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Abstract submitted to EE250

The elucidation of the universal scaling properties of equal-time and time-
dependent correlation functions in the vicinity of a critical point was one of
the most important achievements of statistical mechanics over the past forty
years. The analogous systematization of the power laws and associated expo-
nents that govern the behaviour of structure functions in a turbulent fluid, or
in a passive-scalar advected by such a fluid, is a major challenge in the areas of
nonequilibrium statistical mechanics, fluid mechanics, and nonlinear dynamics.
We develop here the systematics of the multiscaling of time-dependent structure
functions for the case of decaying fluid and passive-scalar turbulence.

The nature of multiscaling of time-dependent structure functions has been
examined recently[4, 5, 6] but only for the case of statistically steady turbu-
lence. Does it have an analogue in the case of decaying turbulence, since time-
dependent structure functions must, in this case, depend on the origin of time
t0 at which we start our measurements? This question has not been addressed
hitherto. We show here how to answer it in decaying fluid and passive-scalar
turbulence. In particular, we propose suitable normalisations of time-dependent
structure functions that eliminate their dependence on t0; we demonstrate this
analytically for the Kraichnan version of the passive-scalar problem and its shell-
model analogue and numerically for the GOY shell model[2, 7, 8, 9] for fluids
and a shell-model version of the advection-diffusion equation. In these mod-
els we then analyse the normalised time-dependent structure functions for the
case of decaying turbulence like their statistically steady counterparts [5, 6].
This requires a generalisation of the multifractal formalism[2] that finally yields
the same bridge relations between dynamic and equal-time multiscaling expo-
nents as for statistically steady turbulence[5, 6]. Studies show that, if dynamic
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multiscaling exists, time-dependent structure functions must be characterised
by an infinity of time scales and associated dynamic multiscaling exponents[5].
We show that the dynamic exponents depend on how we extract time scales
from time-dependent structure functions; e.g., for fluid turbulence, time scales
obtained from integrals (superscript I and subscript 1) and second derivatives
(superscript D and subscript 2) of order-p time-dependent structure functions
yield the different dynamic exponents zI,u

p,1 and zD,u
p,2 . Finally, we demonstrate

how the different dynamic multiscaling exponents are related to the equal-time
multiscaling exponents via different classes of linear bridge relations for decay-
ing turbulence. In addition, we find numerically for shell models of fluid and
passive-scalar turbulence that dynamic-multiscaling exponents have the same
values for both statistically steady and decaying turbulence.

To summarise, our work provides strong evidence for the universality (i.e.,
the equality of dynamic scaling exponents in decaying and statistically steady
turbulence) of the multiscaling of time-dependent structure functions in turbu-
lence of fluids and passive-scalars.

Representative plot of the nor-
malised, GOY-model, fourth-order,
time-dependent velocity structure
function in decaying fluid turbu-
lence for different shells n versus the
nondimensional time t/tL, where
tL is the large-eddy-turnover time.
The inset shows a log-log plot of
the derivative-time versus the wave-
vector; the slope yields the dynamic
multiscaling exponent zD,u

4,2 = 0.76.
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