Classification of COROT Exoplanet Light Curves

Progress report since CW9: visit of L. Sarro to Leuven in March, including meeting of whole team in Leuven that week + common work ever since

L.M. Sarro

J. Debosscher

- C. Aerts
- R. Garrido
- E. Solano
- B. Vandenbussche

Outline

- Training classes
- Light curve analysis
- Preprocessing
- Classifiers
- Results
- To be done
- •Conclusions

Training set (Supervised Classification)

- About 40 stellar variability classes (see CoRoT book)
- Extensive literature search for well known member star identifiers + consultation of CoRoT community
- Search for their light curves (public+private):
 - HIPPARCOS
 - Geneva
 - Strömgren
 - ESO LTPV
 - ULTRACAM
 - MOST
- Additional colour information: 2MASS

Light Curve Analysis

- 1) Check for trends (can also be indicative for long-term periodicity)
- 2) Implemented period analysis methods:
 - Fourier techniques (FFT and fast Lomb-Scargle)
 - Suited for pulsating variables
 - Search for up to a maximum of *3 significant different frequencies:* iterative procedure of peak selection + harmonic fit subtraction (4 harmonics)
 - *Mono-Multi periodicity flag* based on variance ratios (original variance/variance of residues after subtraction of harmonic fit with *f1*)
 - PDM better for highly non-sinusoidal light curves
 - More suitable for eclipsing binaries
 - Search for main frequency only

Preprocessing

- Attribute selection: which attributes provide the best overall separation between classes? Which attributes will degrade the classifier's performance?
- Statistical methods for attribute evaluation:
 - → For single attributes
 - · Information Gain
 - Principal Components
 - •
 - → For attribute subsets
 - · Correlation based Feature Selection (CFS)
 - Wrapper approach

Classifiers

- → Two levels:
 - <u>COROT classifier</u>: using only information delivered by COROT (light curve parameters)
 - *<u>others classifier:</u>* using additional attributes from other sources, e.g. 2 MASS colours, GAUDI,...

Classifiers (cont.)

- 5 Statistical Learning Methods are compared for the COROT classifier:
 - 1) Bayesian networks
 - 2) Bayesian ensembles of neural networks
 - 3) Support Vector Machines
 - 4) Decision Trees
 - 5) Rule Sets
- Performance tested with a provisional training set consisting of HIPPARCOS light curves with and without 2MASS colour information

First results (provisional training set)

- <u>Attribute selection:</u>
 - *Relevant*: frequencies (*f*1, *f*2, *f*3), 2MASS colours, amplitudes, amplitude ratios between harmonics of *f*1
 - *Irrelevant*: phase-differences, amplitude ratios between harmonics of *f 2* and *f 3* (with a few exceptions)
- <u>Classifier performance (statistical)</u>:
 - Best: Bayesian ensembles of Neural Networks
 - Equivalent: Bayesian Networks, Decision Trees and Rule sets
 - Worst: Support Vector Machines
 - Average best performance increases from 65 to 75% correct classifications when additional colour information is used (2MASS)

Future work

- Update training set for the 40 classes (~June).
- Construct more specific classifiers for different regions in HR-diagram
- Identify problematic regions in attribute space (source of misclassification) + new attributes to remove possible degeneracies.
- Assess new measures of classifier performance
- Repeat the procedures for the updated training set
- Finalise routines in order to obtain results in 2-weeks timescale for CoRoT long run data

Conclusions

- Visit of J. Debosscher to Madrid planned in July 2006 to finalise set-up for N3 dataproduct
- We can perform preliminary classification and N3 flag at any stage upon request of CoRoT SC
- We are ready and awaiting the CoRoT data !!