False positives in the Corot transiting planet search

Goal: estimate the amount of ground-based observations necessary for the Corot ground-based follow-up to pick up transiting planets

Frédéric Pont

OBSERVATOIRE DE GENEVE

False positives in photometric transit surveys:

contaminants much more frequent than planets transiting stellar companion / background eclipsing binary / triple systems / variability

OGLE survey : 5 planets for 137 transit candidates (~half of them convincing)

all other surveys : 2 planets for 50++ candidates

 \Rightarrow large follow-up effort

Astrophysical false positives in COROT

Initial « COROTLUX » simulations \Rightarrow 80 - 120 transit/eclipse detections per 6-month campains

end-to-end simulator for the Corot planetary transit search

T. Guillot, F. Pont, F. Fressin, M. Marmier

False positive identification from the COROT lightcurves

from experience with OGLE follow-up

from Corot Blind Test 2 analysis by the IAC team (Hans Deeg et al.)

Results

[anticenter field, for 150-day campaign, high detection threshold]

Draw	Planets	Identifiable binaries	Background impostor	Target impostor
1	6	62	14	8
2	7	67	11	2
3	6	60	10	6

Identifiable binaries: can be told apart from lightcurve + exodat only

Background impostor: eclipsing companion not on the Corot target

Target impostor: eclipsing companion on the Corot target

Results

[anticenter field, for 150-day campaign, high detection threshold]

70 - 90 detected *candidates* (incl. very deep eclipsing binaries)

the majority (~4/5) can be dismissed by a close examination of the light curve

(mainly secondary eclipses, also transit shape and duration, sinusoidal modulations)

- **16-32** « planetary » candidates for the follow-up
 - 6 20 background impostors
 - **1 10** target impostors

5 - 15 planets and unsolved systems

cleared by follow-up photometry

cleared by follow-up spectroscopy

Comments

-number of objects manageable with the observation means of the follow-up team (at least in the anticenter field)

- more cases clearable by photometric follow-up (~half) than by two-VR spectroscopy

- relatively high number of follow-up targets (up to half) that cannot be cleared by first screening (in-out transit photometry + 2 VR points) and require many VR measurements -!-

Going nearer to the threshold?

Supposing we accept candidates until the point were we get as many false positives are bona fide transits/eclipse (aiming for more planets and smaller planets)

Separation between « secure » and « low » threshold modeled on OGLE and Pont&Zucker (2006) detection model.

Draw	Planets	Identifiable binaries	Background impostor	Target impostor	False positives
1	0	0	4	1	5
2	2	1	5	1	7
3	2	0	4	0	4

False positives: detection due to activity or measurement noise. No real transit or eclipse signal.

Going nearer to the threshold?

10-20 additional candidates

[80 - 100]

very few can be dismissed from the light curve only (too low SNR)

1/3 number of planets compared to high-SNR part (mass bias not so strong)

Comments (2)

- working in the « gray zone » is difficult and potentially very expensive in ground-based follow-up time

- first screening (in-out transit photometry + 2 VR points) not very useful

- must think carefully before embarking on follow-up of low-SNR candidates. Low return-to-investment compared to high-SNR candidates