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physical, chemlcalandblologlcal modadeling;

but also on the mathematical analysis of the models
thus obtained.
The hierarchical modeling approach allows one to

give proper weight.to the understanding provided by the
models vs. their realism, respectively.

This approach facilitates the evaluation of forecasts
(pognostications?) based on these models.

Back-and-forth between “foy” (conceptual) and detailed
(“realistic’) models, and between and
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Variations of the Earth’'s surface temperature for:

emperatures [1SE:
 What'aboutlimpacts?
e How to adapt?

Source : IPCC (2001),
TAR, WGI, SPM




ndicators of the human influence on the atmosphere
Soring the Industrial Era

(8! Chotand ot Srongl et COmir NN ation 4 A Duew weil wuaed
Sreerhoane pres

IPCC (2001)




But things aren’t that easy!
What to do?

* Natural variability introduces
additional complexity into the
anthropogenic climate change problem.

* The most common interpretation of observations and
GCM simulations of climate change is still in terms of
a scalar, linear ordinary differential equation (ODE):

dT
= kT
c— + Q,

where

k= k; — feedbacks (+ve and —ve);

Q=) Q;— sources & sinks, Q; = Q;(t)



Linear response vs. observations

® Linear response to change in atmospheric CO5 concentration
vs. observed change in global temperature T.

® Hence we need to consider instead a system of nonlinear
partial differential equations (PDEs), with parameters and
multiplicative, as well as additive forcing (deterministic + stochastic)

dX

—:NXata y
= (X, 1, B)



Composite spectrum of climate variability

1. High frequencies — white (or “colored’’) noise
2. Low frequencies — slow (“‘adiabatic’’) evolution of parameters
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 Bretiereon's “hermrencegram” of Earih System Selence

CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Climate models (atmospheric & coupled) : A classification

o Temporal
» stationary, (quasi-)equilibrium
» transient, climate variability

e Space

= 2-D
* horizontal
* meridional plane —
» 3-D, GCMs (General Circulation Model)
* horizontal
- meridional plane
= Simple and intermediate 2-D & 3-D models

» Partial

- unidirectional

- asynchronous, hybrid
= Full

Hierarchy: from the simplest to the most elaborate,
iterative comparison with the observational data




Climate and Fluids

TheicotplediclimaiCR
system'is'dominateoloyam . | i
its fluid"components:

the atmosﬁh‘ere-and
hydrosphere.(oceans;
rivers, lakes)

L. Euler’s portrait courtesy of
Georgi S. Golitsyn
(IFARAN, Moscow);
formerly in the collection of the
Imperial Academy of Sciences,
St. Petersburg (till 1918)



An example of bifurcations and hierarchical

J. Apel (1987), Principles of Ocean Physics

The mean surface currents are (largely) wind-driven




The gyres and the eddies

Many:scalestoffmotion;

dominatediinithe

mid-latitudes by '7 Slope Water
(i) the double-gyrelcirculation s R )
and (ii) | —

Much of the focus-of physical ~ { e \ -

oceanography over the ‘70s to T | Cold Core Rings &%

‘90s has been with the 3 Sargasso Sea v
. " the meanders, 3

rings & eddies, and the

associated two-dimensional and

quasi-geostrophic

Based on SSTs, from satellite IR data




The double-gyre circulation
and its low-frequency variability

Shallow-water model: An "intermediate" model

of the mid-latitude, wind-driven ocean circulation,
with 20-km resolution = about 15 000 variables.

,
Ui+ V - (uU) = —g'hhy + fV + aaAV?U — RU — o, =
Vi+V-(uV)=—g¢hh, — fU +asAV?V — RV
he = _(Ua: + Vy)

_/\

\
where Ue, + Ve, = hu = h(ue, + vey),

g": reduced gravity, g’ = g(p2 — p)/p
A: viscosity coefficient (= 300 m?s™!)
R: Rayleigh coefficient (= 1/200 day ')

7% wind stress = 7y cos(27/L) (19 = 1 dyn cm™ & L = 2000 km)



Shallow-water model (continued)

Reduced gravity
X (East) (1.5 - layer)
model

v
u

\ctive Lavyi I%i
S. Jiang, F.-F. Jin &

Inert Layer | Hosh P, M. Ghil (1995)
l J. Phys. O« cunoy.,
25 /604-786




The JJG model’s equilibria
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Multiple equilibria (nonlinear case): (o, a)=(1.53,0.9)
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Subtropical gyre
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periodic and chaotic

Time-dependent solutions

ptirelspaces

1. Periodic, w/ interannual period (2.8 years) |

TIME VARIATION OF ULT M)

oceanographers
often use
Hovmoallerdiagrams

2. Aperiodic (weakly chaotic)
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Poor man’s continuation method

Bifurcation diagram

Perturbed pitchfork +« Hopl 4+ transition to chaos
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The double-gyre circulation:
A different rung of the hierarchy

Another "intermediate" model of the double-gyre circulation:
slightly different physics, higher resolution — down to 10-km in the
horizontal and more layers in the vertical, much larger domain, ...
Quasi-geostrophic, 2.5-layer model:

5 (V2h1 — M (b1 — ha)) + 5% - _%J[hlav% — F(h1 — ho)]
+ApVAhy — CV3(h1 — ho) + pogf’OHl curl(T)
L (V2hy — Mj(hy — b)) + B2 = _%J[hm VZhy — F3 (hy — ha)]

+ApV4ihy — CV?%(hy — h1) — RV?hs

where h1, h2: height anomalies for upper and lower layer
H1, H2 : mean heights for upper and lower layer

A1, A2 : Rossby radii of deformation; A1 = \/h/H1/f3, A2 = /W' Ha/ f&

fo, B : Coriolis and beta parameters
00, g': mean density and reduced gravity

C, R: Rayleigh coefficient for interface and lower layer, and 7 : wind stress



Quasi-geostrophic model (continued)




Y (20 KN)

Model-to-model, qualitative comparison

model grid distribution
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model in:North=Atlantic=
shaped basin;and

(b) Cooperative:®©cean-
Atmosphere.Data Set
(COADS) Gulf-Stream
axis data
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Homoclinic orbit: numerical and analytical

2008 Sumonact ef al.: Qwast peostrophic dowble. gyee circwanon - 2003) Simonnet et al.: Quasi-geostrophic double-gyre circulation 041
| | |
Hom:oclinic ?
||
| |
oY) . . . P ........ ; ;
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2 = =\ 4 &5 0 05 1t 15 2 W
A14A3
: Figure 3. Bifurcation diagram of the highly truncated, four-mode model (5), projected onto the
"u 010 (A Ay Ay) plane for p = Tand s = 2; P stands for pitchfork bifurcationat o = o = 7,61,
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Uncertainties in the forcing

(Clonlidloviionss i@ e
forcinganaturalgdye

have substantial
uncertainties

Source : IPCC (2001),
TAR, WGI, SPM

The yobal moan radiative forcing of the climate sysiom
for the year 2000, redative to 1750
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So what’s it gonna be like, by 21007

The global climate of the 215t contury
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Can we, nonlinear people, help?

THAE UIREERETES

ST HEAVEN
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.
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Might fit in nicely with
recent taste for

“stochastic
parameterizations”

Figure 7.5-1. The three towers of differentiable dynamics.

The DDS dneam of structunal stabelity (from Abraham & Marsden, 1978)




Random Dynamical Systems — RDS

* This theory is a combination of
measure (probability) theory
and dynamical systems,
initiated by the "Bremen group”
(L. Arnold, 1998).



Random Dynamical Systems — RDS

* This theory is a combination of
measure (probability) theory
and dynamical systems,
initiated by the "Bremen group”
(L. Arnold, 1998).

* |t allows one to treat
stochastic differential equations ( ),
and more general systems
driven by some “noise", as



The setting of RDS theory
e A phase space X. R",



The setting of RDS theory

* A phase space X. R™.
* A probability space (2, F,P).
The Wiener space () = Cy(R; R")
with Wiener measure [P = .



The setting of RDS theory

* A phase space X. R™.
* A probability space (2, F,P).
The Wiener space () = Cy(R; R")
with Wiener measure [P = .

A model of the noise 6(t) : 2 — € that
preserves the measure P, i.e. 6(¢t)P =P; 0 is
called the driving system.

W (t,0(s)w) = W(t+s,w) — W(s,w);
it starts the noise at s instead of ¢ = 0.



The setting of RDS theory

e A phase space X. R™.

* A probability space (2, F,P).
The Wiener space () = Cy(R; R")
with Wiener measure [P = .

A model of the noise 6(t) : 2 — € that
preserves the measure P, i.e. 6(¢t)P =P; 0 is
called the driving system.

W (t,0(s)w) = W(t+s,w)— W(s,w);
it starts the noise at s instead of ¢ = 0.
 Amapping ¢ : R x { x X — X with the
cocycle property.
The solution of an SDE.



RDS — A geometric view of SDEs

{6(s)mx X
{0(s+t Yo IxX

o(t,6(s)w)

O(5,0) X P o(to(0) [o(s,0) x1=

Q(t+s,m) x

*  is a random dynamical system (RDS)

* O(t)(z,w) = (0(t)w, (t,w))
IS a flow on the bundle



Stochastic equivalence
Toward a robust classification

» Stochastic conjugacy: two cocycles
©1(t,w) and @,(t,w) are conjugated iff
there exists a random homeomorphism
h € Homeo(X) and an invariant set €2 of full
P-measure (w.r.t. 8) such that h(w)(0) = 0 and

o1(t,w) = h(0(t)w) ™" 0 vy(t,w) o h(w);

h is also called a of ¢, and ©,:
it is a random change of variables!



Stochastic equivalence (continued)

* Motivation: We would like to measure
guantitatively the difference between

As the noise variance tends to zero and/or the
parametrizations are switched off, one recovers
the structural instability, as a

i " of model space.

For , the random attractor
A(w) associated with several GCMs might
fall into and classes

as the



Stochastic equivalence (continued)

Could noise help the
classification?

: Stochastic Classes of GCMs



RDS — Concluding remarks

(GCM —team), : dU = f1(U)dt 4+ o1(z,U)dW;

(GCM — team), : dU = fo(U)dt + o2(x, U)dW;

Under which conditions on f; — f» and o1 — o9
will A (w) ~ Az(w) hold?

Let £ denote the GCM resolution dU = f(U, 0(t)w, k)dt.
One would like to study the behavior of Ax(w) as k — 0.

- Joint analysis of model simulations and
observational data sets.

- Parameter estimation, based on
data assimilation methods (sequential, variational).



What do we know less well -
 How does the fluid dynamics of the climate system really work?
 How does natural variability interact with

anthropogenic forcing?

What to do?

e Better understand the system and its forcings.
» Better understand the effects on economy and society,
and vice-versa.
e Explore the models’, and system's, stochastic structural stability.



Some general references

ANCIONOVEAYARANCHNSREO N LS ILNLS S GES VSTEMNESIGLOSSICISMYOKWAKIORI\ I UKRO S S )
14(5)824 2250
m&. 'Eizololrn Qﬁcumr:z/ :wfyns: auﬂ-wf 'uu-mgjm‘elib I \iEu ‘SIJIIW 62510

: : aﬁ@/ ©ceanography=LAtDynamicallSystern
Large-Scale Ocean CirculationiandiELNInoX2ndiedn®) ¥Springer
Ghil, M., R. Benzi;yand G Parisi (Eds. w1985/ urbulence’and. Pred/ctab///ty n Geophysma/ Fluid

Dynam/cs and Climate Dynam/cs North= Hollandr49pp -
> AA—— .y -

Ghil, M., and S. Childress;*1987:%Topics'in GeophyS/ca/ Fluid Dynamics: s
Atmospheric Dynamics, DynamoglLheory.and Climate Dynamics, Springer; 485, pp.

Ghil, M., 2001: Hilbert' problems for the geosciences in the 21stcentury, Nonlin. Proc. Geophys.,
8, 211-222.

Ghil, M.; and E. Simonnet, 2007: Nonlinear. ClimatesTheory, Cambridge Univ. Press, Cambridge,
UK/London/New York; In preparation (approx. 450 pp.).

Gill, A. E., 1982: Atmosphere-Ocean Dynamics, Academic Press, 662 pp.

Houghton, J.'T., G. J. Jenkins, and J. J. Ephraums (Eds.), 1991: Climate.Change, The IPCC
Scientific Assessment,; Cambridge Univ. Press, Cambridge, MA, 365 pp.

IPCC, 2001: The IPCC Third Assessment Repori—Climate Change 2001: The Scientific Basis,
Cambridge, UK/New York, NY, 881 pp.

Pedlosky, J., 1987: Geophysical Fluid Dynamics (2nd ed.), Springer-Verlag, New
York/Heidelberg/Berlin, 710 pp.

Pedlosky, J. , 1996: Ocean Circulation Theory, Springer, New York, 453 pp.







The “hockey stick” & beyond

m “hOCG m" : IUBPACE TEMMEATURE BECONITROCTIONT 208 TN LAIT 100 TRAR

Bawv s wym e e r o S e wogre [ wwrere Yl
MAs vy, Mass st bmmm Ve L N e

Report) IStattypically; B it e 00 it AT o 00 o b
(over)simplifiediversion
of much more:detalled

and reliable;tknowledge.

National Research Council, 2006:
Surface Temperature Reconstructions -

For the Last 2000 Years. ML L1 vmnrbed mommtrntems ol bogr o ole  Nowders Homagles newn o0 gobe
National Academies Press, wren mrar bywgrre wy ratetsms han o8 Albrret eees b irane 1 de e siey vl

Y B Geinanant il Moot of Podel mosm s Mgt Fa v potii e et
Washlngton, DC’ 144 PP. Efhvrndt wory of wegmraney it sad syt 0 0 s ehie A o of A
htt://www.na.edu/oenbook.hz OIS B SOROR) BCHen pouig Dot wnnd B B 00 B 0 e iy g T

i - W0 o OCORE R M0 DTS & GRARREISEY (ORI PR TMY of WOWNEN Daigl s 01 B
record_id=11676&page=2 ot 1100 prawn sl rape iy me B Lo W0 Sew Bages 000 B Sl abent s e




Infrarad Heot Loss 70 (67)

Incoming Solar Radiation 100

Global Albedo 30 (33

LATENT MNHEAT 25

SENSIBLE HEAT &

B,

(30 + 22 = 52)

EMITTED BY CLOUDY
ATMOSPHERE ©7

EMITTED By CLOUDLESS
AT MOSPHERE S5

EMITTED BY CLOUDLE SS
TMOSFPHERE 3<

EMITIYED By EART N
.

N— T

s

REFLECTED 8y EARYTMH & (7)

U

"7

TRANSMIT TED THROUGHM
W CLouDos 2z o

T
N
N

?1 THE ATMOSPHERE 5

TRANSMIT TED THROUGH
CLOUDLESS ATMNMOSPHERE !5

ABSORBED BY CLOUDLESS
ATMOSPNERE 22

6

(+4
)

( s
(-30)
30)

(45)

Lost by Earth 44

Absorbed by Eorth 44

An Intraduc

iou, 1980

Kuo-Nan L

N

apres

—
(o2
s
o°)
o
E
S
o
S~
3
T
o

D7



THE GENERAL ATMOSPHERIC CIRCULATION —
Schematic Diagrams

Hadley Circulation (direct)
Solar IR

Radiation l t Radiation

Q

Equator - Pole

The general circulation of the atmosphere, cross-section. *

The observed mean ___ _polar “cell”
circulation is made up ‘ e~

=~ > Ferrel cell (18586)
of the Hadley, Ferrel
and polar cells; these

are complemented Dy |—EE—__—_-—-.
NERVRIUEIES e (- easterlies

(monsoons, semi- ,yﬁ';.'&'w
permanent “centers of

action, etc.).

surface
westerlies

The general circulation of the atmosphere, perspective view. *

*after Ghil & Childress (1987), Ch. 4



Modeling Hierarchy for the Oceans

Ocean models
o box'modelSEchemisiryl(BGE)Rpaleo

.

3-D: OGCMs - simplified
- with bells & whistles (“kitchen'sink?)

|dealized (0-D & 1-D): intermediate couple models (ICM)

Hybrid (HCM) - diagnostic/statistical atmosphere

- highly resolved ocean

Coupled GCM (3-D): CGCM
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T, and GHGs over 400 kyr

4 glacial cycles recorded in the Vostok ice core
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PAGES

J.R. Petit et al., Nature, 399, 429-36, 1999. PAST GOBAL OANGES

Tte same lead—lag relations ane appanent cver these 4 glacial cycles . ..







This is true, a fortiori;
of polariice sheets!




E Ice cover of the Arctic Ocean and subpolar seas

TEMPLRATURT OCPARTURE (*C)

™ a0
ran ol -
$an

&0
YEARS ..OJ"

Ice cover of the Arctic Ocean at the end of August (above) and

summer temperature deviations w.r. to the 1940-1960 mean (below).
The heavy curve is a 5-year running mean; after Barry (1983).




Great Natural Catastrophes 19502003
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Extreme Events:
Causes and Consequences
(E2-C2)

® EC-funded project bringing together
researchers in mathematics, physics,
environmental and socio-economic
sciences.

@ €1.5M over three years (March 2005—-Feb.
2008).

@ Coordinating institute: Ecole Normale
Supérieure.

® 17 'partners’ in 9 countries.

® 72 scientists + 17 postdocs/postgrads.

@ PEB: M. Ghil (ENS, Paris, P.1.),
S. Hallegatte (CIRED), B. Malamud (KCL,
London), A. Soloviev (MITPAN,Moscow),
P. Yiou (LSCE, Gif s/Yvette, Co-P.1.)
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Sun-Climate Relations
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Solar Effects on Interdecadal Climate Variability

Irradiance Anomaly: dw/dt + w/t = k Kt)
( tm ~ time of solar min.; tM ~ solar max.; Tt~ IL2/v)
1) Cycle-Length (CL) Model: P (tm+1/2) = k2 / (tm+1-tm)

2) Cyle Decay-Rate (CD) Model:  F1(tm) = k1 / (tm-t™M)
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Climate Model. Global energy-balance model, with upwelling-
diffusion ocean model underneath (cf. IPCC)

S. L. Marcus, M. Ghil, and K. Ide, Geophys. Res. Lett., 26 1449-
1452, 1999



Surface Temperature Anomaly (C)

Surface Temperature Anamaly (C)
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