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Abstract. We consider a dissipative standard map–like system, which is gov-
erned by two parameters measuring the strength of the dissipation and of the
perturbation. In order to investigate the dynamics, we follow a numerical and
an analytical approach. The numerical study relies on the frequency analy-
sis and on the computation of the differential fast Lyapunov indicators. The
analytical approach is based on the computation of a suitable normal form
for dissipative systems, which allows to derive an analytic expression of the
frequency.
We explore different kinds of attractors (invariant curves, periodic orbits, strange
attractors) and their relation with the choice of the perturbing function and
of the main frequency of motion (i.e., the frequency of the invariant trajectory
of the unperturbed system). In this context we investigate also the occurrence

of periodic attractors by looking at the relationship between their periods and
the parameters ruling the mapping. Particular attention is devoted to the in-
vestigation of the weakly chaotic regime and its transition to the conservative
case.

1. Introduction. Many physical phenomena can be conveniently described in terms
of nearly–integrable weakly dissipative systems. To be concrete, let us quote an ex-
ample borrowed from Celestial Mechanics. Consider an oblate satellite moving on
a Keplerian orbit around a primary body. As far as the satellite is assumed to
be a rigid body of triaxial ellipsoidal form, the dynamical system is described by
a nearly–integrable Hamiltonian, where the perturbing parameter represents the
equatorial oblateness of the satellite. If one releases the rigidity assumption, one
must face a dissipative problem, where the dissipation represents the tidal distortion
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of the satellite. The outcoming model is described by a nearly–integrable dissipative
system.
In this framework, we start the investigation of nearly–integrable dissipative sys-
tems by looking at a simple model problem, namely the dissipative standard map,
which is ruled by two parameters, denoted as the dissipative (b) and the perturb-
ing (ε) parameters. More precisely, we consider the mapping which generalizes the
(conservative) Chirikov standard map ([9]) to the dissipative case as (see also [30])
described by the equations

y′ = by + c +
ε

2π
sin(2πx)

x′ = x + y′ , (1)

where y ∈ R, x ∈ [0, 1), c ∈ R, b ∈ [0, 1], ε ∈ R+; notice that the determinant of the
jacobian of (1) is equal to b. In particular, the mapping is conservative whenever
b = 1 and it is integrable whenever ε = 0. For ε = 0 one gets y′ = by + c, providing
that the trajectory y = α with α ≡ c

1−b
is invariant for the unperturbed system.

In order to have a panorama of the dynamics generated by dissipative standard
map–like systems, we consider also some generalizations of the mapping (1), ob-
tained replacing the perturbation by a generic function of the form sin(2πmx) +
d sin(2πnx) for some integers m, n and some real coefficient d. To complete the sce-
nario, we vary the frequency α of the unperturbed invariant trajectory, by selecting
different rational and irrational frequencies. These dynamical systems present a
wide class of behaviors as the parameters b and ε, as well as the indexes m and n
or the frequency α, are varied. In particular, there might be essentially three types
of attractors: invariant curves, periodic orbits and strange attractors (see also [5]
with particular reference to the Appendix D).

The results available in the literature about periodic, invariant and strange attrac-
tors of the dissipative standard map are numerical and analytical. Let us mention
that an exhaustive investigation of a dissipative representative model, the fattened
Arnold map, is presented in [5]. The authors approach this study through an-
alytical perturbation theory and numerical experiments, which provide a refined
description of the dynamics, covering a wide spectrum of topics (from homoclinic
and local bifurcations to large strange attractors, invariant circles, Arnold tongues,
etc.).
Among the purely numerical studies, we quote the following which are closely re-
lated to the subject discussed in this paper. The extension of the fractal diagram to
the dissipative case has been computed in [30] to investigate the behavior of stable
periodic orbits and the occurrence of strange attractors; in particular, a numerical
technique for the determination of periodic orbits in the dissipative standard map
has been developed in [31] (notice that an arbitrary large number of periodic at-
tractors may coexist, as shown in [12]). Concerning the quasi–periodic behavior in
dissipative systems, a renormalization group analysis has been developed in [11] and
a similar approach was adopted in [29] to study the transition from quasiperiodicity
to chaos (see also [2]); it is interesting to mention that sometimes invariant circles
may reappear after the breakup as it was shown in [17] for the Wilbrink map ([32]).
Transition to chaos caused by overlapping of resonances has been investigated in
[18].
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Among the analytical results, let us mention that the persistence of an invariant (pe-
riodic or quasi–periodic) circle was proved in [26] using a fixed point theorem, pro-
vided the perturbing and dissipative parameters are sufficiently small. The existence
of quasi–periodic invariant attractors is proved in [7] under smallness conditions on
the parameters. The averaging method is developed in [27] on a two–frequency
nearly–integrable system with a small dissipation, providing an approximate solu-
tion over a finite time interval. A geometrical approach to prove the existence of
quasi–periodic orbits of a dissipative monotone twist map was developed in [23],
while topological criteria for the existence of periodic attractors were investigated
in [6].

Following the studies mentioned above, the present work aims to provide a global
understanding of the dynamics through numerical and analytical techniques. In
particular, we are interested in the investigation of the roles played by the dissi-
pative and perturbing parameters, and their relation to periodic or quasi–periodic
motions. In this respect, we start by implementing two numerical tools that are
widely adopted in the domain of conservative systems. In particular, we decide to
use the frequency analysis and a Fast Lyapunov Indicator adapted to the dissipa-
tive case, to which we refer as the Differential Fast Lyapunov Indicator∗ (hereafter
DFLI). In the conservative setting the first method allowed, for example, to make
refined studies of the standard map ([22], [24]), while the second technique was very
useful in determining the delicate transition from the Nekhoroshev regime of effec-
tive stability to the Chirikov regime of fast diffusion ([13], [16]). We remark that
the two methods are strongly related: the first one provides the frequency charac-
terizing an orbit, while the second, being linked to the derivative of the frequency,
gives an insight on the properties of neighbouring trajectories.
We devote special attention to the occurrence of periodic orbit attractors as the
parameters ε, b and the frequency α are varied. In particular, we analyze the pa-
rameter region close to the conservative framework, namely the weakly dissipative

regime, which we let correspond to b ≥ 0.9. In this context we study the behavior
of periodic attractors (which seem to occur more often in the weakly dissipative
regime, as showed by the DFLI analysis), providing examples which highlight why
some periods are privileged by choosing a suitable frequency α and a suitable per-
turbing function. In the intermediate cases of moderate values of the perturbing
and dissipative parameters, we still recover the same kinds of orbits, but the in-
terplay between the dissipation and the perturbation is less evident and only a
phenomenological or statistical description seems to be possible.

In the last part of the paper we provide an analytical determination of the frequency
of motion, using a normal form analysis in the context of our dissipative nearly–
integrable model problem (see also [8]). Explicit expansions are performed, using
Mathematica, up to the fourth order of the Taylor development in the perturbing
parameter (no constraint is required on the dissipative parameter). We remark that
the formulae can be generalized to any order of the Taylor expansion. The normal
form provides explicit formulae for the determination of the Taylor coefficients of
the series expansion of the rotation number as a function of the perturbing param-
eter. Indeed, such formulae involve the occurrence of small divisors, in analogy to

∗Color pictures showing the exploration of the dynamics of the dissipative
standard map through DFLI analysis can be found at http : //www.obs −

nice.fr/elena/Images dissi/images.html
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classical results obtained in the context of the conservative dynamics. A detailed in-
vestigation of the existence of invariant curve attractors through a Newton’s method
has been recently developed in [7]; compare also with [4]). An important issue in-
vestigated in [7] concerns the analysis of invariant curve attractors as the dissipative
parameter tends to the conservative limit (see also [3] for the proof of the existence
of quasi–periodic motions in the dissipative setting).

We remark that the methods developed in the present work can be generalized to
higher dimensional mappings as well as to continuous systems.

This paper is organized as follows. The dynamical model is presented in section 2.
We describe in section 3 the two techniques (Differential Fast Lyapunov Indicators
and frequency analysis) which are used to investigate the dynamics of the dissipative
standard mapping. The global dynamics of the mapping is studied in section 4,
through the complementary use of the frequency analysis and of the DFLI. The
computation of the dissipative normal form and the discussion of the analytical
solution is presented in section 5. Some conclusions are reported in section 6.

2. Set up of the mapping. We consider the dissipative standard map described
by the equations

y′ = by + c +
ε

2π
s(2πx)

x′ = x + y′ , (2)

where y ∈ R, x ∈ [0, 1), c is a real constant and s(x) is a regular periodic function;
the mapping depends on two parameters: b ∈ R+ is the dissipative parameter, while
ε ∈ R+ is the perturbing parameter. We recall that a widely studied mapping
belonging to the class (2) is the paradigmatic standard map, where the function
s(x) is defined as

s(x) = sin(2πx) . (3)

The determinant of the Jacobian associated to (2) amounts to b. Therefore, if b = 1
one recovers the conservative case, while for 0 < b < 1 the system is (strictly)
dissipative and if b = 0 one obtains the one–dimensional sine–circle–map:

x′ = x + c + εs(x) .

We first consider the conservative case (b = 1), where ε plays the role of the per-
turbing parameter, since for ε = 0 one gets an integrable mapping. We can label
the conservative dynamics by fixing a rotation number (or frequency) defined as

ω = lim
j→∞

xj − x0

j
,

where xj denotes the j–th iterate with respect to the lift of the mapping (2) for
b = 1. When the limit exists, we characterize an orbit by the corresponding rotation
number ω. Indeed, for c = 0 and ε = 0, it is immediate to check that the frequency
reduces to ω = y0. In particular, if ω is rational, say ω = p

q
for some integers p

and q, the corresponding trajectory is periodic with period q; if ω is irrational, the
corresponding orbit describes an invariant curve. In the latter case, assuming that
ω is diophantine (i.e., strongly non resonant), KAM theory ([19]) ensures that in
the perturbed regime there still exists an invariant curve with frequency ω provided
ε is sufficiently small. When ε reaches a critical value, say εc = εc(ω), the invariant
curve breaks down through a loss of regularity. We remark that there is a wide
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numerical evidence that for the standard map (defined by (3)) the last curve to
disappear (in the interval (0, 1)) is that with frequency equal to the golden ratio√

5−1
2 .

Let us turn to the dissipative case (b 6= 1) and let us define the auxiliary quantity
α as

α ≡ c

1 − b
; (4)

it is immediate to check that for ε = 0 the trajectory {y = α}×T 1 is invariant (T 1

denotes the standard one–dimensional torus). In fact, the condition y′ = y implies
α = bα + c, which coincides with (4). Notice that when b = 1, equation (4) implies
that c = α(1 − b) = 0, as it was assumed before for the conservative case. Indeed,
to vary α is equivalent to change the drift parameter c; the existence of a quasi–
periodic solution with frequency ω is proved in [7] by setting c ≡ c0(b) + c1(ε, b),
such that c0(b) ≡ ω(1− b) → 0 as b → 0, while c1(ε, b) is small with ε and tends to
zero as b goes to zero.
The trajectory {y = α} × T 1 can represent a periodic orbit or an invariant curve,
according to the rational or irrational character of α. In this context, the topological
stability was investigated in [26], independently of the preservation of the nature of
the dynamics. Based on a fixed point theorem, the persistence of an invariant (peri-
odic or quasi–periodic) circle is proved in [26] under suitable (smallness) conditions
on the perturbing and dissipative parameters.

The major goal of the present work is to discriminate among the different roles
played by the choice of the function s(x), as well as by the frequency α, as the
parameters (ε, b) and the initial conditions are varied. Since (3) might provide only
a partial scenario, we select several perturbing functions with one or two harmonics
(cases (A) − (E) below), plus a sample (F ) which admits a full Fourier spectrum:

(A) s(2πx) = sin(2πx);
(B) s(2πx) = sin(2πx · 3);
(C) s(2πx) = sin(2πx · 5);
(D) s(2πx) = sin(2πx) + 1

3 sin(2πx · 3);

(E) s(2πx) = sin(2πx) + 1
20 sin(2πx · 5);

(F ) s(2πx) = sin(2πx)
cos(2πx)+1.4 .

Similarly we vary α, motivated by the fact that the dynamics of the conservative
case is strongly dependent on the degree of irrationality (the so–called diophantine

condition) of the frequency; therefore, we decide to consider for each mapping (A)−
(F ) different values of α. In this work we are mainly concerned with the numbers√

5−1
2 , 1

2 , 1
3 , though we performed the experiments on a larger set of frequencies,

including diophantine irrationals† like [1, 3, 4, 1∞], [6, 1, 7, 1, 3, 1, 266, 1, 3, 1∞], as
well as rational frequencies like 3

5 , 5
8 , 2

3 , 1, 3
2 , 2, etc.

The first question to be clarified is the type of dynamics which arises from the
evolution of the mapping (2). Taking any of the maps (A) − (F ) combined with
any of the previous values of α, it is evident that only three kinds of attractors are
present: periodic orbits, invariant curves, strange attractors; the largest Lyapunov

†The continued fraction representation is denoted as α ≡ [a1, a2, ..., aN , ...] for ak ∈ Z+ (k ≥ 1),

standing for α = 1

a1+ 1

a2+ 1
a3+...

; the notation 1∞ denotes an infinite tail of ones.
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exponent is, respectively, negative, equal to zero, positive. To give concrete exam-
ples of the three attractors, we show in Figure 1a a strange attractor (mapping

(D) with α =
√

5−1
2 ), while an invariant curve and a periodic orbit attractors are

provided in Figure 1b (mapping (A) with α =
√

5−1
2 ).

3. The DFLI and frequency analysis.

3.1. Differential Fast Lyapunov Indicator. In order to perform a global anal-
ysis of conservative systems, Froeschlé et al. ([15]) introduced a tool strictly related
to the computation of the largest Lyapunov exponent: the Fast Lyapunov Indica-
tor (hereafter FLI). The definition of the FLI is based on the simple observation
that in order to discriminate the dynamical behaviour of an orbit, it is sufficient to
compute the norm of the tangent vector over a finite interval of time. Beside be-
ing computationally faster than the standard Lyapunov exponent, the FLI method
allows to discriminate between regular invariant tori and regular resonant tori (for
more details we refer the reader to [13], [16]).

Let us denote by M̃ the lift of the mapping (2). Let z(0) ≡ (y(0), x(0)) be the
initial condition and let v(0) ≡ (vy(0), vx(0)) be an initial vector with norm equal
to one. For a fixed time T > 0 we define the FLI function as

FLI(z(0), v(0), T ) ≡ sup
0<t≤T

log ‖v(t)‖ , (5)

where ‖ · ‖ denotes the Euclidean norm in R2 and v(t) is the solution of the system

z(t + 1) = M̃(z(t))

v(t + 1) =
∂M̃

∂z
(z(t))v(t)

with initial data z(0), v(0). We remark that the computation of the supremum of
the logarithm of the vector has been introduced in order to get rid of the oscillations
of ||v(t))||; for simplicity let us denote by FLI(t) the log ‖v(t)‖. In the unperturbed
conservative case (see (2) with ε = 0, b = 1) the FLI as a function of time takes the
form

FLI(z(0), v(0), t) =
1

2
log(vy(0)2 + (tvy(0) + vx(0))2) ;

it appears clearly that, unless vy(0) = 0, the FLI grows as log(t) and that all orbits
will have the same FLI at a given time t when choosing the same initial vector v(0).
In the unperturbed dissipative case (see (2) with ε = 0, b < 1) the evolution of the
vector v(0) is given by

vy(t) = btvy(0)

vx(t) = (
b − bt+1

1 − b
)vy(0) + vx(0) ; (6)

therefore, for a sufficiently large time the FLI behaves as

FLI(z(0), v(0), t) ' log(| b

1 − b
vy(0) + vx(0)|) . (7)

For an unperturbed curve attractor the largest Lyapunov exponent is equal to zero,
but this situation may not be reflected by the corresponding FLI, since according
to (7) it can take any value in the interval [log(|vx(0)|), +∞) for 0 ≤ b < 1. By
continuity the same problem holds for ε different from zero. As a consequence, we
might not be able to differentiate between an invariant curve attractor and a strange
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Figure 1. Characteristic attractors of the dissipative standard
map for α = (

√
5 − 1)/2 and initial conditions y0 = 5, x0 = 0.

a) Mapping (D), b = 0.72699, ε = 0.9. b) Mapping (A), b = 0.3,
ε = 0.2 for the invariant curve attractor and b = 0.4, ε = 0.9 for
the periodic orbit attractor.

attractor, whose FLI is intrinsically positive. Due to the fact that the FLI may give
misleading results in the dissipative contest, we introduce a different indicator, the
DFLI0, defined as

DFLI0(z(0), v(0), t) ≡ FLI(z(0), v(0), 2t)− FLI(z(0), v(0), t) . (8)
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From (7) in the unperturbed dissipative case the DFLI0 turns out to be close to zero
for any value of b and for a sufficiently large t. By continuity for ε 6= 0 the DFLI0
remains zero for curve attractors, it is negative for periodic orbit attractors and it
is positive for chaotic attractors as well as their corresponding largest Lyapunov
exponent.
Let us now denote for simplicity the norm of the vector v(t) computed from z(0)
for an initial vector v(0) as wt(z(0), v(0)). We remark that:

w2t(z(0), v(0)) = wt(z
′(0), v′(0)) · wt(z(0), v(0)) ,

where z′(0) = z(t) and v′(0) = v(t)/||v(t)||. From (8) we obtain

DFLI0(z(0), v(0), t) = FLI(z′(0), v′(0), t) ;

the above expression indicates that the DFLI0 is nothing but the FLI computed from
an initial vector, which evolved long enough to become parallel to the direction of
maximal expansion corresponding to the maximum Lyapunov exponent. In the
unperturbed dissipative case the DFLI0 corresponds to the computation of the FLI
starting from the vector (vy, vx) = (0, 1). Since such vector remains constant with
time (see (6)), the DFLI0 is identically equal to zero. It turns out that the DFLI0
corresponds to the largest Lyapunov exponent, computed after a transition time
allowing the vector to become aligned with the direction of maximal expansion.
In the conservative case the spirit of the computation of the FLI is at the opposite,
since, for regualar motion it gives information thanks to the transition of the initial
vector toward a direction tangent to the support of the orbit. In the chaotic case,
the vector becomes rapidly aligned with the direction of maximal expansion and its
exponential increase allows to detect very quickly the associated dynamic.

Let us now discuss the technical point of the introduction of the supremum in (5).
In order to kill the oscillations of the norm of the vector v a supremum in equation
(5) has been introduced. For dissipative systems the problem of the oscillations still
remains and, in addition, we have to take into account the fact that log ‖v(t)‖ is
negative for periodic attractors. Therefore, from a practical point of view, for some
T > 0, we computed the differential fast Lyapunov indicator, DFLI, as

DFLI(T ) = G2T (F (t)) − GT (F (t)) ,

where F (t) = log(||v(t)||) and

Gτ (F (t)) = sup
0≤t≤τ

F (t) if F (τ) ≥ 0 (9)

Gτ (F (t)) = inf
0≤t≤τ

F (t) if F (τ) < 0 . (10)

Figure 2 shows the evolution of the DFLI with respect to time for the three orbits
displayed in Figure 1. Here and in the following computations we consider the initial
vector v(0) = (1, 0). Let us remark that the introduction of the DFLI is relevant
for dissipative systems, whose dynamics must have evolved sufficiently long to be
close to an attractor. To this end, we introduced in our computation a preliminary
transient period (typically of 104 iterations).

3.2. Frequency analysis. A widely used technique for the investigation of con-
servative systems is the so–called frequency map analysis ([22]), which is based on
the investigation of the behavior of the frequency with respect to the parameters.
This method was largely popularized by Laskar et al. ([20], [22]) and successfully
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Figure 2. Evolution of the DFLI with time for the three orbits of
Figure 1. The positive DFLI corresponds to the strange attractor
of Figure 1a, the DFLI close to zero corresponds to the invariant
curve, while the DFLI lower than zero is associated to the periodic
orbit attractor.

used to refine the analysis of Hamiltonian systems ([22], [24]). We will use a sim-
ple technique, introduced in [24], related to the continued fraction development of
real numbers. Given a conservative 2–dimensional mapping M , we consider the
n–th iterate point Pn = Mn(P0) ≡ (xn, yn) on an invariant curve with frequency
β. Over N iterations of the mapping M , we compute in the set (P1, ..., PN ) the
nearest neighbor to P0 and we denote by n1 its index; next, we define the integer
p1, by the relation:

n1β = p1 + ε1 ,

where ε1 is a small quantity. In other words, p1 counts the number of revolutions
around the invariant curve, so that β can be approximated by the ratio p1/n1. By
increasing the number N of iterations, we get better approximations, so that the
errors εi satisfy the following sequence of inequalities, ε1 > ε2.... > εk implying that

|n1β − p1| > |n2β − p2| > ... > |nkβ − pk| ,

where the ni’s are the smallest integers satisfying the above inequalities. For
n1 = 1, the sequence pk/nk coincides with the expansion in continued fractions
of β. We know from a theorem of Lagrange that such expansion provides the best
approximation of the number β. We also know that εk < 1/(nknk+1) and that
nk+1 > aknk + nk−1, where ak is the k–th term of the expansion in continued frac-
tions. These relations allow to get an estimate of the precision, namely the price we
have to pay in order to obtain the next nearest neighbor of P0. In this way, we can
evaluate the rotation number by the simple formula β = limk→∞

pk

nk

. In order to

apply this method to the dissipative case, it is essential that the starting point P0
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is close to the attractor; therefore, in the numerical experiments presented in this
paper, we have always considered a transition of 104 iterations before defining the
initial point P0.

It is interesting to note that applying this procedure to the analysis of an invariant
curve attractor (with frequency β) of the dissipative case, we obtain a sequence of
approximants pi/ni corresponding to the terms of the continued fraction develop-
ment of β, as it happens in the conservative case.
However, the procedure can fail for very weak dissipations, since the transition to
the attractor may be very long and 104 iterations may not be sufficient to get close
to the attractor. Since we do not know a priori the right transition time, we can
try to compute the frequency as the limit of a sequence of values ωi obtained on
successive intervals of time. Along this line, we propose the following procedure:
consider N iterations of the mapping and define P0,1 as the N–th iterate with
associated frequency ω1. Iterate again the mapping up to a time T = 2N with
ending point P0,2 = P2N and corresponding frequency ω2. Proceed in this way up
to the convergence (within a finite precision) of the set of the ωi’s and let ω be the
numerical limit of the sequence {ωi}.
As an example, consider the mapping (A) with α =

√
5−1
2 ; Figure 3 shows the

evolution of the frequencies ω ≡ ωi as a function of N × i (with N = 100 and
i = 1, ..., 100) for b = 0.999, ε = 0.1, x0 = 0 and a set of 9 initial conditions
regularly spaced in y0, from y0 = 0.1 to y0 = 0.9. We observe that, apart for the
case y0 = 0.5, the other sequences converge to ω = α with a speed depending on
y0. If we consider the case ε = 0 the convergence to the attractor y = α depends
on the initial condition y0 and on b through the relation

yn = y0b
n + α(1 − bn) .

For small values of ε, this law is satisfied with the exception of the orbit starting
at y0 = 0.5, for which we find a very robust periodic orbit attractor with frequency
ω = 1

2 , surviving under dissipation from the conservative regime.

3.3. On the complementarity of the DFLI and frequency analysis. In order
to give evidence of the different roles played by the DFLI and frequency analysis,
it is convenient to study a concrete example. More precisely, consider the mapping

(D) with α =
√

5−1
2 , b = 0.5 and initial conditions y0 = 5, x0 = 0. To investigate

the dependence of the frequency and of the DFLI with respect to ε, we analyze a
set of 1000 orbits regularly spaced in ε with 0 < ε < 1. As explained before, a
transition of 104 iterations has always been considered in order to get close to the
attractor; after the transient, we perform T = 1000 iterations (the initial vector is
always set to v(0) = (1, 0)).
Figure 4 shows the variation of ω and of the DFLI with respect to ε. The frequency
(Figure 4a) monotonically increases from ω = α to ω = 5/8 when ε varies from 0
to about 0.3. Then we observe a “plateau” of frequency 5/8 up to about ε =
0.4. Let us remark that 5/8 is one of the low order terms of the development
in continued fractions of α. Up to ε ' 0.3 we meet invariant curve attractors
(the corresponding DFLI is zero, see Figure 4b), while between 0.3 and 0.4 we
detect periodic orbit attractors (the corresponding DFLI is negative). Let us remark
that there is an interesting correspondence with the behavior of the frequency in
Hamiltonian systems, where ω changes monotonically or shows “plateau” when
representing, respectively, invariant KAM tori or resonant islands. The difference
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Figure 3. Mapping (A) with α =
√

5−1
2 . Evolution of the fre-

quencies ωi as a function of N × i, N = 100 and i = 1, ..., 100 for
b = 0.999, ε = 0.1, x0 = 0 and a set of 9 initial conditions regularly
spaced in y(0) ≡ y0, from y0 = 0.1 to y0 = 0.9. We notice that
the initial values of the frequencies ω correspond to the y0 values
labelling the different curves.

is that in the Hamiltonian case this behavior occurs as a function of the initial
condition, while in the dissipative case it occurs as a function of the perturbing
parameter.
For ε running from 0.4 to 0.45 the DFLI is almost everywhere positive, but with
some sparse negative values corresponding to periodic orbit attractors (Figure 4b).
Such periodic orbit attractors can be detected as small “plateau” by means of fre-
quency analysis implemented on a zooming of the above region. At the present
resolution, we observe in this parameter region (Figure 4a) a noisy variation of the
frequency. For larger values of ε, up to ε ' 0.93, we have a big region of constant
frequency ω = 2

3 . The corresponding DFLI remains negative up to ε = 0.9, after
which we enter a region of strange attractors with positive DFLI having rational
frequency. Notice that like for the Hamiltonian chaos, the frequency is not defined
for strange attractors. We remark that for ε = 0.92 one finds a strange attractor
made of three pieces, for which the frequency is rational with period 3; in this case
the complementary use of the frequency analysis and of the DFLI is essential, since
without the DFLI the diagnostic of the dynamics would provide misleading results.
For ε > 0.93 we have again a noisy variation of the frequency with positive DFLI,
corresponding to standard strange attractors, i.e. one–piece attractors like that
presented in Figure 1a.
This example shows that the parallel implementation of frequency analysis and of
the DFLI allows to distinguish clearly among the different kinds of attractors. A
similar analysis holds when looking at the variation of the frequency and of the
DFLI for a fixed value of ε and for a set of orbits regularly spaced over a grid in
the dissipative parameter b.
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Figure 4. Mapping (D) with α =
√

5−1
2 , b = 0.5, y0 = 5, x0 = 0.

Variation of ω (a) and of the DFLI (b) as a function of ε for a set
of 1000 orbits regularly spaced in ε with 0 < ε < 1.

4. Global dynamics of the dissipative map. We proceed to implement the
frequency analysis and the DFLI technique, in order to explore the dynamics as the
perturbing and dissipative parameters are varied. In particular we draw some con-
clusions on the occurrence of periodic orbit attractors, their link with the definition
of the mapping (i.e., the explicit form of the function s(x)) and with the choice of the
frequency α. Particular attention is devoted to the study of the weakly dissipative
regime occurring for high values of the dissipative parameter, say b > 0.9.

4.1. The Frequency analysis. The mapping (2) depends on the parameters ε,
b: their variation provokes several behaviors, from integrable to non–integrable
dynamics as well as from conservative to dissipative regimes. In order to investigate
the effect of the simultaneous variation of the dissipative and perturbing parameters,
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we adopt the powerful tool represented by the frequency analysis. More precisely,
we draw the curve ω = ω(b) for different values of ε in the interval [0, 1] with step–
size 0.1. Exhaustive examples are provided by the one/two frequency mappings (A),

(D) and by the irrational/rational rotation numbers
√

5−1
2 , 1

3 . The outcome of this
technique allows to recognize the different kinds of attractors (invariant, periodic
or strange) and it gives information on their behavior as functions of b and ε. The
results will show that invariant curves occur more frequently for small values of ε,
while periodic and strange attractors appear more often as the non–integrability
gets larger.

We start by considering the mapping (A) with α ≡
√

5−1
2 (initial conditions y0 = 1,

x0 = 0). In Figure 5a) the lower curve corresponds to ε = 0.1, while the upper curve
is computed taking ε = 0.9. The inspection of this figure shows that for low values
of ε, almost all attractors are invariant curves for any value of the dissipation in
the interval [0, 1]. Periodic orbits appear at higher values of ε: a significant region
of periodic orbit attractors emerges at ε = 0.8 around b = 0.2 and it becomes
even larger at ε = 0.9 around b = 0.3. The existence of so many invariant curve
attractors is definitely ruled by the choice of the irrational frequency α. Indeed,
this situation is reversed when α is a rational number as shown in Figure 5b),
where almost everywhere we find a dominant periodic attractor with period 1

3 ; the
dissipative parameter region where this attractor dominates is shown to extend as
the perturbing parameter gets larger.
Let us see what happens taking the two frequency map (D); the irrational case

with α =
√

5−1
2 is analyzed in Figure 5c), where the size of the periodic regime as

well as that of the strange attractor behavior is again larger as ε increases. In this
case there are two dominant periodic orbit attractors with periods, respectively,
1 and 3; indeed, this is consistent with the fact that 1 and 3 are also the main
harmonics appearing in the definition of the mapping (D) and with the fact that
the golden mean frequency does not force toward a given resonance, being equal to
a strongly irrational number. On the contrary, Figure 5d) shows the case α = 1

3 :
almost all trajectories are attracted toward the periodic attractor with frequency
1
3 . At ε = 0.8 there appear a significative region of strange attractors; such region
is magnified at ε = 0.9 where also a periodic orbit of period 4 is shown to appear
around b = 0.5.

4.2. The DFLI analysis. The DFLI technique allows to discriminate the different
dynamics associated to the dissipative mapping and it is used as a complementary
investigation to the frequency analysis of the previous paragraph, providing the
variation of the frequency as a function of the dissipation for discrete values of ε.
We represent with a color scale the value of the DFLI in the b − ε or b − y0 plane
(y0 denoting the initial condition). Though not yielding the explicit value of the
frequency, such analysis still provides the discrimination among the different attrac-
tors (invariant, periodic or strange). In particular, the DFLI charts allow to give
a striking visualization of the dynamics by providing information on the transition
between the different regimes. More precisely, the b− ε chart provides a geography
of the attractors as a function of the dissipative and perturbing parameters, while
the b − y0 chart is useful to explore the dependence on the initial condition and
the eventual occurrence of simultaneous attractors as the initial condition is varied;
we refer to [5], [12] for a discussion of the the coexistence of attractors (periodic,
quasi–periodic or strange).
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Figure 5. Frequency analysis showing the curve ω = ω(b) for
different values of ε with step–size 0.1. a) Mapping (A) with α =√

5−1
2 (y0 = 1, x0 = 0) from ε = 0.1 (lower curve) to ε = 0.9

(upper curve). b) Mapping (A) with α = 1
3 (y0 = 1, x0 = 0) from

ε = 0.1 (upper curve) to ε = 0.9 (lower curve). c) Mapping (D)

with α =
√

5−1
2 (y0 = 1, x0 = 0) from ε = 0.1 (lower curve) to

ε = 0.9 (upper curve). d) Mapping (D) with α = 1
3 (y0 = 1,

x0 = 0).
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The practical implementation is hereafter described. We compute some pictures
corresponding to grids of 500× 500 initial values of b and ε regularly spaced in the
interval [0.01 : 1] for the initial conditions y0 = 5 and x0 = 0; the time parameter
entering the definition of the DFLI is always set to T = 103, after a transient of
104 iterations. Another set of pictures is obtained by computing grids of 500× 500
initial conditions of b and y0 in the intervals, respectively, [0.01 : 1] and [0.01 : 10]
with ε = 0.9 and x0 = 0. We have represented in a grey-scale the values

sgn(DFLI(2T )) log10(|DFLI(2T )| + 1)

with the following interpretation:

• invariant curve attractors are denoted by grey: the DFLI values are close to
zero;

• strange attractors are labeled by bright grey to white: the DFLI values are
positive;

• periodic orbit attractors are denoted by colors going from dark grey to black
.

A gallery of color pictures encompassing different mappings and a wide choice of ro-
tation numbers is available at http : //www.obs−nice.fr/elena/Images dissi/images.html.
The complexity of the dynamics is well represented by the two-frequency mapping

(D) with rotation number α =
√

5−1
2 (see Figure 6, top panel): a large region of

invariant curve attractors appears up to ε ' 0.36; next, a strip of periodic attractors
is evident for values of ε around 0.4. For greater values of ε a big region of periodic
attractors is surrounded by two large zones of strange attractors. Notice that the
bright regions of strange attractors are interspersed by periodic orbit attractors.
In particular, in this as well as other examples, we found that strange attractors
always originate from a region of periodic orbit attractors. A cross check of this
statement is obtained looking back at Figure 4, where we infer that the strange at-
tractor regimes always occur after plateaus of the frequency analysis curve. Notice
that in the right part of the top panel of Figure 6 the picture is resembling Arnold’s
tongues (see [5]): such trajectories correspond to periodic orbit attractors, which
play a dominant role in the region b ≥ 0.9, to which we refer as the weakly dissi-

pative regime. This behavior was found also in many other examples with different
mappings and rotation numbers. In a few cases we detected some regions (usually
small) of the chart filled by strange attractors. Figure 6, bottom panel, shows that
for a fixed value of b the basin of attraction is typically unique, with the exception of
the interval approximately given by 0.65 < b < 0.9, where different initial conditions
can be attracted either by a periodic orbit or by a strange attractor. Indeed, as
already remarked in [12], for standard map–like systems there might coexist several
periodic attractors.
We remark that the transition from periodic orbits to invariant curve attractors
takes place for very small changes of the parameters, thus showing a phenomenon
known as crises, denoting a sensitive dependence on parameters. This behavior is
evident from the abrupt change of colors in the DFLI chart, providing the transition
between different kinds of attractors.

4.3. On the occurrence of periodic orbit attractors. The role of periodic
orbits is relevant both from the physical and dynamical point of view. In the
first case, periodic trajectories correspond to resonances which frequently occur in
physical situations; in the latter case, periodic orbits can be conveniently used as
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Figure 6. Mapping (D) with α =
√

5−1
2 . Top panel: DFLI picture

of 500×500 initial values of b and ε regularly spaced in the interval
[0.01 : 1] for the initial conditions y0 = 5 and x0 = 0. Bottom
panel: DFLI picture of 500 × 500 initial conditions of b and y0 in
the intervals, respectively, [0.01 : 1] and [0.01 : 10] with ε = 0.9
and x0 = 0. The color version of this figure is available at http :
//www.obs − nice.fr/elena/Images dissi/images.html.
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approximants to invariant quasi–periodic motions. With this motivation, we intend
to investigate the occurrence of attractors of periodic type as the parameters ε, b are
varied. In other words, we are interested to know in which situations some periodic
orbit attractors are privileged, in the sense that they occur more frequently than
others; moreover, we want to explore the relationship between the periods of the
periodic attractors and the form of the mapping (i.e., the function s(x)) as well as
the link with the frequency α. To this end, we perform some experiments based on
frequency analysis, combined with a complementary computation which specifies
the period of the attractor (whenever the dynamics is represented by a periodic
attractor). The results are reported in Tables 1, 2, 3, which are computed, for a
fixed value of α, along the following steps:

i) let ε assume the values 0.1 · k for k = 1, ..., 9;
ii) fix x0 = 0 and let y0 vary between 0 and 9.9 with step–size 0.1;
iii) let b = 0.1; compute the frequency of the attractor, say ω, and check whether

it is a rational number, say p
q

with p, q ∈ Z+. In such case, q is the period and we

count the number of occurrences of periodic orbits with period q for all values of ε
indicated at point i);

iv) repeat the same computation for b = 0.5 and b = 0.9.

The analysis of Tables 1, 2, 3 leads to the following conclusions, which provide
information on the relationship between the basic period, the value of α and the
explicit form of the mapping:

1) the occurrence of a periodic orbit with given period q is strongly determined by
the value of α and by the form s(x) of the mapping. In particular, if α = p

q
, then it

is very likely that the dynamics privileges attractors with period q (compare with
Tables 2 and 3). Similarly, if s(x) = sin(2πx · q), then the dynamics is most likely
attracted by a periodic orbit with period q (compare, for example, the occurrence
of the period-3 orbit for the mapping (B) and the period-5 orbit for the mapping
(C) in Table 1);
2) for small values of b the role of α is prevalent with respect to that of s(x); for
large values of b, both α and s(x) play a dominant role in the selection of the
periodic attractors (compare, e.g., with Table 3). Indeed, most of the periodic orbit
attractors can be found for large b if ε is small or for large ε if b is small;
3) periodic orbit attractors with small period occur more frequently, while large
period attractors are very uncommon;
4) when we let b increase, we notice the birth of new periodic orbits with different
periods (see the cases b = 0.9); in particular, the flowership of different periodic
attractors takes place in the weakly dissipative regime that we are going to study
in the next section.

4.4. The weakly dissipative regime. A particular interest is performed by the
weakly dissipative regime, where the dissipation is rather feeble, but still of signif-
icant influence on the dynamics. To this end, we investigate the parameter region
b ∈ [0.9, 1], devoting attention to the behavior and occurrence of periodic attractors
labeled by a rational frequency, say ω = p

q
for p, q ∈ Z+. As in the previous section,

we focus on the role of the mapping s(x) and of the choice of α. More precisely,
we consider the mapping s(x) = sin(3x) with α = 1

2 and we count the number of
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(A) (B) (C) (D) (E) (F )

b = 0.1 3#700 5#700 3#100 8#300 3#100
8#1 8#100 5#100

b = 0.5 8#100 3#800 5#900 3#500 8#200 2#1
3#102
5#100
8#101

b = 0.9 1#242 1#124 1#56 1#288 1#245 1#139
2#4 2#2 5#841 2#7 2#4 2#240
3#7 3#743 10#3 3#383 3#24 3#246

6#1 7#2 5#106 4#1
8#37 8#63 5#88

13#1

Table 1. Results for α =
√

5−1
2 . The notation ”q#n” stands for

”the periodic orbit with period q occurs n times”. We limited to
consider q ≤ 10.

(A) (B) (C) (D) (E) (F )

b = 0.1 1#900 1#900 1#824 1#900 1#900 1#900
b = 0.5 1#900 1#900 1#872 1#900 1#900 1#900

5#28
b = 0.9 1#900 1#725 1#654 1#896 1#900 1#894

3#173 5#243 3#4 2#5
6#2 10#3 3#1

Table 2. Results for α = 1. The notation ”q#n” stands for ”the
periodic orbit with period q occurs n times”. We limited to consider
q ≤ 10.

occurrences (on a semi–logarithmic scale) of a periodic orbit attractor of period q
as ε varies (see Figure 7a)). The rotation number is computed taking 100 initial
conditions (x0 = 0 and y0 in the interval [0, 10)) for each value of b between 0.901
and 0.999 with step–size 0.001, while ε takes the discrete values 0.1, 0.2, ..., 0.9.

The results show that there is a marked competition between the frequency q = 3
(equal to the harmonic of the mapping s(x)) and the frequency q = 2 (due to the
choice of α = 1

2 ).
The occurrence of the frequency q = 3 increases from ε = 0.1 to ε = 0.9, which
means that the effect of the choice of the mapping is stronger as ε grows. On the
other hand, the occurrence of the frequency q = 2 increases as ε decreases from
ε = 0.9 down to ε = 0.1, which means that the effect of the choice of α is dominant
for small values of ε. This example shows very clearly the balance between α and
s(x) in the weakly dissipative regime. On the other side, in the same range of
variation of the dissipative parameter the mapping (F ) (which contains all Fourier
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(A) (B) (C) (D) (E) (F )

b = 0.1 2#900 2#709 2#506 2#900 2#900 2#900
5#297

b = 0.5 2#900 2#588 2#382 2#900 2#900 2#900
3#202 5#328

b = 0.9 1#153 1#83 1#22 1#145 1#162 1#107
2#747 2#353 2#202 2#720 2#738 2#788

3#459 5#673 3#35 3#5
6#3
9#2

Table 3. Results for α = 1
2 . The notation ”q#n” stands for ”the

periodic orbit with period q occurs n times”. We limited to consider
q ≤ 10.

 1

 10

 100

 1000

 10000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

O
c
c
u

rr
e

n
c
e

s

eps

a)

 1

 10

 100

 1000

 10000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

O
c
c
u

rr
e

n
c
e

s

eps

b)

q=1

q=6

q=9

q=2

q=1
q=3

q=2

q=3

q=4 q=5

Figure 7. Occurrences of periodic orbit attractors versus ε: a)
Mapping (B), α = 1

2 . b) Mapping (F ), α = 1
2 .

harmonics) seems to privilege the period 2, due to the choice of the frequency α
(see Figure 7b)). However, for increasing values of ε the number of orbits of period
2 decreases, while the number of orbits of period 1 (the main harmonic of s(x))
increases.
To conclude this section we investigate the transition from the weakly dissipative
regime to the conservative case: let us consider the example provided by the stan-

dard mapping (A) with α =
√

5−1
2 for the parameter values ε = 0.9 and b very close

to 1. Indeed, we start by considering b = 0.999; after a sufficient transient number of
iterations (107) the attractor is recognized as a periodic orbit with period 3, which
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evolves into a point attractor as b is increased to 0.9999 up to b = 0.99999. However,
taking b = 0.999999 the attractor is still a periodic orbit, but the period increases
to 9. This attractor exists even after a larger transient time (we checked up to 109

iterations). The period–9 attractor is located close to the hyperbolic points of the
separatrix of a periodic orbit of period 9 of the conservative case (b = 1) as shown
in Figure 8.

0.6
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1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

Figure 8. Mapping (A) with α =
√

5−1
2 , ε = 0.9. The picture

shows some trajectories of the conservative case (b = 1) with initial
conditions y0 = 0.9 and x0 = 0, 0.1, 0.12, 0.14, 0.15, 0.2, 0.3,
0.4 and 0.166364931496 (last value corresponds to the separatrix).
Each trajectory is composed by 5000 points. The crosses provide
the dynamics of the dissipative case with b = 0.999999 and initial
conditions y0 = 1, x0 = 0 after a transient of 107 iterations.

5. Normal form analysis. In this section we present a normal form analysis in the
framework of our nearly–integrable dissipative model problem; compare also with
[5] for the investigation of perturbation properties of the fattened Arnold map and,
in particular, of the existence and differentiability of invariant circles using normal
hyperbolicity. We assume that the perturbing parameter is sufficiently small, so
that we are allowed to expand in Taylor series around ε = 0; on the contrary, we do
not impose any restriction on the size of the dissipative parameter (but we remark
that we could exchange the roles of b and ε, by performing a normal form analysis
for values of b close to 1 and for any ε). Our goal is to compute the relation between
the rotation number and the original frequency of the invariant trajectory of the
unperturbed system; we stress that this question does not concern the existence of a
quasi–periodic attractor, which is fully investigated in [7] using a Newton algorithm.
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In order to simplify the formulae which we will develop in the framework of normal
form expansions, let us consider the angle variable in the interval [0, 2π), so that
instead of (2) we shall work with the following map:

η′ = bη + c + ε s(ξ)

ξ′ = ξ + η′ , (11)

where η ∈ R, ξ ∈ [0, 2π). The link between the variables (ξ, η) in (11) and (x, y)
in (2) is given by ξ = 2πx, η = 2πy. Moreover, let c = (1 − b)α̃, where α̃ = 2πα.
Denoting by ξj the j–th iterate under the mapping, from (11) we obtain ξj+1−ξj =
ηj+1, bξj − bξj−1 = bηj . Casting together such relations we obtain

ξj+1 − (1 + b)ξj + bξj−1 = (1 − b)α̃ + εs(ξj) . (12)

For ε sufficiently small, let us suppose that there exists an attractor which can be
identified with an invariant curve with frequency ω̃ and that such attractor is close
to the invariant curve of the integrable limit (which is obtained setting ε = 0).
Then, for a fixed value of the dissipative parameter b, we assume that the invariant
curve can be parametrized by

ξ = θ + u(θ, ε) , (13)

with a linear flow in the parametric coordinate, i.e. θ′ = θ + ω̃. In the following
discussion we shall consider ω̃ as a function of the perturbing parameter, i.e. ω̃ =
ω̃(ε). Notice that such approach is different from that adopted in [7], where ω̃ is
fixed, while c (or equivalently α) must be varied in order to prove the existence
of an invariant attractor with frequency ω̃. Using ηj = ξj − ξj−1, one gets η =
ω̃(ε) + u(θ, ε) + u(θ − ω̃(ε), ε). Inserting (13) in (12), one obtains

u(θ+ω̃(ε), ε)−(1+b)u(θ, ε)+bu(θ−ω̃(ε), ε) = −(1−b)ω̃(ε)+(1−b)α̃+εs(θ+u(θ, ε)) .
(14)

Let us suppose that u and ω̃ are analytic functions of ε around the origin, so that
we can expand them in Taylor series as

u(θ, ε) =

∞
∑

j=1

uj(θ)ε
j , ω̃(ε) =

∞
∑

j=0

ω̃jε
j . (15)

Inserting the series expansion (15) in (14), one gets recursive relations among the
coefficients uj(θ) and ω̃j .

Let us provide the details of the explicit computation of the normal form expansion
up to the order 4. By comparing the zero–order terms, it is immediate to check
that ω̃0 = α̃. Moreover, by (14) we obtain:

εu1(θ + α̃ + εω̃1 + ε2ω̃2 + ε3ω̃3) + ε2u2(θ + α̃ + εω̃1 + ε2ω̃2) + ε3u3(θ + α̃ + εω̃1) + ε4u4(θ)

−(1 + b) · (εu1(θ) + ε2u2(θ) + ε3u3(θ) + ε4u4(θ)) + b(εu1(θ − α̃ − εω̃1 − ε2ω̃2 − ε3ω̃3)

+ε2u2(θ − α̃ − εω̃1 − ε2ω̃2) + ε3u3(θ − α̃ − εω̃1) + ε4u4(θ − α̃)) =

−(1− b)(εω̃1 + ε2ω̃2 + ε3ω̃3 + ε4ω̃4) + εs(θ + εu1 + ε2u2 + ε3u3) .

Comparing first order terms in ε, we get:

u1(θ + α̃) − (1 + b)u1(θ) + bu1(θ − α̃) = −(1 − b)ω̃1 + s(θ) . (16)

Let us expand the function u1 in Fourier series as u1(θ) =
∑

m∈Z
u

(1)
m eimθ and, to

fix the ideas, let us suppose that the perturbation has the form

s(x) = sin(kξ)
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for any k ∈ N. Developing (16) in Fourier series, we get

∑

m∈Z

u(1)
m eimθ ·

[

eimα̃ − (1 + b) + be−imα̃
]

= −(1 − b)ω̃1 +
1

2i
(eikθ − e−ikθ) . (17)

Once we solve (17) for u
(1)
m , we immediately recognize that the term in square

brackets represents a small divisor, since it is equal to zero whenever α̃ is a multiple
of 2π

m
, i.e. α̃ = 2π n

m
for any integer n.

Moreover, for any value of α̃ the term eimα̃ − (1+ b)+ be−imα̃ is identically zero for
m = 0, so that we must impose ω̃1 = 0. On the other side, for m = ±k we obtain

u
(1)
±k ·

[

e±ikα̃ − (1 + b) + be∓ikα̃
]

= 1
2i

, which determines the function u1 as

u1(θ) =
1

2i

[ eikθ

eikα̃ − (1 + b) + be−ikα̃
− e−ikθ

e−ikα̃ − (1 + b) + beikα̃

]

.

Notice that the function u1 is real, since its two Fourier coefficients are complex
conjugated.
In a similar way, we proceed for the second order term in ε by solving the equation
for u2 and ω̃2:

u2(θ + α̃) − (1 + b)u2(θ) + bu2(θ − α̃) = −(1 − b)ω̃2 + s′(θ)u1(θ) ,

where s′(θ) denotes the first derivative with respect to θ (s′′ and s′′′ will denote
second and third derivatives w.r.t. θ). The average over θ of the term s′(θ)u1(θ)
contributes to the definition of ω̃2; at present it amounts to

1

2π

∫ 2π

0

s′(θ)u1(θ)dθ =
1

D2
− 1

D̄2
,

where D2 = eikα̃ − (1 + b) + be−ikα̃, while D̄2 is its complex conjugate. By simple
computations one obtains

ω̃2 =
k ctg( α̃k

2 )

4(−1− b2 + 2b cos(α̃k))
. (18)

For later use, we report also the explicit expression of u2:

u2(θ) = − i

4

ke2ikθ

(−1 − b + be−iα̃k + eiα̃k)(−1 − b + be−2iα̃k + e2iα̃k)

+
i

4

ke−2ikθ

(−1 − b + e−iα̃k + beiα̃k)(−1 − b + e−2iα̃k + be2iα̃k)
.

From (18) we see that ω̃2 has singularities whenever sin( α̃k
2 ) = 0, namely α̃ =

2π( 1
k

+ `
k
) for any ` ∈ Z. Such values represent the leading zero divisors‡ appearing

in the power series representation of the rotation number ω̃. We remark that the
coefficient ω̃2 is zero for α̃ = π( 1

k
+ `

k
) for any ` ∈ Z.

Next, we proceed to the determination of u3 and ω̃3 by solving the equation

u3(θ + α̃) − (1 + b)u3(θ) + bu3(θ − α̃) = −(1 − b)ω̃3 + s′(θ)u2(θ) +
1

2
u2

1(θ)s
′′(θ) .

‡Obviously, the location of the poles might change if one takes a different expression of the per-
turbation s(θ); however, in that case the normal form computations can be implemented through
an easy generalization of the present case.
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Since
1

2π

∫ 2π

0

[

s′(θ)u2(θ) +
1

2
s′′(θ)u2

1(θ)
]

dθ = 0 ,

we obtain that ω̃3 = 0. Therefore we proceed to compute u3, which takes the
following expression; let us denote by

A = −1−b+eiα̃k+be−iα̃k , B = −1−b+e2iα̃k+be−2iα̃k , C = −1−b+e3ikα̃+be−3ikα̃

and let the barred quantities denote the respective complex conjugates. Then, we
have:

u3(θ) =
ik2

8

[

(
1

2A3
+

1

A2Ā
− 1

A2B
)eikθ − (

1

2Ā3
+

1

AĀ2
− 1

Ā2B̄
)e−ikθ

−(
1

2A2C
+

1

ABC
)e3ikθ + (

1

2Ā2C̄
+

1

ĀB̄C̄
)e−3ikθ

]

(which is immediately recognized as a real function). Finally, we proceed to compute
ω̃4 as

ω̃4 =
1

1 − b
· 1

2π

∫ 2π

0

(

bω̃2u
′
2(θ−α̃)−ω̃2u

′
2(θ+α̃)+u3(θ)s

′(θ)+u1(θ)u2(θ)s
′′(θ)+

1

6
u3

1(θ)s
′′′(θ)

)

dθ ,

which can be written as

ω̃4 =
ik3

32

[ 1

A3
− 1

Ā3
− 3

AĀ2
+

3

A2Ā
− 2

A2B
+

2

Ā2B̄
− 2

AĀB
+

2

AĀB̄

]

.

New singularities appear with respect to the second order (ω̃2): beside the values
α̃ = 2π( 1

k
+ `

k
) for ` ∈ Z (at which the quantity A = 0), the function ω̃4 is singular

at α̃ = π( 1
k

+ 2`
k

) (at which the quantity B = 0). It is natural to infer that the

successive zero divisors will be located at the resonances α̃ = 2π
n·k ; furthermore, the

rate of divergence of both ω̃2 and ω̃4 increases as k gets larger or as b gets closer to
1. We recall that the overall behavior of the rotation number can be deduced from
the series expansion ω̃ = α̃ + ω̃1ε + ω̃2ε

2 + ...
The analytical computation of ω̃ as a function of α̃ or b is in good agreement with the
numerical results for any ε less or equal than 0.1 (see Figure 9). Up to this value
of ε we did not remark any improvement when passing from the approximation
of order 2 to that of order 4, beside the appearance of the singularity at α̃ = π
for the approximation of order 4 (as expected from the formula providing ω̃4).
We conclude by remarking that the normal form procedure outlined before can
be obviously extended to higher orders with a straightforward generalization of the
previous formulae and an eventual automation through a computer implementation.

6. Conclusions. The analysis presented in this work represents a first step toward
the study and modelling of physical phenomena described by dissipative nearly–
integrable systems. Obviously, this kind of systems finds a huge variety of appli-
cations in physical frameworks; just to quote some examples, among the problems
of Celestial Mechanics, we mention the non–rigid rotation of a satellite around a
primary body, the Yarkovsky effect as well as the description of the evolution of
a many–body system in the primordial solar nebula. The standard map–like sys-
tem (2) represents the simplest dynamical model of dissipative nearly–integrable
systems, though it contains all the main ingredients to provide an exhaustive de-
scription of the dynamics, populated by periodic orbit attractors, invariant curve
attractors and strange attractors. In this context, we found that the final behavior
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Figure 9. Variation of the frequency ω as a function of α̃ (left)

for b = 0.5 and as a function of b (right) for α = (
√

5 − 1)/2.
The numerical results on the mapping (A) are compared to the
analytical series expansions at orders 2 and 4, which overlap in the
right panel.

of the dynamics strongly depends on the choice of the frequency α as well as on the
choice of the form of the mapping (i.e., the function s(x) in (2)), especially when
studying the weakly chaotic regime.
The investigations performed in this paper are numerical and analytical. Concerning
the numerical techniques, we recall that in the last ten years a lot of tools for the
global study of the dynamics of conservative systems have been developed ([22],
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[20], [10], [14], [15]); their implementation allowed to obtain a deep insight on
classical problems (see, e.g., [21], [28], [13], [25]). In this paper we implemented some
numerical techniqus, suitably adapted to the investigation of dissipative systems.
In particular, we applied two methods (which are now classical in the Hamiltonian
context), namely an extension of the Fast Lyapunov Indicators (the Differential
FLI) and the frequency analysis. The combined use of such techniques provides a
full description of the dynamics.
Concerning the analytical investigation, we developed a normal form analysis in the
framework of the nearly–integrable dissipative standard–like mapping, using Taylor
series expansions (up to the order 4) in the perturbing parameter. Such normal
form provides an analytical expression of the frequency of motion. A detailed study
has been performed in [7] to prove analytically the existence of invariant curve
attractors under smallness conditions on the parameters.
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