fy—l/A+fx—k/A>

|| +|2[>0

—~ k l
X 6¢HF,a[hn] (fx - X’f;/ - X’t>:| ’ (44)

where the sum over the indices (%,/) is practically limited
to a range of a few units in the implementation of the ac-
tual calculation, and the case (k,l)=(0,0) is skipped, as
the HF phase spectrum is null in the low-spatial-
frequency range. Now, we can compute the aliasing PS.
Assuming that the temporal correlation of the phase spec-
trum from f to f—(%,/)/A is negligible—which is accept-
able as we know that the turbulent-phase PS drops
sharply at high spatial frequency—and assuming as
usual independence of the turbulent layers, we find

E(Serr ur)(f)

f2 2 N
= )7 21 sinc?[Atf - v(h,)]
f. £, \? k l
. kzz {(fy—lm fo- k/A) F"(f"_X’fy_K)
|| +]1]>o0
xME{awa[hn]}(fx—f,ﬁv—l)} , (45)
A A

where the turbulent phase PS is piston-filtered, as usual.
Equation (45) has singularities at (f,=0,k=0), (f,=0,/
=0), and (f;,f,)=(0,0). Calculation of the limits gives

E{6¢rr ur}(0.£,)

N
= uir(0,£,) Y, | sinc?[Atfyv,(h,)]

n=1

400

!
X2 F (0 f,- )Ma{a%[hn]}(o,fy - X) ,  (46)

l=—%

1#0

E{5QDLF,HF}(fx, 0)
N

= urp(f,,0) Y, | sinc[Atfiv,(h,)]
n=1

+o0 k
x> F (fx —,0 )Ma{a%[hn]}(fx—x,o) , (47
k=—0
k#0
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E(SeLrur)(0,0)

N k k
= up(0,00>, > Fy|-— 10 {m[hn]}(—x,o ,
n=1k=-x»
k#0

N ! !
=/LLF(0’0)2 E Fp<07_ X)Ma{aqoa[hn]}(()’_ X) .
n=1l=-x
1#0

(48)

J. Phase-Noise Power Spectrum

The WF'S noise—in open loop—is a random quantity, with
a white spectrum bounded to the LF domain [f],lf,
<fwrs- It is also discrete, defined only at the WFS sam-
pling positions (centers of lenslets), and has the same unit
as the WFS output, a two-component slope n(r,?)
=[n,,(r,t), nsy(r t)] for a SH-WF'S.

The noise variance 02 is basically a function of the WFS
integration time, gulde star brightness and color, subap-
erture size relative to the telescope diameter, and a few
other parameters that depend on the sophistication level
of the WFS modeling and type (see Refs. 25 and 26 for
WFS noise variance models).

From the WFS noise, the reconstructor gives rise to the
phase noise term Sorr ,; see Eq. (16). Its amplitude spec-
trum is given by

fxﬁs,x(fa t) + f‘;,fls,y(f, t)
2mif? sinc(Af,)sinc(Af,)
(49)

Sovrn(£,8) =R - (f,0) =

from which it is straightforward to get the phase noise PS

HLr(HN(E)
4722 sincz(Afx)sinCZ(Afy) ’

E{Sprr () = (50)

where we have assumed that the slope noise in x and y
are not correlated and are of the same magnitude. N(f)
represents the spatial PS of the slope white noise, and is
the same for both components of n,. It is constant within
the domain |f,],|f,|<fwrs and zero outside, and is related
to the noise variance by

=f f L

With this last equation, the presentation of the founda-
tions of the phase-spatial PS method for analytical mod-
eling of the adaptive-optics-point-spread function (AO-
PSF) is terminated.

N(£)d%f=NAZ. (61)

[<fwrs

5. PAOLA

Our analytical method has been implemented in an IDL-
based code, PAOLA, Performance of Adaptive Optics for
Large or Little Apertures. Here, we present a few ex-
amples of execution on a Gemini-like telescope with a
typical Mauna Kea turbulence profile. Atmosphere, tele-
scope, and AO system parameters are given in Table 1.
Most of the AO parameters correspond to the Gemini-
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North AO system, ALTAIR (ALTitude-conjugate Adaptive
optics for the InfraRed).

Figure 1 shows the aniso—servo PS [see Eq. (33)]. The
symmetry of the PS is oriented toward the direction of the
NGS, here +60°. The servo-lag error smooths out the
anisoplanatism effect in the main wind direction, which
was set here to +45°. In Fig. 2, we show the WFS aliasing
PS [see Eqgs. (45)—(48)]. Note that aliasing can be elimi-
nated by low-pass filtering of the phase at the WFS input
focal plane (see Ref. 28). The WFS noise PS is shown in
Fig. 3 [see Eq. (50)]. Only the low spatial frequencies are
affected by WFS noise. In Fig. 4 we show the total PS, the
sum of the LF components plus the fitting error PS [see
Eq. (22)]. A section of the phase PS before and after AO
correction is shown in Fig. 5.

From the total LF and HF PS, we computed the LF and
HF structure functions [Eq. (8)], Fig. 6. We see that both
structure functions saturate at twice the phase variance
(dashed—dotted lines), a fact that can be demonstrated by
taking the infinite limit of Eq. (8). The structure functions
oscillate with a period of =1.2 m, twice the DM actuator
pitch (0.6 m). Such an oscillation is due to the sharp tran-
sition from the LF to HF domain in the DM spatial filter
model, and we can expect in a real system this transition
to be smoother, the oscillations less pronounced. The AO
OTF calculated from the sum of the structure functions is
shown in Fig. 7, after multiplication with the telescope
OTF. Seeing-limited and telescope OTFs are shown for
comparison. Figure 8 shows the associated PSF profiles.
Within the corrected field half-width p,,=Mao (here
0.287") associated with the AO cutoff frequency, the AO
PSF follows the telescope PSF, with an attenuation factor
given by the Strehl ratio; as one gets closer to the p,,
boundary, the effect of aliasing can be seen as an increase
of the PSF intensity; beyond, the PSF halo follows the
seeing-limited PSF trend, with a few residual oscillations
from the telescope PSF Airy rings. This interpretation
comes from the fact that (1) the amplitude PSF (focal
plane phasor) can be interpreted as the angular spectrum
of the pupil phasor, and a feature in the pupil plane at a
spatial frequency f will appear at the position \f in the
focal plane, and (2) in the small phase perturbation re-
gime, i.e., |6¢| <1 rad, the wings of the intensity PSF can
be shown to be proportional to the phase PS (see Refs. 4
and 27). As a consequence, we can interpret the PS in
terms of structures in the PSF: For instance the WFS
noise will mainly affect the core of the PSF, the aniso—
servo error will affect symmetrically the regions close to
the PSF core in the direction of the NGS and the main
wind direction, and the aliasing will generate a transition
from the PSF diffraction-limited core to the PSF seeing-
limited halo at the p,, boundary.

We show now in the following figures some examples of
AO parameter trade-off studies for a classical AO system
on a Gemini-like telescope. The whole calculation for all
cases took a couple of minutes to complete. In Fig. 9, we
show the effect of the WFS temporal sampling frequency
on the Strehl ratio, for four NGS magnitudes, 10, 11, 12,
and 13. If the sampling frequency is optimized for each
magnitude (respectively, 400, 200, 130 and 100 Hz for the
example AO system chosen here), then the Strehl ratio
can be kept above 60%. On the left of the same figure, we
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Table 1. Atmosphere, Telescope, and Adaptive
Optics System Parameters

Telescope and Atmosphere AO System
@ M1,2 7.9,1.2m Actuator density 1
N 1.65 um DM height 0 km
Seeing 0.7" NGS angle 5"
ro(\) 0.605 m NGS orientation 60°
L, 30 m WES int. time 10 ms
(Hyayers) 6636 m Loop time lag 0.8 ms
Oo(\) 5.9 NGS magnitude 12
(Viayers) 19.3 m/s NGS temperature 6000 K
70(N) 9.8 ms WFS readout noise 5 e/px

Fig. 1. Aniso-servo power spectrum (1/8 power-law scaling)
within the LF domain; see parameters in Table 1.

Fig. 2. Aliasing power spectrum (1/8 power-law scaling) within
the LF domain; see parameters in Table 1.

note that the different magnitude cases overlap: This is
explained by the fact that at low sampling frequency, i.e.,
long integration time, the noise spectrum is greatly re-
duced, leaving the servo-lag error as the main component
of the phase error, which is independent of the NGS mag-
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nitude. At high sampling frequency, the inverse situation
occurs, and curves for different magnitudes no longer
overlap.

Figure 10 shows the effect of DM actuator density, de-
fined as A/ry, for the same NGS magnitudes as above. For
low actuator density, HF phase and aliasing dominate the
error, so curves overlap as before. At high actuator den-
sity, the spreading of the NGS photons into more and
more subapertures decreases the WFS signal-to-noise ra-
tio: The optimal actuator density is indeed a function of
the NGS magnitude.

Finally, we show in Fig. 11 the effect of the
anisoplanatism error on the 50% encircled energy diam-
eter (EED) for a NGS off-axis separation of 0 to 30", for
our usual magnitudes. For an on-axis NGS, we see basi-
cally the effect of WF'S noise, servo-lag, and aliasing. In-
creasing the off-axis NGS angle obviously increases the
EED. Let us assume that for a significant improvement of

Fig. 3. WFS noise power spectrum (1/8 power-law scaling)
within the LF domain; see parameters in Table 1.

Fig. 4. Total phase power spectrum (1/8 power-law scaling).
Spatial frequency domain has been extended to twice the LF
boundary to show the fitting error power spectrum. Note the
square boundary between the low (corrected) and the high spa-
tial frequency domains. See parameters in Table 1.
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Fig. 5. f,-cut across the total phase power spectrum shown in
Fig. 4. Dashed curve shows the turbulent, uncorrected phase
power spectrum.
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Fig. 6. Fitting error and LF phase structure functions. Horizon-
tal dashed—dotted lines represent twice the fitting error and LF
variances. See parameters in Table 1.

a spectroscopic measurement, the EED has to be reduced
by a factor of two relative to the seeing-limited case.
Then, the field of correction diameter will be ~16” to 10”
for 10th to 12th magnitude NGS, and zero (no corrected
field available) when using a 13th magnitude star. With
such a result, and using star-count models, it is easy to
evaluate what would be the sky coverage for this particu-
lar system and instrument.

In our opinion, a natural application of our code would
be to serve as a PSF performance evaluation tool for a
given system on a given telescope: The astronomer sets
the parameters of the AO run (seeing and AO system),
and PAOLA gives automatically and rapidly the expected
PSF and OTF, allowing the observer to decide if it is
worthwhile to run the observation, and if so, to have an
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Fig. 7. Long exposure OTF's for the telescope, the telescope with
an AO corrected phase (associated with the structure functions
shown in the Fig. 6), and the telescope with an uncorrected tur-
bulent phase. See parameters in Table 1.
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Fig. 8. Long exposure PSF profiles associated with the OTFs
shown in Fig. 7.

evaluation of the associated PSF for a posteriori data pro-
cessing.

As a last example, we show in Figs. 12 and 13 an
extreme-contrast AO (ExAQO), instantaneous PSF calcu-
lated with a MC E2E code and PAOLA, for comparison. In
order to avoid WFS aliasing, spatial filtering of the HF
phase error was implemented into the MC simulation (see
Ref. 28). With PAOLA, spatial filtering of HF is simulated
simply by not adding the WF'S aliasing component to the
total residual phase PS. The square field of AO correction
below angular distance p,, is apparent in both cases. This
example illustrates an interesting application of our code:
The residual PS can be calculated with PAOLA, and used to
create AO-corrected phase screens for coronagraphy and
speckle effects studies.

We wanted to show with these few examples how easy
and fast it is to get a good estimate of the performance of
a given AO system using the analytical method. Once the
properties of the AO system have been understood, a com-
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plete, detailed MC E2E model can be built to get a more
detailed analysis of the system’s performance, including
second-order effects not seen in the first-order analysis.

6. CONCLUSIONS

In this paper, we give the fundamental basis for the first-
order analytical modeling of the long-exposure optical
transfer function (OTF) of a telescope with adaptive op-
tics (AO). The method relies on the relationship between
the residual phase spatial power spectrum and structure
function on one hand, and between the structure function
and the long-exposure AO OTF on the other. This OTF is
multiplied by the telescope OTF to get the total OTF.
Once the OTF is obtained, getting the long-exposure
point-spread function (PSF) is simply a matter of comput-
ing a numerical Fourier transform. Comparisons with
Monte Carlo simulations show good agreement.

0.8 T T T T T

0.6

0.4

STREHL

0.2

0.0 P | M | b
10 100 1000 10000
WFS SAMPLING FREQUENCY [Hz]

Fig. 9. Strehl ratio versus WFS sampling frequency. NGS mag-
nitude from 10 (top curve) to 13 (bottom). See other parameters
in Table 1.
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0.1 1.0 10.0
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Fig. 10. Strehl ratio versus DM actuator density. NGS magni-
tudes from 10 (top curve) to 13 (bottom). See other parameters in
Table 1.
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Fig. 11. 50% encircled energy diameter versus NGS off-axis
angle. NGS magnitude from 10 (bottom curve) to 13. Horizontal
dashed lines: top, seeing-limited case; bottom, diffraction-limited
case.
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Fig. 12. Monte Carlo end-to-end extreme AO simulation: instan-
taneous PSF (log scale). Telescope diameter 7.9 m, wavelength
1.65 um, 44 actuators across the DM, seeing 0.95", outer scale
30 m, Strehl ratio 95%. WF'S aliasing has been optically filtered
(courtesy of B. Macintosh and L. Poyneer, poyneer@llnl.gov).

The model presented here is for a Shack—Hartmann
wavefront sensor, with a least-square type reconstructor.
Nevertheless, other wavefront sensor type modeling is
possible in principle, as it has already been done for a
pyramid sensor.?* The next step would be to build a
curvature-sensing model. Such models are useful in mak-
ing quick comparisons of the performance of different
wavefront sensor types regarding noise propagation and
aliasing issues.

The deformable mirror model we have used here is a
perfect spatial filter one. In practice, deformable mirror
transfer functions are not so sharp, and in principle we
should be able to make our model more realistic by using
measured, empirical, deformable-mirror spatial transfer
functions, instead of the perfect masks we have used here.
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Fig. 13. PraoLA extreme AO simulation; same conditions as Fig.
12. The PSF has been calculated from an AO-corrected phase
screen that was built using a phase power spectrum calculated
with the code PAOLA (courtesy of R. Soummer, soummer
@stsci.edu).

In summary, the theory presented here can be used as
the basis on which to build more and more sophisticated
analytical models, including new types of wavefront sen-
sors, reconstructors, and deformable-mirror influence
functions, as long as these models have a practical formu-
lation in the pupil-plane spatial frequency domain.
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