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Large scale dynamics of oceans and atmosphere is governed by the primi-
tive equations which are derived from the Navier–Stokes equations, with rota-
tion, coupled to thermodynamics and salinity diffusion-transport equations,
which account for the buoyancy forces and stratification effects under the
Boussinesq approximation which are the 3D Navier–Stokes equations (NSE)
with rotation couple to the heat (and/or salinity) transport equations.

The global existence and uniqueness of smooth solution to the 3D NSE
is one of the most challenging mathematical problems in applied analysis.
Consequently, the Boussinesq system is equally challenging from this point
of view. However, due the geophysical nature of the rotating earth geo-
physicists derive “simpler” models to be studied analytically and simulated
computationally. For instance, by taking advantage of the shallowness of the
oceans and the atmosphere they introduce the hydrostatic balance approx-
imation for the vertical motion (see, e.g., [3], [4], [5], [6], [7] and references
therein). The Boussinesq system under the hydrostatic assumption is known
as the primitive equations.

1



Here, we will focus on the 3D primitive equations in a cylindrical domain

Ω = M × (−h, 0),

where M is a smooth bounded domain in R2:
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where the horizontal velocity field v = (v1, v2), the three-dimensional veloc-
ity field (v1, v2, w), the temperature T and the pressure p are the unknowns.
f = f0(β+y) is the Coriolis parameter, Q is a given heat source, Re1, Re2 are
positive constants representing the horizontal and vertical Reynolds numbers,
respectively, and Rt1, Rt2 are positive constants which stand for the horizon-
tal and vertical heat diffusivity, respectively.

In [3], [4] and [8] the authors set up the mathematical framework to study
the viscous primitive equations for the atmosphere and ocean circulation.
The short time existence and uniqueness of strong solutions to the viscous
primitive equations model was established in [1] and [8]. In [2] the authors
proved the global existence and uniqueness of strong solutions to the viscous
primitive equations in thin domains for a large set of initial data whose size
depends inversely on the thickness of the domain. In this paper we show
the global existence, uniqueness and continuous dependence on initial data,
i.e. global regularity and well-posedness, of the strong solutions to the 3D
viscous primitive equations model (1)–(4) in general cylindrical domain, Ω,
and for any initial data. It is worth stressing that the ideas developed in this
paper can equally apply to the primitive equations subject to other kinds of
boundary conditions.
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