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General introduction

To the dear memory of Akiva Yaglom (06 March 1921–13 December 2007) and Robert Kraichnan (15 January 1928–26 February 2008)

The international conference Euler Equations: 250 Years On
(EE250) was held in Aussois, France, June 18–23, 2007, on an
initiative of the Centre National de la Recherche Scientifique,
under the patronage of the French Academy of Sciences,
the Berlin–Brandenburg Academy of Sciences, and the Swiss
Academy of Science’s Committee of the Leonhard Euler
Tercentenary, and the co-sponsorship of the International Union
of Theoretical and Applied Mechanics.

The Conference was organized by the Laboratoire Cassiopée
of the Observatoire de la Côte d’Azur and the Wolfgang Döblin
Institute, Nice, with participation of the Jean-Victor Poncelet
Laboratory, Moscow.

Support of the Institut National Polytechnique and
the Université Joseph Fourier, Grenoble, of the Région
Rhône–Alpes, and of the US National Science Foundation is
gratefully acknowledged.

We are very grateful to our colleagues of the EE250
Scientific Committee, listed at the Conference web site
http://www.oca.eu/etc7/EE250/, who helped with the organiza-
tion of the Conference and sometimes also with these Proceed-
ings.

We are also very grateful to the archivists of the French
Academy of Sciences and of the Berlin-Brandenburg Academy,
Florence Greffe and Wolfgang Knobloch, who have provided us
with important documents and manuscripts from Euler’s time.

Many persons have helped us in organizing this conference;
we are most grateful to Sébastien Bott, Hélène Frisch, Rafaela
Hillerbrand, Takeshi Matsumoto, Walter Pauls and Rose Pinto.
Fathi Namouni is thanked for having named the Conference.
The improvement of the scientific content of the Proceedings
owes much to Olivier Darrigol and Gleb K. Mikhailov and
to numerous anonymous referees. Many thanks are due also
to the scientific and production staff of the journal Physica D
and especially to Joceline Lega, Eline van Mourik and Gary
Anderton.

The EE250 conference, held on the occasion of the 250th
anniversary of the publication of Euler’s founding paper
of hydrodynamics ‘Principes généraux du mouvement des
fluides’, brought together about 95 invited senior researchers
and 45 selected young scientists from all over the world,

representing various scientific communities. In loyalty to
Euler’s legacy, which embraces theory as well as applications,
the Conference covered a broad range of disciplines and
approaches. It provided a snapshot of the state-of-the-art in a
research field started in the eighteenth century and still thriving.

One of the outcomes of the EE250 conference is this
collection of papers, part of which are surveys written by
established experts whereas the rest cover active research
conducted by other participants of the Conference and in
particular by the younger generation. The Conference itself had
a number of presentations that have not led to papers in the
Proceedings and for which we refer the reader to the EE250 web
pages http://www.oca.eu/etc7/EE250/ that contain the detailed
program and slides of most presentations. We have not tried
to summarize the numerous discussion panels which were a
highlight of the Conference.

The articles are organized in seven sections corresponding to
different kinds of scientific outlooks on the Euler equations and
hydrodynamics.1 To remain faithful to Euler’s vision of science,
we have avoided separating the more fundamental papers from
those devoted to applied science and engineering.

What follows is an overview of the organization and contents
of the Proceedings.

The volume starts with two of Euler’s founding papers
on hydrodynamics, ‘Principes généraux du mouvement des
fluides’ (written in 1755 and published in 1757) and ‘Principia
motus fluidorum’ (written in 1752 and published in 1761). Both
are here rendered in modern English. The former was written
in amazingly modern French, so that we decided on a faithful
translation (p. 1825); the latter uses not only Latin but a rather
heavy style which may have been easily understood 250 years
ago but whose literal translation would put some hardship on
the modern fluid dynamicist; hence we opted for a somewhat
modernized adaptation (p. 1840).

As is well known, Euler was an extremely prolific author. All
his publications are reproduced in the Opera omnia, undertaken

1 At the beginning of each section the reader will find the papers having a
review character, followed by the other papers in alphabetic order.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.05.006

http://dx.doi.org/10.1016/j.physd.2008.05.006
http://www.elsevier.com/locate/physd
http://www.oca.eu/etc7/EE250/
http://www.oca.eu/etc7/EE250/
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one century ago, in 1907, and published first by Teubner
(Leipzig/Berlin), then by Orell Füssli (Zürich) and now by
Birkhäuser (Basel). Scanned copies of most original papers
are available from the EULER ARCHIVE, at Dartmouth College
(http://www.math.dartmouth.edu/˜euler). A guide to the Euler
bibliography, Euleriana, written by Gleb K. Mikhailov, is found
just after this General Introduction.

Next we have the modern scientific papers, beginning with
the historical perspective section. The paper of Darrigol &
Frisch (p. 1855)2 shows how modern fluid dynamics was born
in the eighteenth century through the work of many important
figures, not only Euler, but also the Bernoullis and d’Alembert.
A case study by Grimberg, Pauls & Frisch (p. 1878), based
on the d’Alembert paradox, gives evidence that quite a lot
was already understood before the availability of the modern
formulation in terms of partial differential equations. Euler
spent a quarter of a century living through peace and war in the
Berlin of Frederick the Great (Friedrich II), King of Prussia,
with whom he had increasingly strained relations. These
years come to life in the contributions of Eckert (p. 1870),
and Knobloch (p. 1887) who also demonstrate that Euler
was frequently involved in very practical matters, including
engineering problems. For lack of material we are unable to pay
similar attention to the societal context of Euler’s two Russian
periods, but this is somewhat alleviated by the Euleriana of
Mikhailov. Another historical contribution, regarding advanced
rocketry in the eighteenth century in India, was presented by
Narasimha.

Next come the many papers of the section devoted to
singularities and related questions, one of the most central
issues discussed at EE250 and among the most conspicuous
themes of this volume. The survey paper of Gibbon (p. 1894)
sets up the scene for the issue of occurrence or non-
occurrence, for incompressible three-dimensional Euler flow,
of spontaneous singularities appearing after a finite time (blow
up). More than 250 years after the Euler equations had been
written, it is still unknown if they always possess solutions
that stay smooth indefinitely when the initial data are smooth;
the available proofs of existence either are local in time or
establish global existence of weak solutions whose smoothness
is not guaranteed. In this section we also have the paper of
Constantin (p. 1926), who investigates the local geometry of the
Euler flow with an eye on the singularity problem, the paper of
Childress (p. 1921), who investigates conditions for explosive
vorticity growth, and various papers devoted to the numerical
investigation of singularities: Bustamante & Kerr (p. 1912),
Grafke et al. (p. 1932), Hou & Li (p. 1937), and Matsumoto,
Bec & Frisch (p. 1951). We note that for analytic initial data
there is now strong numerical evidence – and even a proof in
special cases as shown by Li & Sinai (p. 1945) – of the existence
of singularities in the complex space domain in both Eulerian
and Lagrangian coordinates. However for real singularities
and finite-time blow up, the current numerical results are still

2 Presentations at EE250 or papers in these Proceedings are referenced by
the last name(s) of their author(s), followed by the relevant page number where
the paper is to be found in these Proceedings.

pointing in different directions. There is also a well-known class
of non-smooth Euler flows, the vortex sheets, for which the
equivalent of the blow up issue is whether or not the shape of the
sheet, governed by the Birkhoff–Rott equation, remains regular
when sufficient regularity is assumed initially. The analyticity
of solutions of the Birkhoff–Rott equation was discussed by
Wu.3 The structure of such solutions implies very pathological
behavior of the interface, but Bardos, Linshitz & Titi (p. 1905)
show there exists a non-dissipative α-regularization which
ensures indefinite smoothness.

Actually, the topic of Euler blow up is intimately connected
with the problem of singularities in the Navier–Stokes
equations, which is one of the famous Millennium Prize
problems of the Clay Mathematics Institute. During the EE250
conference an informal poll among the participants on the
problem of finite-time singularities was conducted by C. Bardos
and E.S. Titi. The question was: how confident are you,
on a 0–10 scale, that solutions to the Euler (Navier–Stokes)
equations can develop finite-time singularities? The results are
given in the following table.

Response 0 1 2 3 4 5 6 7 8 9 10 Tot.

# of votes
(Euler)

8 2 2 4 2 9 0 3 3 3 7 43

# of votes
(N.-S.)

20 8 4 0 1 5 0 1 0 0 2 41

Highest peaks are marked in bold.

Next comes the section on weak solutions, high Reynolds
numbers and statistical mechanics, in which turbulent
or random solutions of the hydrodynamical equations are
considered. A particularly important topic concerns weak
dissipative solutions of the Euler equation; in spite of its
“singular” nature it is not necessarily related to blow up and fits
more naturally here because of strong connections with the fact
that turbulence remains dissipative even at infinite Reynolds
numbers. Actually the weak solution approach takes globally
non-smooth, everywhere densely singular, Hölder continuous
solutions to the Euler equation for models of the infinitely fine
structure of turbulent flow at infinite Reynolds numbers. In the
present volume the state-of-the-art of this approach, which has
its origins in the 1940s work of Andrei Kolmogorov and Lars
Onsager pertaining to the classics of turbulence research, is
summarized in the survey of Eyink (p. 1956). Such work, which
reveals the hidden dissipative nature of the Euler equation, is
central to the current rebirth of interest in the Euler equation.
From a different point of view the relation between the inviscid
limit and totally inviscid behavior is studied numerically by
Ohkitani (p. 2020).

The weaker and broader the notion of solution is, the easier
it lends itself to mathematically rigorous investigation, but
lack of immediate relation to physics leaves this investigation
vulnerable to paradoxes. Eyink points out that one of the
open problems is how to constrain weak solutions to the

3 This work and many mathematical aspects of the Euler equations are
discussed in a review paper by C. Bardos and E.S. Titi [1].

http://www.math.dartmouth.edu/~euler
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Euler equations, with appropriate admissibility conditions, so
that uniqueness does not fail. Such is the case with the
weak solutions obtained by adding to the 2D Euler equation
very rapidly fluctuating forces that, smeared by smooth test
functions, vanish in a suitable limit while still creating energy
[2,3]. If this kind of weak solution is permitted, a fluid at rest
may suddenly develop motion and then come to rest again
without any apparent forcing or dissipation. The contribution of
Bronzi, Lopes Filho & Nussenzveig Lopes (p. 1989) provides
a numerical model of this phenomenon which turns out to be
connected with forcing acting in a counter-entropic way at
infinitesimal scales. Another important notion of weak solution,
the Shnirelman–Brenier generalized flow [4,5], is still weaker
than solutions considered by Eyink. Brenier (p. 1982) reviews
paradoxes of the generalized flow but at the same time he shows
that it still may have physical significance of a different kind,
being similar to stratified geophysical flows in the hydrostatic
approximation. Here it is of interest to point out that C. De
Lellis and L. Székelyhidi proved, using differential inclusions,
the non-uniqueness of the solution in any space dimension for
a class of dissipative weak solutions with bounded velocity and
pressure [6].

A different kind of connection between ideal Euler dynamics
and dissipative dynamics has been discovered recently by
Cichowlas et al. [7] who showed that the 3D Euler equations
with a Galerkin truncation, chosen such that a finite but very
large number of Fourier modes survive, behaves at large and
intermediate scales just as the Navier–Stokes equations. Indeed
small-scale (high-wavenumber) modes thermalize and provide
a suitable eddy viscosity for the larger scales. Krstulovic &
Brachet (p. 2015) carry this interesting theme further (see also
Ref. [8]).

Another topic is that of the statistical mechanics of 2D
ideal turbulence, a subject pioneered by Onsager [9]. Bouchet
(p. 1976) investigates several variational formulations of this
theory, while Capel & Pasmanter (p. 1993) and Chavanis
(p. 1998) use vorticity instead of the Casimir functions to
constrain and leverage flows. Another connection between
statistical mechanics and 2D turbulence is provided by the
recent work on conformal turbulence, which was presented
by Falkovich [10]. Gallavotti reviewed dynamical-systems
perspectives in fluid turbulence and non-equilibrium statistical
mechanics and, in particular, the “chaotic hypothesis” and its
predictions for fluid experiments [11].

The most natural way to connect statistical mechanics
and hydrodynamics is of course to start from kinetic
(molecular) theory. The mathematical foundations of the
passage from the Boltzmann equation to the Euler equation
are examined by Saint-Raymond (p. 2028). Boltzmann models
with discrete velocities, such as discussed by Chen & Shan
(p. 2003), can now give very good practical approximations to
hydrodynamical equations. A discussion session was devoted
to the use of kinetic approaches in computing high Reynolds-
number flow.

High-Reynolds number 3D fully developed turbulence
is discussed in a number of papers, mostly presented in
separate sections on Lagrangian aspects or on the influence

of boundaries (see below). Here we find papers discussing
the issues of universality and intermittency: Biferale, Lanotte
& Toschi (p. 1969) and Ching, Guo & Cheng (p. 2009). A
major breakthrough on intermittency was initiated by the so-
called Kraichnan model of passive scalar intermittency [12,13].
The subject was reviewed at the Conference in the lecture of
Lebedev.

The section on Lagrangian description and mixing gathers
papers in which one either follows idealized fluid particles
– the Lagrangian approach pioneered by Euler near the end
of his ‘Principes généraux du mouvement des fluides’ – or
tracks real particles, which tend to lag behind fluid particles
because of inertia. There is a strong renewal of interest in
Lagrangian approaches: the Lagrangian description connects
with the important problems of mixing and dispersion and new
experimental developments, involving for example ultra-fast
cameras, are about to provide us with a wealth of Lagrangian
information (this was reviewed by Mordant). Inertial particles
arise in a host of practical problems from PIV flow imaging to
spreading of pollutants in water and air. A discussion session
was devoted to the various Lagrangian problems.

Theoretical aspects of inertial particles are discussed in the
review paper of Bec et al. (p. 2037); experimental aspects are
presented by Volk et al. (p. 2084) and Xu & Bodenschatz
(p. 2095). Lagrangian aspects of vortex flow are discussed
by Branicki (p. 2056) and by Wilczek, Kamps & Friedrich
(p. 2090). Boatto & Simó (p. 2051) and Sakajo & Yagasaki
(p. 2078) discuss problems with point vortices. We also have
mathematical papers in which a Lagrangian approach plays
a role by Kambe (p. 2067) and Khesin & Lee (p. 2072).
Last, but not least, there has been much discussion at the
Conference of the magnetohydrodynamic dynamo problem,4

for example in the presentation of Cardin, that of Pinton
and also in a special discussion session with strong emphasis
on the recent breakthrough made on experimental turbulent
dynamos and magnetic field reversals (see, e.g. Refs. [14,
15]). Finally there is a paper by Burattini et al. (p. 2062),
dealing with magnetohydrodynamics in the infinite-magnetic-
diffusivity limit in the presence of a background magnetic
field, which results in an increasing anisotropy of the decaying
turbulence.

We move now to the section on geophysical and
astrophysical fluid dynamics. Arguably, studies of the Euler
equations are also motivated by the fact that they proved to
be of crucial relevance to nature and technology. This was
of course something Euler was aware of, as revealed by his
studies of naval and fluvial hydrodynamics. Busse’s review
(p. 2101) considers rotating fluid flow characteristic of stellar
and planetary interiors; Fedele (p. 2127) and the first part of
Ghil, Chekroun & Simonnet (p. 2111) deal with oceanic flow;
the second part of Ghil, Chekroun & Simonnet introduces one
of the hottest topics of current science, climate dynamics, in
the setting of the Euler equations and the wider context of

4 The dynamo problem has a loose connection to the Lagrangian structure
insofar as, at zero magnetic diffusivity, a transported magnetic field behaves as
a pair of infinitesimally close fluid particles.
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nonlinear dynamics. A separate note of Hillerbrand & Ghil
(p. 2132) raises ethical issues of climate research; if ethics
do not belong to the physicist’s perspective proper, they ought
to be part of the world outlook of any conscious scientist.
Gravity currents, within the shallow water approximations, are
discussed by Zemach & Ungarish (p. 2162).

A few decades after Euler’s work, Gaspard Monge [16]
posed the following problem: how should one optimally move
material from one place to another, knowing only its initial
and final spatial distributions, the cost being a prescribed
function of the distance travelled by ‘molecules’ of material.
This optimal transportation problem started being deeply
understood only 160 years later when Leonid Kantorovich [17]
showed that Monge’s query was an instance of the linear-
programming problem and developed for it a theory that
found numerous practical applications. Some of the current
developments of this very active area of research were triggered
by Brenier’s observation that optimal transportation can be
applied to the variational formulation of the incompressible
Euler equation [18]. More recently, cosmological applications
have been discovered, which, from the infinite-dimensional
geometric viewpoint, may be seen as the opposite of the
Euler dynamics of incompressible fluid; indeed dark matter
on scales of millions of parsecs is infinitely compressible.5

Nusser (p. 2158) discusses the current state of the variational
formulation of cosmological reconstruction introduced by Jim
Peebles [19] in which the goal is to reconstruct the past
dynamical history of the Universe from the present observable
large-scale structures of galaxies and clusters. Mohayaee &
Sobolevskiı̆ (p. 2145) and Lavaux (p. 2139) show how optimal
transportation, coupled with modern optimization algorithms
can be used very efficiently for cosmological reconstruction
on the largest scales where the dynamics are governed by
the Zel’dovich approximation [20], closely related to the 3D
Burgers equation. Here we mention that Nguyen van yen
et al. (p. 2151) develop a new wavelet filtering method which
they test on the 1D Burgers equation and which they plan to
extend to higher dimensions.

The Conference also had a general discussion on
climate issues (in the context of the recent report of
the Intergovernmental Panel on Climate Change [21]) and
presentations by Shaw on cloud physics and inertial particles,
and by Nordlund on solar hydrodynamics.

The final section on boundaries and vortical structures
gathers all the papers in which boundaries or vortices (other
than point vortices) play a decisive role. Euler himself definitely
did not ignore boundaries. For example, he was the first to
formulate the correct boundary condition at a wall for ideal
flow. However, one of his major achievements was also to free
fluid dynamics from the earlier paradigm, totally dominated
by confining vessels and mostly unable to think of pressure
as generating internal forces also. For reasons of technical
convenience the paradigm of homogeneous turbulence free of

5 Only a few presentations and papers at EE250 dealt with compressible flow,
a very active area of research, also pioneered by Euler, and which would have
deserved its own conference.

boundaries (or having just “periodic boundary conditions”)
has perhaps been excessively popular with theoreticians, but a
more balanced view has emerged in recent years. Of course
engineers never stopped studying boundary effects. As for
vortical structures, they are discussed for the first time in Euler’s
French memoir (p. 1825), after having been missed in the Latin
memoir (p. 1840). We also mention that, in the course of the
discussion of singularities, Constantin invited us to look at local
geometric structure of the flow.

This section opens with a joint review of Procaccia &
Sreenivasan (p. 2167), dealing with such topics as anisotropic
and wall-bounded turbulence, drag reduction by additives,
and superfluid turbulence. This is followed by a number of
papers discussing boundary effects: Ali et al. (p. 2184) on
aeroacoustics, Araya, Leonardi & Castillo (p. 2190) on passive
scalars in a turbulent channel, Eliasson, Henshaw & Appelö
(p. 2203) on the influence of obstacles on converging shock
waves, Schneider & Farge (p. 2228) on the influence of
boundaries on the long-time decay of 2D turbulence, Singh &
Pedley (p. 2234) on the hydrodynamics of fish motion, and
Sznitman & Rösgen (p. 2240), on creeping flow in a cavity
which, nevertheless, has inviscid steady states. We also have
papers on vortex rings by Fukumoto & Moffatt (p. 2210) and
by Krueger (p. 2218) and papers on vortex tangles (superfluid
or classical) by Barenghi (p. 2195) and by Ricca (p. 2223).

The Conference also had a survey lecture by Perrier on
multiphysics numerical simulations for complex engineering
flow, illustrated by problems in aerospace and ground
transportation, a presentation by Monkewitz on cavitation, a
subject pioneered by Euler, and one by van Heijst on the
production of vorticity near the boundaries in 2D turbulent flow.

Research on the Euler equations has been going on for
a quarter of a millennium. It is far from being over. We
are particularly glad that so many young researchers have
participated in the EE250 Conference who will carry the torch
further.
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l’Académie Royale des Sci. (1781) 666–704.

[17] L.V. Kantorovich, On the translocation of masses, C. R. Dokl. Acad. Sci.
USSR 321 (1942) 199–201; English translation J. Math. Sci. (2006)
1381–1382.

[18] Y. Brenier, A combinatorial algorithm for the Euler equations of
incompressible flows, Comput. Methods Appl. Mech. Eng. 75 (1989)
325–332.

[19] P.J.E. Peebles, Tracing galaxy orbits back in time, Astrophys. J. 344
(1989) L53–L56.

[20] Y.B. Zel’dovich, Gravitational instability: An approximate theory for large
density perturbations, Astron. Astrophys. 5 (1970) 84–89.

[21] IPCC, 2007: Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin,
M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L.
Miller (Eds.)]. Cambridge University Press, Cambridge, United Kingdom,
New York, NY, USA, 996 pp.

Gregory Eyink
Baltimore,

United States

Uriel Frisch∗
Nice,

France
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Euleriana
A short bibliographical note

1. Leonhard Euler’s scientific heritage is immense. His
published scientific studies, numbering close to 800, comprise
about 30 000 printed pages and consist of roughly 600 papers in
periodicals and various collections of the Petersburg Academy
of Sciences, 130 papers published in Berlin and in Western
European journals, 15 memoirs, which were awarded prizes
and promoted by the Paris Academy of Sciences, and 40 books
of individual essays. A century ago a publication of Euler’s
“Complete Works” (Opera omnia) was undertaken. It was
planned to divide them into three series: I. Mathematics
(29 vols); II. Mechanics and Astronomy (31 vols); III. Physics
and Varia (12 vols). The first volume was published in 1911,
and the publication of the final two volumes, out of the planned
72, is expected in the next two or three years. In the 1970s it
was decided to publish an additional series (IVA) of the Opera
omnia that would contain Euler’s scientific correspondence.1

The first volume of ser. IVA (1975) consists of an annotated
list of the whole scientific correspondence. Of the planned
approximately ten volumes of this series only four have
been published so far. They contain Euler’s correspondence
with Johann I and Niklaus I Bernoulli (vol. IVA-2, 1998),
A.C. Clairaut, J. d’Alembert, J.L. Lagrange (vol. IVA-5,
1980), P.-L.M. Maupertuis and Friedrich II (vol. IVA-6, 1986).
Three volumes of Euler’s correspondence with Petersburg
(from 1726–1774) were published independently earlier (Die
Berliner und die Petersburger Akademie der Wissenschaften im
Briefwechsel Leonhard Eulers, 3 T. Berlin: Akademie-Verlag,
1959–1976).

A comparatively full list of Euler’s published works was
prepared by G. Eneström: Verzeichnis der Schriften Leonhard
Eulers, in: Jahresber. Deutsch. Math.-Verein., Ergänzungsb. 4,
1–2, 1–388, 1910–1913.2 Since then all Euler works are usually

1 At the same time it was proposed to prepare Series IVB dedicated to
unpublished manuscripts of Euler. For a number of reasons, including lack
of funds, this idea had to be abandoned. However it is not ruled out that
the manuscripts will be made available in an electronic form, provided that
a suitable source of financing is found in the future.

2 The Eneström list is reproduced, without detailed descriptions, in the Works
(Trudy) of the Archives of the USSR Academy of Sciences, vol. 17 (1962)
mentioned below.

The Archives of the USSR Academy of Sciences published later a volume
(vol. 20, 1965) containing some manuscripts of Euler’s early papers on
mechanics (Opera mechanica, vol. 1, ed. G.K. Mikhailov).

mentioned with the corresponding number of the Eneström list
supplemented with the symbol E.

Euler’s works are commented in introductory notes of the
corresponding volumes of Opera omnia. Particularly compre-
hensive surveys of Euler’s work in continuum mechanics have
been written by Clifford A. Truesdell: Rational fluid mechanics,
1687–1765 (Editor’s introduction to Euleri Opera omnia, II-12,
1954, pp. vii–cxxv); Editor’s introduction to Opera omnia, II-
13, 1955, pp. vii–cv; The rational mechanics of flexible or elas-
tic bodies, 1638–1788 (Opera omnia, II-11(2), 1960, 435 p.). In
the 1950s Truesdell essentially rediscovered Leonhard Euler as
the creator of rational mechanics (cf.: C. Truesdell, Essays in
the history of mechanics. Springer-Verlag, 1968).

Now Leonhard Euler’s Opera omnia, together with
the full Eneström list, are available on the Internet:
http://www.math.dartmouth.edu/˜euler.

Original minutes of the Petersburg Academy of Sciences,
written mainly in Latin and French and containing a huge
amount of information on Euler’s work, were published
at the beginning of the 20th century: Procès-verbaux des
séances de l’Académie Impériale des sciences depuis sa
fondation jusqu’à 1803. 4 t. SPb., 1897–1911. Cf. annotated
Chronicles of the Russian Academy of Sciences, 4 vols (Letopis’
Rossiı̆skoı̆ Akademii nauk, 1724–1934). SPb., 2000–2004.3

Many documents concerning Euler’s work in Petersburg
(till 1750) have been published (in original languages) in
the Materials for the history of the Imperial Academy
of Sciences, 10 vols (Materialy dlya istorii Imperatorskoı̆
Akademii nauk). SPb., 1885–1900.

A Scientific description (Nauchnoe opisanie) of all the
Euler documents from the Archives of the Russian Academy
of Sciences is published in the Works (Trudy) of the
Archives of the USSR Academy of Sciences, 1962, vol. 17:
Manuscripta Euleriana Archivi Academiae scientiarum URSS,
t. I (Rukopisnye materialy L. Èı̆lera v Arkhive Akademii nauk
SSSR, I = Trudy Arkhiva AN SSSR, 17).

The Berlin Academy has not kept full texts of its minutes
for the middle of the 18th century. Only their extracts

3 Transliteration of Russian titles is according to the new (since 1983) system
of Mathematical Reviews; the Russian titles themselves are given according to
the modern (post-1918) orthography.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
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exist: Die Registres der Berliner Akademie der Wissenschaften
1746–1766. Berlin: Akademie-Verlag, 1957.

There is a published description of Euler documents
kept in the Archives of the Berlin Academy: Leonhard
Eulers Wirken an der Berliner Akademie der Wissenschaften,
1741–1766. Berlin: Akademie-Verlag, 1984.

2. The number of studies dedicated to Leonhard Euler and
his work is truly enormous.

Among special monographs on Leonhard Euler it is
necessary to mention:

L.-Gustave du Pasquier, 1927 Léonard Euler et ses amis,
Paris: Hermann.

Otto Spieß, 1929 Leonhard Euler: Ein Beitrag zur Geistes-
geschichte des XVIII. Jahrhunderts, Frauenfeld, Leipzig: Hu-
ber.

Rüdiger Thiele, 1982 Leonhard Euler, Leipzig: Teubner (in
German).

Emil A. Fellmann, 1995 Leonhard Euler, Reinbek bei
Hamburg: Rowohlt (in German).

Emil A. Fellmann, 2007 Leonhard Euler, Basel: Birkhäuser
(English translation by Erika Gautschi and Walter Gautschi).

Let us also mention many interesting collections of papers
associated to various Euler jubilee years:

Berliner mathematische Gesellschaft, 1907 Festschrift zur
Feier des 200. Geburtstages Leonhard Eulers, Leipzig, Berlin:
Teubner (collection of four papers in German).

Académie des sciences de l’URSS, l’Institut de l’histoire de
la science et de la technique, 1935 Léonard Euler 1707–1783:
Recueil des articles et matériaux en commémoration du 150e

anniversaire du jour de sa mort (Leonard Èı̆ler 1707–1783:
Sbornik stateı̆ i materialov k 150-letiyu so dnya smerti),
Moscow, Leningrad (collection of 10 papers in Russian).

M.A. Lavrent’ev, A.P. Yushkevich, A.T. Grigor’yan (eds),
1958 Sammelband der zu Ehren des 250. Geburtstages
Leonhard Eulers der Akademie der Wissenschaften der UdSSR
vorgelegten Abhandlungen (Leonard Èı̆ler: Sbornik stateı̆
v chest’ 250-letiya so dnya rozhdeniya, predstavlennykh
Akademii nauk SSSR), Moscow (collection of 20 papers in
Russian, with German abstracts).

Kurt Schröder (ed.), 1959 Sammelband der zu Ehren des
250. Geburtstages Leonhard Eulers der Deutschen Akademie
der Wissenschaften zu Berlin vorgelegten Abhandlungen,
Berlin: Akademie-Verlag (collection of 26 papers, mostly in
German, except one in French and one in Italian, with Russian
abstracts).

J.J. Burckhardt, E.A. Fellmann, W. Habicht (eds), 1983
Leonhard Euler 1707–1783: Beiträge zu Leben und Werk,
Basel: Birkhäuser (collection of 30 papers, mostly in German,
except 6 in French and 3 in English).

E. Knobloch, I.S. Louhivaara, J. Winkler (eds), 1984 Zum
Werk Leonhard Eulers: Vorträge des Euler-Kolloquiums im Mai

1983 in Berlin, Basel: Birkhäuser (collection of 7 papers in
German, 5 in English and one in French).

Wolfgang Engel (ed.), 1985 Festakt und wissenschaftliche
Konferenz aus Anlaß des 200. Todestages von Leonhard Euler,
Berlin: Akademie-Verlag (collection of 13 papers, mostly in
German, except one in English).

N.N. Bogolyubov, G.K. Mikhaı̆lov, and A.P. Yushkevich
(eds), 1988 Development of Leonhard Euler’s ideas and
modern science (Razvitie ideı̆ Leonarda Èı̆lera i sovremennaya
nauka), Moscow: Nauka (collection of 28 papers in Russian).

One can find a detailed (but, of course, not exhaustive)
bibliography of Euleriana in the Basel volume mentioned above
(1983, pp. 511–552).

The last Euler year (2007) prompted an extremely wide
jubilee activity throughout the world, both in the form of
international and national conferences and publications.

A grandiose international Euler conference was organized
in St. Petersburg (its Book of abstracts contains 470 pages!).
A separate volume with selected papers presented at the
Conference is now in print: V.N. Vasil’ev (ed.), 2008 Leonhard
Euler: On the tercentenary of his birth (Leonard Èı̆ler: K
300-letiyu so dnya rozhdeniya), St. Petersburg: Nestor-Istoriya
(collection of about 30 papers, in Russian and in English).

The Mathematical Association of America published five
special Euler volumes:

C. Edward Sandifer, 2007 The Early Mathematics of
L. Euler, Washington, DC: Math. Assoc. Amer.

William Dunham (ed.), 2007 The Genius of Euler: Re-
flections on his life and work, Washington DC: Math. As-
soc. Amer. (collection of 30 selected papers in English on the
life and work of Euler, dating from 1872 to 2006).

C. Edward Sandifer, 2007 How Euler did it, Washington,
DC: Math. Assoc. Amer.

N.N. Bogolyubov, G.K. Mikhaı̆lov and A.P. Yushkevich
(eds), 2007 Euler and Modern Science, Washington, DC:
Math. Assoc. Amer. (English translation by Robert Burns of
the aforementioned Russian collection of 1988).

Robert E. Bradley, Lawrence A. D’Antonio, and C. Edward
Sandifer (eds), 2007 Euler at 300: An Appreciation,
Washington, DC: Math. Assoc. Amer. (collection of 21 papers
on various aspects of Euler’s work, in English).

The Tercentenary was also marked by the publication of the
volume:

Robert E. Bradley and C. Edward Sandifer (eds), 2007
Leonhard Euler: Life, Work and Legacy, Amsterdam: Elsevier
(collection of 24 papers on Euler’s life and work, in English).

Gleb K. Mikhailov
Moscow
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General principles of the motion of fluids!

Leonhard Euler

Available online 4 March 2008

1. Having established in my previous Memoir1 the principles
of fluid equilibrium in their most general form, regarding both
the diverse nature of fluids and the forces that act upon them,
I now propose to deal with the motion of fluids in the same
way and to seek out the general principles on which the entire
science of fluid motion is based. It will readily be understood
that this is a much more difficult undertaking and involves
studies of incomparably greater depth. Nevertheless, I hope to
arrive at an equally successful conclusion, so that, if difficulties
remain, they will pertain not to Mechanics but purely to
Analysis, this science not yet having been brought to the
degree of perfection necessary to develop analytical equations
[formules]2 that embody the principles of fluid motion.

2. The task, then, is to discover the principles by means of
which the motion of a fluid can be determined, whatever its
state and whatever the forces to which it is subjected. To this
end, we shall examine in detail all the elements which form
the subject of our research and contain quantities both known
and unknown. First of all, the nature of the fluid is assumed
to be known, in which case it is necessary to consider its
various forms since it may be compressible or incompressible.
If it is not compressible, then there are two possibilities: either
the entire mass is composed of homogeneous parts, whose
density is everywhere and always the same, or it is composed of
heterogeneous parts and in this case it is necessary to know the
density of each component and the proportions of the mixture.
If the fluid is compressible and its density is variable, we must

! This is an adaptation by U. Frisch of an English translation by Thomas
E. Burton of Euler’s memoir ‘Principes généraux du mouvement des fluides’
(Euler, 1775b). Burton’s translation appeared in Fluid Dynamics 34 (1999) pp.
801–822, Springer and is here adapted by permission. A detailed presentation
of Euler’s published work can be found in Truesdell, 1954. Euler’s work is
discussed also in the perspective of eighteenth century fluid dynamics research
by Darrigol and Frisch, 2008.
Explanatory footnotes have been supplied where necessary by G.K. Mikhailov
and a few more by U. Frisch and O. Darrigol. Euler’s memoir had neither
footnotes nor a list of references.

1 Euler, 1755a.
2 Bracketed words are from the original eighteenth century French text.

know the law according to which its elasticity3 depends on the
density and whether the elasticity depends only on the density
or also on some other property, such as heat,4 which is proper
to each particle of fluid, at least for each instant of time.

3. It must also be assumed that the state of the fluid at a
certain moment of time is known and I shall call this the initial
state [état primitif ] of the fluid. As this state is quasi-arbitrary, it
is necessary, first of all, to know the distribution of the particles
of which the fluid is composed and, unless in the initial state the
fluid is at rest, the motion impressed upon them. However, the
initial motion is not entirely arbitrary since both the continuity
and the impenetrability of the fluid impose a certain limitation
which I shall investigate below. Often, however, nothing is
known of the initial state, for example when it is a question
of determining the motion of a river, and then it is usually
only possible to seek the steady state at which the fluid finally
arrives, thereafter undergoing no further changes. Now, neither
this circumstance nor the initial state in any way will affect the
investigation to be made and the calculations will always be
the same. It is only in the integrations that they need to be taken
into account for the purpose of determining the constants which
every integration involves.

4. Thirdly, the data must include the external forces to
which the fluid is subjected. I shall call these forces external
to distinguish them from the internal forces which the fluid
particles exert on each other and which will constitute the main
topic for subsequent investigation. Thus, it could be assumed
that the fluid is not exposed to any external force, unless it be
natural gravity which is everywhere considered to be constant
in magnitude and to act in the same direction. However, to
generalize the investigation, I shall consider the fluid to be acted
upon by forces which may be directed towards one or more
centers or obey some other law with respect to both magnitude

3 By elasticity [élasticité] Euler means that property of a fluid which is
expressed in the creation of internal pressure and therefore uses the term on
an equal footing with the term “pressure” (see § 5 below).

4 Essentially, heat [chaleur] should be taken to mean temperature.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
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and direction. As far as these forces are concerned, only their
accelerating action is directly known, irrespective of the masses
upon which they act. Accordingly, I shall introduce into the
calculations only the accelerative forces, from which it will be
easy to obtain the true motive forces by multiplying in each case
the accelerative forces by the masses to which they are applied.5

5. Let us now turn to those elements which contain that
which is unknown. In order to properly understand the motion
that will be imparted to the fluid it is necessary to determine,
for each instant and for each point, both the motion and the
pressure [pression] of the fluid situated there. And if the fluid
is compressible, it is also necessary to determine the density,
knowing the above-mentioned other property which, together
with the density, makes it possible to determine the elasticity.
The latter, being counterbalanced by the fluid pressure, must
be considered equal to that pressure, exactly as in the case
of equilibrium, where I have developed these ideas more
thoroughly.6 Clearly, then, the number of quantities which enter
into the study of fluid motion is much greater than in the case
of equilibrium, since it is necessary to introduce letters which
denote the motion of each particle and all these quantities may
vary with time. Thus, in addition to the letters which determine
the location of each conceivable point in the fluid, another is
required which denotes the time already elapsed and which, by
virtue of its variability, can be applied to any given time.

6. Suppose (Fig. 1) that from the initial state a time t has
elapsed and that the fluid is now in a state of motion which
is to be determined.7 Whatever the volume that the fluid now
occupies, I begin by considering any point Z in the fluid
mass and in order to introduce the location of this point Z
into the calculations I relate it to three fixed axes, OA, OB
and OC, mutually perpendicular at the point O and having a
given position. Let the two axes OA and OB lie in the plane
represented by the page and let the third OC be perpendicular
to it. Then from the point Z we draw a perpendicular ZY to the
plane AOB and from the point Y a normal YX to the axis OA
to obtain three coordinates: OX = x , XY = y and YZ = z
parallel to our three axes. For each point in the fluid mass, these
three coordinates x , y and z will have specific values and by
successively giving these three coordinates all possible values,
both positive and negative, we can run through all the points of
infinite space, including those lying in the volume occupied by
the fluid at each instant of time.

7. Secondly, I shall consider the accelerative forces which
act at a given moment on the fluid particle located at Z. Now,

5 Newton distinguishes between the “accelerative” and “motive” aspects of
a force, the former being “a measure proportional to the velocity which it
generates” and the latter “a measure proportional to the quantity of motion
which it generates in a given time”. Thus, the “accelerative force” is the ratio of
the acting force to the mass of the particle on which it acts, i.e. the acceleration
which it imparts, and the “motive force” is that which, strictly speaking, we now
understand by force. The neutral term “acting forces” [forces sollicitantes], not
used by Newton, was widely employed by Euler, starting with his well-known
“Mechanics” (Euler, 1736).

6 Cf. Euler, 1755a.
7 In the original publication all figures are on the fourth table following the

end (on p. 402) of the part of the volume dedicated to the Mathematics Class.
As was the rule at the time figures are devoid of captions.

Fig. 1.

whatever these forces may be, they can always be reduced to
three acting in the three directions ZP, ZQ and ZR parallel to
our three axes 0A, OB and OC. Taking the accelerative force of
natural gravity8 as the unit, we let P, Q and R be the accelerative
forces acting on the point Z in the directions ZP, ZQ and ZR,
the letters P, Q and R denoting abstract numbers [nombres
absolus].9 If unchanging forces always act at the same point
in space Z, the quantities P, Q and R will be expressed by
certain functions of the three coordinates x , y and z. However,
if the forces also vary with time t , these functions will likewise
contain time t . I shall assume that these functions are known,
since the acting forces must be included among the known
quantities, whether they depend only on the variables x , y, z
or also on time t .

8. Let r now express the heat at the point Z or that
other property which, in addition to the density, influences the
elasticity in the case of a compressible fluid. The quantity r
must also be considered to be a function of the three variables
x , y, z and time t , since it might vary with time t at the same
point Z in space. Thus, this function may be regarded as being
known.10 Moreover, let the present density of the fluid particle
located at Z be equal to q. As the unit of density I shall take
the density of a certain homogeneous substance which I shall
use to measure pressures in terms of heights, as explained at
greater length in my memoir on the equilibrium of fluids.11 Let,
moreover, the present value of the fluid pressure at the point Z,
expressed in terms of height, be equal to p, which will thus also
denote the elasticity. Since the nature of the fluid is assumed
to be known, we will know the relation between the height p
and the quantities q and r .12 Thus, p and q will likewise be

8 The acceleration of gravity is intended.
9 The non-dimensionality of the values of P, Q and R is emphasized.

10 Euler is confining himself to the consideration of fluid motion in a given
temperature field.
11 Clearly, for Euler the density q is non-dimensional, being divided by the

constant density ρ0 of a certain auxiliary fluid: q = ρ/ρ0. Euler defines the
pressure in the fluid as the height p of a column of this same homogeneous
auxiliary fluid. Thus, for Euler pressure is measured by a quantity with the
dimension of length — the ratio of the acting pressure to the constant quantity
ρ0g (where g is the acceleration of gravity). For further details see Euler, 1755a.
12 That is, the “equation of state” of the moving medium is assumed to be

known.
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functions, albeit unknown, of the four variables x , y, z and t ;
however if the fluid is not compressible,13 the pressure p will
be independent of the density q and the other property [qualité]
r will not enter into consideration at all.

9. Finally, whatever the motion corresponding at a given
time to the fluid element located at the point Z, it too can be
decomposed in the directions ZP, ZQ and ZR parallel to our
three axes. Thus, let u, v and w be the velocities of this motion
decomposed in the three directions ZP, ZQ and ZR. It is then
obvious that these three quantities must also be considered to
be functions of the four variables x , y, z and t . Indeed, having
found the nature of these functions, if the time t is assumed
to be constant, then by varying the coordinates x , y and z the
three velocities u, v and w and hence the true motion imparted
to each element of the fluid at a given time will be known. If, the
coordinates x , y and z are assumed to be constant and only the
time t is considered to be variable, we shall find the motion not
of some particular element of the fluid but of all the elements
that pass successively through the same point Z; in other words,
at each moment of time the motion of that fluid element which
is then located at the point Z will be known.

10. Let us consider what path will be described by a fluid
element now at Z during the infinitely small14 time dt ; or the
point at which it will be an instant later.15 If we express the
distance as the product of velocity and time, a fluid element
currently at Z will travel a distance udt in the direction ZP,
a distance vdt in the direction ZQ and a distance wdt in the
direction ZR. Therefore, if we set

ZP = udt, ZQ = vdt, and ZR = wdt

and from these three sides complete the construction of the
parallelepiped, then the corner opposite to the point Z will
represent the point at which the fluid element in question will be
after the time dt and the diagonal of the parallelepiped, which is
equal to dt

√
(uu+vv+ww) will give the true path described.16

Consequently, the velocity of this true motion will be equal to√
(uu + vv + ww) and the direction can easily be determined

from the sides of the parallelepiped since it will be inclined to
the plane AOB at an angle whose sine is equal to

w√
(uu + vv + ww)

,

13 The 1757 printed version of the memoir has “not incompressible” [pas
incompressible], but a handwritten copy of the manuscript dated 1755,
henceforth cited as Euler, 1755c has “not compressible” [pas compressible]
which is obviously the correct form.
14 The differential operator d, now denoted using roman fonts, was at the time

of Euler italicized; we shall follow his usage.
15 The intuitive derivation of the equations of motion and continuity of an

ideal (inviscid and non-heat-conducting) compressible fluid proposed by Euler
is valid provided that the functions in question have bounded derivatives, up to
and including the second. The modern derivation of these equations, based on
the integral laws of conservation of mass and momentum of the fluid particles
and the use of the Gauss theorem, is free of this limitation.
16 In the 1757 printed version, which we here follow, we usually find the old

notation xx rather than x2 for the square of the quantity x and
√

(. . .) rather
than √

. . . for the square root of an expression. The manuscript Euler, 1755c,
which is not in Euler’s hand, uses modern notation.

to the plane AOC at an angle whose sine is equal to
v√

(uu + vv + ww)
,

and, finally, to the plane BOC at an angle whose sine is equal to
u√

(uu + vv + ww)
.

11. Having determined the motion of a fluid element which
at a given instant is located at the point Z, let us now also
examine that of some other infinitely close element located at
the point z with the coordinates x + dx , y + dy and z + dz.
The three velocities of this element in the direction of the three
axes can thus be expressed by u, v, w after substituting in those
quantities x +dx , y+dy and z+dz or after adding to them their
differentials while assuming the time t to be constant. Thus,
when x + dx is substituted for x , the increments of u, v and w

will be:17

dx
(

du
dx

)
, dx

(
dv

dx

)
, dx

(
dw

dx

)
,

and when y + dy is substituted for y, the increments will be:

dy
(

du
dy

)
, dy

(
dv

dy

)
, dy

(
dw

dy

)
,

and the same will apply to the variation of z. Then, the three
velocities of the fluid element currently located at z will be:
in the direction OA

u + dx
(

du
dx

)
+ dy

(
du
dy

)
+ dz

(
du
dz

)
,

in the direction OB

v + dx
(

dv

dx

)
+ dy

(
dv

dy

)
+ dz

(
dv

dz

)
,

in the direction OC

w + dx
(

dw
dx

)
+ dy

(
dw
dy

)
+ dz

(
dw
dz

)
.

12. These are the velocities corresponding to a fluid element
at the point z, which is infinitely close to the point Z and whose
position is determined by the three coordinates x + dx , y + dy
and z+dz. Thus, if we choose a point Z (Fig. 2) such that only x
changes by dx , the other two coordinates y and z remaining the
same as for the point Z, the three velocities of the fluid element
located at this point z will be:

u + dx
(

du
dx

)
, v + dx

(
dv

dx

)
, w + dx

(
dw

dx

)
.

These velocities will transport the element in the time dt to
another point z′ whose position must be determined relative to
the point Z′, namely the point to which the fluid element which
was at Z is transported in the same time dt and whose position

17 Rather than the now customary notation for partial derivatives using the
symbol ∂ , Euler employs only the symbol d but encloses the expressions for
partial derivatives in round brackets.
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Fig. 2.

was determined above (see § 10). For determining this point z′,
I note that if the velocities of the point z were exactly the same
as those of Z, then the point z′ would fall at the point p,18 such
that the distance Z′ p would be equal and parallel to the distance
Zz. Since, by hypothesis, Zz is parallel to the OA axis and equal
to dx , the segment Z′ p will also be equal to dx and parallel to
the OA axis.

13. Now, since the velocity along OA is not u but u +
dx

( du
dx

)
, this velocity increment will transport the element in

question from p to q in the direction Z′ p, such that pq =
dtdx

( du
dx

)
: this element would thus be at q , if the other two

velocities were equal to v and w. However, since the velocity
along the OB axis is v + dx

( dv
dx

)
, this increment will transport

our element from q to r , through the distance qr = dtdx
( dv

dx

)
,

and parallel to the axis OB. Finally, the increment dx
( dw

dx

)

of the velocity w will transport the element from r to z′

through the infinitesimal distance [particule d’espace]19 r z′ =
dtdx

( dw
dx

)
, and parallel to the third axis OC. From this I

conclude that the fluid element which occupied the small linear
segment Zz would be transported in the time dt to the segment
Z′z′, inclined at an infinitely small angle to the OA axis, whose
length by virtue of the fact that Z′q = dx

(
1 + dt

( du
dx

))
will be

dx
√

((
1 + dt

(
du
dx

))2

+ dt2
(

dv

dx

)2

+ dt2
(

dw

dx

)2
)

.

Thus, neglecting the terms that contain the square of dt , the
length Z′z′ will not differ from Z′q and we shall have: Z′z′ =
dx

(
1 + dt

( du
dx

))
. For the inclination of this line to the OA axis,

it will suffice to note that it is an infinitely small quantity of the
first order and can be expressed as αdt .

14. If the small segment Zz had been taken equal to dy
and parallel to the OB axis, by the same reasoning it could
have been shown that the fluid which occupied that segment
would have been transported to another segment Z′z′ =
dy

(
1 + dt

(
dv
dy

))
, and which would have been inclined to the

18 Euler frequently uses the same notation for different quantities. Thus, both
here and later on, the letters p and q, which in this article are mainly employed
to denote pressure and density, are used to denote certain auxiliary points.
19 The 1757 printed version of the memoir has “through the particle” [par

la particule], but Euler, 1755c has “through the particle of distance” [par la
particule d’espace].

Fig. 3.

OB axis at an infinitely small angle. And if we had taken the
segment Zz = dz, and parallel to the third axis OC, the fluid
which occupied it would have have been transported to another
segment Z′z′ = dz

(
1 + dt

( dw
dz

))
, and which would have been

inclined to the OC axis at an infinitely small angle. Thus, if
we consider a rectangular parallelepiped ZPQRzpqr (Fig. 3)
formed by the three sides ZP = dx , ZQ = dy, ZR = dz, the
fluid occupying that volume would be transported in the time
dt to fill a volume Z′P′Q′R′z′ p′q ′r ′ differing infinitely slightly
from a rectangular parallelepiped whose three sides would be

Z′P′ = dx
(

1 + dt
(

du
dx

))
;

Z′Q′ = dy
(

1 + dt
(

dv

dy

))
;

Z′R′ = dz
(

1 + dt
(

dw

dz

))
.

Since the sides ZP, ZQ, ZR go over into Z′P′, Z′Q′, Z′R′, there
is no doubt that the fluid contained in the first volume will be
transported into the other in the time dt .

15. We can now judge whether the volume of fluid
occupying the parallelepiped Zz has increased or decreased
in the time dt . For this we need only to find the volume or
the capacity of each of these two solids. Since the first is a
parallelepiped formed by the sides dx , dy, dz, its volume is
equal to dxdydz. As for the other, whose plane angles differ
infinitely slightly from a right angle, I note that its volume
can also be found by multiplying its three sides, since the
error due to the infinitesimal distortion of the angles will enter
into terms which contain the square of the time element dt
and can therefore be neglected. Thus, the volume Z′z′ can be
represented by the expression:

dxdydz
(

1 + dt
(

du
dx

)
+ dt

(
dv

dy

)
+ dt

(
dw

dz

))
.

Anyone still harboring doubts about the reasonableness of this
conclusion need only consult my Latin paper Principia motus
fluidorum in which I calculate this volume without neglecting
anything.20

20 See Euler, 1756–1757. This memoir was originally entitled De motu
fluidorum in genere, but the final title has been used here.
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16. Thus, if the fluid is not compressible, these two volumes
should be equal, since the mass occupying the volume Zz would
not fit into either a larger or a smaller volume. However, since
I propose to examine the problem in the most general possible
form and have denoted the density at Z by q , considering q to
be a function of the three coordinates and time, I note that to
find the density at Z′ it will first be necessary to increase the
time t by its differential dt ; then, as the point Z′ is different
from Z, the quantities x , y, z will have to be increased by the
small increments udt , vdt , wdt ; whence the density at Z′ will
be:

q + dt
(

dq
dt

)
+ udt

(
dq
dx

)
+ vdt

(
dq
dy

)
+ wdt

(
dq
dz

)

and since the density is inversely proportional to the volume,
this quantity will be to q as dxdydz to

dxdydz
(

1 + dt
(

du
dx

)
+ dt

(
dv

dy

)
+ dt

(
dw

dz

))
.

Thus, dividing by dt , we find that consideration of the density
leads to the following equation:
(

dq
dt

)
+ u

(
dq
dx

)
+ v

(
dq
dy

)
+ w

(
dq
dz

)

+ q
(

du
dx

)
+ q

(
dv

dy

)
+ q

(
dw

dz

)
= 0.

17. Here, then, is a very remarkable condition which already
establishes a certain relation between the three velocities u, v

and w and the fluid density q . Now this equation can be reduced
to a simpler form.21 Thus, u

(
dq
dx

)
is no different from

(
u dq

dx

)

since this form of expression must be taken to mean that in
differentiating q only the quantity x is taken to be a variable,
and similarly q

( du
dx

)
=

(
q du

dx

)
; from which it follows that

q
(

du
dx

)
+ u

(
dq
dx

)
=

(
udq + qdu

dx

)
=

(
d.qu
dx

)
,

the differential of the product qu being so understood that
only the quantity x is regarded as a variable. Accordingly, the
equation obtained can be reduced to the following:
(

dq
dt

)
+

(
d.qu
dx

)
+

(
d.qv

dy

)
+

(
d.qw

dz

)
= 0.

If the fluid was not compressible, the density q would be the
same at both Z and Z′ and for this case we would have the
equation:
(

du
dx

)
+

(
dv

dy

)
+

(
dw

dz

)
= 0,

which is also that on which I based my Latin memoir mentioned
above.22

21 In Euler’s subsequent exposition the use of round brackets goes beyond the
scope of simple partial derivative notation, but the meaning of the operations is
still clear, in Euler’s notation d.qu = d(qu), etc.
22 See Euler, 1756–1757.

18. This equation, obtained by considering the continuity
of the fluid, already contains a certain relation which must
exist between the quantities u, v, w and q . The other relations
must be obtained by considering the forces to which each
fluid particle is subjected. Thus, in addition to the accelerative
forces23 P, Q, R, which act on the fluid at Z, the fluid is also
subjected to the pressure [pression] exerted from all sides on
the fluid element contained at Z. Combining these two forces,
we obtain three accelerative forces in the direction of the three
axes. Since the accelerations themselves can be determined
by considering the velocities u, v and w, we can derive three
equations which, together with that which we have just found,
will contain everything that relates to the motion of fluids, so
that we shall then have the general and complete laws of the
entire science of fluid motion.

19. In order to find the accelerations undergone by a fluid
element at Z, we need only compare the velocities u, v, w

which currently correspond to the point Z with the velocities
corresponding to the point Z′ after the lapse of the time
dt . Thus, a double change takes place: with respect to the
coordinates x , y, z, which receive the increments udt , vdt ,
wdt , as well as with respect to time, which increases by dt .
Hence it follows that the three velocities at the point Z′ are:
in the direction OA

u + dt
(

du
dt

)
+ udt

(
du
dx

)
+ vdt

(
du
dy

)
+ wdt

(
du
dz

)
,

in the direction OB

v + dt
(

dv

dt

)
+ udt

(
dv

dx

)
+ vdt

(
dv

dy

)
+ wdt

(
dv

dz

)
,

in the direction OC

w + dt
(

dw
dt

)
+ udt

(
dw
dx

)
+ vdt

(
dw
dy

)
+ wdt

(
dw
dz

)
,

and hence the accelerations, expressed in terms of the
velocity increments divided by the time element dt , will be:
in the direction OA
(

du
dt

)
+ u

(
du
dx

)
+ v

(
du
dy

)
+w

(
du
dz

)
,

in the direction OB
(

dv

dt

)
+ u

(
dv

dx

)
+ v

(
dv

dy

)
+w

(
dv

dz

)
,

in the direction OC
(

dw
dt

)
+ u

(
dw
dx

)
+ v

(
dw
dy

)
+w

(
dw
dz

)
.

20. We will now seek the accelerative forces acting in these
same directions due to the pressure exerted by the fluid on
the parallelepiped Zz, whose volume is equal to dxdydz, the
mass of the fluid occupying that volume thus being equal to
qdxdydz. Since the pressure at the point Z is expressed in
terms of the height p, the motive force acting on the face

23 Concerning the concept of “accelerative” (body) forces, see footnote 5.



1830 L. Euler / Physica D 237 (2008) 1825–1839

ZQRp is equal to pdxdydz. For the opposite face zqrP with
the area dydz, the height p is increased by its differential
dx

(
dp
dx

)
, obtained on the assumption that only x is variable.

Accordingly, this fluid mass Zz is driven in the direction AO
by the motive force dxdydz

(
dp
dx

)
or by the accelerative force

1
q

(
dp
dx

)
. Similarly, we find that the fluid mass Zz is subjected to

the action of the accelerative force 1
q

(
dp
dy

)
in the direction BO

and to that of the accelerative force 1
q

(
dp
dz

)
in the direction CO.

To these forces we add the given forces P, Q, R, and the total
accelerative forces will be:

in the direction OA: P − 1
q

(
dp
dx

)

in the direction OB: Q − 1
q

(
dp
dy

)

in the direction OC: R − 1
q

(
dp
dz

)
.

21. Thus, it only remains to equate these accelerative forces
with the actual accelerations which we have just found. We then
obtain the following three equations:24

P − 1
q

(
dp
dx

)
=

(
d u
dt

)
+ u

(
d u
dx

)
+ v

(
d u
dy

)
+ w

(
d u
dz

)

Q − 1
q

(
dp
dy

)
=

(
d v

dt

)
+ u

(
d v

dx

)
+ v

(
d v

dy

)
+ w

(
d v

dz

)

R − 1
q

(
dp
dz

)
=

(
dw

dt

)
+ u

(
dw

dx

)
+ v

(
dw

dy

)
+ w

(
dw

dz

)
.

If we add to these three equations, first, that obtained from
considering the continuity of the fluid, namely
(

dq
dt

)
+

(
d.qu
dx

)
+

(
d.qv

dy

)
+

(
d.qw

dz

)
= 0,

and then the equation25 which gives the relation between the
elasticity p, the density q and the other property r which, in
addition to the density q influences the elasticity p, we shall
have five equations encompassing the entire Theory of the
motion of fluids.

22. Whatever be the nature of the forces P, Q, R, provided
that they are real, it should be noted that Pdx + Qdy + Rdz
is always a total [réel] differential of a certain finite and
determinate quantity,26 assuming the three coordinates x , y and

24 Despite the outward resemblance between Euler’s equations and modern
notation, they have been written here in dimensionless form. As mentioned
above, the pressure p is measured as the ratio of the acting pressure to the
specific weight ρ0g of a certain homogeneous auxiliary fluid, the density q
is dimensionless (q = ρ/ρ0), the components of the body forces have been
divided by the acceleration of gravity g, the transition from the Eulerian
velocities u, v, w to the real velocities U , V , W is effected by means of a
transformation of the form u %→ U/

√
g and the transition from Eulerian time

to real time by means of the transformation t %→ T
√

g. (For further details
concerning Euler’s system of physical units, see Mikhailov, 1999.)
25 What we now call the equation of state.
26 Euler is thinking here of real body forces possessing a potential (more

correctly, a force function). By “finite” quantities (functions) Euler means
quantities that do not contain differentials.

z to be variables. Thus, we will always have:
(

dP
dy

)
=

(
dQ
dx

)
;

(
dP
dz

)
=

(
dR
dx

)
;

(
dQ
dz

)
=

(
dR
dy

)
,

and if we set this finite quantity equal to S, then, we have

dS = Pdr + Qdy + Rdz,

assuming the time t to be constant for the case in which the
forces P, Q, R also vary with time at the same points. The
quantity S expresses what I shall call the effort [l’effort] of the
acting forces27 and is equal to the sum of the integrals of each
force multiplied by the elementary interval in the direction of
that force or by the small distance through which it would drag
a body subjected to its action. This notion of effort is of the
utmost importance for the entire theory of both equilibrium and
motion, since it makes it possible to see that the sum of all
the efforts is always a maximum or a minimum. This excellent
property fits in admirably with the splendid principle of least
action whose discovery we owe to our illustrious President, Mr.
de Maupertuis.28

23. The equations just obtained contain four variables x , y,
z and t which are absolutely independent of each other since
the variability of the first three extends to all elements of the
fluid and that of the fourth to all times. Therefore, for the
equations to continue to hold, the other variables u, v, w, p
and q must be certain functions of the former. For although a
differential equation with two variables29 is always possible,30

we know that a differential equation containing three or more
variables is possible only under certain conditions, by virtue of
which a certain relationship must exist between the terms of the
equation. Therefore, before we can begin solving the equations,
we need to know what sort of functions of x , y, z and t must be
used to express the values of u, v, w, p and q in order for these
same equations to be possible.

24. We now multiply the first of the three equations obtained
by dx , the second by dy and the third by dz, and since
dx

(
dp
dx

)
+ dy

(
dp
dy

)
+ dz

(
dp
dz

)
represents the differential of

p, assuming only time t to be constant, we obtain31

dS − dp
q

=

+ dx
(

du
dt

)
+ udx

(
du
dx

)
+ vdx

(
du
dy

)
+ wdx

(
du
dz

)

+ dy
(

dv

dt

)
+ udy

(
dv

dx

)
+ vdy

(
dv

dy

)
+ wdy

(
dv

dz

)

+ dz
(

dw
dt

)
+ udz

(
dw
dx

)
+ vdz

(
dw
dy

)
+ wdz

(
dw
dz

)
.

27 Euler’s “effort” is equivalent to the modern notion of potential.
28 Maupertuis was president of the Berlin Academy at the time.
29 Here, by variable Euler means both independent variables and their

functions.
30 We would now say “soluble”.
31 The first term on the r.h.s. is correct in the manuscript Euler, 1755c but

misprinted as dz
(

du
dt

)
in the printed version.
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It is now a question of finding the integral of this equation in
which time is assumed to be constant. It should be noted that
this single equation contains the three equations of which it is
composed and that as soon as it is satisfied the conditions of
all three will be fulfilled. Thus, if the expression dS − dp

q is
equal to the three lines, where x , y and z are variables, the
portion of dS − dp

q due to the variability of x alone, namely

Pdx − dx
q

(
dp
dx

)
must necessarily be equal to the first line, and

similarly for the other two. The terms
( du

dt

)
,
( dv

dt

)
, and

( dw
dt

)
,

found by assuming the variability of time t , since they denote
certain finite functions, do not prevent time t from now being
taken to be constant.

25. Suppose that this equation has already been solved and
the quantities u, v, w, q and p have been found as certain finite
functions of x , y, z and t . The substitution of these functions in
the differential equation, with time t assumed constant, yields
an identity. Since after this substitution we will have three types
of terms, the first associated with dx , the second with dy and
the third with dz, the identity leads us to three equations whence
it is clear that although only one differential equation is being
considered, it actually has the force of three and determines
three of our unknowns. What is also clear is that a differential
equation with three variables, such as Ldx + Mdy + Ndz = 0,
cannot be solved unless a certain relationship exists between the
quantities L, M and N. However, since very little work has yet
been done on solving these three-variable equations, we cannot
hope to obtain a complete solution of our equation until the
limits of Analysis have been extended much further.

26. The best approach would therefore be to ponder well on
the particular solutions of our differential equation that we are
in a position to obtain, as this would enable us to judge which
path to follow in order to arrive at a complete solution. I have
already pointed out32 that where the density q is assumed to
be constant a very elegant solution can be obtained when the
velocities u, v and w are such that the differential expression
[formule] udx + vdy + wdz can be integrated. Suppose, then,
that W is that integral, being any function of x , y, z and time t ,
and that its differentiation, also including t as a variable, gives

dW = udx + vdy + wdz + $dt.

Then the quantities u, v, w and $ will be related as follows:33

(
du
dy

)
=

(
dv

dx

)
;

(
du
dz

)
=

(
dw

dx

)
;

(
du
dt

)
=

(
d$

dx

)
;

(
dv

dz

)
=

(
dw

dy

)
;

(
dv

dt

)
=

(
d$

dy

)
;

(
dw

dt

)
=

(
d$

dz

)
.

27. Using these equalities, we can reduce our differential
equation to the following form:

32 Euler, 1756–1757: §§ 60–67.
33 In modem terminology, the function introduced by Euler W =

W (x, y, z, t) is the velocity potential; here, the equality of the cross derivatives
of W with respect to the coordinates (condition of integrability of dW ) is the
condition of absence of vorticity.

dS − dp
q

=

+ dx
(

d$

dx

)
+ udx

(
du
dx

)
+ vdx

(
du
dy

)
+ wdx

(
du
dz

)

+ dy
(

d$

dy

)
+ udy

(
dv

dx

)
+ vdy

(
dv

dy

)
+ wdy

(
dv

dz

)

+ dz
(

d$

dz

)
+ udz

(
dw
dx

)
+ vdz

(
dw
dy

)
+ wdz

(
dw
dz

)
.

Since here time t is assumed to be constant, using the same
hypothesis we will have

dx
(

d$

dx

)
+ dy

(
d$

dy

)
+ dz

(
d$

dz

)
= d$

dx
(

du
dx

)
+ dy

(
du
dy

)
+ dz

(
du
dz

)
= du

.............................................................

Thus, our equation will become

dS − dp
q

= d$ = udu + vdv + wdw,

or

dp = q (dS − d$ − udu − vdv − wdw) .

Hence, if the density of the fluid is everywhere the same, or
q = g, as a result of integration we obtain:34

p = g
(

C + S − $ − 1
2

uu − 1
2
vv − 1

2
ww

)
.

28. For brevity, let us set

C + S − $ − 1
2

uu − 1
2
vv − 1

2
ww = V,

where it should be noted that the constant C may well contain
the time t , since it is considered to be constant in this integration
and, as dp = qdV, it is clear that the hypothesis

dW = udx + vdy + wdz + $dt,

also makes our differential equation possible, when the
elasticity p depends in any way on the density q only or q is
any function of p. It will also become possible if the fluid is
not compressible but the density q varies in such a way that it
is an arbitrary function of the quantity V. And in general, if the
elasticity p depends both on the density q and on some other
quantity represented by the letter r , the hypothesis may also be
satisfied provided that r is a function of V. In all these cases, for
the motion to exist under this hypothesis it is also necessary for
the following condition to be satisfied:
(

dq
dt

)
+

(
d.qu
dx

)
+

(
d.qv

dy

)
+

(
d.qw

dz

)
= 0.

29. This hypothesis is so general that it seems that there is
not a single case that is not included and hence that, generally

34 The subsequent equation, which generalizes the Bernoulli integral, is
usually associated with the names of Cauchy and Lagrange.
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speaking, the equation dp = qdV, together with the other
equations which present hardly any difficulty, incorporates all
the foundations of the Theory of the motion of fluids. Thus,
I concerned myself exclusively with this case in my Latin
memoir on the laws of fluid motion35 in which I considered
incompressible fluids only and showed that all the cases
previously considered, in which the fluid moves through pipes
of arbitrary shapes, are contained in this supposition and that
the velocities u, v and w are always such that the differential
expression udx + vdy + wdz is integrable. However, I have
since noted that there are also cases, even when the fluid is
incompressible and everywhere homogeneous, in which this
condition does not hold, which is enough to convince me that
the solution I have just given is only a particular one.36

30. To give an example of a real motion which would be
perfectly consistent with all the equations that follow from the
laws of Mechanics, but without the expression udx+vdy+wdz
being integrable, let us assume that the fluid is incompressible
and everywhere homogeneous, i.e. that q is constant and equal
to g, and that there are no forces acting on the fluid, so that
P = 0, Q = 0 and R = 0. Then, let w = 0, v = Zx and
u = −Zy, where Z denotes any function of

√
(xx + yy). It

is now obvious that the expression udx + vdy + wdz, which
takes the form −Zydx + Zxdy, is integrable only in the case
Z = 1

xx+yy . However, these values37 satisfy all our formulas so
that the possibility of this motion cannot be questioned. Since Z
is a function of

√
(xx + yy), its differential will have the form

dZ = Lxdx + Lydy, where L will again be any function of√
(xx + yy).
31. Using these values of u, v and w, we obtain:

(
du
dt

)
= 0;

(
dv

dt

)
= 0;

(
dw

dt

)
= 0;

(
du
dx

)
= −Lxy;

(
dv

dx

)
= Z + Lxx;

(
dw

dx

)
= 0;

(
du
dy

)
= −Z − Lyy;

(
dv

dy

)
= Lxy;

(
dw

dy

)
= 0;

(
du
dz

)
= 0;

(
dv

dz

)
= 0;

(
dw

dz

)
= 0;

and since dS = 0, assuming time t to be constant, we have the
following differential equation:

dp
g

= LZxyydx − ZZxdx

− LZxyydx − ZZydy − LZxxydy + LZxxydy

= −ZZ(xdx + ydy).

Consequently dp = gZZ(xdx + ydy), since Z is assumed to
be a function of

√
(xx + yy), this equation will definitely be

possible and will yield the integral p = g
∫

ZZ(xdx + ydy).
We see that the differential equation would also be possible

35 See Euler, 1756–1757.
36 Here, Euler recognizes that his previous memoir on fluid motion was too

restricted, in so far as it ignored what we now call vorticity.
37 The corresponding values of u, v and w.

if the fluid were subjected to the action of certain arbitrary
forces P, Q, R, provided that the expression Pdx + Qdy + Rdz
was a total [possible] differential equal to dS, since then p =
gS + g

∫
ZZ(xdx + ydy).

32. As these values u = −Zy, v = Zx and w = 0 satisfy
our differential equation, they can also be seen to satisfy the
condition contained in the equation:38

(
dq
dt

)
+

(
d.qu
dx

)
+

(
d.qv

dy

)
+

(
d.qw

dz

)
= 0.

By virtue of the fact that q = g, this equation goes over into

−gLxy + gLxy = 0

which, being an identity, satisfies the required conditions. Thus,
it is quite possible for a fluid to have a motion such that the
velocities of each of its elements are u = −Zy, v = Z x
and w = 0, although the differential expression udx + vdy +
wdz is not possible;39 this confirms that there are cases in
which fluid motion is possible without this condition, which
seemed general, being fulfilled. Thus, the assumption that the
differential expression udx +vdy +wdz is possible yields only
a particular solution of the equations we have found.

33. Clearly, the motion corresponding to this case reduces to
a rotational motion about the axis OC and since what has been
said about the axis OC can be applied to any other fixed axis,
we may conclude that it is possible for a fluid acted upon by
any forces whose effort40 is equal to S to have a motion about a
fixed axis such that the rotational velocities are proportional to
any function of the distance to that axis. Thus, if the distance
to that axis is denoted by s and the rotation velocity at that
distance by ,41 then since xx + yy = ss and ZZss = , the
pressure there will be expressed by the height p = gS +
g

∫ ds
s . Thus, such a motion, which corresponds to that of

a vortex [tourbillon], is just as possible as those contained in
the expression udx + vdy + wdz when the latter is integrable.
No doubt there is an infinity of other motions, which satisfying
our equations, are also equally possible.

34. Let us now return to our general formulas and, since
they are somewhat too complicated, introduce, for greater
conciseness, the notation:
(

d u
dt

)
+ u

(
d u
dx

)
+ v

(
d u
dy

)
+ w

(
d u
dz

)
= X

(
d v

dt

)
+ u

(
d v

dx

)
+ v

(
d v

dy

)
+ w

(
d v

dz

)
= Y

(
dw

dt

)
+ u

(
dw

dx

)
+ v

(
dw

dy

)
+ w

(
dw

dz

)
= Z.

38 Strictly speaking, it cannot be said that the values of u, v and w assumed in
§ 30 also satisfy the equation of motion from § 31; in reality, this equation
determines the corresponding pressure p = p(s) (s = √

(xx + yy), the
continuity equation being satisfied irrespective of the equations of motion.
39 That is a total differential.
40 See footnote 27.
41 In modern terms Z is the angular velocity at the radial distance s and = Zs

is the tangential velocity.
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Whatever the nature of the three accelerative forces P, Q and R,
granted that42 dS = Pdx +Qdy+Rdz, the differential equation

dp
q

= (P − X) dx + (Q − Y) dy + (R − Z) dz,

in which t is assumed to be constant must be satisfied.
Moreover, the continuity of the fluid requires that:
(

dq
dt

)
+

(
d.qu
dx

)
+

(
d.qv

dy

)
+

(
d.qw

dz

)
= 0.

In whatever manner these two equations are satisfied, there will
always be a motion which can actually take place in the fluid.

35. If the fluid is everywhere incompressible and
homogeneous, i.e. the density q is constant and equal to g, then,
clearly, the differential equation cannot be satisfied unless the
differential

(P − X)dx + (Q − Y)dy + (R − Z)dz,

is possible or total, i.e. unless it can be obtained as a result of
the actual differentiation of some finite function of the variables
x , y and z, which may also contain the time t , although in the
differentiation the latter is assumed to be constant. It is also
obvious that this differential expression must be soluble or total
when the fluid is compressible and the density q is expressed
in terms of any function of the elasticity p. In both cases, if we
denote by V the finite quantity whose differential has the form:

dV = (P − X)dx + (Q − Y)dy + (R − Z)dz,

our differential equation will yield either p
g = V or

∫ dp
q = V.

In addition, however, for the motion to be possible the other
condition derived from the continuity must also be fulfilled.

36. If the fluid is not incompressible, but its density q is
variable and can be expressed in terms of any function of
position, i.e. of the three coordinates x , y, z and time t , it is
not sufficient for the expression

(P − X)dx + (Q − Y)dy + (R − Z)dz = dV,

to be integrable; in addition, the integral V must be a function
of q . Since dp

q = dV or dp = qdV, it is clear that the pressure
p cannot have a definite value unless the expression qdV can
be integrated. However, it should also be noted that in this case
it is not necessary that the expression

(P − X)dx + (Q − Y)dy + (R − Z)dz

be integrable, only that on being multiplied by a certain function
U it becomes integrable. Thus, let

U(P − X)dx + U(Q − Y)dy + U(R − Z)dz = dW,

since dp
q = dW

U , or dp = qdW
U for this equation to be possible it

is sufficient that W be a function of q
U , or that W be a function

of zero dimension of the quantities q and U.43

42 Here, Euler assumes that all real body forces have a potential S =
S(x, y, z).
43 This latter expression is equivalent, in 18th century terminology, to the

condition that W should depend only on the ratio q/U .

37. In general, however the elasticity p depends on the
density q or on some other property denoted by r which is any
function of the coordinates x , y, z that could also contain time
t , it is clear from our equation q = dp

dV that the differential dp
must always be divisible by dV, where dV denotes not so much
a total differential than the expression

(P − X)dx + (Q − V)dy + (R − Z)dz,

and this so much that, as a result of division the differentials dx ,
dy and dz are entirely eliminated from the calculations, because
both p and q must always be expressed in terms of finite
functions of the variables x , y and z, without their differentials
entering into these functions. Now this could not be so unless
there were a function U, multiplication by which rendered the
expression dV integrable: indeed, setting

∫
UdV = W, clearly,

p must be a function of W in order for the expression dp
dV to take

a definite value corresponding to the density q.

38. Since U dV = dW, we have q = Udp
dW . Consequently,

if we choose W to be any function of the coordinates x , y and
z, which contains time t among the constants, and if we set p
equal to any function of W, namely44 p = ϕ, W, and dp =
dW.ϕ′, W, we will have q = U.ϕ′, W, whence U = q

ϕ′,W .
Thus, in whatever way the density q is expressed in terms of
the elasticity p and some other function r of the coordinates
x , y and z, we obtain the value U = q

ϕ′,W and, consequently,

the value dV = dW.ϕ′,W
q , which then gives us the following

equation:

(P − X)dx + (Q − V)dy + (R − Z)dz = dW.ϕ′, W
q

= dp
q

.

This will yield the values of X, Y, Z, from which we must then
look for the values of the velocities u, v and w: and when the
latter also satisfy the continuity condition, we shall have a case
of possible motion of the fluid.

39. The question of the nature of the expression (P−X)dx +
(Q−Y)dy+(R−Z)dz then reduces to the following. When the
density q is constant or depends only on the elasticity p, this
expression must be absolutely integrable and to this end one
must determine suitable values of the three velocities u, v and
w.When the density q depends on a given function of place and
time,45 the expression must be such that it becomes integrable
on multiplication by some given function U. In both cases, then,
the velocities u, v and w must be such that the equation

(P − X)dx + (Q − Y)dy + (R − Z)dz = 0

be soluble;46 and we know the conditions under which a
differential equation with three variables is soluble; having

44 For representing the functional dependence, now denoted f (x), Euler used
the notation f, x or f : x . For example Euler’s ϕ, W and ϕ′, W would now be
denoted ϕ(W) and ϕ′(W). In Euler, 1755c, the comma is omitted.
45 The function r .
46 Indeed, if Φ(x, y, z) = Cnst. is the general integral of this equation, then

the form (P − X)dx + (Q − Y)dy + (R − Z)dz must vanish whenever the
differential dΦ vanishes; hence the two forms are proportional, which means
that there exists an integrating factor for the first form.
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satisfied these conditions, it remains to satisfy that imposed by
continuity.

40. These are the conditions which restrict the functions
expressing the three velocities u, v and w, and the study of
the motion of fluids reduces to determining, in general form,
the nature of those functions such that the conditions of our
differential equation and of continuity be fulfilled. Since the
quantities X, Y and Z depend not only on the velocities u, v

and w themselves but also on their variability with respect to
each of the coordinates x , y and z and, moreover, on time t ,
this study would appear to be the most far-reaching of those to
be encountered in the field of Analysis, and if we are unable to
achieve a complete understanding of the motion of fluids, it is
not Mechanics or the inadequacy of the known laws of motion
but Analysis itself that is to blame, given that the entire Theory
of the motion of fluids has just been reduced to the solution of
analytical equations.

41. Since a general solution must be deemed impossible due
to the shortcomings of Analysis, we must content ourselves
with the consideration of certain particular cases, especially
as the study of several cases seems to be the only means of
perfecting our knowledge. Now the simplest case imaginable
is, no doubt, that in which the three velocities u, v and w are
set equal to zero, namely the case in which the fluid remains at
perfect rest and which I dealt with in my previous Memoir.47

The formulas we have obtained for motion in general also
include the case of equilibrium, since when X = 0, Y = 0 and
Z = 0 we have: dp

q = Pdx + Qdy + Rdz, and
(

dq
dt

)
= 0,

from which it follows, first of all, that the density q cannot
depend on time t , i.e. should remain always the same at the
same place. Furthermore, the forces P, Q and R must be such
that the differential expression Pdx + Qdy + Rdz either is
integrable, when q is constant or depends only on the elasticity
p, or becomes integrable upon being multiplied by a suitable
function.

42. In my Memoir on fluid equilibrium48 I only considered
cases of the acting forces P, Q, R for which the differential
expression Pdx + Qdy + Rdz is integrable, since this seemed
to be the only case that could occur in Nature. In fact, if the
density q is either constant or depends only on the pressure p,
the fluid could never be in equilibrium unless this condition
relating to the acting forces is satisfied. However, if it were
possible for the acting forces to obey some other law, there
could be equilibrium provided that the forces were such that
there existed some function U which when multiplied by the
expression Pdx + Qdy + Rdz made that expression integrable,
or, equivalently, provided that the differential equation Pdx +
Qdy + Rdz = 0 were integrable; for then if the density q is
equated to this function U or to the product of this function
U and some arbitrary function of the elasticity p, equilibrium
may also exist. However, since these cases may not be possible,
I shall not consider them in greater detail.

47 Euler, 1755a.
48 Euler, 1755a.

43. After the case of equilibrium, the simplest state that
could exist in a fluid is that in which the entire fluid is in
uniform motion in the same direction. Let us see, then, how this
state is described by our two formulas. In this case, the three
velocities being constant, we set u = a, v = b and w = c; we
have X = 0, Y = 0 and Z = 0. Then our two equations assume
the form:
dp
q

= Pdx + Qdy + Rdz,
(

dq
dt

)
+ a

(
dq
dx

)
+ b

(
dq
dy

)
+ c

(
dq
dz

)
= 0,

and hence it is clear that if the density q is constant, the
condition of the second equation is satisfied; however, the first
equation cannot be satisfied unless the expression Pdx +Qdy +
Rdz admits integration, just as if the fluid were at rest. Of
course, such motion can have no effect on the pressure.

44. If, however, the density q is not constant, let us first see
what function of x , y, z and t it must be for the second equation
to be satisfied. This leads us to the curious analytical question
of what function of the variables x , y, z and t must be taken for
q in order that:
(

dq
dt

)
+ a

(
dq
dx

)
+ b

(
dq
dy

)
+ c

(
dq
dz

)
= 0.

This would appear to be very difficult to answer if formulated
in its broadest possible form. However, since when a = 0,
b = 0, c = 0 the quantity q is any function of x , y, z that
does not contain time t , if we reduce this case49 to that of
rest by imposing on the volume an equal and opposite motion,
then, clearly, after time t the coordinates x , y and z will be
transformed by the change into x −at , y −bt , z − ct . From this
we conclude that our equation will be satisfied if as q we take
any function of the three quantities x −at , y −bt , z −ct .50 And
in fact it is easy to see that such a function satisfies the equation,
since

dq = L(dx − adt) + M(dy − bdt) + N(dz − cdt),

and, consequently,
(

dq
dt

)
= −aL − bM − cN;

(
dq
dx

)
= L;

(
dq
dy

)
= M; and

(
dq
dz

)
= N.

45. Now, as I have already noted, in order to satisfy the
first equation it is necessary that after multiplication by some
function U the differential expression Pdx + Qdy + Rdz be
integrable. Therefore let

∫
U(Pdx + Qdy + Rdz) = W, where

the constant of integration also in some way contains time t .
Clearly, the expression Pdx +Qdy+Rdz will also be integrable
if it is multiplied by U f, W,51 where U and W are known
functions, since the acting forces are assumed to be known.

49 The case of motion.
50 Here Euler performs a Galilean transformation.
51 The equivalent modern notation would be U f (W), cf. footnote 44.
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Thus, if q does not depend on p, then necessarily q = U f, W,
whence the function of the three quantities x − at , y − bt and
z − ct must be so determined that it can be reduced to the
form U f, W. If, however, q depends only on p, the expression
Pdx + Qdy + Rdz must be absolutely integrable or U = 1;
then, since p will be found in the form of a function of W, the
density q will likewise be a function of W, which must also be
a function of the quantities x − at , y − bt and z − ct , and from
this we can deduce the nature of this function.

46. However, it can be seen that, in general, the pressure
p must always be a function of W, since otherwise the density
could not be a finite function. Therefore let p = f, W and dp =
dW. f ′, W; then, by virtue of the fact that Pdx + Qdy + Rdz =
dW
U , we obtain q = U f ′, W. Consequently, this case could not

arise unless the density q was proportional to the product of the
quantity U and a function of the pressure p or to the product
of the quantity Uϕ, W and any function of p, where ϕ, W is
used to denote a given function of W. For example, let q =
ppUϕ, W; we then have f ′, W = d( f,W)

dW = ( f, W)2ϕ, W,52

whence we find that the unknown function f, W is composed of
W, for in this example we have 1

f,W = −
∫

dW, ϕW = 1
p and

hence p can be expressed in terms of W and thus, the quantity q
will also be known. When the latter can be reduced to the form
of a function of x − at , y − bt and z − ct , the assumed state
of the fluid will be possible and we shall know the pressure and
the density at any time and at any point.

47. An example53 will throw more light on these operations
which, as they are not yet sufficiently familiar, might appear
overly obscure. Thus, let P = y, Q = −x and R = 0; since
dp
q = ydx − xdy, we obtain U = 1

yy and W = x
y + T,

where T is any function of time t . Moreover, let q = pp
yy ; since

dp
pp = ydx−xdy

yy , we shall obtain 1
p = & − x

y , and p = y
&y−x ,

where the constant & also contains time t . As a result, we have
q = 1

(&y−x)2 , and this expression must be a function of x − at
and y−bt , since z does not enter into it and this is only possible
when & = a

b ; we then have q = bb
(ay−bx)2 , and p = by

ay−bx .
Thus, neither the pressure nor the density depends on time and
at a given point will be always the same. This example shows
how the calculations should be performed in other cases that
might be imagined.

48. Having dealt with this case in which the three velocities
are constant, let us now assume that two velocities u and v
vanish, which corresponds to the case in which all the fluid
particles move in the direction of the OA axis, so that the
trajectory described by each is a straight line54 parallel to the
OA axis; this case differs from the previous one, since the
velocity u is assumed to vary with respect to both place and
time. Since

X =
(

du
dt

)
+ u

(
du
dx

)
; Y = 0; Z = 0,

52 The equivalent modern form would be f ′(W) = d f (W)/dW =
f 2(W)ϕ(W).
53 In this example forces are considered which do not derive from a potential

and the integrating factor U is found for these forces.
54 This is the case of the so-called shear flow.

our two equations will take the form:

dp
q

= Pdx + Qdy + Rdz − dx
(

du
dt

)
− udx

(
du
dx

)
,

&
(

dq
dt

)
+

(
d.qu
dx

)
= 0.

This latter equation tells us, first of all, that the expression
qdx − qudt must be integrable, the quantities y and z being
considered constant with respect to this integration. Thus, the
product of q and dx − udt must be a total differential, i.e. must
be integrable.

49. If the density of the fluid is everywhere and always the
same, i.e. if q is a constant equal to g, then, since

( du
dx

)
= 0, it

is clear that the velocity u must be independent of the variable
x . Let u be any function of the two coordinates y, z and time t .
Then our differential equation will take the form:

dp
q

= Pdx + Qdy + Rdz − dx
(

du
dt

)
,

where time t is assumed to be constant; thus, this expression
must be integrable. Accordingly, if the expression Pdx +Qdy+
Rdz obtained from considering the acting forces is integrable
in itself, then dx

( du
dt

)
must also be integrable. The expression( du

dt

)
does not contain x , but if it were to contain y and z, the

expression dx
( du

dt

)
could not be integrable. Thus,

( du
dt

)
must

not contain y and z. Let Z be any function of y and z, and
T any function of time t only; then the quantity u = Z + T
will satisfy this condition, whence by virtue of the fact that
Pdx + Qdy + Rdz = dV and

( du
dt

)
=

( dT
dt

)
, we obtain the

following integral: p
q = V − x

( dT
dt

)
+ Cnst.

50. As a further clarification of this case, it should be noted
that each fluid particle Z moves exclusively in the direction
ZP parallel to the ZA axis and hence the motion of each fluid
element will describe a straight line parallel to that axis, so
that for the same element there is no change in the values
of the two coordinates y and z. Thus, the motion of each
particle will either be uniform or will vary with time in such
a way that at each instant all the particles undergo the same
changes in their motions, which is obvious from the equation
u = Z + T. As to the state of pressure, given that we have p =
gV − gx

( dT
dt

)
+ Cnst. where the constant has any dependence

on time t , it depends not only on the effort55 V but also on the
change of velocity undergone by each element of the fluid; and,
moreover, it may vary in any way with time.

51. This case provides me with an opportunity to deal with
certain questions which naturally arise and whose clarification
is of the utmost importance for the theory of both fluid
equilibrium and fluid motion. First of all, surprisingly, a change
in the velocity of the fluid can occur without the acting forces P,
Q, R helping to produce it. Since such a change could take place
even when the acting forces vanish, it is reasonable to inquire
how it is produced. Next, it also seems paradoxical that the
pressure can vary arbitrarily at any instant, and that irrespective

55 See footnote 27.
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of the aforesaid change to which the motion is subjected. The
latter difficulty remains even in the state of equilibrium. Thus,
letting the three velocities u, v, w vanish, for incompressible
fluids we have the integral p

g = V + Cnst., where the constant
may contain the time t in any way.

52. To understand this more clearly, one need only imagine a
certain mass enclosed in a vessel. Clearly, the state of pressure
depends not only on the acting forces but also on any extraneous
forces which might be exerted on the vessel. For, even if there
were no acting forces, by means of a piston applied to the fluid
one could successively produce every possible state of pressure
without the equilibrium being disturbed. This is precisely what
we can conclude from our formula, which in this case shows
that p

g is a function of time t . From this we see that the state of
pressure may vary at any instant, irrespective of the equilibrium.
However, if for each instant of time the pressure at any point
is known, then the pressures at all the other points can be
determined, and since the force applied to the piston might
now increase and now decrease, the calculations must reflect
all these possible changes. The same variability should also be
observed when the fluid is subjected to the action of arbitrary
accelerative forces, so that at each instant the state of pressure
is indeterminate and depends on the force then acting on the
piston.

53. Here, then, is a vital difference between the accelerative
forces, which act on all the elements of the fluid, and the force
of a piston that presses on the fluid. Only the accelerative
forces enter into our differential equation, while the piston
force enters into the calculations only after integration and only
affects the constant of integration. Consequently, in each case
the constant must be so determined that at the point at which
the piston acts the pressure is exactly equal to the force driving
the piston at each instant, and it is for this reason that the
constant contains time, so that it can be varied with time at
will, as the circumstances require. This variability can always
be represented by the action of a piston since, whatever the
nature of the case considered, for it to be determined it must
always be assumed that at one point at least in the fluid the
pressure is known at every instant, and it is precisely this which
makes it possible to determine the constant introduced into the
calculations through the integration of our differential equation.

54. However, in our case of the motion considered in § 49, let
us also assume that the accelerative forces vanish, i.e. that V =
0, and to make this case perfectly determinate, let us assume
that u = a + αy + βt .56 Then the equation for the pressure
will take the form p

g = Cnst. − βx . Let us assume, moreover,
that this constant is equal to γ + δt , so that p

g = γ + δt − βx ,
and let us see under what conditions this motion can take place.
Since each fluid element moves in the direction of the OA axis,
the motion could only take place in a cylindrical pipe laid in the
same direction. Let ABIO (Fig. 4) be that pipe and initially, at
t = 0, let the fluid occupy the portion ABCD bounded by cross
sections AB and CD perpendicular to the pipe. We will reckon

56 In Euler, 1755b the symbol β is used in the r.h.s. of this equation; in the
printed version it is replaced by a symbol resembling a capital C with curled
ends.

Fig. 4.

the abscissas from the point A along the straight line AI and let
the pressure p be equal to γ g everywhere along the base AB
and to γ g − βg. AC along the other base CD. In the interior of
the fluid, however, at any point Z with the coordinates AP = x ,
PZ = y, the pressure will be equal to γ g − βgx . Consequently,
it is impossible to consider the fluid in the pipe beyond CD,
taking AC = γ

β , so that the pressure at CD does not become
negative.

55. Let us set for this determinate fluid mass the length
AC = b and the width AB = CD = c, the height not
entering into consideration since neither the velocities nor the
pressures depend on the third coordinate z; when γ = βb, in
the initial state ABCD the pressure is equal to βbg on the base
AB and zero on the base CD, while at any point Z it is equal to
βg(b − x) = βg.CP. We will assume that in this state the fluid
has a motion in the direction of the pipe such that the velocity
on the line AC is equal to a and that on the line BD equal to
a+αc, while on any line QR parallel to the direction of the pipe
it is equal to a + αy, where AQ = CR = y. Thus, we believe
that something has caused this motion to be impressed on the
fluid and that, at the initial instant, the surface AB is subjected
to the said force βbg, exerted by means of a piston, while the
other base CD is not subjected to any pressure. However, at
subsequent moments of time the forces acting on the end faces
could vary arbitrarily. Now this variability is determined by the
hypotheses we have just established. Therefore let us see how
by virtue of these hypotheses the motion of the fluid will be
continued.

56. After the lapse of a time t , all the fluid elements on
the line QR will have a velocity in that same direction equal
to a + αy + βt , as a result of which in the time dt they will
travel a distance (a + αy + βt)dt ; thus, from the beginning of
the motion they will have traveled a distance at + αyt + 1

2βt t ;
and the alignment of fluid particles57 initially at QR will now
have advanced to qr , having traversed the distance Qq =
at + αyt + 1

2βt t . Thus, the thread AC will have arrived at ac,
having traveled a distance Aa = at + 1

2βt t , while the thread
BD will have arrived at bd , having traveled a distance Bb =
at + αct + 1

2βt t , so that the fluid mass will now be bounded
by the faces ab and cd, which are straight but inclined to the
direction of the pipe. The pressure on the face ab at q must now
be g(βb + δt − β.Qq) = g(βb + δt − βat − αβyt − 1

2ββt t),

57 Euler uses “filée du fluide” where “filée” is a somewhat poetic variant of
“file” (alignment, file) or “fil” (thread); this is just a line of fluid elements and
not what is now called a fillet of fluid, the latter having also an infinitesimal
width, a concept introduced by Euler, 1745 (see Grimberg et al., 2008).
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and on the face cd at r it must now be g(βb + δt − β.Qr) =
g(δt −βat −αβyt − 1

2ββt t). Thus, we need to visualize pistons
which act with these forces on the two end faces ab and cd , and
since the pressures are not the same over the entire length of
these faces, the pistons must be imagined as being flexible and
pliable enough to exert such pressures.

57. This motion would remain the same if in integrating the
pressure p we were to take any function of t instead of δt , but
then the state of pressure in the fluid mass would be different
at each instant of time, even though the assumed motion of the
fluid itself would not be affected in any way. Thus, let us set
δt = βat+αβct+ 1

2ββt t ; after a time t the pressure at any point
q on the face ab will be g[βb + αβ(c − y)t], and at any point
z on the line qr it will be equal to g[βb + αβ(c − y)t − β.qz];
therefore the pressure at the other end r will be αβg(c − y)t .
Hence, on the face ab the pressure will be equal to βg(b +αct)
at a and to βgb at b, while on the other face cd the pressure will
be equal to αβgct at c and to zero at d . Moreover, each thread
QR will move in its own direction with uniform acceleration,
i.e. will receive equal increments of velocity in equal times.
The study of this particular case could serve to elucidate the
calculations to be made in all other cases.

58. Let us now return to the case proposed (§ 48) and
assume the density q to be constant and equal to g, while
making the forces P, Q, R such that the fluid could never be in
equilibrium. To this end, let P = 0, Q = − x

a and R = − x
a

and let u = b + (y+z)t
a , so that we have

( du
dx

)
= 0 and

dp
g = − xdy+xdz

a − ydx+zdx
a ,58 whence by integration we obtain

p
g = Cnst. − xy+xz

a , where the constant may contain time in
any way. Thus, it is not possible for the entire fluid mass ever
to remain at rest, since even if we set b = 0 in order to have
the fluid at rest at the outset when t = 0, immediately after
that first instant it would be agitated and only the elements for
which y = 0 or z = 0 or y + z = 0 would remain at rest; all
the others would be set in motion either forward or backward,
depending on whether y + z was positive or negative. It is
also easy to determine the pressures required to maintain the
assumed motion.

59. Let, however, the density be no longer constant but
variable, i.e. let the fluid be compressible. Then in order for
the expression qdx −qudt to be a total differential we can take
for u any function of the variables x , y, z and t . Here, since
only x and t are regarded as variable, while y and z are taken
constant, it will always be possible to assign a quantity s such
that s(dx − udt) is integrable. Let S be that integral; then this
condition will be satisfied if we take q = s f : S.59 Furthermore,
it is now necessary that the following differential be integrable:

dp
q

= Pdx + Qdy + Rdz − dx
(

du
dt

)
− udx

(
du
dx

)
.

Note that if the forces P, Q, R were to vanish, the pressure p
would become a function of x and t and hence the quantity

58 In the printed version the two fractions in the r.h.s. have a minus instead of
a correct plus in the numerator; in the manuscript Euler, 1755c, the handwritten
notation is ambiguous.
59 This equation would now be written q = s f (S).

q
(( du

dt

)
+ u

( du
dx

))
would only involve the two variables x and

t , from which the nature of the function u must be determined,
insofar as it involves y and z.

60. Although I have assumed that v = 0 and w = 0, these
formulas cover all the cases in which all the fluid particles
always move in the same direction, the only requirement being
that the OA axis be taken in that direction. Therefore we will
also be able to solve our equations when the direction of motion
is inclined to the three axes, which cannot fail to throw further
light on the analysis. To this end, let us consider the true
velocity of any fluid particle Z and let that velocity be equal to ,
and since its direction is given with respect to the three axes, the
velocity components will hold certain ratios to it. Let u = α ,
v = β and w = γ ; setting d = Kdt + Ldx + Mdy + Ndz,
we shall have

X = αK + ααL + αβM + αγ N

Y = βK + αβL + ββM + βγ N

Z = γ K + αγ L + βγ M + γ γ N.

Consequently, if, for conciseness, we write K + αL + βM +
γ N = O, having X = aO, Y = βO, Z = γ O, our equations
will take the form:
dp
q

= Pdx + Qdy + Rdz − O(αdx + βdy + γ dz)
(

dq
dt

)
+ α

(
d.q
dx

)
+ β

(
d.q
dy

)
+ γ

(
d.q
dz

)
= 0.

61. First, let the density q = g. As we have seen in § 44, in
order to satisfy the equation α

(
d
dx

)
+ β

(
d
dy

)
+ γ

(
d
dz

)
= 0

the quantity must be any function of the quantities αy − βx
and αz − γ x or βz − γ y and, in addition, may in an arbitrary
way contain time t . Thus, let be any function of the quantities
αy − βx , αz − γ x , and t , since the expression βz − γ y
has already been formed from the other two. From this it is
easy to see that at each instant the velocity of particles on
the same straight line parallel to the direction of motion will
be everywhere the same, just as the nature of the hypothesis
requires. Hence the differential of will have the following
form:

d = Fdt + G(αdy − βdx) + H(αdz − γ dx),

so that K = F; L = −βG − γ H; M = αG; and N = αH.
Consequently, O = F is a function of αy − βx , αz − γ x and of
t . Hence the differential equation, which remains to be solved,
will be :
dp
q

= Pdx + Qdy + Rdz − F(αdx + βdy + γ dz).

62. The time t being here assumed constant, if the expression
Pdx + Qdy + Rdz = dV is integrable in itself, the other part of
the equation F(αdx + βdy + γ dz) must be likewise, and this
could not be so unless F were a function of αx + βy + γ z and
of time t . In addition, however, F must must also be a function
of the quantities αy − βx , αz − γ x and time t ; consequently,
since the expression αx + βy + γ z cannot be formed from the
expressions αy − βx and αz − γ x , it is clear that the quantity
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F must be a function of time t only. Consequently, the velocity
will have the form = Z + T, where Z denotes an arbitrary

function of the two quantities αy − βx and αz − γ x that does
not contain time t , while T is an arbitrary function of time t
only, so that dT = Fdt . Hence the integral of our differential
equation will be p

g = V − F(αx + βy + γ z) + Cnst., where the
constant may contain time t in an arbitrary way. Together with
the relation = Z+T, this integral contains everything relating
to the motion in the case in question.

63. But if the density q is not constant, it will be important
to obtain the solution of the following equation:
(

dq
dt

)
+ α

(
d.q
dx

)
+ β

(
d.q
dy

)
+ γ

(
d.q
dz

)
= 0.

However difficult this may appear, reduction to the previous
case shows that the velocity can be an arbitrary function of
the four variables x , y, z and t , while the value of q must be
determined as follows. Let us consider, generally, an expression

s(ldx + mdy + ndz − dt) = dS,

which has become integrable after multiplication by s, and let
q = s f : S; then, if we set d. f : S = dS. f ′ : S,60 our
expression will take the form

f : S
(

ds
dt

)
− s f ′ : S.s

+ αs f : S
(

d
dx

)
+ α f : S

(
ds
dx

)
+ α s f ′ : S.ls

+ βs f : S
(

d
dy

)
+ β f : S

(
ds
dy

)
+ β s f ′ : S.ms

+ γ s f : S
(

d
dz

)
+ γ f : S

(
ds
dz

)
+ γ s f ′ : S.ns

which must be equal to zero.
64. First of all, we equate to zero the terms containing f ′ : S,

as a result of which we obtain 1 = αl +βm +γ n; after division
by f ′ : S the remaining terms give
(

ds
dt

)
+ α

(
d.s
dx

)
+ β

(
d.s
dy

)
+ γ

(
d.s
dz

)
= 0,

which is indeed similar to the expression proposed; however,
it should be noted that the integrability of the quantity dS is
conditioned by:
(

d.s
dx

)
= −

(
d.ls
dt

)
;

(
d.s
dy

)
= −

(
d.ms

dt

)
;

(
d.s
dz

)
= −

(
d.ns
dt

)
;

whence we obtain:
( ds

dt

)
(1 − αl − βm − γ n) = 0,61 which

is consistent with the previous condition. Thus, provided that
αl +βm +γ n = 1, and s is a function such that s(ldx +mdy +
ndz − dt) = dS, or integrable, our equation will be satisfied

60 Here, q = s f : S and d. f : S = dS. f ′ : S would now be denoted
q = s f (S) and d f (S) = dS f ′(S), respectively.
61 The r.h.s. = 0 is missing both in the printed version and in Euler, 1755c.

if we take q = s f : S, or q
s equal to any function of S. The

quantities l, m and n do not have to be constant, but then the
following must hold

α

(
dl
dt

)
+ β

(
dm
dt

)
+ γ

(
dn
dt

)
= 0,

a condition already contained in the equation 1 = αl+βm+γ n.
65. In addition, l, m and n must be functions such that the

differential equation ldx + mdy + ndz − dt = 0 becomes
possible, since without this condition it would be impossible to
find a multiplier s which made the equation integrable. Thus,
if we arbitrarily choose some value for l, the values of m and
n will be already determined and we can avoid having to find
them. We will set αl = 1 or l = 1

α ; then, necessarily, βm +
γ n = 0 and it remains only to find the factor s for which the
expression s

( dx
α − dt

)
is integrable, the two quantities y and

z being regarded as constants. Thus, let S =
∫

s
( dx

α − dt
)
,

so that y and z are contained in S as constants; we can now
take q = s f : S, which gives us the same solution as if we had
changed the position of the three axes so much that one of them
coincided with the direction of motion of all the fluid elements.
Hence we see that this apparent restriction in no way diminishes
the generality of the solution.

66. In the same way it would be possible to study several
other particular cases of sometimes greater and sometimes
lesser scope, but we would not find a case more general than
that in which the three velocities u, v and w are such that the
expression udx +vdy +wdz becomes integrable.62 Let S be an
integral which also contains time t and let its total differential
be dS = udx + vdy + wdz + $dt . Since we have
(

du
dt

)
=

(
d$

dx

)
;

(
dv

dt

)
=

(
d$

dy

)
;

(
dw

dt

)
=

(
d$

dz

)
;

(
du
dy

)
=

(
dv

dx

)
;

(
du
dz

)
=

(
dw

dx

)
;

(
dv

dz

)
=

(
dw

dy

)
,

we shall have

X =
(

d$

dx

)
+ u

(
d u
dx

)
+ v

(
d v

dx

)
+ w

(
d w

dx

)

Y =
(

d$

dy

)
+ u

(
d u
dy

)
+ v

(
d v

dy

)
+ w

(
d w

dy

)

Z =
(

d$

dz

)
+ u

(
d u
dz

)
+ v

(
d v

dz

)
+ w

(
d w

dz

)

and our differential equation now becomes:

dp
q

= Pdx + Qdy + Rdz − d$ − udu − vdv − wdw

62 In §§ 30–33 above, Euler has already pointed out the possibility and given
examples of non-potential fluid flows. Truesdell, 1954 considers that Euler
based § 66 of his memoir on his previous work (Euler, 1756–1757) which was
completed before he had discovered the existence of non-potential flows. This
seems all the more likely in that, as Truesdell points out, Euler here denotes the
velocity potential not by W, as in § 26, but by S, as in his earlier study.
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(the last member of which is absolutely integrable), while the
other equation remains as before:
(

dq
dt

)
+

(
d.qu
dx

)
+

(
d.qv

dy

)
+

(
d.qw

dz

)
= 0.

67. Thus, everything reduces to finding suitable values for
the three velocities u, v and w that satisfy our two equations,
which contain everything we know about the motion of fluids.
For if these three velocities are known, we can determine the
trajectory described by each element of the fluid in its motion.
Let us consider a particle which at a given instant is located
at the point Z; for finding the trajectory which it has already
described and which it has yet to describe, since its three
velocities u, v and w are assumed to be known, for its position
at the next instant we have dx = udt , dy = vdt and dz = wdt .
Eliminating time t from these three equations, we obtain two
more equations in the three coordinates x , y and z which will
determine the unknown trajectory of the fluid element now at Z
and, in general, we shall know the path which each particle has
traveled and has yet to travel.

68. The determination of these trajectories is of the utmost
importance and should be used to apply the Theory to each case
considered. If the shape of the vessel in which the fluid moves
is given, the fluid particles which touch the surface of the vessel
must necessarily follow its direction; therefore the velocities u,
v and w must be such that the trajectories derived therefrom
lie on that same surface.63 This makes it quite clear how far
removed we are from a complete understanding of the motion of
fluids and that my exposition is no more than a mere beginning.
Nevertheless, everything that the Theory of Fluids contains is
embodied in the two equations formulated above (§ 34), so that
it is not the laws of Mechanics that we lack in order to pursue
this research but only the Analysis, which has not yet been

63 Here, Euler is drawing attention to the fact that in order to calculate the
motion of a fluid, in addition to the equations of motion, continuity and state
and the initial conditions, we also need the boundary conditions, namely the
vanishing of the normal component of the velocity.

sufficiently developed for this purpose. It is therefore clearly
apparent what discoveries we still need to make in this branch
of Science before we can arrive at a more perfect Theory of the
motion of fluids.
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Académie Royale des Sciences et des Belles-Lettres de Berlin, Mémoires,
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Abstract

The elements of the theory of the motion of fluids in general are treated here, the whole matter being reduced to this: given a mass of fluid,
either free or confined in vessels, upon which an arbitrary motion is impressed, and which in turn is acted upon by arbitrary forces, to determine the
motion carrying forward each particle, and at the same time to ascertain the pressure exerted by each part, acting on it as well as on the sides of the
vessel. At first in this memoir, before undertaking the investigation of these effects of the forces, the Most Famous Author1 carefully evaluates all
the possible motions which can actually take place in the fluid. Indeed, even if the individual particles of the fluid are free from each other, motions
in which the particles interpenetrate are nevertheless excluded, since we are dealing with fluids that do not permit any compression into a narrower
volume. Thus it is clear that an arbitrary small portion of fluid cannot receive a motion other than the one which constantly conserves the same
volume; even though meanwhile the shape is changed in any way. It would hold indeed, as long as no elementary portion would be compressed at
any time into a smaller volume; furthermore2 if the portion expanded into a larger volume, the continuity of the particles was violated, these were
dispersed and no longer clung together, such a motion would no longer pertain to the science of the motion of fluids; but individual droplets would
separately perform their motion. Therefore, this case being excluded, motion of the fluids must be restricted by this rule that each small portion
must retain for ever the same volume; and this principle restricts the general expressions of motion for elements of the fluid. Plainly, considering an
arbitrary small portion of the fluid, its individual points have to be carried by such a motion that, when at a moment of time they arrive at the next lo-
cation, until then they occupy a volume equal to the previous one; thus if, as usual, the motion of a point is decomposed parallel to fixed orthogonal
directions, it is necessary that a certain established relation hold between these three velocities, which the author has determined in the first part.

In the second part the author proceeds to the determination of the motion of a fluid produced by arbitrary forces, in which matter the whole
investigation reduces to this that the pressure with which the parts of the fluid at each point act upon one another shall be ascertained; which
pressure is denoted most conveniently, as customary for water, by a certain height; this is to be understood thus, that each element of the fluid
sustains a pressure the same as if were pressed by a heavy column of the same fluid, whose height is equal to that amount. Thus, in such way
in each point of the fluid the height referring to the state of the pressure will be given; since it is not equal to the one in the neighbourhood, it
will perturb the motion of the elements. But this pressure depends as well on the forces acting on each element of the fluid, as on those, acting in
the whole mass; thus, by the given forces, the pressure in each point and thereupon the acceleration of each element – or its retardation – can be
assigned for the motion, all which determinations are expressed by the author through differential formulas. But, in fact, the full development of
these formulas mostly involves the greatest difficulties. But nevertheless this whole theory has been reduced to pure analysis, and what remains to
be completed in it depends solely upon subsequent progress in Analysis. Thus it is far from true that purely analytic researches are of no use in
applied mathematics; rather, important additions in pure analysis are now required.
c© 2008 Published by Elsevier B.V.

! This is an English adaptation by Walter Pauls of Euler’s memoir ‘Principia
motus fluidorum’ (Euler, 1756–1757). Updated versions of the translation may
become available at http://www.oca.eu/etc7/EE250/texts/euler1761eng.pdf.
For a detailed presentation of Euler’s fluid dynamics papers, cf. Truesdell,
1954, which has also been helpful for this translation. Euler’s work is discussed
in the perspective of eighteenth century fluid dynamics research by Darrigol
and Frisch (2008). The help of O. Darrigol, U. Frisch, G. Grimberg and G.
Mikhailov is also acknowledged. Explanatory footnotes and references have
been supplied where necessary; Euler’s memoir had neither footnotes nor a list
of references.

1 Summaries, which at that time were not placed at the beginning of the
corresponding paper, were published under the responsibility of the Academy;

I. First part

1. Since liquid substances differ from solid ones by the fact
that their particles are mutually independent of each other, they
can also receive most diverse motions; the motion performed by
an arbitrary particle of the fluid is not determined by the motion

the presence of the words “Most Famous Author”, rather common at the time,
cannot be taken as evidence that Euler usually referred to himself in this way.

2 In the original, we find “verum quoniam”; the literal translation “since
indeed” does not seem logically consistent.

0167-2789/$ - see front matter c© 2008 Published by Elsevier B.V.
doi:10.1016/j.physd.2008.04.019
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of the remaining particles to the point that it cannot move in
any other way. The matter is very different in solid bodies,
which, if they were inflexible, would not undergo any change
in their shape; in whatsoever way they be moved, each of their
particles would constantly keep the same location and distance
with respect to other particles; it thus follows that, the motion
of two or, if necessary, three of all the particles being known,
the motion of any other particle can be defined; furthermore
the motion of two or three particles of such a body cannot be
chosen at will, but must be constrained in such a way that these
particles preserve constantly their positions with respect to each
other.3

2. But if, moreover, solid bodies are flexible, the motion
of each particle is less constrained: because of bending, the
distance as well as the relative position of each particle can
be subject to change. However, the manner itself of bending
constitutes a certain law which various particles of such a body
have to obey in their motion: certainly what has to be taken
care of is that the parts that experience in their neighbourhood
such a strong bending with respect to each other are neither torn
apart from the inside nor penetrate into each other. Indeed, as
we shall see, impenetrability is demanded for all bodies.

3. In fluid bodies, whose particles are united among
themselves by no bond, the motion of each particle is much
less restricted: the motion of the remaining particles is not
determined from the motion of any number of particles. Even
knowing the motion of one hundred particles, the future motion
permitted to the remaining particles still can vary in infinitely
many ways. From which it is seen that the motion of these
fluid particles plainly does not depend on the motion of the
remaining ones, unless it be enclosed by these so that it is
constrained to follow them.

4. However, it cannot happen that the motion of all particles
of the fluid suffers no restrictions at all. Furthermore, one
cannot at will invent a motion that is conceived to occur for
each particle. Since, indeed, the particles are impenetrable,
it is immediately clear that a motion cannot be maintained
in which some particles go through other particles and,
accordingly, penetrate each other: also, because of this reason
such motion certainly cannot be conceived to occur in the fluid.
Therefore, infinitely many motions must be excluded; after their
determination the remaining ones are grouped together. It is
seen worthwhile to define them more accurately regarding the
property which distinguishes them from the previous ones.

5. But before the motion by which the fluid is agitated at any
place can be defined, it is necessary to see how every motion,
which can definitely be maintained in this fluid, be recognized:
these motions, here, I will call possible, which I will distinguish
from impossible motions which certainly cannot take place. We
must then find what characteristic is appropriate to possible
motions, separating them from impossible ones. When this is
done, we shall have to determine which one of all possible
motions in a certain case ought actually to occur. Plainly we
must then turn to the forces which act upon the water, so that

3 Here Euler refers to the motion of rigid solid bodies treated previously in
Euler, 1750.

the motion appropriate to them may be determined from the
principles of mechanics.

6. Thus, I decided to inquire into the character of the possible
motions, such that no violation of impenetrability can occur
in the fluid. I shall assume the fluid to be such as never to
permit itself to be forced into a lesser space, nor should its
continuity be interrupted. Once the theory of fluids has been
adjusted to fluids of this nature, it will not be difficult to extend
it also to those fluids whose density is variable and which do
not necessarily require continuity.4

7. If, thus, we consider an arbitrary portion in such a fluid,
the motion, by which each of its particles is carried has to be set
up so that at each time they occupy an equal volume. When this
occurs in separate portions, any expansion into a larger volume,
or compression into a smaller volume is prohibited. And, if
we turn attention to this only property, we can have only such
motion that the fluid is not permitted to expand or compress.
Furthermore, what is said here about arbitrary portions of the
fluid, has to be understood for each of its elements; so that the
volume of its elements must constantly preserve its value.

8. Thus, assuming that this condition holds, let an arbitrary
motion be considered to occur at each point of the fluid;
moreover, given any element of the fluid, consider the brief
translations of each of its boundaries. In this manner the
volume, in which the element is contained after a very short
time, becomes known. From there on, this volume is posed to
be equal to the one occupied previously, and this equation will
prescribe the calculation of the motion, in so far as it will be
possible. Since all elements occupy the same volumes during
all periods of time, no compression of the fluid, nor expansion
can occur; and the motion is arranged in such a way that this
becomes possible.

9. Since we consider not only the velocity5 of the motion
occurring at every point of the fluid but also its direction, both
aspects are most conveniently handled, if the motion of each
point is decomposed along fixed directions. Moreover, this de-
composition is usually carried out with respect to two or three
directions6: the former is appropriate for decomposition, if the
motion of all points is completed in the same plane; but if their
motion is not contained in the same plane, it is appropriate to
decompose the motion following three fixed axes. Because the
latter case is more difficult to treat, it is more convenient to be-
gin the investigation of possible motions with the former case;
once this has been done, the latter case will be easily completed.

10. First I will assign to the fluid two dimensions in such a
way that all of its particles are now not only found with certainty
in the same plane, but also their motion is performed in it.
Let this plane be represented in the plane of the table (Fig. 1),
let an arbitrary point l of the fluid be considered, its position
being denoted by orthogonal coordinates AL = x and Ll = y.
The motion is decomposed following these directions, giving a

4 See the English translation of “General laws of the motion of fluids” in
these Proceedings.

5 Meaning here the absolute value of the velocity.
6 Depending on the dimension: Euler treats both the two- and the three-

dimensional cases.
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Fig. 1.

velocity lm = u parallel to the axis AL and ln = v parallel to
the other axis AB: so that the true future velocity of this point
is

√
(uu + vv), and its direction with respect to the axis AL is

inclined by an angle with the tangent v
u .

11. Since the state of motion, presented in a way which suits
each point of the fluid, is supposed to evolve, the velocities
u and v will depend on the position l of the point and will
therefore be functions of the coordinates x and y. Thus, we put
upon a differentiation

du = Ldx + ldy and dv = Mdx + mdy,

which differential formulas, since they are complete,7 satisfy
furthermore dL

dy = dl
dx and dM

dy = dm
dx . Here it is noted that

in such expression dL
dy , the differential of L itself or dL, is

understood to be obtained from the variability with respect to y;
in similar manner in the expression dl/dx , for dl the differential
of l itself has to be taken, which arises if we take x to vary.

12. Thus, it is in order to be cautious and not to take in
such fractional expressions dL

dy , dl
dx , dM

dy , and dm
dx the numerators

dL, dl, dM, and dm as denoting the complete differentials
of the functions L , l, M and m; but they designate such
differentials constantly that are obtained from variation of
only one coordinate, obviously the one, whose differential
is represented in the denominator; thus, such expressions
will always represent finite and well defined quantities.
Furthermore, in the same way are understood L = du

dx , l = du
dy ,

M = dv
dx and m = dv

dy ; which notation of ratios has been used
for the first time by the most enlightened Fontaine,8 and I will
also apply it here, since it gives a non negligible advantage of
calculation.

13. Since du = Ldx + ldy and dv = Mdx + mdy, here it
is appropriate to assign a pair of velocities to the point which is

7 Exact differentials.
8 A paper “Sur le calcul intégral” containing the notation d f

dx for the partial
derivative of f with respect to x was presented by Alexis Fontaine des
Bertins to the Paris Academy of Sciences in 1738, but it was published only
a quarter of a century later (Fontaine, 1764). Nevertheless, Fontaine’s paper
was widely known among mathematicians from the beginning of the 1740s,
and, particularly, was discussed in the correspondence between Euler, Daniel
Bernoulli and Clairaut; cf. Euler, 1980: 65–246.

at an infinitely small distance from the point l; if the distance
of such a point from the point l parallel to the axis AL is dx ,
and parallel to the axis AB is dy, then the velocity of this point
parallel to the axis AL will be u + Ldx + ldy; furthermore,
the velocity parallel to the other axis AB is v + Mdx + mdy.
Thus, during the infinitely short time dt this point will be
carried parallel to the direction of the axis AL the distance
dt (u + Ldx + ldy) and parallel to the direction of the other
axis AB the distance dt (v + Mdx + mdy).

14. Having noted these things, let us consider a triangular
element lmn of water, and let us seek the location into which
it is carried by the motion during the time dt . Let lm be the
side parallel to the axis AL and let ln be the side parallel to
the axis AB: let us also put lm = dx and ln = dy; or let the
coordinates of the point m be x + dx and y; the coordinates of
the point n be x and y + dy. It is plain, since we do not define
the relation between the differentials dx and dy, which can be
taken negative as well as positive, that in thought the whole
mass of fluid may be divided into elements of this sort, so that
what we determine for one in general will extend equally to all.

15. To find out how far the element lmn is carried during
the time dt due to the local motion, we search for the points
p, q and r , to which its vertices, or the points l, m and n are
transferred during the time dt . Since

of point l of point m of point n
Velocity w.r.t. AL= u u + Ldx u + ldy
Velocity w.r.t. AB= v v + Mdx v + mdy

in the time dt the point l reaches the point p, chosen such that:

AP − AL = udt and Pp − Ll = vdt.

Furthermore, the point m reaches the point q, such that

AQ − AM = (u + Ldx)dt and

Qq − Mm = (v + Mdx)dt.

Also, the point n is carried to r , chosen such that

AR − AL = (u + ldy)dt and Rr − Ln = (v + mdy)dt.

16. Since the points l, m and n are carried to the points p,
q and r , the triangle lmn made of the joined straight lines pq ,
pr and qr , is thought to be arriving at the location defined by
the triangle pqr . Because the triangle lmn is infinitely small,
its sides cannot receive any curvature from the motion, and
therefore, after having performed the translation of the element
of water lmn in the time dt , it will conserve the straight and
triangular form. Since this element lmn must not be either
extended to a larger volume, nor compressed into a smaller one,
the motion should be arranged so that the volume of the triangle
pqr is rendered to be equal to the area of the triangle lmn.

17. The area of the triangle lmn, being rectangular at l, is
1
2 dxdy, value to which the area of the triangle pqr should be
put equal. To find this area, the pair of coordinates of the points
p, q and r must be examined, which are:

AP = x + udt; AQ = x + dx + (u + Ldx)dt;
AR = x + (u + ldy)dt; Pp = y + vdt
Qq = y + (v + Mdx)dt, Rr = y + dy + (v + mdy)dt.
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Then, indeed, the area of the triangle pqr is found from the area
of the succeeding trapezoids, so that

pqr = PprR + RrqQ − PpqQ.

Since these trapezoids have a pair of sides parallel to and
perpendicular to the base AQ, their areas are easily found.

18. Plainly, these areas are given by the expressions

PprR = 1
2

PR(Pp + Rr)

RrqQ = 1
2

RQ(Rr + Qq)

PpqQ = 1
2

PQ(Pp + Qq).

By putting these together we find:

∆pqr = 1
2

PQ.Rr − 1
2

RQ.Pp − 1
2

PR.Qq.

Let us set for brevity

AQ = AP + Q; AR = AP + R; Qq = Pp + q; and

Rr = Pp + r,

so that PQ = Q, PR = R, and RQ = Q − R, and we have
∆pqr = 1

2 Q(Pp + r) − 1
2 (Q − R)Pp − 1

2 R(Pp + q) or
∆pqr = 1

2 Q.r − 1
2 R.q .

19. Truly, from the values of the coordinates represented
before it follows that

Q = dx + Ldxdt; q = Mdxdt

R = ldydt; r = dy + mdydt,

upon the substitution of these values, the area of the triangle is
obtained

pqr = 1
2

dxdy(1 + Ldt)(1 + mdt) − 1
2

Ml dxdydt2, or

pqr = 1
2

dxdy(1 + Ldt + mdt + Lmdt2 − Mldt2).

This should be equal to the area of the triangle lmn, that is
= 1

2 dxdy; hence we obtain the following equation

Ldt + mdt + Lmdt2 − Mldt2 = 0 or

L + m + Lmdt − Mldt = 0.

20. Since the terms Lmdt and Mldt are negligible for finite
L and m, we will have the equation L + m = 0. Hence, for the
motion to be possible, the velocities u and v of any point l have
to be arranged such that after calculating their differentials

du = Ldx + ldy, and dv = Mdx + mdy,

one has L+m = 0. Or, since L= du
dx and m = dv

dy , the velocities
u and v, which are considered to occur at the point l parallel to
the axes AL and AB, must be functions of the coordinates x
and y such that du

dx + dv
dy = 0, and thus, the criterion of possible

Fig. 2.

motions consists in this that du
dx + dv

dy = 0;9 and unless this
condition holds, the motion of the fluid cannot take place.

21. We shall proceed identically when the motion of the fluid
is not confined to the same plane. Let us assume, to investigate
this question in the broadest sense, that all particles of the
fluid are agitated among themselves by an arbitrary motion,
with the only law to be respected that neither condensation nor
expansion of the parts occurs anywhere: in the same way, we
seek which condition should apply to the velocities that are
considered to occur at every point, so that motion be possible:
or, which amounts to the same, all motions that are opposed to
these conditions should be eliminated from the possible ones,
this being the criterion of possible motions.

22. Let us consider an arbitrary point of the fluid λ. To
represent its location we use three fixed axes AL, AB and AC
orthogonal to each other (Fig. 2). Let the triple coordinates
parallel to these axes be AL = x , Ll = y and lλ = z; which
are obtained if firstly a perpendicular λl is dropped from the
point λ to the plane determined by the two axes AL and AB;
and then a perpendicular lL is drawn from the point l to the
axis AL. In this manner the location of the point λ is expressed
through three such coordinates in the most general way and can
be adapted to all points of the fluid.

23. Whatever the later motion of the point λ, it can be
resolved following the three directions λµ, λν, λo, parallel to
the axes AL , AB and AC . For the motion of the point λ we set

the velocity parallel to the direction λµ = u,

the velocity parallel to the direction λν = v,

the velocity parallel to the direction λo = w.

Since these velocities can vary in an arbitrary manner for
different locations of the point λ, they will have to be considered
as functions of the three coordinates x , y and z. After
differentiating them, let us put to proceed

du = Ldx + ldy + λdz

dv = Mdx + mdy + µdz

dw = Ndx + ndy + νdz.

9 This is the two-dimensional incompressibility condition, which in a slightly
different form has already been established by D’Alembert, 1752; cf. also
Darrigol and Frisch, 2008:§III.
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Henceforth the quantities L, l, λ, M, m, µ, N, n, ν will be
functions of the coordinates x , y and z.

24. Because these formulas are complete differentials, we
obtain as above
dL
dy

= dl
dx

; dL
dz

= dλ

dx
; dl

dz
= dλ

dy
dM
dy

= dm
dx

; dM
dz

= dµ

dx
; dm

dz
= dµ

dy
dN
dy

= dn
dx

; dN
dz

= dν

dx
; dn

dz
= dν

dy
,

where it is assumed that the only varying coordinate is that
whose differential appears in the denominator.10

25. Thus, this point λ will be moved in the time dt by this
threefold motion, which is considered to take place at the point
X; hence it moves

parallel to the axis AL the distance = udt

parallel to the axis AB the distance = vdt

parallel to the axis AC the distance = wdt.

The true velocity of the point λ, denoted by V , which clearly
arises from the composition of this triple motion, is given in
view of orthogonality of the three directions by V = √

(uu +
vv + ww) and the elementary distance, which is travelled in
time dt through its motion, will be V dt .

26. Let us consider an arbitrary solid element of the fluid to
see whereto it is carried during the time dt ; since it amounts to
the same, let us assign a quite arbitrary shape to that element,
but of a kind such that the entire mass of the fluid can be divided
into such elements; to investigate by calculation, let the shape
be a right triangular pyramid, bounded by four vertices λ, µ, ν

and o, so that for each one there are three coordinates

of point λ of point µ of point ν of point o
w.r.t. AL x x + dx x x
w.r.t. AB y y y + dy y
w.r.t. AC z z z z + dz.

Since the base of this pyramid is λµν = lmn = 1
2 dxdy and

the hight λo = dz, its volume will be = 1
6 dxdydz.

27. Let us investigate, whereto these vertices λ, µ, ν and o
are carried during the time dt : for which purpose their three
velocities parallel to the directions of the three axes must be
considered. The differential values of the velocities u, v and w

are given by

Velocity of point λ of point µ of point ν of point o
w.r.t. AL u u + Ldx u + ldy u + λdz
w.r.t. AB v v + Mdx v + mdy v + µdz
w.r.t. AC w w + Ndx w + ndy w + odz

28. If we let the points λ, µ, ν and o be transferred to
the points π , Φ, ρ and σ in the time dt , and establish the
three coordinates of these points parallel to the axes, the small
displacement parallel to these axes will be

10 The partial differential notation was so new that Euler had to remind the
reader of its definition.

AP − AL = u dt
AQ−AM = (u + L dx) dt
AR − AL = (u + l dy) dt
AS − AL = (u + λ dz) dt

Pp − Ll = v dt
Qq −Mm = (v + M dx) dt
Rr − Ln = (v + m dy) dt
Ss − Ll = (v + µ dz) dt

pπ − lλ = w dt
qΦ − mµ = (w + N dx) dt
rρ − nν = (w + n dy) dt
sσ − lo = (w + ν dz) dt .

Thus the three coordinates for these four points π , Φ, ρ and
σ will be

AP = x + udt; Pp = y + vdt;
pπ = z + wdt

RQ = x + dx + (u + Ldx)dt; Qq = y + (v + Mdx)dt;
qΦ = z + (w + Ndx)dt

AR = x + (u + ldy)dt; Rr = y + dy + (v + mdy)dt;
rρ = z + (w + ndy)dt

AS = x + (u + λdz)dt; Ss = y + (v + µdz)dt;
sσ = z + dz + (w + νdz)dt.

29. Since after time dt has elapsed the vertices λ, µ, ν and
o of the pyramid are transferred to the points π , Φ, ρ and σ ,
πΦρσ defines a similar triangular pyramid. Due to the nature
of the fluid the volume of the pyramid πΦρσ should be equal to
the volume of the pyramid λµνo put forward, that is 1

6 dxdydz.
Thus, the whole matter is reduced to determining the volume of
the pyramid πΦρσ . Clearly, it remains a pyramid, if the solid
pqrπΦρσ is removed from the solid pqrπΦρσ ; the latter
solid is a prism orthogonally incident to the triangular basis
pqr , and cut by the upper oblique section πρΦ.

30. The other solid pqrπΦρσ can be divided by similarly
into three prisms truncated in this manner, namely

I.pqrsπΦσ ; II.prsπρσ ; III.qrsΦρσ.

This has to be accomplished in such a way that

1
6

dxdydz = pqsπΦσ + prsπρσ + qrsΦρσ − pqrπΦρ.

Since such a prism is orthogonally incident to its lower base,
and furthermore has three unequal heights, its volume is found
by multiplying the base by one third of the sum of these heights.

31. Thus, the volumes of these truncated prisms will be

pqsπΦσ = 1
3

pqs(pπ + qΦ + sσ)

prsπρσ = 1
3

prs(pπ + rρ + sσ)

qrsΦρσ = 1
3

qrs(qΦ + rρ + sσ)

pqrπΦρ = 1
3

pqr(pπ + qΦ + rρ).
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Since pqr = pqs + prs +qrs, the sum of the first three prisms
will definitely be small, or

1
6

dxdydz = −1
3

pπ.qrs − 1
3

qΦ.prs − 1
3

rρ.pqs + 1
3

sσ.pqr,

or

dxdydz = 2pqr.sσ − 2pqs.rρ − 2prs.qΦ − 2qrs.pπ.

32. Thus, it remains to define the bases of these prisms: but
before we do this, let us put

AQ = AP + Q; Qq = Pp + q; qΦ = pπ + Φ;
AR = AP + R; Rr = Pp + r; rρ = pπ + ρ;
AS = AP + S; Ss = Pp + s; sσ = pπ + σ,

in order to shorten the following calculations. After the
substitution of these values, the terms containing pπ will
annihilate each other, and we shall have

dxdydz = 2pqr.σ − 2pqs.ρ − 2prs.Φ

so that the value of the bases to be investigated is smaller.
33. Furthermore the triangle pqr is obtained by removing

the trapezoid PpqQ from the figure PprqQ, the latter being the
sum of the trapezoids PprR and RrqQ; from which it follows
that

∆pqr = 1
2

PR(Pp + Rr) + 1
2

RQ(Rr + Qq) − 1
2

PQ(Pp + Qq);

or, because of PR = R; RQ = Q − R; and PQ = Q we shall
have

∆pqr = 1
2

R(Pp − Qq) + 1
2

Q(Rr − Pp) = 1
2

Qr − 1
2

Rq.

In the same manner we have

∆pqs = 1
2

PS(Pp + Ss) + 1
2

SQ(Ss + Qq)

− 1
2

PQ(Pp + Qq),

or

∆pqs = 1
2

S(Pp + Ss) + 1
2
(Q − S)(Ss + Qq)

− 1
2

Q(Pp + Qq),

from where it follows that:

∆pqs = 1
2

S(Pp − Qq) + 1
2

Q(Ss − Pp) = 1
2

Qs − 1
2

Sq.

And finally

∆prs = 1
2

PR(Pp + Rr) + 1
2

RS(Rr + Ss) − 1
2

PS(Pp + Ss),

or

∆prs = 1
2

R(Pp + Rr) + 1
2
(S − R)(Rr + Ss) − 1

2
S(Pp + Ss)

from where it follows that

∆prs = 1
2

R(Pp − Ss) + 1
2

S(Rr − Pp) = 1
2

Sr − 1
2

Rs.

34. After the substitution of these values we will obtain

dxdydz = (Qr − Rq)σ + (Sq − Qs)ρ + (Rs − Sr)Φ;
thus the volume of the pyramid πΦρσ will be

1
6
(Qr − Rq)σ + 1

6
(Sq − Qs)ρ + 1

6
(Rs − Sr)Φ.

From the values of the coordinates presented above in §. 28
follows

Q = dx + Ldxdt q = Mdxdt Φ = Ndxdt

R = ldydt r = dy + mdydt ρ = ndydt

S = λdzdt s = µdzdt σ = dz + νdzdt.

35. Since here we have

Qr − Rq = dxdy(1 + Ldt + mdt + Lmdt2 − Mldt2)

Sq − Qs = dxdz(−µdt − Lµdt2 + Mλdt2)

Rs − Sr = dydz(−λdt − mλdt2 + lµdt2)

the volume of the pyramid πΦρσ is found to be expressed as

1
6

dxdydz






1 +L dt +Lm dt2 +Lmν dt3

+m dt −Ml dt2 −Mlν dt3

+ν dt +Lν dt2 −Lnµ dt3

+mν dt2 +Mnλ dt3

−nµ dt2 −Nmλ dt3

−Nλ dt2 +Nlµ dt3






,

which (volume), since it must be equal to that of the pyramid
λµνo = 1

6 dxdydz, will satisfy, after performing a division by
dt the following equation11.

0 = L + m + ν + dt (Lm + Lν + mν − Ml − Nλ − nµ)

+ dt2(Lmν + Mnλ + Nlµ − Lnµ − Mlν − Nlµ).

36. Discarding infinitely small terms, we get this equation:12

L + m + ν = 0, through which is determined the relation
between u, v and w, so that the motion of the fluid be possible.
Since L = du

dx , m = dv
dy and ν = dw

dz , at an arbitrary point of
the fluid λ, whose position is defined by the three coordinates
x , y and z, and the velocities u, v and w are assigned in the
same manner to be directed along these same coordinates, the
criterion of possible motions is such that

du
dx

+ dv

dy
+ dw

dz
= 0.

This condition expresses that through the motion no part of the
fluid is carried into a greater or or lesser space, but perpetually
the continuity of the fluid as well as the identical density is
conserved.

37. This property is to be interpreted further so that at the
same instant it is extended to all points of the fluid: of course,
the three velocities of all the points must be such functions of
the three coordinates x , y and z that we have du

dx + dv
dy + dw

dz = 0:

11 This is the calculation to which Euler refers in his later French memoir
Euler, 1755.
12 This is the three-dimensional incompressibility condition.
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in this way the nature of those functions defines the motion
of every point of the fluid at a given instant. At another time
the motion of the same points may be howsoever different,
provided that at an arbitrary point of time the property holds for
the whole fluid. Up to now I have considered the time simply as
a constant quantity.

38. If however, we also wish to consider time as variable so
that the motion of the point λ whose position is given by the
three coordinates AL = x , Ll = y and lλ = z has to be defined
after the elapsed time t , it is certain that the three velocities
u, v and w depend not only on the coordinates x , y and z but
additionally on the time t , that is they will be functions of these
four quantities x , y, z and t ; furthermore, their differentials are
going to have the following form

du = Ldx + ldy + λdz + Ldt;
dv = Mdx + mdy + µdz + Mdt;
dw = Ndx + ndy + νdz + Ndt;
Meanwhile we shall always have L + m + ν = 0, having in
view that at every arbitrary instant the time t is considered to
be constant, or dt = 0. Howsoever the functions u, v and w

vary with time t , it is necessary that at every moment of time
the following holds:

du
dx

+ dv

dy
+ dw

dz
= 0.

Since the condition expresses that any arbitrary portion of the
fluid is carried in a time dt into a volume equal to itself, the
same will have to happen, due to the same condition, in the next
time interval, and therefore in all the following time intervals.

II. Second part

39. Having presented what pertains to all possible motions,
let us now investigate the nature of the motion which can really
occur in the fluid. Here, besides the continuity of the fluid and
the constancy of its density, we will also have to consider the
forces which act on every element of the fluid. When the motion
of any element is either non-uniform or varying in its direction,
the change of motion must be in accordance with the forces
acting on this element. The change of motion becomes known
from known forces, and the preceding formulas contain this
change; we will now deduce new conditions13 which single out
the actual motion among all those possible up to this point.

40. Let us arrange this investigation in two parts as well; at
first let us consider all motions being performed in the same
plane. Let AL = x , Ll = y be, as before, the defining
coordinates of the position of an arbitrary point l; now, after
the elapsed time t , the two velocities of the point l parallel to
the axes AL and AB are u and v: since the variability of time
has to be taken into account, u and v will be functions of x , y
and t themselves. In respect of which we put

du = Ldx + ldy + Ldt and dv = Mdx + mdy + Mdt

13 Here Euler probably has in mind the condition of potentiality, which he
will obtain in §§. 47 and 54 for the two-dimensional case and in §. 60 for the
three-dimensional case.

and we have established above that because of the former
condition encountered above, we have L + m = 0.

41. After an elapsed small time interval dt the point l is
carried to p, and it has travelled a distance udt parallel to the
axis AL, a distance vdt parallel to the other axis AB. Hence,
to obtain the increments in velocities u and v of the point l
which are induced during time dt , for dx and dy we must
write the distance udt and vdt , from which will arise these true
increments of the velocities

du = Ludt + lvdt + Ldt and dv = Mudt + mvdt +Mdt.

Therefore the accelerating forces, which produce these
accelerations are

Accel. force w.r.t. AL = 2(Lu + lv + L)

Accel. force w.r.t. AB = 2(Mu + mv + M)

to which therefore the forces acting upon the particle of water
ought to be equal.14

42. Among the forces which in fact act upon the particles of
water, the first to be considered is gravity; its effect, however,
if the plane of motion is horizontal, amounts to nothing. Yet if
the plane is inclined, the axis AL following the inclination, the
other being horizontal, gravity generates a constant accelerating
force parallel to the axis AL, let it be α. Next we must not
neglect friction, which often hinders the motion of water, and
not a little. Although its laws have not yet been explored
sufficiently, nevertheless, following the law of friction for solid
bodies, probably we shall not wander too far astray if we set the
friction everywhere proportional to the pressure with which the
particles of water press upon one another.15

43. First, must be brought into the calculation the pressure
with which the particles of water everywhere mutually act upon
each other, by means of which every particle is pressed together
on all sides by its neighbours; and in so far as this pressure is
not everywhere equal, to that extent motion is communicated
to that particle.16 The water simply will be put everywhere
into a state of compression similar to that which still water
experiences when stagnating at a certain depth. This depth is
most conveniently employed for representing the pressure at an
arbitrary point l of the fluid. Therefore let that height, or depth,
expressing the state of compression at l, be p, a certain function
of the coordinates x and y, and should the pressure at l vary also
with the time, the time will also enter into the function p.

44. Thus let us set dp = Rdx + rdy + Rdt , and let us
consider a rectangular element of water, lmno, whose sides are
lm = no = dx and ln = mo = dy, whose area is dxdy
(Fig. 3). The pressure at l is p, the pressure at m is p + Rdx ,
at n it is p + rdy and at o it is p + Rdx + rdy. Thus the side
lm is pressed by a force = dx(p + 1

2 Rdx), while the opposite
side no will be pressed by a force = dx(p + 1

2 Rdx + rdy);

14 The unusual factors of 2 in the previous equations have to do with a choice
of units which soon became obsolete; cf. Truesdell, 1954; Mikhailov, 1999.
15 It is actually not clear why Euler takes the friction force proportional to the

pressure.
16 Here Euler makes full use of the concept of internal pressure, cf. Darrigol

and Frisch, 2008.
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Fig. 3.

therefore by these two forces the element lmno will be impelled
in the direction ln by a force = −rdxdy. Moreover, in a similar
manner from the forces dy(p+ 1

2rdy) and dy(p+Rdx+ 1
2rdy),

which act on the sides ln and mo will result a force = −Rdxdy
impelling the element in the direction lm.

45. Thus will originate an accelerating force parallel to lm =
−R and an accelerating force parallel to ln = −r , of which the
one directed along the force of gravity α gives α − R. Having
ignored friction so far, we obtain the following equations17:

α − R = 2Lu + 2lv + 2L or R = α − 2Lu − 2lv − 2L
−r = 2Mu + 2mv + 2M and r = −2Mu − 2mv − 2M

from which we gather that

dp = αdx − 2(Lu + lv + L)dx − 2(Mu + mv + M )dy + Rdt,

a differential which must be complete or integrable.
46. Because the term α dx is integrable by itself and nothing

is determined for R, from the nature of complete differentials
it is necessary that the following holds in the notation already
employed:

d.Lu + lv + L

dy
= d.Mu + mv + M

dx
.

Since du
dx =L, du

dy = l; dv
dx =M, and dv

dy = m it follows that

Ll + udL
dy

+ lm + vdl
dy

+ dL

dy
= ML + udM

dx

+ mM + vdm
dx

= dM

dx

which is reduced to this form:

(L + m)(l − M) +

u
(

dL
dy

− dM
dx

)
+ v

(
dl
dy

− dm
dx

)
+ dL

dy
− dM

dx
= 0.

47. In fact, since we knew Ldx + ldy + Ldt and Mdx +
mdy + Mdt to be complete differentials,

dL
dy

= dl
dx

; dm
dx

= dM
dy

; dL

dy
= dl

dt
and

dM

dx
= dM

dt

17 Here the so-called Euler equations of incompressible fluid dynamics appear
for the first time, but the notation and the units are not very modern, in contrast
to the memoir he will write three years later (Euler, 1755).

after the substitution of which values we have the following
equation

(L + m)(l − M) +

u
(

dl − dM
dx

)
+ v

(
dl − dM

dy

)
+ dl − dM

dt
= 0.

Plainly, this is satisfied if l = M: so that du
dy = dv

dx . Since this

condition requires that du
dy = dv

dx ,18 it appears finally that the
differential formula udx + vdy must be complete; in this lies
the criterion of actual motion.

48. This criterion is independent from the preceding one,
which was provided by the continuity of the fluid and its
uniform constant density. Therefore even if the fluid in motion
changes its density, as happens in the motion of elastic fluids
such as air, this property will hold nonetheless, namely udx +
vdy has to be a complete differential. In other words, the
velocities u and v must always be functions of the coordinates
x and y, together with time t , in such a way that when the time
is taken constant the formula udx + vdy admits an integration.

49. We shall now determine the pressure p itself, which is
absolutely necessary for perfectly determining the motion of
the fluid. Since we have found that M = l we have

dp = αdx − 2u(Ldx + ldy) − 2v(ldx + mdy) − 2Ldx

− 2Mdy + Rdt.

Moreover Ldx + ldy = du − Ldt ; ldx + mdy = dv − Mdt ;
hence we have

dp = αdx −
2udu − 2vdv + 2Ludt + 2Mvdt − 2Ldx − 2Mdy + Rdt.

Therefore, if we wish to ascertain for the present time the
pressure at each point of the fluid, with no account of its
variation in time, we shall have to consider this equation

dp = αdx − 2udu − 2vdv − 2Ldx − 2Mdy,

and in our notation L = du
dt and M = dv

dt .19 Hence

dp = αdx − 2udu − 2vdv − 2
du
dt

dx − 2
dv

dt
dy,

in the integration of which the time is to be taken constant.
50. This equation is integrable by hypothesis, and is indeed

understood as such, if we consider the criterion of the motion
which, as we have seen, consists in that udx + vdy be a
complete differential when the time t is taken constant. Let
therefore S be its integral, which consequently will be a
function of x , y and t themselves. For dt = 0 we obtain
dS = udx + vdy, while assuming the time t variable as well,

18 Here there are two problems. The minor problem is a typographical error in
the published version ( du

dx instead of dv
dx ), which is not present in a 1752 copy

of the manuscript (not in Euler’s hand), henceforth referred to as Euler, 1752.
A more serious problem is that Euler here repeats the mistake of D’Alembert,
1752 who confused a sufficient condition – the vanishing of the vorticity – with
a necessary one.
19 The printed version has L = dv

dt instead of L= du
dt . Euler, 1752 is correct.
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let us write

dS = udx + vdy + Udt,

on which account we obtain du
dt = dU

dx and dv
dt = dU

dy . Then, in

fact U = dS
dt .

51. After inserting these values we will obtain

du
dt

.dx + dv

dt
.dy = dU

dx
.dx + dU

dy
.dy

and this differential formula is manifestly integrated at constant
time t to give U. For this to become clearer, let us set dU =
Kdx + kdy; thus dU

dx = K and dU
dy = k, so that dU

dx .dx + dU
dy =

Kdx + kdy = dU. Since its integral is U = dS
dt , we shall have

dp = αdx − 2udu − 2vdv − 2dU

from where it appears by integration:

p = Const. + αx − uu − vv − 2dS
dt

with a given function S of the coordinates x , y and t themselves,
whose differential, for dt = 0 is udx + vdy.

52. In order to understand better the nature of these formulas,
let us consider the true velocity of the point l, which is V =√

(uu + vv). And the pressure will be: p = Const. + αx −
VV − 2dS

dt : in which the last term dS denotes the differential of
S =

∫
(udx + vdy) itself, where the time t is allowed to vary.

53. If we now wish to also take friction into account, let us
set it proportional to the pressure p. While the point l travels
the element ds, the retarding force arising from the friction is
= p

f ; so that, setting dS
dt = U, our differential equation will be

for constant t

dp = αdx − p
f

ds − VdV − 2dU,

from where we obtain by integration, taking e for the number
whose hyperbolic20 logarithm is = 1,

p = e
−s
f

∫
e

s
f (αdx − 2VdV − 2dV) or

p = αx − VV − 2U − 1
f

e
−s
f

∫
e

s
f (αx − VV − 2U)ds.

54. The criterion of the motion which drives the fluid in
reality consists in this that, fixing the time t , the differential
udx + vdy has to be complete: also continuity and constant
uniform density demand that du

dx + dv
dy = 0, hence it follows

too that this differential udy − vdx will have to be complete.21

From where both velocities u and v jointly must be functions of
the coordinates x and y with the time t in such a way that both
differential formulas udx + vdy and udy − vdx22 be complete
differentials.

55. Let us set up the same investigation in general, giving
the point λ three velocities directed parallel to the axes AL,

20 Natural.
21 The published version has udx +vdy, a mistake not present in Euler, 1752.
22 Previous mistake repeated in the published version.

AB, AC. Let u, v, w denote these functions, which depend on
coordinates x , y, z, besides t . After a differentiation we obtain

du = Ldx + ldy + λdz + Ldt

dv = Mdx + mdy + µdz + Mdt

dw = Ndx + ndy + νdz + Ndt.

Although here the time t is also taken as variable, nonetheless
for the motion to be possible, by the preceding condition23 we
have L + m + ν = 0, or, which reexpresses the same

du
dx

+ dv

dy
+ dw

dz
= 0,

a condition on which the present examination does not depend.
56. After the passage of time interval dt the point λ is carried

to π , and it travels a distance udt parallel to the axis AL, a
distance vdt parallel to the axis AB and a distance wdt parallel
to the axis AC. Thus the three velocities of the point which has
moved from λ to π will be:

parallel to AL = u + Lu dt + lv dt + λw dt + L dt;
parallel to AB = v + Mu dt + mv dt + µw dt + M dt;
parallel to AC = w + Nu dt + nv dt + νw dt + N dt,

and the accelerations parallel to the same directions will be

par. AL = 2(Lu + lv + λw + L);
par. AB = 2(Mu + mv + µw + M);
par. AC = 2(Nu + nv + νw + N).

57. If we take the axis AC to be vertical, in such a way that
the remaining two AL and AB are horizontal, the accelerating
force due to gravity arises parallel to the axis AC with the
value −1. Then indeed, denoting the pressure at λ by p, its
differential, at constant time is

dp = R dx + rdy + ρdz,

from which we obtain the three accelerating forces

par. AL = R; par. AB = −r; par. AC = −ρ

which are in fact easily collected in the same manner as was
done in §§. 44 and 45, so that it is not necessary to repeat the
same computation. Hence we obtain the following equations24

R = −2(Lu + lv + λw + L)

r = −2(Mu + mv + µw + M)

ρ = −1 − 2(Nu + nv + νw + N).

58. Since the differential formula dp = Rdx + rdy + ρdz
has to be a complete differential, we have

dR
dy

= dr
dx

; dR
dz

= dρ

dx
; dr

dz
= dρ

dy
.

23 From Part I.
24 These are the three dimensional Euler equations.
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After a differentiation and a division by −2 the following three
equations are obtained25

I






udL
dy

+ vdl
dy

+ wdλ

dy
+ dL

dy
+ Ll + lm + λn =

udM
dx

+ vdm
dx

+ wdµ

dx
+ dM

dx
+ ML + mM + µN

II






udL
dz

+ vdl
dz

+ wdλ

dz
+ dL

dz
+ Lλ + lµ + λν =

udN
dx

+ vdn
dx

+ wdν

dx
+ dN

dx
+ NL + nM + νN

III






udM
dz

+ vdm
dz

+ wdµ

dz
+ dM

dz
+ Mλ + mµ + µν =

udN
dy

+ vdn
dy

+ wdν

dy
+ dN

dy
+ Nl + nm + νn.

59. Moreover, because of the nature of the complete
differentials, we have

d L
dy

= dl
dx

; dm
dx

= d M
dy

; dλ

dy
= dl

dz
;

dµ

dx
= d M

dz
; dL

dy
= dl

dt
; dM

dx
= d M

dt
d L
dz

= dλ

dx
; dl

dz
= dλ

dy
; dn

dx
= d N

dy
;

dν

dx
= d N

dz
; dL

dz
= dλ

dt
; dN

dx
= d N

dt
;

d M
dz

= dµ

dx
; d N

dy
= dn

dx
; dm

dz
= dµ

dy
;

dν

dy
= dn

dz
; dM

dz
= dµ

dt
; dN

dy
= dn

dt
,

after substituting of which values those three equations will be
transformed into these26

(
dl − dM

dt

)
+ u

(
dl − dM

dx

)
+ v

(
dl − dM

dy

)
+

w

(
dl − dM

dz

)
+ (l − M)(L + m) + λn − µN = 0,

(
dλ − dN

dt

)
+ u

(
dλ − dN

dx

)
+ v

(
dλ − dN

dy

)
+

w

(
dλ − dN

dz

)
+ (λ − N)(L + ν) + lµ − nM = 0,

(
dµ − dn

dt

)
+ u

(
dµ − dn

dx

)
+ v

(
dµ − dn

dy

)
+

w

(
dµ − dn

dz

)
+ (µ − n)(m + ν) + Mλ − Nl = 0.

60. Now it is manifest that these three equations are satisfied
by the following three values

l = M; λ = N; µ = n

in which is contained the criterion furnished by the
consideration of the forces. Here therefore follows that in the

25 The printed version contains mistakes not present in Euler, 1752: in the
formula labelled II, instead of L there is L; in the formula labelled III there is a
v instead of u.
26 These are the equations for the vorticity.

notation chosen we have27

du
dy

= dv

dx
; du

dz
= dw

dx
; dv

dz
= dw

dy

these conditions moreover are the same as those which are
required in order that the formula udx + vdy + wdz be a
complete differential. From which this criterion consists in that
the three velocities u, v and w have to be functions of x , y and
z together with t in such a manner that for fixed constant time
the formula udx + vdy + wdz admits an integration.

61. Taking the time t constant or dt = 0, we have

du = Ldx + Mdy + Ndz
dv = Mdx + mdy + ndz
dw = Ndx + ndy + νdz

moreover, for R, r and ρ the values are

R = −2(Lu + Mv + Nw + L)

r = −2(Mu + mv + nw + M)

ρ = −1 − 2(Nu + nv + νw + N).

Regarding the pressure p, we obtain the following equation

dp = −dz

−2u(Ldx + Mdy + Ndz) = −dz − 2udu − 2vdv − 2wdw

−2v(Mdx + mdy + ndz) − 2Ldx − 2M − 2Ndz

−2w(Ndx + ndy + νdz)

−2Ldx − 2Mdy − 2Ndz.

62. Since in truth L = du
dt ; M = dv

dt ; N = dw
dt , we obtain by

integration

p = C − z − uu − vv − ww − 2
∫ (

du
dt

dx + dv

dt
dy + dw

dt
dz

)
.

By the previously ascertained condition udx + vdy + wdz
is integrable. Let us denote its integral by S, which can also
involve the time t ; taking also the time t variable, we have

dS = udx + vdy + wdz + Udt,

and we have du
dt = dU

dx ; dv
dt = dU

dy ; dw
dt = dU

dz . From where, with
time generally taken constant, it can be assumed in the above
integral that

dU
dx

dx + dU
dy

dy + dU
dz

dz = dU,

and we obtain28

p = C − z − uu − vv − ww − 2U, or

p = C − z − uu − vv − ww − 2
dS
dt

.

63. Thus, uu + vv +ww is manifestly expressing the square
of the true velocity of the point λ, so that, if the true velocity of

27 Here Euler repeats the mistake of assuming that the only solution is zero-
vorticity flow; in Euler, 1755 this will be corrected.
28 The published version has a ds in the denominator, instead of the correct

dt , found in Euler, 1752.
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this point is denoted V , the following equation is obtained for
the pressure29

p = C − z − VV − 2dS
dt

.

To use this, firstly one must seek the integral S of the
formula udx + vdy + wdz which should be complete. This
is differentiated again, taking only the time t as variable. After
division by dt , one obtains the value of the formula dS

dt , which
enters into the expression for the state of the pressure p.

64. But before we may add here the previous criterion,
regarding possible motion, the three velocities u, v and w must
be such functions of the three coordinates x , y and z, and of
time t that, firstly, udx + vdy + wdz be a complete differential
and, secondly, that the condition du

dx + dv
dy + dw

dz = 0 holds.
The whole motion of fluids endowed with invariable density is
subjected to these two conditions.

Furthermore, if we take also the time t to be variable, and
the differential formula udx + vdy + wdz + Udt is a complete
differential, the state of the pressure at any point λ, expressed
as an altitude p, will be given by

p = C − z − uu − vv − ww − 2U,

if only the fluid enjoys the natural gravity and the plane BAL is
horizontal.

65. Suppose we had attributed another direction to the
gravity or even adopted arbitrary variable forces acting on the
particles of the fluid. Differences would arise in the values of
the pressure, but the law which the three velocities of the fluid
have to obey would not suffer any changes. Thus, whatever the
acting forces, the three velocities u, v and w have to satisfy the
conditions that the differential formula udx + vdy + wdz be
complete and that du

dx + dv
dy + dw

dz = 0 should hold. Therefore,
the three velocities u, v and w can be fixed in infinitely many
ways while satisfying the two conditions; and then it is possible
to prescribe the pressure at every point of the fluid.30

66. However, much more difficult would be the following
question: given the acting forces and the pressure at all places,
to determine the motion of the fluid at all points. Indeed, we
would then have some equations31 of the form p = C − z −
uu − vv − ww − 2U, from which the relation of the functions
u, v and w would have to be defined in such a way that not
only the equations themselves would be satisfied, but also the
previously contributed rules32 would have to be obeyed; this
work would certainly require the greatest force of calculation.
It is fitting therefore to inquire in general into the nature of
functions proper to satisfy both criteria.

67. Most conveniently therefore let us begin with the
characterization of the integral quantity S, whose differential
is udx + vdy + wdz, when time is held constant. Let thus

29 This is basically the Bernoulli pressure law for potential flow.
30 Many statements in this paragraph are rendered invalid by the generally

incorrect assumption of potential flow.
31 The plural is here used probably because this relation has to be satisfied at

all points.
32 Incompressibility and potentiality.

S be a function of x , y and z, the time t being contained in
constant quantities. When S is differentiated, the coefficients
of the differentials dx , dy and dz are the velocities u, v and
w which at the present time suit the point of fluid λ, whose
coordinates are x , y and z. The question thus arises here to find
the functions S of x , y and z such that du

dx + dv
dy + dw

dz = 0; now,

since we have u = d S
dx , v = d S

dy and w = d S
dz it follows that

ddS
dx2 + ddS

dy2 + ddS
dz2 = 0.33

68. Since it is not plain how this can be handled in general, I
shall consider certain rather general cases. Let

S = (Ax + By + Cz)n .

We have

dS
dx

= nA(Ax + By + Cz)n−1 and

ddS
dx2 = n(n − 1)AA(Ax + By + Cz)n−2

and the expressions for ddS
dy2 and ddS

dz2 will be similar. Thus we
have to satisfy

n(n − 1)(Ax + By + Cz)n−2(AA + BB + CC) = 0

which is plainly satisfied when either n = 0 or n = 1. Thus we
have the solutions S = Const. and S = Ax + By + Cz, where
the constants A, B and C are arbitrary.

69. But if n is neither 0, nor 1, we necessarily have: AA +
BB + CC = 0: and then S is given by

S = (Ax + By + Cz)n

for any value of the exponent n; even the time t itself will
possibly enter in n. Furthermore we can add up arbitrarily many
such S and obtain yet another solution.34 The function

S = α + βx + γ y + δz + ε(Ax + By + Cz)n +
ζ(A′x + B′y + C′z)n′ + η(A′′x + B′′y + C′′z)n′′ +
θ(A′′′x + B′′′y + C′′′z)n′′′

etc.

will satisfy the condition only if we have:

AA + BB + CC = 0; A′A′ + B′B′ + C′C′ = 0;
A′′A′′ + B′′B′′ + C′′C′′ = 0 etc.

70. Here suitable values are given for S in which the
coordinates x , y, z have either one, or two, or three, or four
dimensions35

I. S = A
II. S = Ax + By + Cz

III. S = Axx + Byy + Czz + 2Dxy + 2Exz + 2Fyz with A +
B + C = 0

33 This is what will later be called Laplace’s equation.
34 In modern terms, Euler is here using the linear character of the Laplace

equation.
35 In modern terms we would say “which are polynomials in x , y, z of degrees

up to four”.
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IV. S = Ax3+By3+Cz3+3Dxxy+3Fxxz+Hyyz+6Kxyz+
3Exyy+3Gxzz+3Iyzz with A+E+G = 0; B+D+I =
0; C + F + H = 0

V.

+ Ax4 + 6Dxxyy + 4Gx3 y + 4Hxy3 + 12Nxxyz

S = + By4 + 6Exxzz + 4Ix3z + 4Kxz3 + 12Oxyyz

+ Cz4 + 6Fyyzz + 4Ly3z + 4Myz3 + 12Pxyzz

with

A + D + E = 0 G + H + P = 0

B + D + F = 0 I + K + O = 0

C + E + F = 0 L + M + N = 0.

71. Hence it is clear how these formulas are to be obtained
for any order. First, simply give to the various terms the
numerical coefficients which belong to them from the law of
permutation, or, equivalently, which arise when the trinomial
x + y + z is raised to that same power. Let indefinite letters
A, B, C, etc., be adjoined to the numerical coefficients. Then,
ignoring the coefficients, observe whenever there occur three
terms of the type LZx2 + MZy2 + NZz2 having a common
factor Z formed from the variables. Whenever this occurs, set
the sum of the literal coefficients L + M + N equal to zero. For
example, for the fifth power we have

S = Ax5 + 5Dx4 y + 5Dx4z + 10Gx3 yy + Gx3zz +
20Kx3 yz + 30Nxyyzz +
Bx5 + 5Ex4 y + 5Ex4z + 10Hx3 yy + Hx3zz +
20Lx3 yz + 30Oxyyzz

+ Cx5 + 5Fx4 y + 5Fx4z + 10Ix3 yy + Ix3zz +
20Mx3 yz + 30Pxyyzz

and the following determinations of the coefficient letters are
obtained

A + G + G = 0; D + H + O = 0; D + I + P = 0;
B + H + H = 0; E + G + N = 0; G + F + P = 0;
K + L + M = 0;
C + I + F = 0; F + G + N = 0; F + H + O = 0.

In the same way for the sixth order such determinations will
give 15, for the seventh 21, for the eighth 28 and so on.

72. In the very first formula S = A the coordinates x , y and z
are clearly not intertwined. Thus the three velocities u, v and w

are equal to zero, and hence this describes a quiet state of fluid.
Also the pressure at an arbitrary point for different times will
be able to vary in an arbitrary manner. Indeed A is an arbitrary
function of time and, for a given time t , the pressure at the point
λ is p = C − 2dA

dt − z. Through this formula is revealed the
state of the fluid, when it is subjected at an arbitrary instant to
arbitrary forces, which nevertheless balance each other, so that
no motion in the fluid can arise from them: where it happens, if
the fluid is enclosed in a vase from which it can nowhere escape,
it is also compressed by suitable forces inside.

73. Moreover, the second formula S = Ax + By + Cz, after
differentiation, gives these three velocities to the point λ:

u = A; v = B and w = C.

Thus simultaneously, all points of the fluid are carried by an
identical motion in the same direction. From which the whole
fluid moves in the same manner as a solid body, carried only
by a forward motion. But at different times the velocities as
well as the direction of this motion are able to be varied in an
arbitrary way, depending on what the extrinsic driving forces
require. Therefore, the pressure at the point λ at the time t on
which A, B, C depend, is36 p = C − z − AA − BB − CC −
2x dA

dt − 2y dB
dt − 2z dC

dt .
74. The third formula S = Axx + Byy + Czz + 2Dxy +

2Exz + 2Fyz, where A + B + C = 0, gives the following
three velocities37 of the point λ: u = 2Ax + 2Dy + 2Ez;
v = 2By + 2Dx + 2Fz; w = 2Cz + 2Ex + 2Fy, or w =
2Ex + 2Fy − 2(A + B)z. Here, at a given instant, different
points of the fluid are carried by different motions; moreover,
in the time development an arbitrary motion of a given point
is permitted, because A, B, D, E, F can be arbitrary functions
of the time t . Finally, a much greater variety can take place, if
more elaborate values are given to the function S.

75. In the second case the motion of the fluid was
corresponding to the forward motion of a solid body in which,
plainly, at any instant the different parts are carried by a motion
equal and parallel to itself. In other cases the motion of the
fluid could be suspected to correspond to solid-body motion,
either rotational or anomalous. It suffices to put forward such
a hypothesis – beyond the second case – to find that it cannot
take place. Indeed, in order to happen, not only would it be
necessary that the pyramid πΦρσ would be equal,38 but also
similar to the pyramid λµνo, or that the following holds

πΦ = λµ = dx = √
(QQ + qq + ΦΦ)

πρ = λν = dy = √
(RR + rr + ρρ)

πσ = λo = dz = √
(SS + ss + σσ)

Φρ = µν = √
(dx2 + dy2) =

√
((Q − R)2 + (q − r)2 + (Φ − ρ)2)

Φσ = µo = √
(dx2 + dz2) =

√
((Q − S)2 + (q − s)2 + (Φ − σ)2)

ρσ = νo = √
(dy2 + dz2) =

√
((R − S)2 + (r − s)2 + (ρ − σ)2),

where we applied the values taken from §. 32.
76. Then the three latter equations, combined with the

former, are reduced to these:

QR + qr + Φρ = 0; QS + qs + Φσ = 0 and

RS + rs + ρσ = 0.

36 The printed version, but not Euler, 1752, has a missing BB in the formula.
37 In both the printed version and in Euler, 1752, the first velocity component

is mistakenly denoted by α.
38 In volume.
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Moreover, if the values assigned in §. 34 are substituted for the
letters Q, R, S, q , r , s, Φ, ρ, σ and the higher-order terms for
the rests are neglected, the three former will give

1 = 1 + 2Ldt; l + M = 0;
1 = 1 + 2mdt; λ + N = 0;
1 = 1 + 2νdt; µ + n = 0,

so that we have L = 0 m = 0 and ν = 0, M = −l, N = −λ and
n = −µ.

77. Thus, the three velocities of this point λ would have to
be compared to the condition that the following hold39

du = ldy + λdz;
dv = −ldx + µdz;
dw = −λdx − µdy.

But the second condition demands a motion of the fluid such
that l = M, λ = N and n = µ; hence all the coefficients l,
λ and µ vanish; also the velocities u, v and w will take the
same value everywhere in the fluid. Therefore it is plain that
the motion of the fluid cannot correspond to solid-body motion
other than pure translational.

78. To ascertain the effect of the forces which act from the
outside upon the fluid, it is first necessary to determine those
forces40 which are required for effecting the motion which we
have assumed to exist in the fluid. These are equivalent to the
forces which in fact work upon the fluid; furthermore we have
seen above in §. 56 that three accelerating forces are required,
which are here repeated. If an element of fluid is conceived
here, whose volume, or mass is dxdydz, the moving forces
required for the motion are

par. AL = 2dxdydz(Lu + lv + λw + L) =

2dxdydz
(

u
du
dx

+ v
du
dy

+ w
du
dz

+ du
dt

)
;

par. AB = 2dxdydz(Mu + mv + µw + M) =

2dxdydz
(

u
dv

dx
+ v

dv

dy
+ w

dv

dz
+ dv

dt

)
;

par. AC = 2dxdydz(Nu + nv + νw + N) =

2dxdydz
(

u
dw

dx
+ v

dw

dy
+ w

dw

dz
+ dw

dt

)
,

so that by triple integration the components of the total forces
which must act on the whole mass of fluid may be obtained.

79. But since the second condition requires that udx +vdy+
wdz be a complete differential, whose integral is S, let us put as
before, with time allowed to vary, dS = udx+vdy+wdz+Udt .
Since du

dy = dv
dx ; du

dz = dw
dx ; du

dt = dU
dx those three moving forces

emerge41:

par. AL = 2dxdydz
(

udu + vdv + wdw + dU
dx

)

39 In the printed version, but not in Euler, 1752, there are several sign
mistakes.
40 Here, internal forces are meant.
41 There is a misprint in the printed version, w instead of +.

par. AB = 2dxdydz
(

udu + vdv + wdw + dU
dy

)

par. AL = 2dxdydz
(

udu + vdv + wdw + dU
dz

)
.

80. Let us set now uu + vv +ww + 2U = T. The function T
depends on the coordinates x . y, z; take it at a given instant of
time t :42

dT = Kdx + kdy + κdz.

The three moving forces of the element dxdydz are43

par. AL = Kdxdydz

par. AB = kdxdydz

par. AC = κdxdydz

and by triple integration these formulas ought to be extended
throughout the mass of the fluid; thus forces equivalent to all44

and their directions may be obtained. Truly this discussion is
for a later investigation, which I shall not deepen here.

81. Furthermore, the quantity T = uu+vv+ww+2U, which
is analyzed in this calculation, furnishes a simpler formula for
expressing the pressure through the height p; we have indeed
p = C − z − T when the particles of the fluid are pressed
upon solely by the gravity. But if an arbitrary particle λ is
acted upon by three accelerating forces which are Q, q and Φ,
acting parallel to the directions of the axes AF, AB and AC,
respectively, after a calculation similar to the previous one has
been carried out, the pressure will be given by

p = C +
∫

(Qdx + qdy + Φdz) − T.

Thus it is plain that the differential Q + qdy + Φdz must
be complete, as otherwise a state of equilibrium, or at least
a possible one, could not exist. That this condition must be
imposed on the acting forces Q, q and Φ was shown very clearly
by the most famous Mr. Clairaut.45

82. Here are, therefore, the principles of the entire doctrine
of the motion of fluids, which, even if they at first sight
may seem insufficiently fruitful, nevertheless embrace almost
everything treated both in hydrostatics and in hydraulics, so that
these principles must be regarded as having very broad extent.
For this to appear more clearly, it is worthwhile to show how
the precepts learned in hydrostatics and hydraulics follow.

83. Let us therefore consider first a fluid in a state of rest, so
that we have u = 0, v = 0 and w = 0; in view of T = 2U, the
pressure in an arbitrary point λ of the fluid is

p = C +
∫

(Qdx + qdy + Φdz) − 2U.

Here, U is a function of the time t itself which we take as
constant. Indeed, we investigate the pressure at a given time;

42 There is a misprint: u instead of κ .
43 Here is again a misprint: k instead of κ .
44 The pressure forces.
45 Clairaut, 1743.
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the quantity U can be included in the constant C, so that we
obtain

p = C +
∫

(Qdx + qdy + Φdz)

where Q, q an Φ are the forces acting on the particle of water
λ, parallel to the axes AL, AB and AC.

84. The pressure p can only depend on the position of
the point λ that is on the coordinates x , y and z; it is thus
necessary that

∫
(Qdx + qdy + Φdz) be a prescribed function

of them, which therefore admits integration. Thus it is firstly
clear that in the manner indicated the fluid cannot be sustained
in equilibrium, unless the forces acting on each element of the
fluid are such that the differential formula Qdx + qdy +Φdz is
complete. Thus, if its integral is denoted P, the pressure at λ will
be p = C + P. Therefore, if the only force present is gravity,
impelling parallel to the direction CA, we shall have p = C−z;
hence, if the pressure is fixed at one point λ, the constant C can
be obtained. From which the pressure at a given time will be
defined completely at all points of the fluid.

85. However, with time passing, the pressure at a given place
can change; and this plainly occurs, if variability is assumed
for the forces impelling on the water, whose calculation cannot
be made from those forces which are assumed to act on each
element of the fluid,46 but in such a way that they keep each
other in equilibrium and produce no motion. But if, moreover,
these forces are not subject to any change, the letter C will
indeed denote a constant quantity, not depending on time t ;
and at a given location λ we will always find the same pressure
p = C + P.

86. It is possible to determine the extremal shape of a fluid
in a permanent state, when it is not subjected to any force.47

Certainly, at the extreme surface of the fluid at which the fluid
is left to itself and not contained within the walls of the vase
in which it is enclosed, the pressure must be zero. Thus we
shall obtain the following equation: P = const; the shape of
the external surface of the fluid is then expressed through a
relation between the three coordinates x , y and z. And if for the
external circumference held P = E, since C = −E, in another
arbitrary internal location λ the pressure would be p = P − E.
In this manner, if the particles of the fluid are driven by gravity
only, and because p = C − z, the following will hold at for the
external surface z = C; from which the external free surface is
perceived to be horizontal.

87. Next, everything which has so far been brought out
concerning the motion of a fluid through tubes is easily derived
from these principles. The tubes are usually regarded as very
narrow, or else are assumed to be such that through any section
normal to the tube the fluid flows across with equal motion:
from there originates the rule, that the speed of the fluid at any
place in the tube is reciprocally proportional to its amplitude.
Let therefore λ be an arbitrary point of such a tube, of which
the shape is expressed by two equations relating the three

46 That is the internal pressure forces.
47 Here, Euler will comment on the shape of the free (extreme) surface of a

fluid contained in an open vessel.

coordinates x , y and z, so that thereupon for any abscissa x
the two remaining coordinates y and z can be defined.

88. Let henceforth the cross section of this tube at λ be rr ; in
another fixed location of the tube, where the cross-section is f f ,
let the velocity at the present time be ; now after time dt has
elapsed, let the velocity become + d , so that is a function
of time t , and similarly with d

dt . Hence the true velocity of the

fluid at λ will be at the present time V = f f
rr . Since now y and

z are obtained from the shape of the tube, we have dy = ηdx
and dz = θdx ; thus the three velocities of the point λ in the
fluid, parallel to directions AL, AB and AC, are

u = f f
rr

1√
(1 + ηη + θθ)

; v = f f
rr

η√
(1 + ηη + θθ)

;

w = f f
rr

θ√
(1 + ηη + θθ)

,

and hence, uu + vv + ww = VV = f 4

r4 : and rr is function
of x itself, thus of the dependent variables y and z.

89. Since udx + vdy +wdz must be a complete differential,
the integral of which is denoted = S, we have:

dS = f f
rr

dx(1 + ηη + θθ)√
(1 + ηη + θθ)

= f f
rr

dx
√

(1 + ηη + θθ).

Moreover, dx
√

(1 + ηη + θθ) expresses the element of the

tube itself; if we denote it by ds, we shall obtain dS = f f ds
rr :

although is a function of the time,48 here we fix the time and,
furthermore, the quantities s and rr do not depend on time but
only on the shape of the tube; thus we have S =

∫ f f ds
rr .

90. Turning now to the pressure p which is found at the point
of the tube λ, the quantity U has to be considered; it arises
from the differentiation of the quantity S, if the time only is
considered as variable, so that we have U = dS

dt . Thus, since
the integral formula

∫ f f ds
rr does not involve time t , on the one

hand we shall have dS
dt = U = dU

dt

∫ f f ds
rr , and on the other

hand it will follow from §. 80 that:

T = f 4

r4 + 2d
dt

∫
f f ds
rr

.

Therefore, after introducing arbitrary actions of forces Q, q and
Φ, the pressure at λ will be

p = C +
∫

(Q dx + q dy + Φ dz) − f 4

r4 − 2d
dt

∫
f f ds
rr

.

This is that same formula which is commonly written for the
motion of a fluid through tubes; but now much more widely
valid, since arbitrary forces acting on the fluid are assumed
here, while this formula is commonly restricted to gravity
alone. Meanwhile it is in order to remember that the three
forces Q, q and Φ must be such that the differential formula
Q dx + q dy + Φ dz be complete, that is, admit integration.

48 As was stated in §. 88.
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Abstract

The Euler equations of hydrodynamics, which appeared in their present form in the 1750s, did not emerge in the middle of a desert. We shall
see in particular how the Bernoullis contributed much to the transmutation of hydrostatics into hydrodynamics, how d’Alembert was the first
to describe fluid motion using partial differential equations and a general principle linking statics and dynamics, and how Euler developed the
modern concept of internal pressure field which allowed him to apply Newton’s second law to infinitesimal elements of the fluid.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: History of science; Fluid dynamics; Euler equations

Quelques sublimes que soient les recherches sur les fluides, dont nous sommes
redevables à Mrs. Bernoullis, Clairaut, & d’Alembert, elles découlent si
naturellement de mes deux formules générales : qu’on ne scauroit assés admirer
cet accord de leurs profondes méditations avec la simplicité des principes, d’où
j’ai tiré mes deux équations, & auxquels j’ai été conduit immédiatement par les
premiers axiomes de la Mécanique.1

(Leonhard Euler, 1755)

1. Introduction

Leonhard Euler had a strong interest in fluid dynamics and
related subjects during all his adult life. In 1827, at age twenty,
he published an important paper on the theory of sound. In
that paper, he gave a quantitative theory of the oscillations
of the column of air in a flute or similar instruments. On
a slate found after his death on 7 September 1783 he had

! The present article includes large sections of Chapter 1 of Darrigol, 2005,
thanks to the kind permission of Oxford University Press. We mention that one
of the authors (OD) is a theoretical physicist by early training who became a
historian of science some twenty years ago, while the other one (UF) is a fluid
dynamicist interested in Euler’s equations since the seventies.

∗ Corresponding author. Tel.: +33 4 92003035; fax: +33 4 92003058.
E-mail address: uriel@obs-nice.fr (U. Frisch).

1 Euler, 1755c: 316[original publication page]/92[omnia page]: However
sublime the researches on fluids that we owe to Messrs Bernoullis, Clairaut,
and d’Alembert may be, they derive so naturally from my two general formulas
that one could not cease to admire this agreement of their profound meditations
with the simplicity of the principles from which I have drawn my two equations
and to which I have been immediately driven by the first axioms of Mechanics.

developed a theory of aerostatic balloons, having just learned
about the first manned ascent of a balloon designed by the
Montgolfier brothers. Altogether, he published more than forty
papers or books devoted to fluid dynamics and applications.
After his arrival in Saint-Petersburg in 1727, and perhaps
before, Euler was planning a treatise on fluid mechanics based
on the principle of live forces. He recognized the similarity
of his project with Daniel Bernoulli’s and left the field open
to this elder friend. During the fourteen years of his first
Petersburg stay, Euler was actively involved in establishing the
theoretical foundations of naval science, thereby contributing
to the ongoing effort of the Russian state in developing a
modern and powerful fleet. His Sciencia Navalis, completed by
1738 and published in 1749, contained a clear formulation of
hydrostatic laws and their application to the problem of ship
stability. It also involved a few Newtonian considerations on
ship resistance. Soon after his move to Berlin in 1741, he edited
the German translation of Benjamin Robins’s New Principles of
Gunnery, as a consequence of Frederick II’s strong interest in
the science of artillery. Published in 1745, this edition included
much innovative commentary on the problem of the resistance
of the air to the motion of projectiles, especially regarding the
effects of high speed and cavitation.2

2 Euler, 1727, [1784] (balloons), 1745, 1749. For general biography, cf.
Youschkevitch, 1971; Knobloch, 2008 and references therein. On Euler and

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.08.003

http://dx.doi.org/10.1016/j.physd.2007.08.003
http://www.elsevier.com/locate/physd
mailto:uriel@obs-nice.fr
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Today’s fluid dynamics cannot be conceived without the
fundamental basis of Euler’s equations, as they appear in
“Principes généraux du mouvement des fluides”, presented to
the Académie Royale des Sciences et Belles-Lettres (Berlin)
on 4 September 1755 and published in 1757. In Euler’s own
notation, they read:
(

dq
dt

)
+

(
d.qu
dx

)
+

(
d.qv

dy

)
+

(
d.qw

dz

)
= 0

P − 1
q

(
dp
dx

)

=
(

du
dt

)
+ u

(
du
dx

)
+ v

(
du
dy

)
+ w

(
du
dz

)

Q − 1
q

(
dp
dy

)

=
(

dv

dt

)
+ u

(
dv

dx

)
+ v

(
dv

dy

)
+ w

(
dv

dz

)

R − 1
q

(
dp
dz

)

=
(

dw

dt

)
+ u

(
dw

dx

)
+ v

(
dw

dy

)
+ w

(
dw

dz

)
.






(1)

Here, P , Q, and R are the components of an external force, such
as gravity. The modern reader with no special training in the
history of science will nevertheless recognize these equations
and be barely distracted by the use of q instead of ρ for density,
of

(
du
dx

)
instead of ∂u

∂x and of d.qu instead of ∂(qu).3

Euler’s three memoirs on fluid dynamics written in 1755
contain, of course, much more than these equations. They are
immediately intelligible to the modern reader, the arguments
being strikingly close to those given in modern treatises. They
mark the emergence of a new style of mathematical physics
in which fundamental equations take the place of fundamental
principles formulated in ordinary or geometrical language.
Euler’s equations are also the first instance of a nonlinear field
theory and remain to this day shrouded in mystery, contrary for
example to the heat equation introduced by Fourier in 1807 and
the Maxwell equations discovered in 1862.

Our main goal is to trace the development and maturation
of the physical and mathematical concepts, such as internal
pressure, which eventually enabled Euler to produce his
memoirs of the 1750s.4 The emergence of Euler’s equations
was the result of several decades of intense work involving
such great figures as Isaac Newton, Alexis Clairaut, Johann
and Daniel Bernoulli, Jean le Rond d’Alembert . . . and Euler
himself. It is thus also our goal to help the reader to see how
such early work, which is frequently difficult because it is not
couched in modern scientific language, connects with Euler’s

hydraulics, cf. Mikhailov, 1983. On sound, cf. Truesdell, 1955: XXIV–XXIX.
On the early treatise on fluids, cf. Mikhailov, 1999, and pp. 61–62, 80 in Euler,
1998. On naval science, cf. Nowacki, 2006; Truesdell, 1954: XVII–XVIII,
1983. On gunnery, cf. Truesdell, 1954: XXVIII–XLI.

3 Euler, 1755b.
4 Detailed presentations of these may be found in Truesdell’s 1954 landmark

work on Euler and fluid dynamics.

maturing views on continuum mechanics and his papers of the
1750s.

Section 2 is devoted to the first applications of Newtonian
mechanics to fluid flow, from Newton to the Bernoullis.
Whereas Isaac Newton treated a few particular problems
with heteroclite and ad hoc methods, Daniel and Johann
Bernoulli managed to solve a large class of problems through
a uniform dynamical method. Section 3 shows how Jean le
Rond d’Alembert’s own dynamical method and mathematical
creativity permitted a great extension of the investigated class
of flows. Despite its now antiquated formulation, his theory
had many of the key concepts of the modern theory of
incompressible flows. In Section 4 we discuss Euler’s memoirs
of the 1750s. Finally, a few conclusions are presented in
Section 5. Another paper in these Proceedings focuses on
Euler’s 1745 third remark (Theorem 1) à propos Robins’s
Gunnery. This remark, which actually constitutes a standalone
paper of eleven pages on the problem of steady flow around
a solid body, is at the crossroads of eighteenth-century fluid
dynamics: it uses many ideas of the Bernoullis to write the
equations in local coordinates and has been viewed, correctly
or not, as a precursor of d’Alembert’s derivation of the paradox
of vanishing resistance (drag) for ideal flow.5

2. From Newton to the Bernoullis

2.1. Newton’s principia

Through the eighteenth century, the main contexts for
studies of fluid motion were water supply, water-wheels,
navigation, wind-mills, artillery, sound propagation, and
Descartes’s vortex theory. The most discussed questions were
the efflux of water through the short outlet of a vessel, the
impact of a water vein over a solid plane, and fluid resistance
for ships and bullets. Because of its practical importance and
of its analogy with Galilean free-fall, the problem of efflux got
special attention from a few pioneers of Galilean mechanics. In
1644, Evangelista Torricelli gave the law for the velocity of the
escaping fluid as a function of the height of the water level; in
the last quarter of the same century, Edme Mariotte, Christiaan
Huygens, and Isaac Newton tried to improve its experimental
and theoretical foundations of this law.6

More originally, Newton devoted a large section of his
Principia to the problem of fluid resistance, mainly to disprove
the Cartesian theory of planetary motion. One of his results, the
proportionality of inertial resistance to the square of the velocity
of the moving body, only depended on a similarity argument.
His more refined results required some drastically simplified
models of the fluid and its motion. In one model, he treated
the fluid as a set of isolated particles individually impacting
the head of the moving body; in another, he preserved the
continuity of the fluid but assumed a discontinuous, cataract-
like motion around the immersed body. In addition, Newton

5 Grimberg, Pauls and Frisch, 2008. Truesdell, 1954: XXXVIII–XLI.
6 Cf. Truesdell, 1954: IX–XIV; Rouse and Ince, 1957: Chaps. 2–9;

Garbrecht, 1987; Blay, 1992, Eckert, 2005: Chap. 1.
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Fig. 1. Compound pendulum.

investigated the production of a (Cartesian) vortex through the
rotation of a cylinder and thereby assumed shear stresses that
transferred the motion from one coaxial layer of the fluid to
the next. He also explained the propagation of sound through
the elasticity of the air and thereby introduced the (normal)
pressure between successive layers of the air.7

To sum up, Newton introduced two basic, long-lasting con-
cepts of fluid mechanics: internal pressure (both longitudinal
and transverse), and similarity. However, he had no general
strategy for subjecting continuous media to the laws of his new
mechanics. While his simplified models became popular, his
concepts of internal pressure and similarity were long ignored.
As we will see in a moment, much of the prehistory of Euler’s
equation has to do with the difficult reintroduction of internal
pressure as a means to derive the motion of fluid elements. Al-
though we are now accustomed to the idea that a continuum
can be mentally decomposed into mutually pressing portions,
this sort of abstraction long remained suspicious to the pioneers
of Newtonian mechanics.

2.2. Daniel Bernoulli’s hydrodynamica

The Swiss physician and geometer Daniel Bernoulli was
the first of these pioneers to develop a uniform dynamical
method to solve a large class of problems of fluid motion. His
reasoning was based on Leibniz’s principle of live forces, and
modeled after Huygens’s influential treatment of the compound
pendulum in his Horologium oscillatorium (1673).8

Consider a pendulum made of two point masses A and B
rigidly connected to a massless rod that can oscillate around
the suspension point O (Fig. 1). Huygens required the equality
of the “potential ascent” and the “actual descent,” whose
translation in modern terms reads:

mA(v2
A/2g) + mB(v2

B/2g)

mA + mB
= zG, (2)

where m denotes a mass, v a velocity, g the acceleration of
gravity, and zG the descent of the gravity center of the two

7 Cf. Smith, 1998. Newton also discussed waves on water and the shape of a
rotating fluid mass (figure of the Earth).

8 Bernoulli, 1738; Huygens, 1673.

Fig. 2. Parallel-slice flow in a vertical vessel.

masses measured from the highest elevation of the pendulum
during its oscillation. This equation, in which the modern reader
recognizes the conservation of the sum of the kinetic and
potential energies, leads to a first-order differential equation for
the angle θ that the suspending rod makes with the vertical. The
comparison of this equation with that of a simple pendulum
then yields the expression (a2mA + b2mB)/(amA + bmB) for
the length of the equivalent simple pendulum (with a = OA
and b = OB).9

As D. Bernoulli could not fail to observe, there is a close
analogy between this problem and the hydraulic problem of
efflux, as long as the fluid motion occurs by parallel slices.
Under the latter hypothesis, the velocity of the fluid particles
that belong to the same section of the fluid is normal to
and uniform through the section. If, moreover, the fluid is
incompressible and continuous (no cavitation), the velocity in
one section of the vessel completely determines the velocity in
all other sections. The problem is thus reduced to the fall of a
connected system of weights with one degree of freedom only,
just as is the case of a compound pendulum.

This analogy inspired D. Bernoulli’s treatment of efflux.
Consider, for instance, a vertical vessel with a section S
depending on the downward vertical coordinate z (Fig. 2). A
mass of water falls through this vessel by parallel, horizontal
slices. The continuity of the incompressible water implies that
the product Sv is a constant through the fluid mass. The equality
of the potential ascent and the actual descent implies that at
every instant10

∫ z1

z0

v2(z)
2g

S(z)dz =
∫ z1

z0

zS(z)dz, (3)

where z0 and z1 denote the (changing) coordinates of the two
extreme sections of the fluid mass, the origin of the z-axis

9 Cf. Vilain, 2000: 32–36.
10 Bernoulli, 1738: 31–35 gave a differential, geometric version of this

relation.
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Fig. 3. Idealized efflux through small opening (without vena contracta).

coincides with the position of the center of gravity of this mass
at the beginning of the fall, and the units are chosen so that
the density of the fluid is one. As v(z) is inversely proportional
to the known function S of z, this equation yields a relation
between z0 and v(z0) = ż0, which can be integrated to give the
motion of the highest fluid slice, and so forth. D. Bernoulli’s
investigation of efflux amounted to a repeated application of
this procedure to vessels of various shapes.

The simplest sub-case of this problem is that of a broad
container with a small opening of section s on its bottom
(Fig. 3). As the height h of the water varies very slowly, the
escaping velocity quickly reaches a steady value u. As the
fluid velocity within the vessel is negligible, the increase of the
potential ascent in the time dt is simply given by the potential
ascent (u2/2g)sudt of the fluid slice that escapes through the
opening at the velocity u. This quantity must be equal to the
actual descent hsudt . Therefore, the velocity u of efflux is the
velocity

√
2gh of free fall from the height h, in conformity with

Torricelli’s law.11

D. Bernoulli’s most innovative application of this method
concerned the pressure exerted by a moving fluid on the walls
of its container, a topic of importance for the physician and
physiologist he also was. Previous writers on hydraulics and
hydrostatics had only considered the hydrostatic pressure due
to gravity. In the case of a uniform gravity g, the pressure per
unit area on a wall portion was known to depend only on the
depth h of this portion below the free water surface. According
to the law enunciated by Simon Stevin in 1605, it is given by
the weight gh of a water column (of unit density) that has a unit
normal section and the height h. In the case of a moving fluid,
D. Bernoulli defined and derived the “hydraulico-static” wall
pressure as follows.12

The section S of the vertical vessel ABCG of Fig. 4 is
supposed to be much larger than the section s of the appended
tube EFDG, which is itself much larger than the section ε of

11 Bernoulli, 1738: 35. This reasoning assumes a parallel motion of the
escaping fluid particle. Therefore, it only gives the velocity u beyond the
contraction of the escaping fluid vein that occurs near the opening (Newton’s
vena contracta): cf. Lagrange, 1788: 430–431; Smith, 1998.
12 Bernoulli, 1738: 258–260. Mention of physiological applications is found

in D. Bernoulli to Shoepflin, 25 Aug 1734, in Bernoulli, 2002: 89: “Hydraulico-
statics will also be useful to understand animal economy with respect to the
motion of fluids, their pressure on vessels, etc.”

Fig. 4. Daniel Bernoulli’s figure accompanying his derivation of the velocity-
dependence of pressure (1738: plate).

the hole o. Consequently, the velocity u of the water escaping
through o is

√
2gh. Owing to the conservation of the flux, the

velocity v within the tube is (ε/s)u. D. Bernoulli goes on to
say:13

If in truth there were no barrier FD, the final velocity of the water in the same
tube would be [ s/ε times greater]. Therefore, the water in the tube tends to a
greater motion, but its pressing [nisus] is hindered by the applied barrier FD.
By this pressing and resistance [nisus et renisus] the water is compressed [com-
primitur], which compression [compressio] is itself kept in by the walls of the
tube, and thence these too sustain a similar pressure [pressio]. Thus it is plain
that the pressure [pressio] on the walls is proportional to the acceleration. . . that
would be taken on by the water if every obstacle to its motion should instanta-
neously vanish, so that it were ejected directly into the air.

Based on this intuition, D. Bernoulli imagined that the tube
was suddenly broken at ab, and made the wall pressure P
proportional to the acceleration dv/dt of the water at this
instant. According to the principle of live forces, the actual
descent of the water during the time dt must be equal to the
potential ascent it acquires while passing from the large section
S to the smaller section s, plus the increase of the potential
ascent of the portion EabG of the fluid. This gives (the fluid
density is one)

hsvdt = v2

2g
svdt + bsd

(
v2

2g

)
, (4)

where b = Ea. The resulting value of the acceleration dv/dt
is (gh − v2/2)/b. The wall pressure P must be proportional to
this quantity, and it must be identical to the static pressure gh
in the limiting case v = 0. It is therefore given by the equation

P = gh − 1
2
v2, (5)

13 Bernoulli, 1738: 258–259, translated in Truesdell, 1954: XXVII. The
compressio in this citation perhaps prefigures the internal pressure later
introduced by Johann Bernoulli.
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Fig. 5. Effects of the velocity-dependence of pressure according to Bernoulli
(1738: plate).

which means that the pressure exerted by a moving fluid on the
walls is lower than the static pressure, the difference being half
the squared velocity (times the density). D. Bernoulli illustrated
this effect in two ways (Fig. 5): by connecting a narrow vertical
tube to the horizontal tube EFDG, and by letting a vertical jet
surge from a hole on this tube. Both reach a water level well
below AB.

The modern reader may here recognize Bernoulli’s law. In
fact, D. Bernoulli did not quite write Eq. (5), because he chose
the ratio s/ε rather than the velocity v as the relevant variable.
Also, he only reasoned in terms of wall pressure, whereas
modern physicists apply Bernoulli’s law to the internal pressure
of a fluid.

There were other limitations to D. Bernoulli’s considera-
tions, of which he was largely aware. He knew that in some
cases, part of the live force of the water went to eddying motion,
and he even tried to estimate this loss in the case of a suddenly
enlarged conduit. He was also aware of the imperfect fluidity of
water, although he decided to ignore it in his reasoning. Most
importantly, he knew that the hypothesis of parallel slices only
held for narrow vessels and for gradual variations of their sec-
tions. But his method confined him to this case, since it is only
for systems with one degree of freedom that the conservation of
live forces suffices to determine the motion.14

To summarize, by means of the principle of live forces,
Daniel Bernoulli was able to solve many problems of quasi-
onedimensional flow and thereby related wall pressure to
fluid velocity. This unification of hydrostatic and hydraulic
considerations justified the title Hydrodynamica which he gave
to the treatise he published in 1738 in Strasbourg. Besides
the treatment of efflux, this work included all the typical
questions of contemporary hydraulics except fluid resistance
(which D. Bernoulli probably judged as being beyond the scope
of his methods), a kinetic theory of gases, and considerations on
Cartesian vortices. It is rightly regarded as a major turning point
in the history of hydrodynamics, because of the uniformity and

14 Bernoulli, 1738: 12 (eddies), 124 (enlarged conduit); 13 (imperfect fluid).

rigor of its dynamical method, the depth of physical insight, and
the abundance of long-lasting results.15

2.3. Johann Bernoulli’s hydraulica

In 1742, Daniel’s father Johann Bernoulli published his
Hydraulica, with an antedate that made it seem anterior to his
son’s treatise. Although he had been the most ardent supporter
of Leibniz’s principle of live forces, he now regarded this
principle as an indirect consequence of more fundamental laws
of mechanics. His asserted aim was to base hydraulics on an
incontrovertible, Newtonian expression of these laws. To this
end he adapted a method he had invented in 1714 to solve the
paradigmatic problem of the compound pendulum.

Consider again the pendulum of Fig. 1. According to
J. Bernoulli, the gravitational force mBg acting on B is
equivalent to a force (b/a)mBg acting on A, because according
to the law of levers two forces that have the same moment have
the same effect. Similarly, the “accelerating force” mBbθ̈ of the
mass B is equivalent to an accelerating force (b/a)mBbθ̈ =
mB(b/a)2aθ̈ at A. Consequently, the compound pendulum is
equivalent to a simple pendulum with a mass mA + (b/a)2mB
located on A and subjected to the effective vertical force mAg+
(b/a)mBg. It is also equivalent to a simple pendulum of length
(a2mA + b2mB)/(amA + bmB) oscillating in the gravity g,
in conformity with Huygens’ result. In sum, Johann Bernoulli
reached his equation of motion by applying Newton’s second
law to a fictitious system obtained by replacing the forces
and the momentum variations at any point of the system with
equivalent forces and momentum variations at one point of the
system. This replacement, based on the laws of equilibrium
of the system, is what J. Bernoulli called “translation” in the
introduction to his Hydraulica.16

Now consider the canonical problem of water flowing by
parallel slices through a vertical vessel of varying section
(Fig. 2). J. Bernoulli “translates” the weight gSdz of the
slice dz of the water to the location z1 of the frontal section
of the fluid. This gives the effective weight S1gdz, because
according to a well-known law of hydrostatics, a pressure
applied at any point of the surface of a confined fluid is
uniformly transmitted to any other part of the surface of the
fluid. Similarly, J. Bernoulli translates the “accelerating force”
(momentum variation) (dv/dt)Sdz of the slice dz to the frontal
section of the fluid, with the result (dv/dt)S1dz. He then obtains
the equation of motion by equating the total translated weight
to the total translated accelerating force as:

S1

∫ z1

z0

gdz = S1

∫ z1

z0

dv

dt
dz. (6)

For J. Bernoulli the crucial point was the determination of the
acceleration dv/dt . Previous authors, he contended, had failed

15 On the Hydrodynamica, cf. Truesdell, 1954: XXIII–XXXI; Calero, 1996:
422–459; Mikhailov, 2002.
16 Bernoulli, 1714; 1742: 395. In modern terms, J. Bernoulli’s procedure

amounts to equating the sum of moments of the applied forces to the sum of
moments of the accelerating forces (which is the time derivative of the total
angular momentum). Cf. Vilain, 2000: 448–450.
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to derive correct equations of motion from the general laws of
mechanics because they were only aware of one contribution
to the acceleration of the fluid slices: that which corresponds
to the instantaneous change of velocity at a given height z,
or ∂v/∂t in modern terms. They ignored the acceleration due
to the broadening or to the narrowing of the section of the
vessel, which J. Bernoulli called a gurges (gorge). In modern
terms, he identified the convective component v(∂v/∂z) of the
acceleration. Note that his use of partial derivatives was only
implicit: thanks to the relation v = (S0/S)v0, he could split v

into a time dependent factor v0 and a z-dependent factor S0/S
and thus express the total acceleration as (S0/S)(dv0/dt) −
(v2

0 S2
0/S3)(dS/dz).17

Thanks to the gurges, J. Bernoulli successfully applied Eq.
(6) to various cases of efflux and retrieved his son’s results.18

He also offered a novel approach to the pressure of a moving
fluid on the side of its container. This pressure, he asserted,
was nothing but the pressure or vis immaterialis that contiguous
fluid parts exerted on one another, just as two solids in contact
act on each other:19

The force that acts on the side of the channel through which the liquid flows. . . is
nothing but the force that originates in the force of compression through which
contiguous parts of the fluid act on one another.

Accordingly, J. Bernoulli divided the flowing mass of water
into two parts separated by the section z = ζ . Following the
general idea of “translation”, the pressure that the upper part
exerts on the lower part is:

P(ζ ) =
∫ ζ

z0

(g − dv/dt)dz. (7)

More explicitly, this is:

P(ζ ) =
∫ ζ

z0

gdz −
∫ ζ

z0

v
∂v

∂z
dz −

∫ ζ

z0

∂v

∂t
dz

= g(ζ − z0) − 1
2
v2(ζ ) + 1

2
v2(z0) − ∂

∂t

∫ ζ

z0

vdz. (8)

In a widely different notation, J. Bernoulli thus obtained a
generalization of his son’s law to non-stationary parallel-slice
flows.20

17 Bernoulli, 1742: 432–437. He misleadingly called the two parts of
the acceleration the “hydraulic”and the “hydrostatic” components. Truesdell
(1954: XXXIII) translates gurges as “eddy” (it does have this meaning in
classical latin), because in the case of sudden (but small) decrease of section
J. Bernoulli imagined a tiny eddy at the corners of the gorge. In his treatise
on the equilibrium and motion of fluids (1744: 157), d’Alembert interpreted
J. Bernoulli’s expression of the acceleration in terms of two partial differentials.
18 D’Alembert later explained this agreement: see below, pp. 7–8.
19 Bernoulli, 1742: 442.
20 Bernoulli, 1742: 444. His notation for the internal pressure was π . In the

first section of his Hydraulica, which he communicated to Euler in 1739, he
only treated the steady flow in a suddenly enlarged tube. In his enthusiastic
reply (5 May 1739, in Euler, 1998: 287–295), Euler treated the accelerated
efflux from a vase of arbitrary shape with the same method of “translation,”
not with the later method of balancing gravity with internal pressure gradient,
contrary to Truesdell’s claim (1954: XXXIII). J. Bernoulli subsequently wrote
his second part, where he added the determination of the internal pressure to
Euler’s treatment.

J. Bernoulli interpreted the relevant pressure as an internal
pressure analogous to the tension of a thread or the mutual
action of contiguous solids in connected systems. Yet, he did
not rely on this new concept of pressure to establish the
equation of motion (6). He only introduced this concept as a
short-cut to the velocity-dependence of wall-pressure.21

To summarize, Johann Bernoulli’s Hydraulica departed
from his son’s Hydrodynamica through a more direct reliance
on Newton’s laws. This approach required the new concept
of a convective derivative. It permitted a generalization of
Bernoulli’s law to the pressure in a non-steady flow. J. Bernoulli
had a concept of internal pressure, although he did not use it in
his derivation of his equation of fluid motion. Like his son’s,
his dynamical method was essentially confined to systems with
one degree of freedom only, so that he could only treat flow by
parallel slices.

3. D’Alembert’s fluid dynamics

3.1. The principle of dynamics

In 1743, the French geometer and philosopher Jean le
Rond d’Alembert published his influential Traité de dynamique,
which subsumed the dynamics of connected systems under
a few general principles. The first illustration he gave of
his approach was Huygens’s compound pendulum. As we
saw, Johann Bernoulli’s solution to this problem leads to the
equation of motion:

mAg sin θ + (b/a)mBg sin θ = mAaθ̈ + (b/a)mBbθ̈ , (9)

which may be rewritten as

a(mAg sin θ − mAaθ̈ ) + b(mBg sin θ − mBbθ̈ ) = 0. (10)

The latter is the condition of equilibrium of the pendulum
under the action of the forces mAg − mAγ A and mBg − mBγ B
acting respectively on A and B. In d’Alembert’s terminology,
the products mAg and mBg are the motions impressed (per
unit time) on the bodies A and B under the sole effect of
gravitation (without any constraint). The products mAγ A and
mBγ B are the actual changes of their (quantity of) motion (per
unit time). The differences mAg − mAγ A and mBg − mBγ B
are the parts of the impressed motions that are destroyed by the
rigid connection of the two masses through the freely rotating
rod. Accordingly, d’Alembert saw in Eq. (10) a consequence
of a general dynamic principle following which the motions
destroyed by the connections should be in equilibrium.22

D’Alembert based his dynamics on three laws, which
he regarded as necessary consequences of the principle of
sufficient reason. The first law is that of inertia, according to
which a freely moving body moves with a constant velocity
in a constant direction. The second law stipulates the vector

21 For a different view, cf. Truesdell, 1954: XXXIII; Calero, 1996: 460–474.
22 D’Alembert, 1743: 69–70. Cf. Vilain, 2000: 456–459. D’Alembert

reproduced and criticized Johann Bernoulli’s derivation on p. 71. On
Jacob Bernoulli’s anticipation of d’Alembert’s principle, cf. Lagrange, 1788:
176–177, 179–180; Dugas, 1950: 233–234; Vilain, 2000: 444–448.
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superposition of motions impressed on a given body. According
to the third law, two (ideally rigid) bodies come to rest after
a head-on collision if and only if their velocities are inversely
proportional to their masses. From these three laws and further
recourse to the principle of sufficient reason, d’Alembert
believed he could derive a complete system of dynamics
without recourse to the older, obscure concept of force as cause
of motion. He defined force as the motion impressed on a
body, that is, the motion that a body would take if this force
were acting alone without any impediment. Then the third law
implies that two contiguous bodies subjected to opposite forces
are in equilibrium. More generally, d’Alembert regarded statics
as a particular case of dynamics in which the various motions
impressed on the parts of the system mutually cancel each
other.23

Based on this conception, d’Alembert derived the principle
of virtual velocities, according to which a connected system
subjected to various forces remains in equilibrium if the work of
these forces vanishes for any infinitesimal motion of the system
that is compatible with the connections.24 As for the principle
of dynamics, he regarded it as a self-evident consequence of
his dynamic concept of equilibrium. In general, the effect of
the connections in a connected system is to destroy part of
the motion that is impressed on its components by means
of external agencies. The rules of this destruction should be
the same whether the destruction is total or partial. Hence,
equilibrium should hold for that part of the impressed motions
that is destroyed through the constraints. This is d’Alembert’s
principle of dynamics. Stripped of d’Alembert’s philosophy
of motion, this principle stipulates that a connected system in
motion should be at any time in equilibrium with respect to the
fictitious forces f − mγ , where f denotes the force applied on
the mass point m of the system, and γ is the acceleration of this
mass point.

3.2. Efflux revisited

At the end of his treatise on dynamics, d’Alembert
considered the hydraulic problem of efflux through the vessel
of Fig. 2. His first task was to determine the condition of
equilibrium of a fluid when subjected to an altitude-dependent
gravity g(z). For this purpose, he considered an intermediate
slice of the fluid, and required the pressure from the fluid above
this slice to be equal and opposite to the pressure from the fluid
below this slice. According to a slight generalization of Stevin’s
hydrostatic law, these two pressures are given by the integral of
the variable gravity g(z) over the relevant range of elevation.
Hence the equilibrium condition reads:25

S(ζ )

∫ ζ

z0

g(z)dz = −S(ζ )

∫ z1

ζ
g(z)dz, (11)

23 D’Alembert, 1743: xiv–xv, 3. Cf. Hankins, 1968; Fraser, 1985.
24 The principle of virtual velocities was first stated generally by Johann

Bernoulli and thus named by Lagrange (1788: 8–11). Cf. Dugas, 1950:
221–223, 320. The term ’work’ is, of course, anachronistic.
25 D’Alembert, 1743: 183–186.

or
∫ z1

z0

g(z)dz = 0. (12)

According to d’Alembert’s principle, the motion of the fluid
under a constant gravity g must be such that the fluid is in
equilibrium under the fictitious gravity g(z) = g−dv/dt , where
dv/dt is the acceleration of the fluid slice at the elevation z.
Hence comes the equation of motion
∫ z1

z0

(
g − dv

dt

)
dz = 0, (13)

which is the same as Johann Bernoulli’s equation (6). In
addition, d’Alembert proved that this equation, together with
the constancy of the product Sv, implied the conservation
of live forces in Daniel Bernoulli’s form (Eq. (3)). In his
subsequent treatise of 1744 on the equilibrium and motion
of fluids, d’Alembert provided a similar treatment of efflux,
including his earlier derivations of the equation of motion and
the conservation of live forces, with a slight variant: he now
derived the equilibrium condition (13) by setting the pressure
acting on the bottom slice of the fluid to zero.26 Presumably, he
did not want to base his equations of equilibrium and motion
on the concept of internal pressure, in conformity with his
general avoidance of internal contact forces in his dynamics.
His statement of the general conditions of equilibrium of a
fluid, as found at the beginning of his treatise, only required the
concept of wall-pressure. Yet, in a later section of his treatise
d’Alembert introduced “the pressure at a given height”:

P(ζ ) =
∫ ζ

z0

(g − dv/dt)dz, (14)

just as Johann Bernoulli had done, and for the same purpose of
deriving the velocity dependence of wall-pressure.27

In the rest of his treatise, d’Alembert solved problems
similar to those of Daniel Bernoulli’s Hydrodynamica,
with nearly identical results. The only important difference
concerned cases involving the sudden impact of two layers of
fluids. Whereas Daniel Bernoulli still applied the conservation
of live forces in such cases (save for possible dissipation into
turbulent motion), d’Alembert’s principle of dynamics there
implied a destruction of live force. Daniel Bernoulli disagreed
with these and a few other changes. In a contemporary letter
to Euler, he expressed his exasperation over d’Alembert’s
treatise:28

I have seen with astonishment that apart from a few little things there is nothing
to be seen in his hydrodynamics but an impertinent conceit. His criticisms are
puerile indeed, and show not only that he is no remarkable man, but also that
he never will be.29

26 D’Alembert, 1743: 19–20.
27 D’Alembert, 1743: 139.
28 D. Bernoulli to Euler, 7 Jul 1745, quoted in Truesdell, 1954: XXXVIIn.
29 This is but an instance of the many cutting remarks exchanged between

eighteenth-century geometers; further examples are not needed here.
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3.3. The cause of winds

In this judgment, Daniel Bernoulli overlooked that
d’Alembert’s hydrodynamics, being based on a general
dynamics of connected systems, lent itself to generalizations
beyond parallel-slice flow. D’Alembert offered striking
illustrations of the power of his approach in a prize-winning
memoir published in 1747 on the cause of winds.30 As thermal
effects were beyond the grasp of contemporary mathematical
physics, he focused on a cause that is now known to be
negligible: the tidal force exerted by the luminaries (the Moon
and the Sun). For simplicity, he confined his analysis to the
case of a constant-density layer of air covering a spherical globe
with uniform thickness. He further assumed that fluid particles
originally on the same vertical line remained so in the course
of time and that the vertical acceleration of these particles
was negligible (owing to the thinness of the air layer), and
he neglected second-order quantities with respect to the fluid
velocity and to the elevation of the free surface. His strategy
was to apply his principle of dynamics to the motion induced
by the tidal force f and the terrestrial gravity g, both of which
depend on the location on the surface of the Earth.31

Calling γ the absolute acceleration of the fluid particles, the
principle requires that the fluid layer should be in equilibrium
under the force f + g + γ (the density of the air is one
in the chosen units). From earlier theories of the shape of
the Earth (regarded as a rotating liquid spheroid), d’Alembert
borrowed the equilibrium condition that the net force should
be perpendicular to the free surface of the fluid. He also
required that the volume of vertical cylinders of fluid should
not be altered by their motion, in conformity with his constant-
density model. As the modern reader would expect, from these
two conditions d’Alembert derived some sort of momentum
equation, and some sort of incompressibility equation. He did
so in a rather opaque manner. Some features, such as the lack
of specific notation for partial differentials or the abundant
recourse to geometrical reasoning, disconcert modern readers
only.32 Others were problematic to his contemporaries: he
often omitted steps and introduced special assumptions without
warning. Also, he directly treated the utterly difficult problem
of fluid motion on a spherical surface without preparing the
reader with simpler problems.

30 As a member of the committees judging the Berlin Academy’s prizes on
winds and on fluid resistance (he could not compete as a resident member),
Euler studied d’Alembert’s submitted memoirs of 1747 and 1749. The subject
set for the first prize, probably written by Euler, was “to determine the order
& the law wind should follow, if the Earth were surrounded on all sides by the
Ocean; so that one could at all times predict the speed & direction of the wind
in all places.” The question is here formulated in terms of what we now call
Eulerian coordinates (“all places”), cf. Grimberg, 1998: 195.
31 D’Alembert, 1747. D’Alembert treated the rotation of the Earth and the

attraction by the Sun and the Moon as small perturbing causes whose effects
on the shape of the fluid surface simply added (D’Alembert, 1747: xvii, 47).
Consequently, he overlooked the Coriolis force in his analysis of the tidal
effects (in D’Alembert, 1747: 65, he writes he will be doing as if it were the
luminary that rotates around the Earth).
32 D’Alembert used a purely geometrical method to study the free oscillations

of an ellipsoidal disturbance of the air layer.

Fig. 6. Spherical coordinates for d’Alembert’s atmospheric tides. The fat line
represents the visible part of the equator, over which the luminary is orbiting.
N is the North pole.

Suppose, with d’Alembert, that the tide-inducing luminary
orbits above the equator (with respect to the Earth).33 Using
the modern terminology for spherical coordinates, call θ the
colatitude of a given point of the terrestrial sphere with respect
to an axis pointing toward the orbiting luminary, φ the longitude
measured from the meridian above which the luminary is
orbiting (this is not the geographical longitude), η the elevation
of the free surface of the fluid layer over its equilibrium
position, vθ and vφ the θ - and φ-components of the fluid
velocity with respect to the Earth, h the depth of the fluid in
its undisturbed state, and R the radius of the Earth (see Fig. 6).

D’Alembert first considered the simpler case when φ is
negligibly small, for which he expected the component vφ also
to be negligible. To first order in η and v, the conservation of
the volume of a vertical column of fluid yields:

1
h

η̇ + 1
R

∂vθ

∂θ
+ vθ

R tan θ
= 0, (15)

which means that an increase of the height of the column is
compensated for by a narrowing of its basis (the dot denotes the
time derivative at a fixed point of the Earth surface). Since the
tidal force f is much smaller than the gravity g, the vector sum
f + g − γ makes an angle ( fθ − γθ )/g with the vertical. To first
order in η, the inclination of the fluid surface over the horizontal
is (∂η/∂θ)/R. Therefore, the condition that f + g − γ should
be perpendicular to the surface of the fluid is approximately
identical to34

γθ = fθ − g
R

∂η

∂θ
. (16)

As d’Alembert noted, this equation of motion can also be
obtained by equating the horizontal acceleration of a fluid slice

33 The sun and the moon actually do not, but the variable part of their action
is proportional to that of such a luminary.
34 D’Alembert, 1747: 88–89 (formulas A and B). The correspondence with

d’Alembert’s notation is given by: θ %→ u, vθ %→ q, ∂η/∂θ %→ −v, R/hω %→ ε,
R/gK %→ 3S/4pd3 (with f = −K sin 2θ ).
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to the sum of the tidal component fθ and of the difference
between the pressures on both sides of this slice. Indeed, the
neglect of the vertical acceleration implies that at a given height,
the internal pressure of the fluid varies as the product gη.
Hence, d’Alembert was aware of two routes to the equation
of motion, through his dynamic principle, or through an
application of the momentum law to a fluid element subjected
to the pressure of contiguous elements. In some sections he
favored the first route, in others the second.35

In his expression of the time variations η̇ and v̇θ , d’Alembert
considered only the forced motion of the fluid for which the
velocity field and the free surface of the fluid rotate together
with the tide-inducing luminary at the angular velocity −ω.
Then the values of η and vθ at the colatitude θ and at the time
t + dt are equal to their values at the colatitude θ + ωdt and at
the time t . This gives

v̇θ = ω
∂vθ

∂θ
, η̇ = ω

∂η

∂θ
. (17)

D’Alembert equated the relative acceleration v̇θ with the
acceleration γθ , for he neglected the second-order convective
terms, and judged the absolute rotation of the Earth as
irrelevant (he was aware of the centripetal acceleration, but
treated the resulting permanent deformation of the fluid surface
separately; and he overlooked the Coriolis acceleration). With
these substitutions, his Eqs. (15) and (16) become ordinary
differential equations with respect to the variable θ .

D’Alembert eliminated η from these two equations, and
integrated the resulting differential equation for Newton’s value
−K sin 2θ of the tide-inducing force fθ . In particular, he
showed that the phase of the tides (concordance or opposition)
depended on whether the rotation period 2π/ω of the luminary
was smaller or larger than the quantity 2π R/

√
gh, which he

had earlier shown to be identical with the period of the free
oscillations of the fluid layer.36

In another section of his memoir, d’Alembert extended his
equations to the case when the angle φ is no longer negligible.
Again, he had the velocity field and the free surface of the
fluid rotate together with the luminary at the angular velocity
−ω. Calling Rωdt the operator for the rotation of the angle ωdt
around the axis joining the center of the Earth and the luminary
and v(P, t) the velocity vector at point P and at time t , we have:

v(P, t + dt) = Rωdt v(Rωdt P, t). (18)

Expressing this relation in spherical coordinates, d’Alembert
obtained:

35 D’Alembert, 1747: 88–89. He represented the internal pressure by the
weight of a vertical column of fluid. In his discussion of the condition
of equilibrium (1747: 15–16), he introduced the balance of the horizontal
component of the external force acting on a fluid element and the difference
of weight of the two adjacent columns as “another very easy method” for
determining the equilibrium. In the case of tidal motion with φ ≈ 0, he directly
applied this condition of equilibrium to the “destroyed motion” f + g − γ . In
the general case (D’Alembert, 1747: 112–113), he used the perpendicularity of
f + g − γ to the free surface of the fluid.
36 The elimination of η leads to the easily integrable equation

(gh − R2ω2)dvθ + ghd(sin θ)/ sin θ − R2ωK sin θd(sin θ) = 0.

v̇θ = ω

(
∂vθ

∂θ
cos φ − ∂vθ

∂φ

sin φ

tan θ
− vφ sin φ sin θ

)
, (19)

v̇φ = ω

(
∂vφ

∂θ
cos φ − ∂vφ

∂φ

sin φ

tan θ
+ vθ sin φ sin θ

)
. (20)

For the same reasons as before, d’Alembert identified these
derivatives with the accelerations γθ and γφ . He then applied
his dynamic principle to get:

γθ = fθ − g
R

∂η

∂θ
, (21)

γφ = − g
R sin θ

∂η

∂φ
. (22)

Lastly, he obtained the continuity condition:

η̇ = ω

(
∂η

∂θ
cos φ − ∂η

∂φ

sin φ

tan θ

)

= −
(

∂vθ

∂θ
+ vθ

tan θ
+ 1

sin θ

∂vφ

∂φ

)
, (23)

in which the modern reader recognizes the expression of a
divergence in spherical coordinates.37

D’Alembert judged the resolution of this system to be
beyond his capability. The purpose of this section of his memoir
was to illustrate the power and generality of his method for
deriving hydrodynamic equations. For the first time, he gave
the complete equations of motion of an incompressible fluid in
a genuinely two-dimensional case. Thus emerged the velocity
field and partial derivatives with respect to two independent
spatial coordinates. Although Alexis Fontaine and Euler had
earlier developed the needed calculus of differential forms,
d’Alembert was first to apply it to the dynamics of continuous
media. His notation of course differed from the modern one:
where we now write ∂ f/∂x , Fontaine wrote d f/dx , and
d’Alembert often wrote A, with d f = Adx + Bdy + · · · .

3.4. The resistance of fluids

In 1749 d’Alembert submitted a Latin manuscript on the
resistance of fluids for another Berlin prize, and failed to win.
The Academy judged that none of the competitors had reached
the point of comparing his theoretical results with experiments.
D’Alembert did not deny the importance of this comparison
for the improvement of ship design. But he judged that the
relevant equations could not be solved in the near future, and
that his memoir deserved consideration for its methodological
innovations. In 1752, he published an augmented translation of
this memoir as a book.38

37 D’Alembert, 1747: 111–114 (Eqs. E, F, G, H, I). To complete the
correspondence given in note (36), take φ %→ A, vφ %→ η, γθ %→ π , γφ %→ ϕ,
g/R %→ p, ∂η/∂θ %→ −ρ, ∂η/∂φ %→ −σ , ∂vθ /∂θ %→ r , ∂vθ /∂φ %→ λ,
∂vφ/∂θ %→ γ , ∂vφ/∂φ %→ β. D’Alembert has the ratio of two sines instead
of the product in the last term of Eqs. (19) and (20). An easy, modern way
to obtain these equations is to rewrite (18) as v̇ = [(ω × r) · ∇]v + ω × v,
with v = (0, vθ , vφ), r = (R, 0, 0), ω = ω(sin θ sin φ, cos θ sin φ, cos φ), and
∇ = (∂r , ∂θ /R, ∂φ/(R sin θ)) in the local basis.
38 D’Alembert, 1752: xxxviii. For an insightful study of d’Alembert’s work

on fluid resistance, cf. Grimberg, 1998 (which also contains a transcript of
the Latin manuscript submitted for the Berlin prize). See also Calero, 1996:
Chapter 8.
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Compared with the earlier treatise on the equilibrium and
motion of fluids, the first important difference was a new
formulation of the laws of hydrostatics. In 1744, d’Alembert
started with the uniform and isotropic transmissibility of
pressure by any fluid (from one part of its surface to another).
He then derived the standard laws of this science, such as
the horizontality of the free surface and the depth-dependence
of wall-pressure, by qualitative or geometrical reasoning. In
contrast, in his new memoir he relied on a mathematical
principle borrowed from Alexis-Claude Clairaut’s memoir of
1743 on the shape of the Earth. According to this principle, a
fluid mass subjected to a force density f is in equilibrium if
and only if the integral

∫
f · dl vanishes over any closed loop

within the fluid and over any path whose ends belong to the
free surface of the fluid.39

D’Alembert regarded this principle as a mathematical ex-
pression of his earlier principle of the uniform transmissibility
of pressure. If the fluid is globally in equilibrium, he reasoned,
it must also be in equilibrium within any narrow canal of sec-
tion ε belonging to the fluid mass. For a canal beginning and
ending on the free surface of the fluid, the pressure exerted by
the fluid on each of the extremities of the canal must vanish. Ac-
cording to the principle of uniform transmissibility of pressure,
the force f acting on the fluid within the length dl of the canal
exerts a pressure ε f · dl that is transmitted to both ends of the
canal (with opposite signs). As the sum of these pressures must
vanish, so does the integral

∫
f ·dl. This reasoning, and a similar

one for closed canals, establish d’Alembert’s new principle of
equilibrium.40

Applying this principle to an infinitesimal loop, d’Alembert
obtained (the Cartesian-coordinate form of) the differential
condition

∇ × f = 0, (24)

as Clairaut had already done. Combining it with his principle
of dynamics, and confining himself to the steady motion
(∂v/∂t = 0, so that γ = (v · ∇)v) of an incompressible fluid,
he obtained the two-dimensional, Cartesian-coordinate version
of

∇ × [(v · ∇)v] = 0, (25)

which means that the fluid must formally be in equilibrium with
respect to the convective acceleration. D’Alembert then showed
that this condition was met whenever ∇ × v = 0. Confusing a
sufficient condition with a necessary one, he concluded that the
latter property of the flow held generally.41

39 D’Alembert, 1752: 14–17. On the early history of theories of the figure of
the Earth, cf. Todhunter, 1873. On Clairaut, cf. Passeron, 1995. On Clairaut’s
principle and Newton’s and MacLaurin’s partial anticipations, cf. Truesdell,
1954: XIV–XXII.
40 As is obvious to the modern reader, this principle is equivalent to the

existence of a single-valued function (P) of which f is the gradient and which
has a constant value on the free surface of the fluid. The canal equilibrium
results from the principle of solidification, the history of which is discussed in
Casey, 1992.
41 D’Alembert, 1752: art. 78. The modern hydrodynamicist recognizes in Eq.

(25) a particular case of the vorticity equation. The condition ∇ × v = 0 is that
of irrotational flow.

Fig. 7. Flow around a solid body according to D’Alembert (1752: plate 13).

This property nonetheless holds in the special case of motion
investigated by d’Alembert, that is, the stationary flow of an
incompressible fluid around a solid body when the flow is
uniform far away from the body (Fig. 7). In this limited case,
d’Alembert gave a correct proof of which a modernized version
follows.42

Consider two neighboring lines of flow beginning in the
uniform region of the flow and ending in any other part of
the flow, and connect the extremities through a small segment.
According to d’Alembert’s principle together with the principle
of equilibrium, the integral

∮
(v·∇)v·dr vanishes over this loop.

Using the identity

(v · ∇)v = ∇
(

1
2

v2
)

− v × (∇ × v), (26)

this implies that the integral
∮
(∇ × v) · (v × dr) also vanishes.

The only part of the loop that contributes to this integral is that
corresponding to the little segment joining the end points of
the two lines of flow. Since the orientation of this segment is
arbitrary, ∇ × v must vanish.

D’Alembert thus derived the condition

∇ × v = 0 (27)

from his dynamical principle. In addition, he obtained the
(incompressibility) condition

∇ · v = 0 (28)

by considering the deformation of a small parallelepiped of
fluid during an infinitesimal time interval. More exactly, he

42 For a more literal rendering of d’Alembert’s proof, cf. Grimberg,
1998: 43–48.
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Fig. 8. D’Alembert’s drawing for a first proof of the incompressibility
condition. He takes an infinitesimal prismatic volume NBDCC’N’B’D’ (upper
figure). The faces NBDC and N’B’D’C’ are rectangles in planes passing
through the axis of symmetry AP; after an infinitesimal time dt the points
NBDC have moved to nbdc (lower figure). Expressing the conservation
of volume and neglecting higher-order infinitesimals, he obtains Eq. (29).
From the 1749 manuscript in the Berlin-Brandeburgische Akademie der
Wissenschaften; courtesy Wolfgang Knobloch and Gérard Grimberg.

obtained the special expressions of these two conditions in the
two-dimensional case and in the axially-symmetric case. In the
latter case, he wrote the incompressibility condition as:

dq
dx

+ dp
dz

= p
z
, (29)

where z and x are the radial and axial coordinates and p and
q the corresponding components of the velocity. D’Alembert’s
1749 derivation (repeated in his 1752 book) is illustrated by a
geometrical construction (Fig. 8).43

In order to solve the system Eqs. (27) and (28) in the two-
dimensional case, d’Alembert noted that the two conditions
meant that the forms udx + vdy and vdx − udy were exact
differentials (u and v denote the velocity components along
the orthogonal axes Ox and Oy). This property holds, he
ingeniously noted, if and only if (u − iv)(dx + idy) is an
exact differential. This means that u and −v are the real and
imaginary parts of a (holomorphic) function of the complex
variable x + iy. They must also be such that the velocity
is uniform at infinity and at a tangent to the body along
its surface. D’Alembert struggled to meet these boundary
conditions through power-series developments, to little avail.44

43 It thus would seem appropriate to use “d’Alembert’s condition” when
referring to the condition of incompressibility, written as a partial differential
equation.
44 D’Alembert, 1752: 60–62. D’Alembert here discovered the

Cauchy–Riemann condition for u and −v to be the real and imaginary
components of an analytic function in the complex plane, as well as a
powerful method to solve Laplace’s equation /u = 0 in two dimensions. In
1761: 139, d’Alembert introduced the complex potential ϕ + iψ such that

The ultimate goal of this calculation was to determine the
force exerted by the fluid on the solid, which is the same as the
resistance offered by the fluid to the motion of a body with a
velocity opposite to that of the asymptotic flow.45 D’Alembert
expressed this force as the integral of the fluid’s pressure over
the whole surface of the body. The pressure is itself given
by the line integral of −dv/dt from infinity to the wall, in
conformity with d’Alembert’s earlier derivation of Bernoulli’s
law. This law still holds in the present case, because −dv/dt =
−(v · ∇)v = −∇(v2/2). Hence the resistance could be
determined, if only the flow around the body was known.46

D’Alembert was not able to solve his equations and to
truly answer the resistance question. Yet, he had achieved
much on the way: through his dynamical principle and his
equilibrium principle, he had obtained hydrodynamic equations
for the steady flow of an incompressible axisymmetrical flow
that we may retrospectively identify as the incompressibility
condition, the condition of irrotational flow, and Bernoulli’s
law. The modern reader may wonder why he did not try
to write general equations of fluid motion in Cartesian-
coordinate form. The answer is plain: he was following an
older tradition of mathematical physics according to which
general principles, rather than general equations, were applied
to specific problems.

D’Alembert obtained his basic equations without recourse
to the concept of pressure. Yet, he had a concept of internal
pressure, which he used to derive Bernoulli’s law. Curiously,
he did not pursue the other approach sketched in his theory of
winds, that is, the application of Newton’s second law to a fluid
element subjected to a pressure gradient. Plausibly, he favored
a derivation that was based on his own principle of dynamics
and thus avoided the kind of internal forces he judged obscure.

It was certainly well known to d’Alembert that his
equilibrium principle was nothing but the condition of uniform
integrability (potentiality) for the force density f. If one then
introduces the integral, say P , one obtains the equilibrium
equation f = ∇ P that makes P the internal pressure! With
d’Alembert’s own dynamical principle, one then reaches the
equation of motion

f − ρ
dv
dt

= ∇ P, (30)

(u − iv)(dx + idy) = d(ϕ + iψ). The real part ϕ of this potential is the velocity
potential introduced by Euler in 1752; its imaginary part ψ is the so-called
stream function, which is a constant on any line of current, as d’Alembert
noted.
45 D’Alembert gave a proof of this equivalence, which he did not regard as

obvious.
46 D’Alembert had already discussed fluid resistance in part III of his treatise

of 1744. There, he used a molecular model in which momentum was transferred
by impact from the moving body to a layer of hard molecules. He believed,
however, that this molecular process would be negligible if the fluid molecules
were too close to each other – for instance when fluid was forced through the
narrow space between the body and a containing cylinder. In this case (1744:
205–206), he assumed a parallel-slice flow and computed the fluid pressure on
the body through Bernoulli’s law. For a head-tail symmetric body, this pressure
does not contribute to the resistance if the flow has the same symmetry. After
noting this difficulty, d’Alembert invoked the observed stagnancy of the fluid
behind the body to retain only the Bernoulli pressure on the prow.
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which is nothing but Euler’s second equation. But d’Alembert
did not proceed along these lines, and rather wrote equations of
motion not involving internal pressure.47

4. Euler’s equations

We finally turn to Euler himself, for whom we shall be
somewhat briefer than we have been with the Bernoullis and
d’Alembert (whose papers are not easily accessible to the
untrained modern reader; not so with Euler). “Lisez Euler, lisez
Euler, c’est notre maı̂tre à tous” (Read Euler, read Euler, he is
the master of us all) as Pierre-Simon Laplace used to say.48

4.1. Pressure

After Euler’s arrival in Berlin, he wrote a few articles
on hydraulic problems, one of which was motivated by his
participation in the design of the fountains of Frederick’s
summer residence Sanssouci. In these works of 1750–51, Euler
obtained the equation of motion for parallel-slice pipe flow by
directly relating the acceleration of the fluid elements to the
combined effect of the pressure gradient and gravity. He thus
obtained the differential version

dv

dt
= g − dP

dz
(31)

of Johann Bernoulli’s equation (7) for parallel-slice efflux.
From this, he derived the generalization (8) of Bernoulli’s
law to non-permanent flow, which he applied to evaluate the
pressure surge in the pipes that would feed the fountains of
Sanssouci.49

Although d’Alembert had occasionally used this kind of
reasoning in his theory of winds, it was new in a hydraulic
context. As we saw, the Bernoullis did not rely on internal
pressure in their own derivations of the equations of fluid
motion. In contrast, Euler came to regard internal pressure as
a key concept for a Newtonian approach to the dynamics of
continuous media.

In a memoir of 1750 entitled “Découverte d’un nouveau
principe de mécanique,” he claimed that the true basis of
continuum mechanics was Newton’s second law applied to the
infinitesimal elements of bodies. Among the forces acting on
the elements he included “connection forces” acting on the
boundary of the elements. In the case of fluids, these internal
forces were to be identified to the pressure.50

Euler’s first attempt to apply this approach beyond the
approximation of parallel-slices was a memoir on the motions

47 In this light, d’Alembert’s later neglect of Euler’s approach should not be
regarded as a mere expression of rancor.
48 Reported by Libri, 1846: 51.
49 Euler, 1752. On the hydraulic writings, cf. Truesdell, 1954:

XLI–XLV; Ackeret, 1957. On Euler’s work for the fountains of Sanssouci, cf.
Eckert, 2002, 2008. As Eckert explains, the failure of the fountains project and
an ambiguous letter of the King of Prussia to Voltaire have led to the myth of
Euler’s incapacity in concrete matters.
50 Euler, 1750: 90 (the main purpose of this paper was the derivation of the

equations of motion of a solid).

of rivers written around 1750–1751. There he analyzed steady
two-dimensional flow into fillets and described the fluid motion
through the Cartesian coordinates of a fluid particle expressed
as functions of time and of a fillet-labeling parameter (a partial
anticipation of the so-called Lagrangian picture). He wrote
partial differential equations expressing the incompressibility
condition and his new principle of continuum dynamics.
Through a clever combination of these equations, he obtained
for the first time the Bernoulli law along the stream lines of an
arbitrary steady incompressible flow. Yet he himself judged that
he had reached a dead end, for he could not solve any realistic
problem of river flow in this manner.51

4.2. The Latin memoir

An English translation of the Latin memoir will be included
in these Proceedings.

This relative failure did not discourage Euler. Equipped with
his new principle of mechanics and probably stimulated by the
two memoirs of d’Alembert, which he had reviewed, he set
out to formulate the equations of fluid mechanics in their full
generality. A memoir entitled “De motu fluidorum in genere”
was read in Berlin on 31 August 1752 and published under the
title “Principia motus fluidorum” in St. Petersburg in 1761 as
part of the 1756–1757 proceedings. Here, Euler obtained the
general equations of fluid motion for an incompressible fluid in
terms of the internal pressure P and the Cartesian coordinates
of the velocity v.52

In the first part of the paper, he derived the incompressibility
condition. For this, he studied the deformation during a time
dt of a small triangular element of water (in two dimensions)
and of a small triangular pyramid (in three dimensions). The
method here is a slight generalization of what d’Alembert did in
his memoir of 1749 on the resistance of fluids. Euler obtained,
in his own notation:

du
dx

+ dv

dy
+ dw

dz
= 0. (32)

In the second part of the memoir, he applied Newton’s
second law to a cubic element of fluid subjected to the gravity
g and to the pressure P acting on the cube’s faces. By a now
familiar bit of reasoning, this procedure yields (for unit density)
in modern notation:

∂v
∂t

+ (v · ∇)v = g − ∇ P. (33)

Euler then eliminated the pressure gradient (basically by taking
the curl) to obtain what we now call the vorticity equation:
[

∂

∂t
+ (v · ∇)

]
(∇ × v) − [(∇ × v) · ∇]v = 0, (34)

51 Euler, 1760, Truesdell, 1954: LVIII–LXII.
52 Euler, 1756–1757. Cf. Truesdell, 1954: LXII–LXXV. D’Alembert’s role

(also the Bernoullis’s and Clairaut’s) is acknowledged by Euler somewhat
reluctantly in a sentence at the beginning of the third memoir cited in epigraph
to the present paper.
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in modern notation. He then stated that “It is manifest that
these equations are satisfied by the following three values
[∇ × v = 0], in which is contained the condition provided
by the consideration of the forces [i.e. the potential character
of the r.h.s. of (33)]”. He thus concluded that the velocity was
potential, repeating here d’Alembert’s mistake of confusing
a necessary condition with a sufficient condition. This error
allowed him to introduce what later fluid theorists called the
velocity potential, that is, the function ϕ(r) such that v = ∇ϕ.
Eq. (33) may then be rewritten as:

∂

∂t
(∇ϕ) + 1

2
∇

(
v2

)
= g − ∇ P. (35)

Spatial integration of this equation yields a generalization of
Bernoulli’s law:

P = g · r − 1
2
v2 − ∂ϕ

∂t
+ C, (36)

wherein C is a constant (time-dependence can be absorbed in
the velocity potential). Lastly, Euler applied this equation to the
flow through a narrow tube of variable section to retrieve the
results of the Bernoullis.

Although Euler’s Latin memoir contained the basic
hydrodynamic equations for an incompressible fluid, the form
of exposition was still in flux. Euler frequently used specific
letters (coefficients of differential forms) for partial differentials
rather than Fontaine’s notation, and he measured velocities
and accelerations in gravity-dependent units. He proceeded
gradually, from the simpler two-dimensional case to the fuller
three-dimensional case. His derivation of the incompressibility
equation was more intricate than we would now expect. And
he erred in believing in the general existence of a velocity
potential. These characteristics make Euler’s Latin memoir
a transition between d’Alembert’s fluid dynamics and the
fully modern foundation of this science found in the French
memoirs.53

4.3. The French memoirs

An English translation of the second French memoir will be
included in these Proceedings.

The first of these memoirs “Principes généraux de l’état
d’équilibre des fluides” is devoted to the equilibrium of fluids,
both incompressible and compressible. Euler realized that his
new hydrodynamics contained a new hydrostatics based on
the following principle: the action of the contiguous fluid on
a given, internal element of fluid results from an isotropic,
normal pressure P exerted on its surface. The equilibrium of
an infinitesimal element subjected to this pressure and to the
force density f of external origin then requires:

f − ∇ P = 0. (37)

As Euler showed, all known results of hydrostatics follow from
this simple mathematical law.54

53 Cf. Truesdell, 1954: LXII–LXXV.
54 Euler, 1755a.

The second French memoir, “Principes généraux du
mouvement des fluides,” is the most important one. Here, Euler
did not limit himself to the incompressible case and obtained
the “Euler’s equations” for compressible flow:

∂tρ + ∇ · (ρv) = 0, (38)

∂t v + (v · ∇)v = 1
ρ

(f − ∇ P), (39)

to which a relation between pressure, density, and heat must be
added for completeness.55

The second French memoir is not only the coronation of
many decades of struggle with the laws of fluid motion by
the Bernoullis, d’Alembert and Euler himself, it also contains
much new material. Among other things, Euler now realized
that ∇ × v needed not vanish, as he had assumed in his Latin
memoir, and gave an explicit example of incompressible vortex
flow in which it did not.56 In a third follow-up memoir entitled
“Continuation des recherches sur la théorie du mouvement des
fluides,” he showed that even if it did not vanish, Bernoulli’s law
remained valid along any stream line of a steady incompressible
flow (as he had anticipated on his memoir of 1750–1751 on
river flow). In modern terms: owing to the identity

(v · ∇)v = ∇
(

1
2

v2
)

− v × (∇ × v), (40)

the integration of the convective acceleration term along a line
of flow eliminates ∇ × v and contributes the v2/2 term of
Bernoulli’s law.57

In his second memoir, Euler formulated the general problem
of fluid motion as the determination of the velocity at any time
for given values of the impressed forces, for a given relation
between pressure and density, and for given initial values of
fluid density and the fluid velocity. He outlined a general
strategy for solving this problem, based on the requirement
that the form (f − ρv̇) · dr should be an exact differential (in
order to be equal to the pressure differential). Then he confined
himself to a few simple, soluble cases – for instance uniform
flow (in the second memoir), or flow through a narrow tube
(in the third memoir). In more general cases, he recognized the
extreme difficulty of integrating his equations under the given
boundary conditions:58

We see well enough . . . how far we still are from a complete knowledge of
the motion of fluids, and that what I have explained here contains but a feeble
beginning. However, all that the Theory of fluids holds, is contained in the two
equations above [Eq. (1)], so that it is not the principles of Mechanics which
we lack in the pursuit of these researches, but solely Analysis, which is not yet
sufficiently cultivated for this purpose. Thus we see clearly what discoveries
remain for us to make in this Science before we can arrive at a more perfect
Theory of the motion of fluids.

55 Euler, 1755b: 284/63, 286/65. Cf. Truesdell, 1954: LXXXV–C.
56 As observed by Truesdell, 1954: XC–XCI), in Section 66 Euler reverts to

the assumption of non-vortical flow, a possible leftover of an earlier version of
the paper.
57 Euler, 1755c: 345/117.
58 Euler, 1755b: 315/91.
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5. Conclusions

In retrospect, Euler was right in judging that his “two
equations” were the definitive basis of the hydrodynamics of
perfect fluids. He reached them at the end of a long historical
process of applying dynamical principles to fluid motion. An
essential element of this evolution was the recurrent analogy
between the efflux from a narrow vase and the fall of a
compound pendulum. Any dynamical principle that solved
the latter problem also solved the former. Daniel Bernoulli
appealed to the conservation of live forces; Johann Bernoulli
to Newton’s second law together with the idiosyncratic concept
of translatio; d’Alembert to his own dynamical principle of
the equilibrium of destroyed motions. With this more general
principle and his feeling for partial differentials, d’Alembert
leapt from parallel-slice flows to higher problems that involved
two-dimensional anticipations of Euler’s equations. Although
his method implicitly contained a general derivation of these
equations in the incompressible case, his geometrical style and
his abhorrence of internal forces prevented him from taking this
step.

Despite d’Alembert’s reluctance, another important element
of this history turns out to be the rise of the concept of internal
pressure. The door on the way to general fluid mechanics
opened with two different keys, so to speak: d’Alembert’s
principle, or the concept of internal pressure. D’Alembert
(and Lagrange) used the first key, and introduced internal
pressure only as a derivative concept. Euler used the second
key, and ignored d’Alembert’s principle. As Euler guessed (and
as d’Alembert suggested en passant), Newton’s old second
law applies to the volume elements of the fluid, if only
the pressure of fluid on fluid is taken into account. Euler’s
equations derive from this deceptively simple consideration,
granted that the relevant calculus of partial differentials is
known. Altogether, we see that hydrodynamics rose through
the symbiotic evolution of analysis, dynamical principles, and
physical concepts. Euler pruned the unnecessary and unclear
elements from the abundant writings of his predecessors,
and combined the elements he judged most fundamental in
the clearest and most general manner. He thus obtained an
amazingly stable foundation for the science of fluid motion.

The discovery of sound foundations only marks the
beginning of the life of a theory. Euler himself suspected
that the integration of his equations would in general be a
formidable task. It soon became clear that their application
to problems of resistance or retardation led to paradoxes.
In the following century, physicists struggled to solve these
paradoxes by various means: viscous terms, discontinuity
surfaces, instabilities. A quarter of a millennium later, some
very basic issues remain open, as many contributions to this
conference amply demonstrate.

Acknowledgments

We are grateful to G. Grimberg, W. Pauls and two
anonymous reviewers for many useful remarks. We also
received considerable help from J. Bec and H. Frisch.

References

Ackeret, Jakob 1957 ‘Vorrede’, in L. Euler, Opera omnia, ser. 2, 15, VII–LX,
Lausanne.

Bernoulli, Daniel 1738 Hydrodynamica, sive de viribus et motibus fluidorum
commentarii, Strasbourg.

Bernoulli, Daniel 2002 Die Werke von Daniel Bernoulli, vol. 5, ed. Gleb K.
Mikhailov, Basel.

Bernoulli, Johann 1714 ‘Meditatio de natura centri oscillationis.’ Acta
Eruditorum Junii 1714, 257–272. Also in Opera omnia 2, 168–186,
Lausanne.

Bernoulli, Johann 1742 ‘Hydraulica nunc primum detecta ac demonstrata
directe ex fundamentis pure mechanicis. Anno 1732.’ Also in Opera
omnia 4, 387–493, Lausanne.

Blay, Michel 1992 La naissance de la mécanique analytique: La science du
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Abstract

Frederick the Great blamed Euler for the failure of fountains at his summer palace Sanssouci. However, what is regarded as an example for
the proverbial gap between theory and practice, is based on dubious evidence. In this paper I review Euler’s involvement with pipeflow problems
for the Sanssouci water-art project. Contrary to the widespread slander, Euler’s ability to cope with practical challenges was remarkable. The
Sanssouci fountains did not fail because Euler was unable to apply hydrodynamical theory to practice, but because the King ignored his advice
and employed incompetent practitioners. The hydrodynamics of the Sanssouci problem also deserves some interest because it happened on the
eve of the formulation of the general equations of motion for ideal fluids. Although it seems paradoxical, the birth of ideal flow theory was deeply
rooted in Euler’s involvement with real flow problems.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Hydrodynamics; Euler; Euler equation

1. Introduction

Since the beginning of his career as an academician in
St. Petersburg, Euler dealt with practical problems of fluid
dynamics, from ballistics to naval architecture. When the
Prussian King, Frederick II, called him to Berlin as director of
the mathematical class of the Prussian Academy of Science,
founded under the motto theoria cum praxi, Euler was eager
to display his disposedness for practical affairs. In 1744, for
example, Euler recommended the translation of an English
treatise on ballistics into German because of its practical value
for the artillery. He intended to add “suitable remarks to perfect
the usefulness of the matter”, and therefore offered himself as
a translator. He accomplished this task in 1745 and dedicated
the translation to the King. According to Clifford A. Truesdell,
the editor of Euler’s treatises on hydrodynamics, it changed
the character of the English original from a “little budget
of rules, experiments, and guesses” into “the first scientific
work on gunnery”. A historian of ballistics remarked that
Euler revealed with this work “a highly perceptive engineering
mentality that illustrates the depths of his technical knowledge”.

∗ Tel.: +49 89 2179538; fax: +49 89 2179273.
E-mail address: m.eckert@deutsches-museum.de.

With regard to the history of fluid dynamics, Euler’s treatise
on ballistics deserves particular interest because it contains a
consideration of fluid resistance which led Euler to closely
anticipate “d’Alembert’s paradox”.1

During the years prior to his formulation of the general
theory in 1755, Euler reported to the academy every year at
least once on practical matters involving one or another aspect
of fluid motion. In May 1749, for example, Euler investigated
the navigability of a canal which connected two rivers north of
Berlin. The inspection of the canal may well have contributed
to shape his thoughts on the forces which act on a fluid element
under free-surface flow conditions; two years later, on 6 May
1751, he communicated to the academy a memoir on ‘Research
concerning the flow of rivers’, in which he studied the balance
of forces along streamlines. Euler did not arrive at a general
solution (for this reason he probably regarded it to be of

1 Robins, 1742; Euler to Frederick II, undated, in Opera omnia, ser. 4a,
6: p. 309; Euler, 1745; Truesdell, 1954: p. XXXVIII; Steele, 2006: p. 290;
Szabó, 1987: pp. 243–245; Darrigol, 2005: p. 103; Eckert, 2006: pp. 13–15;
Darrigol, Frisch, 2008. However, the early derivation of the “Euler–d’Alembert-
paradox”—as it was labeled by Szabó —should not be interpreted uncritically
as an anticipation of d’Alembert’s paradox because Euler combined his
derivation with dubious considerations about momentum transfer in fluids; I
thank Olivier Darrigol for this clarification.

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.09.006
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minor value and published it only much later). “In any case
it is likely”, Truesdell argued, “that Euler then threw aside the
manuscript on rivers and started afresh on a new plan”. At about
the same time, in 1750, Euler formed his thoughts about how
to apply Newton’s Second Law more generally to contiguous
infinitesimal volume elements. This combined effort to solve
practical problems on the basis of general principles led him to
the famous 1755 memoirs, the ‘Principes généraux’.2

Shortly after the canal investigation in summer 1749, did
Euler become also involved in the Sanssouci water-art project.
If the canal project brought him into contact with open channel
flow, the Sanssouci project confronted him with pipeflow
problems. In contrast to his manuscript concerning river flow,
Euler regarded his pipeflow study not as provisional. He solved
the equations of motion for water which is pumped through
a pipeline to an elevated reservoir. In this study, as well as
in others concerning pumps and mills, Euler combined a deep
theoretical insight with a “good feel” for practice, as the editor
of Euler’s hydraulic work attested.3

Why, then, became Euler a role model of the pure scientist
divorced from the practice to which his scholarship was
supposed to refer? In popular books on the history of physics
and mathematics Euler is portrayed as a “second rate physicist”
and blamed for “letting his mathematics run away with his
sense of reality”. One physicist mused: “When Euler applied
his equations to design a fountain for Frederick the Great of
Prussia, it failed to work,” and he offered as a cause for Euler’s
mishap: “Unfortunately, he omitted the effects of friction, with
embarrassing practical consequences”.4

At first sight such a verdict does not seem implausible.
The water-art in the Park at Sanssouci, as conceived in the
18th century, indeed was malfunctioning. As early as in 1783,
Euler’s contemporary, the Marquis de Condorcet, wrote in
an obituary, addressed to the Paris Academy, that Euler at
times “appeared only to enjoy the pleasures of calculation”
and “only wished to exhibit the power of his art”; he was
full of praise for Euler as a mathematical genius, but “Mr.
Euler the Metaphysician or even the Physicist was not as
great as the Geometer”.5 Was Euler, as Condorcet suggested,
using practical applications only as a pretext to “enjoy the
pleasures of calculation”—without real concern about the
physical problems? Even more support for this view comes
from the King himself. In 1778 Frederick II wrote in a letter
to Voltaire6:
“I wanted to make a fountain in my Garden; the Cyclop Euler calculated the
effort of the wheels for raising the water to a basin, from where it should fall

2 Eichler, 1974: Appendix, pp. 243–251; Frederick to Euler, 30 April 1749,
Euler et al. 1749 to Frederick, 14 May 1749, in Opera omnia, ser. 4a, 6,
311–316; Euler, 1760; Truesdell, 1954: p. LXII; Euler, 1750; Euler, 1755a,b

3 Ackeret, 1957: p. LVI.
4 Hermann, 1991: p. 81, Bell, 1937: p. 168; Perkovitz, 1999: p. 38.
5 Condorcet, 1783.
6 Frederick to Voltaire, 25 January 1778, in Besterman, 1976: pp. 184–186.

(“Je voulus faire un jet-d’eau en mon Jardin; le Ciclope Euler calcula l’effort
des roües, pour faire monter l’eau dans un bassin d’oú elle devoit retomber
par des Canaux, afin de jaillir à Sanssouci. Mon Moulin a été éxécuté
géométriquement, et il n’a pu élever une goutte d’eau à Cinquante pas du
Bassin. Vanité des Vanités; Vanité de la géométrie”.)

down through canals, in order to form a fountain jet at Sanssouci. My mill
was constructed mathematically, and it could not raise one drop of water to a
distance of fifty feet from the basin. Vanity of Vanities! Vanity of geometry.”

The derogative tenor in this letter (“le Ciclope Euler”)7

already hints at tensions in the relationship between Euler
and Frederick II. Euler had left Berlin in 1766 after he
was repeatedly neglected by the King as a candidate for
the presidency of the academy. Euler’s biographers report a
growing alienation between Euler and Frederick II. Therefore,
the King’s utterance, made almost thirty years after Euler’s
involvement in the Sanssouci project, is of dubious value as a
historical evidence. Yet it became the widely accepted source
for the slander against Euler—a slander which accompanied
Euler like a symbol for the gulf which separates ideal from
real flows. Even Truesdell, who was otherwise very critical
with regard to the slander against Euler, did not cast doubt on
Euler’s alleged mishap: The King “expected Euler to supervise
the laying of aqueducts. Unfortunately Euler was willing and
able to undertake such tasks, thus giving Frederick occasion for
the complaint that the work was not well done”.8

2. Euler’s involvement at Sanssouci

In order to sort out historical fact from anecdotes and myths,
it is necessary to reconstruct the circumstances of Euler’s
involvement in the Sanssouci project from other sources than
eulogies and biased recollections. When was Euler’s advice
for the water-art project solicited? What was the particular
problem? Did Euler’s advice misdirect the project so that the
King lost confidence in Euler’s ability to combine theory with
practice?

The water-art project at Sanssouci had started in 1748,
shortly after the inauguration of the King’s new summer palace.
The design foresaw a system with several fountains; the major
fountain close to the palace was supposed to have a jet with a
height of at least 30 m, higher than the jets of the fountains at
Versailles. Water from the Havel river should be raised to an
elevated reservoir at a distance of about one kilometer on top
of a hill 50 m above the river level in order to provide for the
required pressure for the fountain jets in the Park underneath.
The water had to be guided first by a canal from the river to the
site of a windmill connected to pumps which would press the
water through a pipeline into the reservoir. Other pipes would
connect the reservoir with the fountains. By the end of 1748,
the canal from the Havel to the pump station, the windmill and
the pumps were accomplished; so far the project progressed
according to the expectations. But problems arose as soon as
water was pumped into the elevated reservoir. The tubes for the
pipeline had been constructed from wooden boards, each 24
feet long, which were put together like barrels and strengthened

7 In 1738, Euler lost the sight in his right eye as a consequence of a
severe illness; in the 1760s a cataract in his left eye further deteriorated his
remaining visual faculty; in his later years Euler was almost completely blind.
For biographical details see Fellmann, 2007.

8 Truesdell, 1954: p. XC.
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by iron bands. The pipeline was assembled from eight hundred
such tubes. But when water was pumped into this pipeline, it
reached only about halfway up to the reservoir before the pipes
at the lower end began to burst. After this failure the barrel-like
tubes were replaced by entire spruce tree trunks whose cores
had been drilled out. Between March and December of 1749,
the new pipeline was assembled—but it experienced the same
mishap: the pipes burst.9

At this stage, Euler became involved. Frederick trusted
Euler as an expert whom he could ask for advice whenever
problems of a mathematical, physical or technical nature arose.
In the summer of 1749, for example, shortly after the canal
investigation, the King requested Euler’s advice also on a
number lottery which had been recently introduced in Italian
cities and which Frederick considered as an additional source
of income for the state’s treasury. Like with the lottery and the
canal issues, Euler responded swiftly. On 18 September 1749
he informed the academy’s president, Pierre Louis Maupertuis,
“that I sent my researches about the projected lottery yesterday
to the King, and that I hope to accomplish within a couple
of days those about the hydraulic machine”. Three days later
he sent Maupertuis the first results concerning “la Machine
Hydraulique de Sans Soucy”. With regard to the mighty
fountain jet he cautioned already in this first response “that it
would require a huge effort to make it as high as the King
wishes”. A week later, Euler expressed severe doubts about
the present design, in particular concerning the dimensions of
the pipes. He complained that the architect “does not give any
rule for estimating the pressure which the conduit pipes have
to sustain: apparently he believes that these pipes would have
to sustain the weight of the water column which corresponds
the state of rest”. Euler surveyed the literature on water-
art hydraulics and suspected that the dynamically increased
pressure due to the action of the pumps had never been taken
into account before. Nevertheless, practitioners elsewhere had
usually chosen thick metal tubes rather than wooden tubes for
pipelines where high pressures were to be expected. In view
of a lack of theoretical methods for calculating the strength
of materials Euler referred to the experiences made by Edme
Mariotte in Versailles where it was shown “that a lead pipe
with a diameter of 12 in., and a wall thickness of 2 lignes (1
ligne = 2.2558 mm), is able to sustain a 100 feet high water
column,” but cautioned to simply extrapolate: “But if Mariotte’s
experience was wrong, or corrupted by a misprint, I would not
know how to determine the thickness of the pipes for the case
in question other than making new experiments about the force
which the lead pipes are able to sustain. For one would risk too
much if the determination of the thickness of the pipes would
be made only haphazardly”.10

9 Manger, 1789: vol. 1, pp. 91–106.
10 Euler to Maupertuis, 18 September, 21 September and 30 September 1749,

in Opera omnia, ser. 4a, 6: pp. 135–138. (“Mais en cas que l’expérience de
Mariotte ne fût pas juste, ou gâtée par une faute d’impression, je ne saurois
rien déterminer sur l’épaisseur des tuyaux dans le cas dont il s’agit, à moins
qu’on ne fı̂t de nouveau des expériences sur la force que des tuyaux de plomb
sont capables de soutenir. Car on risqueroit trop si l’on vouloit confier au seul
hazard la détermination de l’épaisseur des tuyaux”.)

From this letter it is obvious that Euler was not resorting
to mere theoretical considerations. He referred explicitly to
Bernard Forest de Bélidor and Edme Mariotte, whose treatises
Architecture hydraulique and Traité du mouvement des eaux et
des autres corps fluides contained the contemporary empirical
knowledge of hydraulic constructions. A good deal of this
knowledge was derived from experiments undertaken upon
request of the Paris Academy and motivated, among other
practical interests, by the constructions of the water-art system
for Versailles.11 The major theoretical part to which Euler could
contribute useful considerations concerned the magnitude of the
pressure which the pipeline had to sustain under the action of
the driving pumps. The motion of the pump’s pistons resulted
in a nonstationary pipeflow. Euler’s theory (see next section)
provided a formula from which the maximal pressure in the
pipeline could be estimated if the dimensions of the tubes and
the driving force of the pumps (delivered by a wind mill or
horse power) were given. On 21 October 1749, he explained to
Maupertuis why the wooden pipeline was doomed to burst12:

“The true cause of this awkward accident was only due to the fact that
the capacity of the pumps was too big, and if one does not reduce it very
considerably, either by diminishing their diameter or their height, or the number
of cycles per one turn of the mill, the machine will not be in the state to raise
one drop of water into the reservoir.”

Two days later, Euler presented his theory ‘On the motion of
water in conduits’ to the academy. At subsequent meetings of
the academy, on 20 November 1749 and 5 February 1750, he
drew a number of practical consequences ‘concerning different
methods with which to raise water through pumps with the
greatest effectiveness’ and ‘the most advantageous arrangement
of the machines used to raise water via pumps’.13

Euler did not content himself with academic presentations.
On 17 October 1749 he communicated a summary of his results
together with related problems concerning windmills to the
King. Like in his letter to the president of the academy, Euler
left no doubt that he regarded the present design as doomed to
failure unless major changes were made14:

“For in the state in which they are at present it is quite certain that one will never
raise one drop of water to the reservoir, and the entire force would be employed
only for the destruction of the machine and the pipes.”

Frederick II thanked Euler for the “remarks you have made
concerning your calculations about the pumps and pipes of the

11 Bélidor, 1737-1739; Mariotte, 1718; for the role of the Paris Academy see
Blay, 1986.
12 Euler to Maupertuis, 21 October 1749, in Opera omnia, ser. 4a, 6: pp.

139–140. (“La veritable cause de ce facheux accident consistoit uniquement
en ce que la capacité des pompes étoit trop grande, et à moins qu’on ne la
diminue très considerablement, ou en diminuant leur diametre ou leur hauteur,
ou le nombre des jeux qui repond à un tour de moulin, la machine ne sera pas
en etat de fournir une seule goutte d’eau dans le reservoir”.)
13 Euler, 1752a,b,c.
14 Euler to Frederick, 17 October 1749, in Opera omnia, ser. 4a, 6: p. 322

(“Car sur le pied qu’elles se trouvent actuellement, il est bien certain, qu’on
n’éleveroit jamais une goutte d’eau jusqu’ au reservoir, et toute la force ne seroit
employée qu’à la destruction de la machine et des tuyaux”.). He also elaborated
his related treatises on windmills as academy memoirs: Euler, 1758a,b.
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machine of Sanssouci. They have been very agreeable to me,
and I am very obliged to you for the effort which you have
made for it”.15 Beyond this exchange of letters in autumn 1749,
and the subsequent presentation of the related memoirs to the
academy, there is no evidence for any further involvement of
Euler with the water-art project at Sanssouci.

What happened thereafter at Sanssouci? According to the
available historical evidence, no consequences were drawn
from Euler’s advice. The bungling in the Park at Sanssouci
proceeded unabatedly. No experiments were undertaken to
determine the wall thickness of lead pipes, as Euler had
recommended in his letters in September 1749. Although Euler
regarded the choice of lead pipes as obvious for pipelines
that had to sustain high pressure, the practitioners in the Park
continued to use wooden pipes for a second trial—with the
same mishap: the pipes burst again. Only in summer 1752,
more than two years after Euler had presented his advice, the
wooden pipes were replaced by metal pipes. But the pipes were
not properly dimensioned. As one could have anticipated from
Euler’s analysis, the new pipeline was rather inefficient. By
Spring 1754, a little amount of water was raised to the reservoir,
so that the King was given a demonstration. But the fountain
jet rose to only about half the expected height, and after an
hour the reservoir was empty. Two years later, the Seven Years’
War broke out and caused an interruption of the bungling at
Sanssouci. In 1763, new efforts were started, but the King was
unwilling to afford the high costs involved with the replacement
of the inappropriate installations. A few years later, the project
was stopped, and those materials of the dysfunctional water-art
which had not been rotten in the meantime were used for other
purposes. In 1841, under the reign of another King, the water-
art project at Sanssouci was started anew. With pumps driven
by a steam engine and properly dimensioned pipes the project
was successfully completed within only two years.16

3. Nonstationary pipeflow theory

Although Euler’s advice was ignored, and thus had no
impact on the further developments of the water-art project at
Sanssouci, it is interesting to study his pipeflow theory which
he presented to the Berlin academy as a result of his short-
termed involvement. Euler introduced his academy memoir
with references to Johann and Daniel Bernoulli, as well as to
Jean le Rond d’Alembert, but regarded the “hydraulic theory”

15 Frederick to Euler, 21 October 1749, in Opera omnia, ser. 4a, 6: p. 330 (“...
remarques, que vous avez fait sur vos calculs sur les pompes et les tuyaux de
la Machine de Sanssouci. Elles M’ont été fort agréables, et Je vous suis bien
obligé de la peine que vous en avez pris”.)
16 Although the archival material about the constructions at Sanssouci was

largely destroyed in World War II, the bungling by the practitioners is well-
documented in several accounts, most comprehensively in Manger, 1789 and
Artelt, 1893. Heinrich Ludewig Manger served as architect under Frederick II;
Paul Artelt’s account was written at the occasion of the fiftieth birthday of the
steam engine at Sanssouci. In both accounts, written from the perspective of
practitioners, Euler’s name is not even mentioned—which is plausible because
of the short period of his involvement in autumn 1749 and the long duration of
mishaps. If there had been the slightest reason to blame Euler for the failures,
the authors of these accounts would surely not have missed the opportunity to
elaborate on Euler’s role as a consultant.

Fig. 1. Euler’s pump–pipeline arrangement: DX = x and XY = y are the
Cartesian coordinates of the centerline of the pipeline, specified by a curve
s = s(x, y); z = z(s) is the inner diameter of the pipe; AB = a and AC = b
is the inner diameter of the pump cylinder and its height; M N indicates an
intermediate position of the piston at time t when it is at b − r above the
ground, with r = r(t) and r(0) = 0; within dt the piston moves down by
dr to the new position mn; the driving pump force is represented by the weight
of an equivalent water column of height k exerted on the piston.

still too general for practical application. Without explicitly
mentioning the Sanssouci project, he chose the case of water
rising to an elevated reservoir by means of a piston pump
in order to demonstrate what theory could do for practical
applications. But he mentioned at the outset that he employed
a different method compared to those which had been used
before, with the explicit goal “to facilitate the researches which
one has still to undertake in this Science”.17

In a nutshell, Euler’s approach was based on the internal
pressure gradient which is involved in the balance of forces on a
slice of water in the tube; Euler succeeded to derive from there
an expression for the pressure at an arbitrary location of the
pipeline (Fig. 1).
Unfortunately, the originality of his approach is obscured by the use of a
notation that makes it difficult to follow from a modern perspective. But in
order to understand both the conceptual problems with which 18th century
pipeflow theories were confronted, and the merits of Euler’s memoir for
practical applications, it is useful to transmit a flavor for Euler’s memoir in
the original notation before it is adapted to our modern vantage point.

Euler expressed the force on the piston of the pump in terms of an equivalent
water column of height k; for the velocity of the piston he wrote dr/dt = √

v,
where v indicates the height from which a falling weight would acquire the
corresponding velocity. The equation of continuity allowed him to express the
velocities at the corresponding locations Y Z and Y ′ Z ′ of the tube in terms of
the piston velocity v. Euler assumed the diameter z of the tube as variable,

17 Euler, 1752a: pp. 222–223 (“ce qui ne manquera pas de faciliter les
recherches qu’on a encore à entreprendre dans cette Science”.)
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Fig. 2. Nonstationary pipeflow in Johann Bernoulli’s Hydraulica. For the
derivation of Bernoulli’s formula and its relation to (2) see Szabó, 1987: pp.
181–185.

which further complicated his analysis. For the velocity of the water in the tube
at Y ′ Z ′, which corresponds to the piston velocity

√
(v + dv) at mn, he obtained

a2

z + a2

z2 Sdr

√
(v + dv)

with S = dz/ds accounting for the variation of the diameter of the tube. Euler
derived from this expression an incremental velocity increase along the passage
Y Y ′, expressed in equivalent height of fall, as

a4

z4 dv − 4a6

z7 Svdr

corresponding to an accelerating force (exerted by the pump’s piston) which
Euler balanced with the force due to the pressure gradient and the weight upon
the infinitesimal slice of water Y Zzy: “Now one has to find the accelerating
force which acts on the section Y Z ,” he introduced this stage of his analysis.
The crucial passage of Euler’s analysis reads in the original18:

“Adjacent to this slice from the side Y Z acts the pressure of the water which
follows, and from the side yz the pressure from the preceding water; and if
these two pressures would be equal, one would destroy the effect of the other,
and no acceleration or retardation would result therefrom. Be the height p the
expression for the pressure of the water on the surface Y Z , and p a function of
x or s; then the pressure on the surface yz is expressed by the height p + dp”.

The balance of forces finally yielded the result:

dp + dy = − a2ds

z2
dv

dr
+ 4a4Sds

z5 v

where the left-hand side contained the action of the pressure gradient and
gravity, and the right-hand side the accelerating force due to the pump. After
integration Euler obtained for the pressure at Y Z19:

p = C − y − a2dv

dr

∫
ds

z2 − a4v
1
z4 .

18 Euler, 1752a: p. 227 (“Outre cela cette couche se trouve du coté Y Z
sollicitée par la pression de l’eau suivante, et du coté yz de la pression de l’eau
précédente; et si ces deux pressions étoient égales, l’une détruiroit l’effet de
l’autre, et il n’en résulteroit aucune accélération ou retardation. Que la hauteur
p exprime la pression de l’eau sur la surface Y Z , et p étant une fonction de x
ou s, la pression sur la surface yz sera exprimée par la hauteur p + dp”.)
19 Euler, 1752a: p. 230.

Determining the integration constant by considering the pressure at y = 0,
Euler obtained the final result for the pressure at an arbitrary location Y Z :

p = k − y + (b − r)

(
1 − dv

dr

)
− a2dv

dr

∫
ds

z2 + v

(

1 − a4

z4

)

.

So much for the flavor of the contemporary work. In modern
notation the result may be rewritten as20

p(y) = ρg(k + b − r − y) + 1
2
ρw2

(
1 − a4

z4

)

− ρ

(
b − r + dw

dt

∫
a2

z2 ds
)

(1)

ρ is the density of the fluid, g the acceleration of gravity; w

instead of v is used here for the velocity of the piston in modern
notation in order to avoid confusion with Euler’s velocity

√
v;

the integral is taken along s from the pump to the location at y.
(1) is equivalent to the “Bernoulli equation” for nonstationary
pipeflow:

p1 + 1
2
ρw2

1 + ρgy1 + ρ

∫ 1

0

∂w

∂t
ds = p0 + 1

2
ρw2

0 + ρgy0 (2)

where the subscripts 0 and 1 refer to different locations along
a streamline (or, to put it less anachronistically, along the
centerline of an arbitrarily shaped cylindrical pipe). Formulae
for nonstationary pipeflow, which imply (2), had been obtained
earlier; when Johann Bernoulli sent Euler the first part of his
Hydraulica in 1739, Euler responded by calculating a formula
for the vertical efflux of water from an arbitrarily shaped vase
through a hole in the bottom.21

Johann Bernoulli elaborated the theory of nonstationary
pipeflow in the second part of his treatise for the more general
case of a flow through an arbitrarily oriented pipe (Fig. 2): by a
rather complicated procedure he obtained a formula which may
be transformed with hindsight directly into (2).22

Johann Bernoulli’s Hydraulica had appeared in 1742. Why
did not Euler start from (2) and merely specify the variables at
location 0 and 1 for the particular pump–pipeline configuration
(as modern hydraulic engineers would do)? Such reasoning
ignores that Johann Bernoulli did not write (1) in its modern
form, and that the earlier methods used for nonstationary
pipeflow became the subject of heated debates among the
Bernoullis and d’Alembert. Euler, presumably, regarded the
older methods with some suspicion and therefore chose a novel
approach—an approach in which “for the first time in the
history of fluid mechanics, the pressure p in its modern sense
has made its appearance”, as Truesdell remarked about Euler’s

20 For the conversion of Euler’s units see Truesdell, 1954: pp. XLIII–XLIV
and Ackeret, 1957: pp. XIX-XXI.
21 Darrigol, Frisch, 2008: Footnote 21; Euler, 1998: pp. 287–304; for earlier

unpublished work by Euler and Daniel Bernoulli on nonstationary pipeflow see
Gleb Mikhailov’s introduction in Euler, 1998: pp.60–62; for the priority dispute
between Johann and Daniel Bernoulli see Mikhailov, 1999, 2002.
22 Szabó, 1987: pp. 175–185. With hindsight, Szabó also interpreted Johann

Bernoulli’s somewhat mysterious notion of “gurges” merely as a sort of
construct which enabled Bernoulli the application of the momentum principle
for the motion of a parallel slice of fluid from a wider to a narrower passage.
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Fig. 3. Euler’s example for the pressure increase caused by the action of the
pump, compared with the pressure in the hydrostatic case.

pipeflow memoir.23 From this perspective, Euler’s pipeflow
memoir may be regarded as a turning point in the history of
hydrodynamics because the new method of balancing forces on
a fluid volume element by using internal pressure gradients also
yielded the general “Euler equations” a few years later.

However, this is another retrospective evaluation. Euler’s
memoir was not motivated by a concern about the foundations
of fluid mechanics but by the desire to solve practical
problems. Once he had derived (1) it was straightforward (but
tedious) to calculate the technically important quantities of the
pump–pipeline assembly.24 Euler could have left this effort to
lesser geometers if he had been interested only in foundational
matters or mathematical challenges. But he proceeded to derive
formulae for the quantities of practical interest, particularly the
pressure at the lower end of the pipeline and the discharge
flow, and he explained in great detail their practical relevance.
His formula for the pressure at the lower end of the pipeline
made particularly clear how much the dynamical action of the
pump added to the hydrostatic pressure (corresponding to the
height difference between the level of the pump and the elevated
reservoir):

p = g + 0.256a2bl
c2t2 .

23 Truesdell, 1954: p. XLV. This statement, however, seems exaggerated, see
Darrigol, Frisch, 2008 for earlier appearances of internal pressure.
24 Ackeret, 1957; Eckert, 2002.

Note again, that in Euler’s notation the pressure is expressed
in length units; g is the vertical height difference (not to
be confused with the acceleration of gravity in our modern
notation), l the length of the pipeline, and c its inner diameter
(assumed to be constant, i. e. z = c); t is the time within which
the piston moves from the upper to the lower position in the
pump.25

Euler formulated the practical lessons from this result not
only in the language of mathematics but also as “rules”26:
“For the same force acting on the pistons of the pumps being able to deliver a
maximal amount of water into the reservoir, one must make the rising pipe as
wide as possible (...). In order to deliver a maximal quantity of water into the
reservoir by the same force acting on the pistons, one must make the rising pipe
as short as possible.”

He concluded his memoir with a numerical example (Fig. 3):
For a discharge of 6701 cubic feet per hour, pumped to a height
of 60 feet through a 3000 feet long pipeline, the pressure at
the lower end of the pipeline amounted to an equivalent height
of a 330 feet high water column. If the pipeline would have
been designed to withstand only the hydrostatic pressure, Euler
warned, “it would inevitably have burst”.27 In his letter to
the King on 17 October 1749, Euler had presented the same
lesson—here with direct reference to the mishap at Sanssouci
(which he did not mention in his memoir) when the pipes burst
at the first trials28:
“Having made the calculation about the first trials of this machine, where the
wooden pipes have burst as soon as the water was raised to a height of 70 feet, I
find that the pipes actually experienced the pressure of a more than 300 feet high
water column: this is a certain indication that the disposition of the machine is
still very far from its perfect state.”

4. Conclusion

Despite its practical goals, Euler’s pipeflow theory was not
meant as an engineering blueprint for the pumps, pipelines
and fountains at Sanssouci. The neglect of friction, of course,
would not be permissible if the theory would have had to
predict detailed power and discharge values. But to demand
such a theory in 1750 would not only be anachronistic; it
also ignores that even without taking friction into account
Euler’s theory correctly explained why the Sanssouci water-
art system was doomed to fail. As an exposition of a tangible
nonstationary-flow problem, it could well have helped to
correct the deficiencies of the initial design. Metal pipes
and a shorter distance from the pumps to the elevated
reservoir would have sufficed to turn the failure into success.

25 Euler, 1752a: pp. 247–248.
26 Euler, 1752a: pp. 240–242. (“Pour que la meme force qui agit sur les

pistons des pompes soit en état de fournir dans le réservoir la plus grande
quantité d’eau, il faut avoir soin de faire le tuyau montant aussi large qu’il
sera possible (...) Pour fournir une plus grande quantité d’eau dans le réservoir
par la meme force qui agit sur les pistons, il faut rendre le tuyau montant aussi
court qu’il sera possible”.)
27 Euler, 1752a: pp. 249–250 (“il seroit crevé infalliblement”.)
28 Euler to Frederick, 17 October 1749, in Opera omnia, ser. 4a, 6: p. 322

(“Ayant fait le calcul sur les premiers essais de cette machine, oú les tuyaux de
bois sont crevés, dès que l’eau fut élevée à la hauteur de 70 pieds, je trouve que
les tuyaux ont alors effectivement souffert la pression d’une colonne d’eau de
plus de 300 pieds de hauteur: ce qui est une marque certaine, que la disposition
de la machine étoit encore fort éloignée de son état de perfection”.)
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Water-raising installations elsewhere, for example in mines
or for the water supply of cities, tacitly followed Euler’s
rules: In the pits of mines or in water towers the pipelines
rose vertically upwards—thus resulting in the shortest possible
distance between pumps and water reservoirs. The fact that such
widespread contemporary practice was ignored at Sanssouci,
and that even after Euler’s explicit warning the bungling
proceeded unabatedly, renders further speculations, such as
about the neglect of friction, superfluous.

Why was Euler’s advice ignored? One reason may be that
Frederick II had little understanding of mathematics. In contrast
to poetry, music and philosophy, for which he had high esteem,
mathematics and natural sciences were alien to him. In his
later years his ignorance turned into outspoken contempt, as
the diary entries of a frequent guest at the King’s dinner
table, Girolamo Marchese Lucchesini, illustrate: “Because he
understands nothing of mathematics,” Lucchesini entered after
a conversation on 19 June 1782 in his diary, “he has difficulties
to acknowledge that representatives of this science merit great
renown. It caused him little worry to see Euler depart, and he
does not regard Lagrange’s merits very high”.29 Furthermore,
the King seems to have been unwilling to afford the high costs
for changing the original design. He employed inexperienced
personnel who must have felt constantly under pressure to
use cheap materials. “Economizing is a virtue for everyone;
but if it is exaggerated, it loses its meaning; and nowhere is
exaggerated economizing so damaging as with constructions,”
the last architect of Frederick II complained about the stinginess
of his King.30 Perhaps both traits of Frederick’s character,
contempt for mathematics and stinginess, combined when he
chose in his letter to Voltaire, quoted in the introduction, Euler
as a scapegoat for the failure at Sanssouci. With biting sarcasm,
he perverted into derision what Euler had meant as warning
(“Mon Moulin a été éxécuté géométriquement, et il n’a pu
élever une goutte d’eau à Cinquante pas du Bassin. Vanité des
Vanités; Vanité de la géométrie”.)—using almost Euler’s own
words (“qu’on n’éleveroit jamais une goutte d’eau jusqu’au
réservoir...”).

Apart from the injustice against Euler, the uncritical
acceptance of the King’s slander has misguided some scientists,
historians of science and technology and popular writers to
misrepresent 18th century science as utterly remote from
practical applications. Although there are certainly cases which
confirm a deep gulf between theory and practice, the Sanssouci
case definitely does not fall into this category. The fountains
did not fail because the theory was remote from practice, but
because the practical men at Sanssouci ignored the standards of
contemporary practice. Water-art installations elsewhere could
have served as role models. Euler’s pipeflow theory was as
practical as a theory could be at the time; further mishaps could
have been avoided if the lessons from Euler’s theory had been
taken into account. With regard to the history of fluid dynamics,
Euler’s pipeflow memoir also deserves more than a cursory

29 Bischoff, 1885. Other examples of Frederick’s “intellectual insufficiency”
are given in Fellmann, 2007: pp. 92–93.
30 Manger, 1789: vol. 3, p. 547.

mentioning: It illustrates that Euler approached the general
theory from practical corners. He had solved a number of
special flow problems in naval architecture, ballistics, hydraulic
machinery and pipeflow, before he arrived at the general
equations of fluid motion. His famous ‘Principes généraux du
mouvement des fluides’ did not emerge in a single stroke of
genius but in several stages, mediated through his involvement
in practical affairs, among which the Sanssouci project was not
the least important one. Although it seems paradoxical, Euler’s
ideal flow theory was deeply rooted in real flow problems.
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1740 und 1812–unter besonderer Berücksichtigung ihrer Bedeutung für
die Entwicklung der gewerblichen Produktivkräfte. Dissertation at the
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Abstract

We show that the issue of the drag exerted by an incompressible fluid on a body in uniform motion has played a major role in the early
development of fluid dynamics. In 1745 Euler came close, technically, to proving the vanishing of the drag for a body of arbitrary shape; for this
he exploited and significantly extended the existing ideas on decomposing the flow into thin fillets; he did not however have a correct picture of
the global structure of the flow around a body. Borda in 1766 showed that the principle of live forces implied the vanishing of the drag and should
thus be inapplicable to the problem. After having at first refused the possibility of a vanishing drag, d’Alembert in 1768 established the paradox,
but only for bodies with a head–tail symmetry. A full understanding of the paradox, as due to the neglect of viscous forces, had to wait until the
work of Saint-Venant in 1846.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.10.A-; 47.15.ki

Keywords: History of science; Fluid dynamics; D’Alembert’s paradox

1. Introduction

The first hint of d’Alembert’s paradox – the vanishing of the
drag for a solid body surrounded by a steadily moving ideal
incompressible fluid – had appeared even before the analytical
description of the flow of a “perfect liquid”1 was solidly
established. Leonhard Euler in 1745, Jean le Rond d’Alembert
in 1749 and Jean-Charles Borda in 1766 came actually very
close to formulating the paradox, using momentum balance
(in an implicit way) or energy conservation arguments, which
actually predate its modern proofs.2 D’Alembert in 1768 was
the first to recognize the paradox as such, although in a
somewhat special case. Similarly to Euler and Borda, his
reasoning did not employ the equations of motion directly,

∗ Corresponding author. Tel.: +33 4 92003035; fax: +33 4 92003058.
E-mail addresses: gerard.emile@terra.com.br (G. Grimberg),

uriel@obs-nice.fr (U. Frisch).
1 Kelvin’s name of an incompressible inviscid fluid.
2 See, e.g. Serrin, 1959 and Landau and Lifshitz, 1987.

but nevertheless used a fully constituted formulation of the
laws of hydrodynamics, and exploited the symmetries he
had assumed for the problem. A general formulation of
d’Alembert’s paradox for bodies of an arbitrary shape was
given in 1846 by Adhémar Barré de Saint-Venant, who pointed
out that the vanishing of the drag can be due to not taking into
account viscosity. Other explanations of the paradox involve
unsteady solutions, presenting for example a wake, as discussed
by Birkhoff.3

Since the early derivations of the paradox did not rely on
Euler’s equation of ideal fluid flow, it was not immediately
recognized that the idealized notion of an inviscid fluid motion
was here conflicting with the physical reality. The difficulties
encountered in the theoretical treatment of the drag problem
were attributed to the lack of appropriate analytical tools rather
than to any hypothetical flaws in the theory. In spite of the great
achievements of Daniel and Johann Bernoulli, of d’Alembert

3 Euler, 1745; D’ Alembert, [1749]; Borda, 1766; Saint-Venant, 1846, 1847;
Birkhoff, 1950: Chap. 1, §9.
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and of Euler4 the theory of hydrodynamics seemed beset with
insurmountable technical difficulties; to the contemporaries it
thus appeared of little help, as far as practical applications were
concerned. There was a dichotomy between, on the one hand,
experiments and the everyday experience and, on the other hand
the eighteenth century’s limited understanding of the nature
of fluids and of the theory of fluid motion. This dichotomy is
one of the reasons why neither Euler nor Borda nor the early
d’Alembert were able to recognize and to accept the possibility
of a paradox.

We shall also see, how the problem setting became more
and more elaborated in the course of time. Euler, in his early
work on the drag problem appeals to several physical examples
of quite different nature, such as that of ships navigating
at sea and of bullets flying through the air. D’Alembert’s
1768 formulation of the drag paradox is concrete, precise
and much more mathematical (in the modern sense of the
word) than Euler’s early work. This is how d’Alembert was
able to show – with much disregard for what experiments or
(sometimes irrelevant) physical intuition might suggest – that
the framework of inviscid fluid motion necessarily leads to a
paradox.

For the convenience of the reader we begin, in Section 2, by
recalling the modern proofs of d’Alembert’s paradox: one proof
– somewhat reminiscent of the arguments in Euler’s 1745 work
– relies on the calculation of the momentum balance, the other
one – connected with Borda’s 1766 paper – uses conservation
of energy. In Section 3 we describe Euler’s first attempt, in
1745, to calculate the drag acting on a body in a steady flow
using a modification of a method previously introduced by
D. Bernoulli.5 In Section 4 we discuss d’Alembert’s 1749
analysis of the resistance of fluids. In Section 5 we review
Euler’s contributions to the drag problem made after he had
established the equations of motions for ideal fluid flow.
Section 6 is devoted to Borda’s arguments against the use of
a live-force (energy conservation) argument for this problem.
In Sections 7 and 8 we discuss d’Alembert’s and Saint-
Venant’s formulation of the paradox. In Section 9 we give the
conclusions.

Finally, we mention here something which would hardly be
necessary if we were publishing in a journal specialized in the
history of science: the material we are covering has already
been discussed several times, in particular by such towering
figures as Saint-Venant and Truesdell.6 Our contributions can
only be considered incremental, even if, occasionally, we
disagree with our predecessors.

2. Modern approaches to d’Alembert’s paradox

Let us consider a solid body K in a steady potential flow
with uniform velocity U at infinity. In the standard derivation
of the vanishing of the drag7 one proceeds as follows: Let

4 See, e.g., Darrigol, 2005; Darrigol and Frisch, 2008.
5 Bernoulli, 1736.
6 Truesdell, 1954; Saint- Venant [1888].
7 See, e.g., Serrin, 1959.

Ω be the domain bounded in the interior by the body K
and in the exterior by a sphere S with radius R (eventually,
R → ∞). The force acting upon K is calculated by writing
a momentum balance, starting from the steady incompressible
3D Euler equation

v · ∇v = −∇ p, ∇ · v = 0. (1)

The contribution of the pressure term gives the sum of the force
acting on the body K and of the force exerted by the pressure
on the sphere S. It may be shown, using the potential character
of the velocity field, that the latter force vanishes in the limit
R → ∞. The contribution of the advection term can be written
as the flux of momentum through the surface of the domain
Ω : the flux through the boundary of K vanishes because of the
boundary condition v · n = 0; the flux through the surface of
S vanishes because the velocity field is asymptotically uniform
(v ' U for R → ∞). From all this it follows that the force on
the body vanishes. This approach proves the vanishing of both
the drag and the lift.8

Alternatively, one can use energy conservation to show the
vanishing of the drag.9 Roughly, the argument is that the work
of the drag force, due to the motion with velocity U , should be
balanced by either a dissipation of kinetic energy (impossible in
ideal flow when it is sufficiently smooth) or by a flow to infinity
of kinetic energy, which is also ruled out for potential flow. This
argument shows only the vanishing of the drag.

A more detailed presentation of such arguments may be
found in the book by Darrigol.10

In the following we shall see that many technical aspects of
these two modern approaches were actually discovered around
the middle of the eighteenth century.

3. Euler and the new principles of Gunnery (1745)

In 1745 Euler published a German translation of Robins’
book “New Principles of Gunnery” supplemented by a series
of remarks whose total amount actually makes up the double of
the original volume. In the third remark of the first proposition
(Dritte Anmerkung zum ersten Satz) of the 2nd Chapter Euler
attempts to calculate the drag on a body at rest surrounded by a
steadily moving incompressible fluid.11

In 1745 the general equations governing ideal incompress-
ible fluid flow were still unknown. Nevertheless, Euler managed
the remarkable feat of correctly calculating the force acting on
an element of a 2D steady flow around a solid body. For this, as
we shall see, he borrowed and extended the results obtained by
D. Bernoulli a few years earlier.12

8 The lift need not vanish if there is circulation.
9 See, e.g., Landau and Lifshitz, 1987: §11.

10 Darrigol, 2005: Appendix A.
11 For the German original of the third remark, cf. Euler, 1745: 259–270

(of Opera omnia which we shall use for giving page references); an
English version, taken from Hugh Brown’s 1777 translation is available at
www.oca.eu/etc7/EE250/texts/euler1745.pdf. We shall sometimes use our own
translations.
12 Bernoulli, 1736, 1738.

http://www.oca.eu/etc7/EE250/texts/euler1745.pdf
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Fig. 1. Figure 14 of Euler, 1745: 263: this figure represents a fillet of fluid
aAMm, deflected by the solid body, but the shape of the body is not fully
specified.

Euler begins by noting that instead of calculating the drag
acting on a body moving in a fluid one can calculate the drag
acting on a resting body immersed in a moving fluid. Thus, he
considers a fluid moving into the direction AB13 (cf. Figs. 1 and
3), past a solid body CD.14 Then Euler continues by describing
the motion of fluid particles and establishes a relation between
the trajectory and velocity of each fluid particle and the force
which is acting on this particle. He observes that, instead of
determining the force on the body, one can evaluate the reaction
on the fluid:

But since all parts of the fluid, as they approach the body, are deflected
and change both their speed and direction [of motion], the body has to
experience a force of strength equal to that needed for this change in
speed as well as direction of the particles.15

Thus, one has to determine the force which is applied at
each point of the fluid. Euler chooses a fillet16 AaMm of fluid
with an infinitesimal width and observes that the velocity17 v

of the particles passing through the section Mm is inversely
proportional to its (infinitesimal) width Mm = δz; so that
v δz = v0 δz0, where δz0 = Aa and v0 are the width of the fillet
and the velocity at the reference point A.18 For later reference
let us call this relation mass conservation. Euler assumes that
the particles passing through the section Aa follow the fillet
AaMm. This is equivalent to assuming that the velocity in each
section Mm along the trajectory depends only on the location

13 Here, contrary to the usage in Eulers’ memoir, all geometrical points will
be denoted by roman letters, leaving italics for algebraic quantities.
14 These are Euler’s own words; examination of various of his figures and of

the scientific context shows that the body extends below CD and, perhaps also
above.
15 Euler, 1745: 263. Weil aber alle Theile der flüßigen Materie, so bald sich

dieselben dem Körper nahen, genöthiget werden auszuweichen, und so wohl
ihre Geschwindigkeit, als ihre Richtung zu verändern, so muß der Körper eine
eben so große Kraft empfinden, als zu dieser Veränderung so wohl in der
Geschwindigkeit, als der Richtung der Theilchen, erfordert wird.
16 Euler uses the word “Canal” (channel).
17 Following early eighteenth century notation, Euler represents a velocity by

the corresponding height of free fall to achieve the given velocity, starting a
rest; in modern notation this would be

√
2gh. In the 1745 paper Euler takes

mostly g = 1 – but occasionally g = 1/2 – and denotes the height by v. In
order not to confuse the reader, we shall here partially modernize the notation
and in particular denote the velocity by v.
18 Euler denotes our δz, δz0 and v0 by z, a and

√
2b, respectively.

Fig. 2. Figure 1 of Bernoulli, 1736. A centripetal argument is used to calculate
the normal force acting along a fillet of fluid represented here just by the curve
BD (changes in width are ignored).

of the point M and not on time, in modern terms a stationary
flow. Here the concepts of streamline and of stationarity in two
dimensions appear for the first time explicitly.

With the above assumption, Euler defines

AP = x, P Q = dx, P M = y, O N = dy,

p = dy/dx, M N =
√

dx2 + dy2 = dx
√

1 + p2.
(2)

Since the force exerted by the body on the fluid is oriented
upward, we prefer orienting the vertical axis upward. Hence
y and p will be negative in what follows. Otherwise we shall
mostly follow Euler’s notation. Euler calculates the normal and
tangential components, dFN and dFT, of the infinitesimal force
acting on the element of fluid fillet MNnm (see Fig. 1).19

With the assumed unit density, the mass of fluid in MNnm is

δz × M N = δzdx
√

1 + p2. (3)

The normal acceleration dFN in the direction MR is
calculated by Euler as a centripetal acceleration, i.e., given by
the product of the square of the velocity v2 and the curvature
(1 + p2)

3
2 dp/dx . Euler may here be following D. Bernoulli.20

The latter, in a paper concerned among other things with jets
impacting on a plane, had developed an analogy between an
element of fluid following a curved streamline and a point mass
on a curved trajectory (cf. Fig. 2). Multiplying the acceleration
by the elementary mass and using mass conservation,21 Euler
then obtains

dFN = v0δz0vdp/(1 + p2), (4)

in which the velocity v along the fillet is considered to be a
function of the slope p.

19 The notation dFN and dFT is ours.
20 Bernoulli, 1736 and 1738: Section XIII, §13.
21 Bernoulli, 1738: 287 assumed a fillet of uniform width (fistulam

implantatam esse uniformis quidem amplitudinis) and thus did not use mass
conservation to relate the varying width and velocity.
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To obtain the tangential force dFT in the direction mS on the
element of fillet, Euler writes

δzdx
√

1 + p2d(v2/2) = −dFT dx
√

1 + p2, (5)

and thus

dFT = −δzd(v2/2) = −δz0(v0/v)d(v2/2). (6)

For the case of Fig. 1 the force is oriented in the direction mS,
because the fluid is moving more slowly at N than at M. Euler
does not elaborate on how he derives (5) but this seems typically
a “live-force” argument of a kind frequently used at that time,
for example by the Bernoullis.22 Indeed the l.h.s. is the variation
of the live force (kinetic energy) and the r.h.s. is what we would
now call the work of the tangential force per unit mass.

So as to later determine the drag, that is the force on the body
in the vertical direction, Euler adds these normal and tangential
elementary forces, projected onto the vertical axis oriented in
the direction BA. He thus obtains the following elementary
vertical force on the fluid:

dFBA = v0δz0

(
vdp

(1 + p2)
3
2

+ pdv
√

1 + p2

)

. (7)

Here a “miracle” happens: the r.h.s. of (7) is the exact
differential of

v0δz0

(
vp

√
1 + p2

)

. (8)

Finding the exact form of the function v(p), as we now know,
requires the solution of a non-trivial boundary value problem.
The exact form does however not matter for the integrability
property and – from a modern perspective – can be related to the
global momentum conservation property of the Euler equation.
In 1745 Euler did not comment on the miracle. It is worth
stressing that it does not survive if any error is made regarding
the numerical factors appearing in the normal and tangential
forces.

Euler is now able to exactly integrate the elementary force
along a fillet from its starting point A, assumed to be far
upstream (p = −∞), to a point m with a finite slope p. Noting
that −p/

√
1 + p2 is the cosine of the angle MSB, he obtains

the following force on the body, due to the fillet:

FAB = −v2
0δz0

(
1 − v

v0
cos MSB

)
. (9)

Note that this is a force from a given fillet of infinitesimal
width which must still be integrated over a set of fillets
encompassing the whole fluid. More important here is where
to terminate the fillet. It is clear that the relevant fillets start far
upstream in the vertical direction; but where do they lead after
having come close to the solid body? Euler considers various
possibilities, such as a 90◦ deflection. He then envisages a very
interesting case:

22 Cf., e.g., Darrigol, 2005: Chap. 1.

Fig. 3. Figure 15 of Euler, 1745: 268 from which he tries to explain that the
drag should be calculated using only the portion AM of the fillet.

It remains therefore only to fix upon the point which is to be esteemed
the last of the canal. If we go so far that the fluid may pass by the body,
and attain its first direction and velocity then shall δz = δz0, and the
angle mSB vanish, and therefore its cosine = 1, then shall the force
acting on the body in the direction AB = −v2

0δz0(1 − 1) = 0, and the

body suffers no resistance. 23

From a technical point of view Euler’s 1745 derivation of
the vanishing of the drag force has many features of the modern
proof. However Euler refuses here to see a paradoxical property
of the model of ideal fluid flow (for which the equations are not
even completely formulated). He accepts the possibility that the
vanishing of the drag applies to certain exotic fluids which are
“infinitely fluid . . . and also compressed by an infinite force”24

such as the hypothetical ether surrounding celestial bodies
(called by him “subtle heavenly material”), but he firmly rejects
it for water and air. Indeed, immediately after the previous
citation he writes:
Hence it appears, that for air or water, we are not to take the point of the
canal for last, where the motion behind the body corresponds exactly
with that at the beginning of the canal. 25

Euler then explains why in his opinion the “last point”
should not at all be taken far downstream, but rather near the
inflection point M where the angle MSB achieves its maximum
value, as shown in Fig. 3.26 As pointed out to us by Olivier
Darrigol, in Euler’s opinion the portion AM of the canal AD is
the only one that exerts a force on the body, the alleged reason

23 Euler, 1745: 267. Hier kömmt es also nur darauf an, wo das Ende des
Canals angenommen werden soll. Geht man so weit, biß die flüßige Materie um
den Körper völlig vorbey geflossen, und ihren vorigen Lauf wiederum erlanget
hat, so wird . . . , und der Winkel mSB verschwindet, dahero der Cosinus
desselben = 1 wird. In diesem Fall würde also die auf den Körper nach der
Direction AB würkende Kraft . . . und der Körper litte gar keinen Wiederstand.
24 Euler, 1745: 268–269. . . . unendlich flüßig . . . und von einer unendlichen

Kraft zusammen gedruckt . . .
25 Euler, 1745: 267. Woraus erhellet, daß man für Wasser und Luft nicht

denjenigen Punkt des Canals, wo die Bewegung hinter dem Körper mit der
ersten wiederum völlig übereinkommt, für den letzten annehmen könne.
26 Truesdell, 1954: XL writes that “Euler supposes that the oncoming fluid

turns away from the axis, leaving a dead-water region ahead of the body”;
actually, Euler does not assume any dead-water region in his Third Remark.
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being that the force caused by the deflection in the portion MD
is not directed toward the body:
The other part DM produces a force which is opposite to the first, and
would cause the body to move back in the direction BA. Now, as only
a true pressure [a positive one] can set a body into motion, the latter
force can only act on the body insofar as the pressure of the fluid matter
from behind is strong enough to move the body forwards .27

Hence he departed from strict dynamical reasoning to follow a
dubious intuition of the transfer of force through the fluid.28

To sum up, Euler performed a real tour de force by deriving
the correct expression for the force on a fillet of fluid without
having the equations of motion but practically he was not
able to reach much beyond Newton’s impact theory when
considering the global interaction between the fluid and the
body.

4. d’Alembert and the treatise on the resistance of fluids
(1749)

In a treatise29 written for the prize of the Berlin Academy
of 1749 whose subject was the determination of the drag a
flow exerts upon a body, d’Alembert gives a description of the
motion of the fluid analogous to that of Euler. It is not clear
if d’Alembert knew about Euler’s “Commentary on Gunnery”.
As noted by Truesdell,30 some figures in d’Alembert’s treatise
are rather similar to those found in the Gunnery but there
are also arguments in the Gunnery which would have allowed
d’Alembert, had he been aware of them, to extend his 1768
paradox to cases not possessing the head–tail symmetry he
had to assume. Anyway, d’Alembert was fully aware of D.
Bernoulli’s work on jet impact in which, as we already pointed
out, a similar figure is found.

In the treatise d’Alembert described the motion of an
incompressible fluid in uniform motion at large distance,
interacting with a localized axisymmetric body. He observed
that the streamlines and the velocity of the fluid at each point
in space are time-independent. The velocity a of the fluid far
upstream of the body is directed along the axis of symmetry
(which he takes for the abscissa); the other axis is chosen to be
perpendicular to this direction. In this frame a point M of the
fluid is characterized by the cylindrical coordinates (x, z) and
the corresponding velocity has the components avx and avz .31

D’Alembert’s first aim is to derive the partial differential
equations which determine the motion of the fluid, and the
appropriate boundary conditions with which they must be

27 Euler, 1745: 268. Aus dem andern Theil DM aber ensteht eine Kraft,
welche jener entgegen ist, und von welcher des Körper nach der Direction
BA zurück gezogen werden sollte. Da nun kein Körper anders, als durch einen
würklichen Druck in Bewegung gesetzt werden kann, so kann auch die letztere
Kraft nur in so ferne auf den Körper würken, als der Druck der flüßigen Materie
von hinten stark genug ist, den Körper vorwärts zu stossen.
28 Darrigol, private communication, 2007.
29 D’Alembert, [1749], 1752.
30 Truesdell, 1954: LII.
31 D’Alembert uses a similarity argument to prove that the velocity field

around a body of a given shape is proportional to the incoming velocity a
(D’Alembert, [1749]: §42–43, 1752: §39).

supplemented. He observed that, in order to determine the drag
on the body, one must first determine
. . . the pressure of the fillet of Fluid which glides immediately on the
surface of the body. For this it is necessary to know the velocity of the
particles of the fillet. 32

By considering the motion of fluid particles during an
infinitesimal time interval, d’Alembert is able to find the
expressions of the two components of the force acting on an
element of fluid:

γz = a2
(

−vx
∂vz

∂x
− vz

∂vz

∂z

)
, (10)

and

γx = a2
(

−vx
∂vx

∂x
− vz

∂vx

∂z

)
. (11)

From this d’Alembert derived for the first time the partial
differential equations for axisymmetric, steady, incompressible
and irrotational flow, but he does not use such equations in
considering the problem of “fluid resistance”.33

How does d’Alembert calculate the drag? From an
assumption about the continuity of the velocity he infers,
contrary to Euler, that there must be a zone of stagnating fluid
in front of the body and behind it, bordered by the streamline
TFMDLa which attaches to the body at M and detaches at L
(see Fig. 4).34

In his calculation of the drag d’Alembert used an approach
which differed from that of Euler in the Gunnery: instead
of calculating the balance of forces acting on the fluid he
considered the pressure force exerted on the body by the fluid
fillet in immediate contact with it. D’Alembert noted first that,
for each surface element of the body, the force exerted by the
fluid particles is perpendicular to this surface, because of the
vanishing of the tangential forces, characterizing the flow of an
ideal fluid.35

In conformity with Bernoulli’s law, d’Alembert expressed
the pressure along the body as a2(1−v2

x −v2
z ). With ds denoting

the element of curvilinear length along the sections of the body
by an axial plane such as that of Fig. 4, the infinitesimal element
of surface of revolution of the body upon which this pressure is
acting is 2π zds. The component along the axis of the pressure
force exerted is

2πa2(1 − v2
x − v2

z )zdz. (12)

Further integration along the profile AMDLC yields the vertical
component of the drag.

Then came a very important remark. D’Alembert noted that
in the case of a body which is not only axisymmetric but has

32 D’Alembert, 1752: xxxi. . . . la pression du filet de Fluide qui glisse
immédiatement sur la surface du corps. Pour cela il est nécessaire de connoı̂tre
la vitesse des particules de ce filet.
33 Cf. Truesdell, 1954: LIII, Grimberg, 1998: 44–46, Darrigol, 2005: 20–21.
34 D’Alembert, [1749]: §39, 1752: §36.
35 D’Alembert, [1749]: §40, 1752: §37. This vanishing, as we know,

characterizes an ideal fluid; d’Alembert did not relate it to the nature of the
fluid.
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Fig. 4. Figure 14 of D’Alembert, [1749] redrawn. Not all elements shown here
are used in our arguments.

a head–tail symmetry,36 the contributions to the drag from two
symmetrically located points would be equal and of opposite
sign and thus cancel.37 In order to avoid the vanishing of the
drag, he assumed that the attachment point M and the separation
point L are not symmetrically located:
From there it follows that the arcs LD and DM cannot be equal;
because, if they were, the quantity—

∫
2πydy(p2+q2) would be equal

to zero so that the body would not experience any force from the fluid:
which is contrary to experiments.38

This stress on “experiments”, already present in the 1749
manuscript and which will not reappear in d’Alembert’s 1768
paradox paper, seems to reflect just common sense. It cannot be
explained by d’Alembert’s hypothetical desire to adhere to late
recommendations by the Berlin Academy which emphasized
comparisons with experiments for the 1750 prize on resistance
of fluids. D’Alembert did not seem pleased with such late
changes and these recommendations were probably formulated
only in May 1750.39

D’Alembert’s new idea, compared to Euler, is to consider
the drag as the resultant of the pressure forces directed along
the normal to the surface of the body over its entirety. But for
d’Alembert it is still unimaginable to obtain a vanishing drag.

5. Euler and the ‘Dilucidationes’ (1756)

The Dilucidationes de resistentia fluidorum (Enlightenment
regarding the resistance of fluids) have been written in 1756,

36 In d’Alembert [1752] this additional symmetry is explicitly assumed;
in d’Alembert, [1749] the language used only suggests such a symmetry.
37 D’Alembert, [1749]: §62, 1752: §70.
38 D’Alembert, 1752: §70. Delà il s’ensuit que les arcs LD, DM ne sauroient

être égaux ; car s’ils l’étoient, alors la quantité −
∫

2πydy(p2+q2) seroit égale
à zéro de manière que le corps ne souffriroit aucune pression de la part du
fluide : ce qui est contre l’expérience.
39 D’Alembert, 1752: xxxviii; Yushkevich and Taton, 1980: 312–314; Grim-

berg, 1998: 9.

one year after Euler established his famous equations in their
final form.40 In his review of previous efforts to understand the
drag problem for incompressible fluids, Saint-Venant41 writes
the following about the Dilucidationes:

And it is obvious that, when the flow is assumed indefinite or very
broad, the theory of the Dilucidationes can only be and actually is just
a return to the vulgar theory, . . . . 42

Here, Saint-Venant understands by “vulgar theory” the
impact theory which goes back to the seventeenth century.
Actually, in 1756 Euler was rather pessimistic regarding the
applicability of his equations to the drag problem:

But the results which I have presented in several previous memoirs
on the motion of fluids do not help much here. Because, even though
I have succeeded in reducing everything that concerns the motion
of fluids to analytical equations, the analysis has not reached the
sufficient degree of completion which is necessary for the solving of
such equations.43

Truesdell discusses the Dilucidationes in detail.44 Actually
this paper is quite famous because of a remark Euler
made on the cavitation that arises from negative pressure in
incompressible fluids. Truesdell is also rightly impressed by
Euler’s success in doing something non-trivial with his equation
for flows around a parabolic cylinder; for this Euler uses a
system of curvilinear coordinates based on the streamlines and
their orthogonal trajectories.

The Dilucidationes are however not contributing much to
our understanding of drag. In Section 15, Euler expresses his
doubts regarding the applicability of his 1745 calculation to
both the front and the back of a body (which would result in
vanishing drag):

. . . the boat would be slowed down at the prow as much as it would be
pushed at the poop . . . .45

We must mention here that, because of a possible non-
vanishing transfer of kinetic energy to infinity, the modern
theory of the d’Alembert paradox does not apply to flow with a
free surface, such as a boat on the sea.

Thus, in the Dilucidationes we find a first attempt to
introduce a new analytical treatment of streamlines unrelated
to the previous theories and coming closer to the modern
description of a fluid flow. Nevertheless, Euler does not succeed
in using his 1755 equations to improve our understanding of the
drag problem.

40 Euler, 1755, 1756.
41 Saint-Venant, [1888], probably mostly written around 1846.
42 Saint-Venant, [1888]: 35. Et il est évident que, lorsque le courant est

supposé indéfini ou très large, la théorie des Dilucidationes d’Euler ne peut
être et n’est réellement qu’un retour pur et simple à la théorie vulgaire,
43 Euler, 1760: 200. Quae ego etiam nuper in aliquot dissertationibus de

motu fluidorum exposui, nullum subsidium huc afferunt. Etiamsi enim omniam
quae ad motum fluidorum pertinent, ad aequationes analyticas reduxi, tamen
ipsa Analysis minime adhuc ita est exculta, ut illis aequationibus resoluendis
sufficiat.
44 Truesdell, 1954: C–CVII.
45 Euler, 1760: 206 . . . puppis nauis paecise tanta vi propelleretur, quanta

prora repellitur. . . .
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6. Borda’s memoir (1766)

In his memoir Borda, a prominent French “Geometer” and
experimentalist, studies the loss of “live force” (energy) in
incompressible flows, in particular in pipes whose section is
abruptly enlarged.46 At the end of his memoir Borda gives
an example of what would be, in his opinion, “a bad use” of
the principle of conservation of live forces. This is precisely
the problem of determining the drag force that a moving fluid
exerts upon a body at rest. The particles of the fluid in the
neighborhood of the body “delineate curved lines or rather
move in small curved channels”; the pressure force acting
upon the body has to be determined. But the channels become
narrower at certain locations similarly to a siphon, so that the
principle of live forces cannot be used. To prove this point he
then presents the following argument for the vanishing of the
drag:

. . . suppose that the body D moves uniformly through a quiescent fluid,
driven by the action of the weight P . According to this principle [of
live forces], the difference of the live force of the fluid must be equal to
the difference of the actual descent of the weight; however, since the
motion is supposed to have reached uniformity, the difference of the
live forces equals zero. Therefore, the difference of the actual descent
is also zero, which cannot happen unless the weight P is itself zero. As
the weight P measures the resistance of the fluid, the supposition of the
principle [of live forces] necessarily leads to a vanishing resistance.47

This constitutes the first derivation of the d’Alembert
paradox using an energy dissipation argument. Borda’s
explanation of why the live-force conservation argument is
inapplicable rests on the aforementioned analogy with the
siphon problem. This is illustrated by a figure48 not reproduced
here because of its poor quality. There one sees a fillet of
fluid narrowing somewhat as it approaches the body. The
modern concept of dissipation in high-Reynolds-number flow
being confined to regions with very strong velocity gradients is
definitely not what Borda had in mind.

Borda’s reasoning is correct, but like Euler in 1745 and
d’Alembert in 1749, he does not formulate the vanishing of
the drag as a paradox. In his remarks Borda addresses neither
the question of the nature of the fluid, nor the consequences of
having stationary streamlines, nor the problem of the contact
between the fluid and the body (absence of viscosity in the
case of ideal flow) which, as we know, are quite central to the
understanding of the paradox.

46 Borda, 1766.
47 Borda, 1766: 604–605. . . . supposons que le corps D se meuve

uniformément dans un fluide tranquille, entraı̂né par l’action du poids P: on
sait que suivant le principe, la différence de la force vive du fluide devra être
égale à la descente actuelle du poids P; mais puisque le mouvement est censé
parvenu à l’uniformité, la différence des forces vives = 0; donc la différence de
la descente actuelle sera aussi = 0, ce qui ne se peut pas à moins que le poids
P ne soit lui-même = 0: or le poids P marque la résistance du fluide : donc la
supposition du principe dont il s’agit, donne toujours une résistance nulle.
48 Borda, 1766: Figure 14, found at the end of the 1766 volume on p. 847.

7. D’Alembert’s memoirs on the paradox (1768 and 1780)

In Volume V of his “Opuscules” published in 1768, a
part of a memoir is entitled “Paradox on the resistance of
fluids proposed to geometers.”49 D’Alembert considers again
an axisymmetric body, but now with a head–tail symmetry.
More precisely, he assumes a plane of symmetry perpendicular
to the direction of the incompressible flow at large distance and
dividing the body into two mirror-symmetric pieces. To avoid
the problem of possible separation of streamlines upstream and
downstream of the body, he assumes that the front part and
the rear part of the body have needle-like endings. First of all
he asserts that the velocities at every location in the fluid are
perfectly symmetric in front/rear of the body, and that
. . . under this assumption the law of the equilibrium and the
incompressibility of the fluid will be perfectly obeyed, because, the
rear part of the body being similar and equal to its front part, it
is easy to see that the same values of p and q [i.e. the velocity
components] which will give at the first instant the equilibrium and
incompressibility of the fluid at the front part will give the same results
for the rear part. 50

This statement is directly related to the remark in Section 70
of d’Alembert’s 1752 treatise. In fact, the assumption used by
d’Alembert in 1749 and 1752 to avoid a paradox is here lifted,
since no separation of streamlines occurs except at the needle-
like end points. D’Alembert here assumes that the solution with
mirror symmetry is the only one: “The fluid has only one way
to be moved by the encounter of the body.” The pressure forces
at the front and rear part of the body are then also axisymmetric
and mirror symmetric. Hence they combine into a force of
resistance (drag) which vanishes. D’Alembert concluded:
Thus I do not see, I admit, how one can satisfactorily explain by
theory the resistance of fluids. On the contrary, it seems to me that the
theory, developed in all possible rigor, gives, at least in several cases, a
strictly vanishing resistance; a singular paradox which I leave to future
Geometers to elucidate. 51

It is clear that d’Alembert’s argument is less general than that
of Borda, since he is restricting the formulation of the paradox
to bodies with a head–tail symmetry. Nevertheless, d’Alembert
is the first one to seriously propose the vanishing of the drag as a
paradox. Twelve years later in Volume VIII of his “Opuscules”
d’Alembert revisits the paradox in the light of a letter received
from “a very great Geometer” who is not named and who
points out that, when considering the flow inside or around a

49 D’Alembert, 1768. In the eighteenth century “Geometer” was frequently
used to mean “mathematician” (pure or applied).
50 D’Alembert, 1768: 133. . . . dans cette supposition les loix de l’équilibre

& de l’incompressibilité du fluide seront parfaitement observées; car la partie
postérieure étant (hyp.) semblable et égale à la partie antérieure, il est aisé de
voir que les mêmes valeurs de p & de q; qui donneront au premier instant
l’équilibre & l’incompressibilité du fluide à la partie antérieure, donneront les
mêmes résultats à la partie postérieure.
51 D’Alembert, 1768: 138. Je ne vois donc pas, je l’avoue, comment on peut

expliquer par la théorie, d’une maniere satisfaisante, la résistance des fluides.
ll me paroı̂t au contraire que cette théorie, traitée & approfondie avec toute la
rigueur possible, donne, au moins en plusieurs cas, la résistance absolument
nulle ; paradoxe singulier que je laisse à éclaircir aux Géometres [sic].
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symmetric body, there may be, in addition to the symmetric
solution, another one which does not possess such symmetry
and to which d’Alembert’s argument for the vanishing of the
resistance does not apply.52 D’Alembert concurs and discussed
the issue at length. It should however be noted that a breaking of
the symmetry was already assumed by him in his early work on
the resistance when he assumed that the (hypothetical) points
of attachment and detachment of the streamline following the
body are not symmetrically located (see Section 4).

Thus d’Alembert was definitely the first to formulate the
vanishing of the drag as a paradox within the accepted model
of that time, namely incompressible fluid flow, implicitly taken
as ideal.53 He was however formulating it only for bodies with
head–tail symmetry, not realizing that techniques introduced by
Euler and Borda could have allowed him to obtain the paradox
for bodies of arbitrary shapes.

8. Saint-Venant and the first precise formulation of the
paradox (1846)

In three notes published in 1846 and then in a memoir
published in 1847, Saint-Venant gives for the first time a
general formulation of the paradox. A detailed write-up, mostly
dating from the same period, was published only posthumously
in 1888 and contains also a very interesting discussion of
previous work.54 Saint-Venant’s memoir marks the beginning
of the modern theory of the d’Alembert paradox which was
to flourish, in particular with major contributions by Ludwig
Prandtl.55

We here give only a very brief description of the key
results of Saint-Venant. He first specified the properties of
the incompressible fluid: the pressure force is normal to the
surface element on which it is acting and therefore equal in
all directions. The fluid moves steadily around a body at rest.
He gives a derivation of the paradox, closely related to Borda’s.
Indeed, it suffices to establish the equation for the live forces
acquired by the fluid to see that the live-force (energy) loss of
the system is zero:

If the motion has reached, as one always assumes, a steady state, the
live force acquired by the system at every instant is zero; the work
performed by the exterior pressures is also zero and the same applies to
the work of the interior actions of the fluid whose density is assumed to
be unchanging. Thus, the work of the impulse of the fluid on the body,
and, consequently, the impulse itself, is necessarily equal to zero. 56

52 D’Alembert, 1780: 212; Birkhoff, 1950: 21–22.
53 The idea of viscosity ripened only in the XIXth century, see e.g. Darrigol,

2005; in the eighteenth century there was only a concept of tenaciousness,
e.g. resistance to the introduction of a body into fluid, which was still a long
way from actual viscosity.
54 Saint-Venant, 1846, 1847, [1888].
55 Cf., e.g. Darrigol, 2005: Chap. 7.
56 Saint-Venant, 1847: 243–244. Si le mouvement est arrivé, comme on le

suppose toujours, à l’état de permanence, la force vive, acquise à chaque instant
par le système, est nulle ; le travail des pressions extérieures est nul aussi, et il
en est de même du travail des actions intérieures du fluide dont nous supposons
que la densité ne change pas. Donc le travail de l’impulsion du fluide sur le
corps, et, par conséquent, cette impulsion elle-même, est nécessairement zéro.

He adds that the situation is different for a real fluid made of
molecules in which there is friction at the contact between two
neighboring fluid elements:

But one finds another result if, instead of an ideal fluid – object of
the calculations of the geometers of the last century – one uses a real
fluid, composed of a finite number of molecules and exerting in its
state of motion unequal pressure forces or forces having components
tangential to the surface elements through which they act; components
to which we refer as the friction of the fluid, a name which has been
given to them since Descartes and Newton until Venturi.57

Thus, d’Alembert’s paradox is explained by Saint-Venant for
the first time as a consequence of ignoring viscous forces. Of
course, a precise formulation of the paradox would not have
been possible without a clear distinction between ideal and
viscous fluids.

9. Conclusion

The problem of the resistance of bodies moving in fluids
was – and still is – of great practical importance. It was thus
naturally one of the first non-trivial problems tackled within
the nascent eighteenth century hydrodynamics. Euler, who was
not only a great “Geometer” but a person acutely aware of
the needs of gunnery and ship building, tried – as we have
seen – reaching beyond the old impact theory of Newton—
and failed. He was lacking both the concept of viscous forces
and a deep understanding of the global aspects of the topology
of the flow around a body. His “failure” – as is frequently
the case with major scientists – was however very creative:
born was the idea of analyzing a steady flow into a set of
fluid fillets of infinitesimal and non-uniform section; he also
managed to calculate the forces acting on such fillet several
years before there was any representation of the dynamics in
terms of partial differential equations. Borda, being both a
Geometer and an experimentalist, felt compelled to qualify as
non-sensical a very simple live-force argument discovered by
himself and which predicted a vanishing drag for bodies of
arbitrary shape. D’Alembert, another brilliant Geometer, was
probably less constrained by experimental considerations, and
dared eventually to present the paradox known by his name. His
proof reveals a very good understanding of the global topology
of the flow but otherwise is very simple and limited intrinsically
to bodies with a head–tail symmetry.

We must stress that the statement as a paradox is very much
tied to the type of analytical representation of an ideal flow.
From this point of view, experiments on flow past bodies,
be they real or thought experiments, have rather been an
obstacle to grasping the distinction between an ideal fluid and
a real one. The same kind of epistemological obstacle has

57 Saint-Venant, 1847: 244. Mais on trouve un autre résultat si, au lieu du
fluide idéal, objet des calculs des géomètres du siècle dernier, on remet un
fluide réel, composé de molécules en nombre fini, et exercant dans l’état du
mouvement, des pressions inégales ou qui ont des composantes tangentielles
aux faces à travers desquelles elles agissent; composantes que nous désignons
par le nom de frottement du fluide, qui leur a été donné depuis Descartes et
Newton jusqu’à Venturi.
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accompanied the earlier birth of the principle of inertia, which
no experiment could at that time truly reveal; it was necessary to
distance oneself from real conditions and to find an appropriate
mathematical representation. Finding such representations for
fluid dynamics was a painfully slow process: a full century
elapsed between Euler’s fragmentary results on drag and Saint-
Venant’s full understanding of the d’Alembert paradox.
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des procès verbaux (1846), 25–29, 72–78, 120–121.
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Abstract

This paper is meant to give some interesting details of Euler’s unusual life and extraordinary creativity. A fast-rising scientist, he became
Europe’s teacher of mathematics by his numerous textbooks. Yet, he, too, had to manage the problems of daily academic and private life. He was
a pioneer in solving special cases of the famous three-body problem: the problem of two gravitational centers and the collinear configuration.
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1. Introduction

The Irish satirist Jonathan Swift once said1:

Elephants are drawn always smaller than life, but a flea always larger.

Whoever would like to speak about Euler has to solve
exactly this problem: How to do justice to this mathematician,
“universal, richly detailed and inexhaustible”2? The following
essay is meant to emphasize some less well-known details of
Euler’s unusual life and work, especially his pioneering work
in celestial mechanics regarding the three-body problem.

2. The fast-rising scientist

1720 13 years old, Leonhard Euler enrolls at the University of
Basel;

1721 14 years old, he obtains the Bachelor’s degree;
1722 still 14 years old, he is for the first time opponent in an

appointment procedure for a professorship (of logic);
1722 15 years old, he is for the second time opponent in an

appointment procedure for a professorship (of history of
law);

∗ Corresponding address: Technische Universität Berlin, Germany.
E-mail address: Eberhard.Knobloch@TU-Berlin.DE.

1 Cf. Fellmann, 2007: p. XIII.
2 Simmons, 2007: p. 168.

1723 16 years old, he obtains his Master’s degree (A.L.M. =
Artium Liberalium Magister);

1726 18 years old, he publishes his first (faulty) paper on
isochronic curves3;

1726 19 years old, he submits his paper on ship’s masts, thus
gaining an honourable mention by the French Academy
of sciences4;

1727 19 years old, he submits his habilitation thesis without
having obtained the Ph.D. degree5;

1727 20 years old, he begins his work in St. Petersburg.

Euler submitted the thesis in order to receive the vacant
professorship of physics at the University of Basel. Its complete
title reads6:

Q.F.F.Q.S.7 Physical dissertation on sound which Leonhard Euler, Master of

the liberal arts submits to the public examination of the learned in the juridical

lecture-room on February 18, 1727 at 9 o’clock looking at the free professorship

of physics by order of the magnificent and wisest class of philosophers whereby

3 Sandifer, 2007: p. 5.
4 Euler, 1728.
5 Euler, 1727.
6 Euler, 1727: p. 181 (“Q.F.F.Q.S. [=Quod felix faustumque sit] Dissertatio

physica De sono, quam annuente numine divino jussu magnifici et sapientissimi
philosophorum ordinis pro vacante professione physica ad d. 18. Febr. A.
MDCCXXVII. In Auditorio Juridico hora 9. Publico Eruditorum Examini
subjicit Leonhardus Eulerus A.L.M. Respondente Praestantissimo Adolescente
Ernesto Ludovico Burcardo Phil. Cand.”).

7 Quod felix faustumque sit (May it bring you happiness and good fortune).

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.03.005

http://dx.doi.org/10.1016/j.physd.2008.03.005
http://www.elsevier.com/locate/physd
mailto:Eberhard.Knobloch@TU-Berlin.DE


1888 E. Knobloch / Physica D 237 (2008) 1887–1893

the divine will is nodding assent. The most eminent young man Ernst Ludwig

Burchard, candidate of philosophy, is responding.

But all imploring was in vain: Euler did not get the position.
In the appendix he raised the following problem: What would
happen if a stone dropped into a straight tunnel drilled to the
center of the earth and onward to the other side of the planet?
According to Euler it reaches infinite velocity at the center
and immediately returns to the same point from which it had
fallen down. Only in his Mechanica did Euler justify this false
solution saying8:

This seems to differ from truth . . . . However that may be, here we have to

confide more in the calculation than in our judgement and have to confess that

we do not understand at all the jump if it is done from the infinite into the finite.

Euler’s result was the consequence of his mathematical
modelling of the situation (a non-permitted commutation of
limits). Benjamin Robins put it as follows9:

When y, the distance of the body from the center, is made negative, the terms

of the distance expressed by yn , when n may be any number affirmative,

or negative, whole number or problem are sometimes changed with it. The

centripetal force being as some power of the fraction; if, when y is supposed

negative, yn be still affirmative, the solution gives the velocity of the body in its

subsequent ascent from the center; but if yn by this supposition becomes also

negative, the solution exhibits the velocity, after the body has passed the center,

upon condition, that the centripetal force becomes centrifugal; and when on this

supposition yn becomes impossible, the determination of the velocity beyond

the center is impossible, the condition being so.

Such mistakes are not uncommon in the writings of great
men. Curiously, Euler never recanted.

3. Euler’s publications and posthumous works

Euler published more than 800 books or papers, mainly in
Latin or French, some in German or Russian. His posthumous
works are kept in the archives of the Russian Academy
of Sciences in St. Petersburg. The Euler Archives in Basel
dispose of microfilms of all preserved Eulerian manuscripts.
They are described in a volume published in Moscow and
Leningrad.10 The twelve mathematical notebooks covering the
period 1725 to 1783 are of special interest. They consist of 2300
sheets of paper written nearly exclusively in Latin. Russian,
German, and English surveys appeared in 1988, 1989, and
2007, respectively.11 The notebooks will not be published in
the Opera omnia. Their digitization is planned.

Euler dealt with all aspects of pure and applied mathematics
and likewise with philosophy and theology.12 Differential and
integral calculus; logarithmic, exponential, and trigonometric

8 Euler, 1736: p. 88. (“Hoc quidem veritati minus videtur consentaneum;
. . . Quicquid autem sit, hic calculo potius quam nostro iudicio est fidendum
atque statuendum, nos saltum, si fit ex infinito in finitum, penitus non
comprehendere.”)

9 Robins, 1739: p. 12.
10 Kopelevic, Krutikova, Mikhailov, Raskin, 1962.
11 Knobloch, 1988, 1989, 2007.
12 Cf. Varadarajan, 2006: p. 2.

functions; ordinary and partial differential equations; elliptic
functions and integrals; hypergeometric integrals; classical
geometry (theorem on polyhedra); number theory; algebra;
continued fractions; Zeta and other (Euler) products; infinite
series and products (Basel problem); divergent series;
mechanics of particles and solid bodies; calculus of variations;
theory and practice of optics; hydrostatics; hydrodynamics;
astronomy; lunar and planetary motions; topology; graph
theory (Königsberg bridge problem); philosophy; theology;
shipbuilding; engineering; music theory.

The following enumeration gives a survey of Euler’s most
important monographs or textbooks. They are chronologically
ordered according to the date of publication and assigned
to Euler’s three stays in St. Petersburg (1727–1741), Berlin
(1741–1766), and again in St. Petersburg (1766–1783).

3.1. St. Petersburg (1727–1741)13

• Mechanics or the science of motion set forth analytically,
1736 (so-called First Mechanics)

• Introduction to the art of arithmetic for the use of the
high school at the Imperial Academy of Sciences in St.
Petersburg, 1738

• Essay of a new theory of music set forth clearly according to
the most certain principles of harmony, 1739

• Naval science or treatise on the construction and navigation
of ships, 1749 (so-called First naval theory, already written
in 1738 while still in St. Petersburg).

3.2. Berlin (1741–1766)14

• Method of finding curvilinear lines having a property to a
highest or smallest degree or solution of the isoperimetric
problem understood in the largest sense, 1744

• Theory of the motion of planets and comets, 1744
• New principles of gunnery, 1745
• Introduction into the analysis of the infinite, 1748
• Theory of the motion of the moon, setting forth all of

its inequalities, 1753 (so-called First lunar theory; its
publication was paid for by the Russian Academy of
Sciences)

• Elements of instruction of the differential calculus together
with its application in the analysis of the finite and theory
of series, 1755 (its publication was paid for by the Russian
Academy of Sciences)

• Theory of the motion of solid or rigid bodies stabilized
according to the first principles of our cognition and
accommodated to all motions that can fall in such bodies,
1765 (so-called Second Mechanics)

• Letters to a German princess on diverse subjects of physics
and philosophy, 1768–1772 (already written in the years
1760–1762 while still in Berlin)

• Elements of instruction of the integral calculus, 1768–1770,
1794 (already written in 1763 while still in Berlin)

13 Euler, 1736, 1738, 1739, 1749.
14 Euler, 1744a,b, 1745, 1748, 1753, 1755a, 1765c, 1768–1772, 1794.
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3.3. St. Petersburg (1766–1783)15

• Dioptrics, 1769–1771
• Complete introduction to algebra, 1770
• Theory of the motions of the moon dealt with by a new

method together with astronomical tables, 1772 (so-called
Second lunar theory)

• Complete theory of the construction and navigation of ships,
1773 (so-called Second naval theory).

Through these textbooks Euler became Europe’s teacher not
only in his own time, but also for mathematicians of the 19th
century.16

4. The troubles of daily life

In spite of all intellectual flights of fancy Euler had to
manage the problems of daily academic and private life. Three
examples may illustrate this aspect of his activities.

4.1. The quadrature of the circle

In his capacity as director of the mathematical class of the
Berlin Academy he had to evaluate mathematical writings and
projects, for example the writing of a certain Thibault from
Avignon about the quadrature of the circle.17 The report dates
from the 15th of March, 1750 (cf. Fig. 1). It begins by saying18:

After reading the writing of Mr. Thibault where he pretends to have found the

quadrature of the circle, I doubt very much that one has ever seen a paper on

this subject being just as absurd as this one.

The report ends by saying19:

This suffices to demonstrate that the author not only does not have the slightest

notion of the question he is dealing with but that he does not know either

anything about the first elements of geometry.

4.2. The supply of dead bodies

Since the departure of Maupertuis from Berlin Euler was
his proxy. He had to inform the administrator David Köhler
of the Academy’s financial affairs to pay the due honorarium
to the widow of the grave-digger Schünemann for supplying
the Anatomy with dead bodies.20 The Anatomical Theatre had
been constructed in 1713.

15 Euler, 1769–1771, 1770, 1772, 1773.
16 Spieß, 1929: p. 206.
17 W. Knobloch, 1984: p. 27, no. 64. Publication of the following citations by

courtesy of the Archives of the Berlin-Brandenburg Academy of Sciences and
Humanities.
18 “Ayant lu l’écrit de Mr. Thibault, où il prétend d’avoir trouvé la quadrature

du cercle, je doute fort qu’on ait jamais vu une pièce aussi absurde sur ce sujet
que celle-cy.”
19 “Cela suffit pour faire voir, que l’Auteur n’a non seulement aucune idée de

la question, dont il s’agit, mais qu’il est même entièrement ignorant dans les
premiers élémens de Géométrie.”
20 W. Knobloch, 1984: p. 252, no. 1430; p. 270, no. 1553; p. 315, no.

1857–1860.

Fig. 1. Euler’s report on Thibault’s quadrature of the circle dating from March
15, 1750; Archives of the Berlin-Brandenburg Academy of Sciences and
Humanities I–M 101, sheet 1.

4.3. The plundering of Euler’s estate

During the Seven Years War between England and Prussia
on the one side, Russia, Austria, and France on the other side,
Euler’s estate in the village Lietzow (outside of but near to
Berlin in those days) was plundered by Saxon troops, allies
of the Russians. The still existing list of damages elaborated
by the mayor of Lietzow enumerates 1 Wispel, 5 Scheffel rye
(1 Wispel = 24 Scheffel, 1 Scheffel = 54,73 l), 1 Wispel,
6 Scheffel barley/oat, 30 metric hundred-weights, two horses,
thirteen cows, seven pigs, twelve sheep (cf. Fig. 2).21

In his letter to the Russian secretary Gerhard Friedrich
Müller in St. Petersburg Euler spoke of four horses thus
doubling the damage.22

5. Euler’s work in celestial mechanics

When Euler published his Mechanica in 1736, it was
preceded by the copperplate engraving presented in Fig. 3.

The head of the celestial deity carries the sun revolved by
the six planets that can be seen with the naked eye. The planet
Uranus discovered only in 1781 is still absent. In the right
hand the deity holds an opened book. The figures represent
the whole or partial elliptic orbit of a planet. The message is
clear: Celestial mechanics is a part of mechanics wherein the
Newtonian law of gravitation plays the crucial role.

21 Brandenburgisches Landeshauptarchiv, Kurmärkische Kriegs- und
Domänenkammer, Städte-Registratur: De anno 1760, Nr. S 3498; reproduction
by courtesy of these archives.
22 Fellmann, 2007: p. 101f.
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Fig. 2. List of damages regarding the village Lietzow. It was elaborated by
the mayor of Lietzow dating from October 24, 1760. Lietzow was plundered
by Saxon troops commanded by a Russian general. The fourth line of the list
enumerates “Prof. Euler’s” damages. Brandenburgisches Landeshauptarchiv
Potsdam, Rep. 2 Kurmärkische Kriegs- und Domänenkammer Nr. S 3498.

Fig. 3. Copperplate in Euler’s Mechanics (published in 1736) at the beginning
of the dedication to Johann Albert Korff (Euler 1736: p. 5).

The message on the right part of the copperplate is not so
evident. Euler himself does not give any explanation. Yet, a boy
obviously throws rings into a water basin by means of a sling
that he holds in his left hand. He observes the curved line the
rings are describing sinking to the ground of the water basin.
This might be an illustration of a motion in a resisting medium
as dealt with in the second volume of Euler’s Mechanica.

When Euler came to Berlin in 1741, he at once elaborated
a corresponding research program for astronomy at the Berlin

Academy of Sciences. He defined the true theory of astronomy
as follows23:

The true theory of astronomy mainly consists of a thorough understanding of

the so-called Newtonian philosophy which does not only explain all already

known celestial motions but it also shows the reason why one makes more and

more new discoveries in the long run and recognizes more precisely the true

motions of all celestial bodies. By this science an astronomer can relate all of

his observations to a final aim and derive all kinds of profit from them.

Euler’s own contributions to celestial mechanics can be
divided into three groups: 1. Planetary perturbations, 2. Lunar
theories, 3. Three-body problem. The first two subjects have
been dealt with by Curtis Wilson very recently.24 Hence this
section will confine itself to the third subject.

First trials to solve the three-body problem where the bodies
are moving in the same plane are to be found in Euler’s
mathematical notebooks dating from 1750 to 1755.25 In his
publications he emphasized the importance of the problem
saying that we have to solve the famous three-body problem in
order to arrive at the culmination of astronomy.26 The solution
turned out to be extremely difficult. Yet, Euler did not question
the solvability. He only stated that first we have to study special
cases, to introduce certain restrictions before we can hope to
solve the general problem.27 Euler was indeed “the first to
investigate restricted forms of the three-body problem with a
view to obtaining exact integrals”.28 He considered two special
cases: the problem of two gravitational centers and the collinear
configuration.

5.1. The problem of two gravitational centers

It can be explained in the following way: Two fixed bodies
A, B of masses a, b act on a third body Z according to the
Newtonian law of gravitation. What will be the curve described
by Z?

Euler dealt with it in three papers.29 In the first two of them
he presupposed that the curve described by Z lies in the same
plane as the two centers of gravitation. In the third paper he
dropped this restriction (cf. Fig. 4).

His method of solving the problem consisted of four steps30:

23 Kirsten, 1977: p. 9 (“Die wahre Theorie der Astronomie bestehet
aber hauptsächlich in einer gründlichen Erkenntnüß der sogenannten
Newtonianischen Philosophie, als welche nicht nur alle schon erkannten Motus
Coelestes sehr herrlich erkläret, sondern auch Anlaß gibt in der Astronomie je
länger je mehr Entdeckungen zu machen, und die wahren Bewegungen aller
Himmlischen Cörper genauer zu erkennen. Durch diese Wissenschaft wird
ein Astronom in Stand gesetzt, nicht nur alle seine Observationen auf einen
gewissen Endzweck zu dirigiren, sondern daraus auch allen möglichen Nutzen
zu ziehen.”)
24 Wilson, 2007.
25 Kopelevic/Krutikova/Mikhailov/Raskin 1962–1965, vol. 1: no. 401, fol.

76v; no. 402, fol. 49r–50r, 78v, 93v.
26 Euler, 1765b: p. 281.
27 Euler, 1764b, 1765b.
28 Wilson, 1994: p. 1054; cf. Subbotin, 1958; Volk, 1983.
29 Euler, 1760, 1764a, 1765a.
30 This is explained in Euler, 1760.
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Fig. 4. The configuration of the problem of two gravitational centers as dealt
with by Euler in Euler, 1765a: p. 248. A, B are the gravitational centers, the
moving body Z describes a curve that does not lie in the same plane as the two
centers.

1. Find the general differential equations of the second order
which determine the motion of the body.

2. Integrate these equations in order to obtain differential
equations of the first order.

3. Apply separation of variables to these equations in order to
construct the solution.

4. Determine the cases where the described curve becomes
algebraic.

Eventually, he was able to deduce an equation with two
elliptic integrals with separated variables, and recognized
the advantage of introducing the sum and difference of the
distances v, u of the centers A, B from Z as new variables. If
Z moves in a plane where A, B are to be found, the curve is an
ellipse or a hyperbola. Dropping this condition Euler discussed
the case where the curve lies on a hyperbolic conoid or on an
elliptic spheroid.

He elaborated the first paper31 in 1759, in my opinion
presumably because he was stimulated by Clairaut’s paper
published exactly in this year.32 Therein Clairaut abandoned the
plan of finding the complete solution of the three-body problem
in favour of approximative solutions:

Now integrate who will be able to do it! I have found the six equations which

I have just found since the first times that I have considered the three-body

problem. But I made only few efforts to solve them because they always seemed

to me to be hardly manageable.

In 1762, Euler, too, was inclined to set aside exact integrals
and worked out an iteration method based on series expansions
praising its simplicity, practicality, and generality.33

On the 9th of November of the same year, Euler wrote to
Lagrange about his relative researches on the subject:

I am utmost delighted, Sir, that my investigations on the motion of a body

attracted by two fixed centers of force have deserved your attention. But you

have only seen what has been inserted into the Memoirs of Berlin and what

31 Euler, 1764a.
32 Clairaut, 1759: p. 566. (“Intègre maintenant qui pourra ! J’ai trouvé les six

équations que je viens de trouver dès les premiers temps que j’ai envisagé le
problème des trois corps, mais je n’ai jamais fait que peu d’efforts pour les
résoudre, parce qu’elles m’ont toujours paru peu traitables.”)
33 Euler, 1763a.

Fig. 5. The configuration of the problem of two gravitational centers as dealt
with by Lagrange in Lagrange, 1766–1769a: p. 73.

mainly regards the algebraic curves included in my solution. Yet, I have written

still two other memoirs on that subject. One of them is to be found in the 10th

volume of our Commentaries and the other in the 11th volume.

Only in 1767 did Lagrange come back to this problem, when
all three Eulerian papers had already been printed.34 In his own
paper35 Lagrange at once considered the generalized case dealt
with in Euler’s third paper and used v + u, v − u as variables
(cf. Fig. 5). Apparently in order to avoid unpleasant suspicions,
he claimed that he had written his paper before he knew Euler’s
third paper. The reader will be able to judge whose method was
more direct or simpler.36

5.2. The collinear configuration

The three bodies A, B, C with masses a, b, c remain on a
straight line that turns uniformly around itself.

Euler investigated this collinear case in four papers.37 It
presents the first particular solution of the three-body problem.
Either the two distances between A, B and B, C remain con-
stant. Then they can be determined thanks to the quintic equa-
tion

1 − 2x + x2 − mx2 − x3 + 2x4 − x5 = 0 (1)

with m = n2c3

d3 = constant, c mean distance of the ‘moon’ from
the ‘earth’, n:1 ratio of the mean motion of the ‘moon’ to the
mean motion of the ‘sun’, d mean distance between ‘sun’ and
‘earth’.

Or the ratio n of the distances p, q between the three
bodies remains constant. On the understanding that an arbitrary
angular velocity is given, the mutual distances are periodical
functions of time and can be determined thanks to the quintic

34 Euler to Lagrange, November 9, 1762, in Euler, Opera omnia, ser. 4A,
5, p. 450 (“Je suis extrêmement ravi, Monsieur, que mes recherches sur le
mouvement d’un corps attiré à deux centres de forces fixes aient mérité votre
attention; mais vous n’en avez vu que ce qui a été inséré dans les Mémoires de
Berlin et qui regarde principalement les courbes algébriques que ma solution
renferme. Or j’en ai composé encore deux autres mémoires, dont l’un se trouve
dans le Xe Volume de nos Commentaires et l’autre dans le XIe.”); Lagrange to
Euler, October 29, 1767, in Euler, Opera omnia, ser. 4A, 5, p. 460.
35 Lagrange, 1766–1769a, 1766–1769b.
36 Lagrange, 1766–1769a: p. 94.
37 Euler, 1764b, 1765b, 1763b, 1785.
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equation

(a + b)n5 + (3a + 2b)n4 + (3a + b)n3

− (b + 3c)n2 − (2b + 3c)n − b − c = 0. (2)

Euler derived Eq. (1) in his first paper, Eq. (2) in all three
subsequent papers.

When in 1771 Lagrange submitted his famous prize ‘Essay
on the three-body problem’,38 he did not employ a new method
(as he claimed), using only the distances between the three
bodies in order to determine the orbits. He applied Euler’s
method to a more general case than Euler had considered.

He investigated the two cases that the distances remain
constant or that they maintain a constant ratio. Both conditions
can only be fulfilled again in two cases: the bodies move
along the same straight line (collinear case) or they form an
equilateral triangle (triangular solution). No wonder that he
derived again Euler’s quintic equation for a constant ratio in
the collinear case.

Nowadays we know that the triangular configuration is
approximately realized in the solar system by the sun, Jupiter,
and the Trojan group of the asteroids Achilles, Patrocles,
Hector, and Nestor.

One might say that Euler paved the way, Lagrange gathered
the fruits. The three-body problem demonstrates how he
initiated new inquiries. Other fields of knowledge could
demonstrate how he invented new methods (Zeta-function),
defended new ideas (divergent series), developed new theories
(theory of music). In his eyes mathematical problems were
solvable. If necessary they have to be formulated in such a way
that they become solvable. Or to put it as Eduard Fueter in 1941:
“For where mathematical reason did not suffice, for Euler began
the kingdom of God.”39

6. Conclusion

Fueter’s affirmation is especially true, too, of Euler’s
epochal contributions to hydromechanics that were compre-
hensively described by Truesdell in 1954.40 In 1983, Gleb
Mikhailov41 analysed the complicated relationship between
Daniel Bernoulli’s, John Bernoulli’s, and Euler’s achievements
in this respect. Euler praised John Bernoulli’s Hydraulica
printed in 1742 (it appeared only in 1743) because therein
Bernoulli had calculated the force acting on an infinitesimal el-
ement. This essential idea helped Euler to create his general
theory of fluids. Euler completed and perfected classical hy-
dromechanics. His Scientia navalis begins with the fundamen-
tal lemma that the pressure which the water exerts upon a sub-
merged body in its several points is normal to the surface of
the body. A long series of papers followed wherein Euler rein-
troduced internal pressure as a means to derive the motion of

38 Lagrange, 1772.
39 Fellmann, 2007: p. 172.
40 Truesdell, 1954.
41 Mikhailov, 1983.

fluid elements. This series culminated in the three French writ-
ten treatises forming the core of Euler’s general theory of fluids.
They appeared in 1757. The second treatise Principes généraux
du mouvement des fluides (General principles of the motion of
fluids)42 first introduced the famous Euler equations of fluid
motion. The 250th anniversary of its publication gave rise to
the conference that took place in Aussois. The history of this
development is thoroughly analysed and reconstructed by Dar-
rigol and Frisch.43
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Abstract
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results of numerical experiments that have been attempted. A different line of endeavour focuses on work concerning the pressure Hessian and how
it may be used and modelled. The Euler equations are finally discussed in terms of their membership of a class of general Lagrangian evolution
equations. Using Hamilton’s quaternions, these are reformulated in an elegant manner to describe the motion and rotation of fluid particles.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Apocryphal book Ecclesiasticus says [1]

Let us now praise famous men, and our fathers that begat us.
. . . All these were honoured in their generations, and were the
glory of their times . . .

and goes on to conclude in the same passage

There be of them that have left a name behind them, that their
praises might be reported.

Leonhard Euler was certainly honoured in his own generation
and has left a name behind him in manifold and diverse ways.
Not only has his star shone ever more brightly, but the equations
of inviscid fluid dynamics that bear his name have also stood the
test of a quarter of a millennium of investigation and still stand
proudly today as a challenge to the mathematical, physical and
engineering sciences [2]. The incompressible Euler equations
have a deceptively innocent simplicity about them; indeed their
siren song has tempted many young scientists, somewhat like
Ulysses, towards the twin rocks called Frustration and Despair.

∗ Tel.: +44 207 594 8504.
E-mail address: j.d.gibbon@ic.ac.uk.

After a career spent in puzzlement, the sadder but wiser
researcher is forced to admit how subtle and difficult they are.

They can be expressed as a set of partial differential
equations relating the velocity vector field u(x, t) to the
pressure p(x, t)

Du
Dt

= −∇ p, (1)

D
Dt

= ∂

∂t
+ u · ∇, (2)

where div u = 0 is an incompressibility condition. Applying
this condition to (1) and (2) forces the pressure to satisfy an
elliptic equation −∆p = ui, j u j,i that involves products of
velocity gradients. This can also be re-expressed in terms of
the strain matrix Si j = 1

2 (ui, j + u j,i )

−∆p = ui, j u j,i = Tr
(

S2
)

− 1
2
ω2. (3)

The vorticity ω = curl u obeys the Euler equations in their
vorticity form

Dω

Dt
= ω · ∇u. (4)
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On a domain Ω , the energy
∫
Ω |u|2dV , the circulation

∫
C u · dr

and the helicity
∫
Ω u · ωdV are all conserved; for historical

observations on these quantities see [3].
Given the large volume of work on the two- and three-

dimensional Euler equations, it would be vacuous to attempt
to cover every aspect, but there are certain significant areas I
wish to mention before moving on to other material in more
detail. It is appropriate at this point to pay tribute to Viktor
Yudovich who died in the Spring of 2006 and whose work
on establishing weak solutions in the two-dimensional case
made him one of the fathers of modern Euler analysis [4].
Unfortunately these solutions have no such counterpart in the
three-dimensional case for arbitrary initial data in L2, which
would be the analogue of Leray solutions [5]. Their absence
creates difficulties for the mathematician who wishes to make
each step rigorous. In these terms, standard manipulations of
the three-dimensional Euler equations have to be undertaken
in a formal way. Along-side this, but closer in spirit to two-
dimensional Euler analysis, is a sizable literature on weak and
distributional formulations of vortex sheets and the numerical
methods needed to describe their roll-up. These areas have their
own specialist literature which can be found in the book by
Majda and Bertozzi [6].

A particular area deserving of special mention is what is now
referred to as “topological fluid dynamics”. Inspired by ideas
based on the conservation of helicity [7–9], Moffatt [10] studied
the Euler equations and those of ideal magneto-hydrodynamics
through the respective tangling and knotting of vortex lines
and of magnetic field lines. Together with the book by Arnold
and Khesin [11], which takes a more general mathematical
approach, the distillation of almost 40 years of literature in
references [10,12–15] should be read by every graduate student
wishing to study this area.

2. The difference between the three- and two-dimensional
cases

2.1. Vortex stretching

Let us formally consider the vortex stretching term ω · ∇u
in (4) in more detail for the three-dimensional case. Splitting
the velocity gradient matrix ∇u = {ui, j } into its symmetric and
anti-symmetric parts gives

(∇u)h = Sh + 1
2
ω × h, (5)

where h is an arbitrary 3-vector. It is then easy to see that if h ≡
ω then the anti-symmetric part plays no role and (4) becomes

Dω

Dt
= Sω. (6)

At first glance this appears to be a deceptively simple eigen-
value problem, except the three eigenvalues {λ1, λ2, λ3} of S
are functions of space-time and are subject to the divergence-
free constraint λ1+λ2+λ3 = 0. Rapid changes of size and sign

in λi , subject to this constraint, could violently stretch or com-
press the vorticity field in various directions, thereby produc-
ing the fine-scale vortical structures that are so familiar in the
graphical output of three-dimensional numerical computations.

In two dimensions, however, ω is perpendicular to the plane
in which the gradient lies, and so the vortex stretching term
ω · ∇u = 0. This observation illustrates the fact that the
absence or presence of the vortex stretching term makes a
huge difference to the vortical behaviour and suggests that the
two and three-dimensional cases are fundamentally different
equations with significantly different properties.

As its title suggests, this paper concentrates mainly on
the three-dimensional case, but some short remarks on the
two-dimensional and two-and-a-half-dimensional cases are
nevertheless in order.

2.2. The two-dimensional Euler equations

Because ω · ∇u = 0 in two-dimensions, (4) becomes

Dω

Dt
= 0, (7)

and thus ω is a constant of the motion. One difficult and subtle
problem is the evolution of a two-dimensional patch of vorticity
with an initially smooth closed boundary, inside which ω =
const. Whether the boundary of the patch remains smooth if it
starts smooth, or whether it develops a cusp in a finite time, was
once a long-standing open question until Chemin [16] proved
that if an initial boundary Γ0 is smooth (Cr for r > 1) then Γt
must remain smooth. The bounds are parameterized by a double
exponential in time so it is possible that numerical computations
might suggest the development of a cusp even though the proof
rules one out. An alternative proof using methods of harmonic
analysis by Bertozzi and Constantin [17] can also be seen in [6].

2.3. The two-and-a-half-dimensional Euler equations

The class of solutions of the three-dimensional Euler
equations that take the form

U3D(x, y, z, t) = {u(x, y, t), zγ (x, y, t)} (8)

are usually referred to as being of “two-and-a-half-dimensional
type” because the predominant two-dimensional part in the
cross-section is stretched linearly into a third dimension. This
class of solutions generalizes those investigated some years
ago by Stuart [18] who found a class of solutions in which
two independent spatial variables were taken to be linear. The
resulting partial differential equation has solutions that develop
a singularity in a finite time. Eq. (8) suggests that an appropriate
domain should be infinite in z with a circular periodic cross-
section A of radius L . The two-dimensional velocity field
u(x, y, t) in Eq. (8) satisfies

Du
Dt

= −∇ p (9)

while div u = −γ . The fact that div u '= 0 means that u(x, y, t)
does not fully satisfy the two-dimensional Euler equations and
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that fluid particles in any one cross-section are allowed to move
through any other. γ (x, y, t) itself satisfies

Dγ

Dt
+ γ 2 = 2

π L2

∫

A
γ 2dA. (10)

While the above formulation can be found in Ohkitani and
Gibbon [19], it turns out a time-independent form of these
equations was written down long ago by Oseen in an appendix
to a double paper [20]. He took the idea no further, however.
Ohkitani and Gibbon [19] showed numerically γ → −∞ in a
finite time. Later, using Lagrangian arguments, Constantin [21]
proved analytically that γ → ±∞. In other words, the blow-
up is two-sided and occurs in different parts of the cross-
section A. An important point to note is that this blow-up
does not represent a true singularity in the fluid, for this
would need infinite energy to draw particles from infinity.
More realistically, it suggests the full system will not sustain
a solution of the form of (8) beyond the singular time. Before
this singular time, the solution physically represents a class of
stretched Burgers vortices: when γ → +∞ the vortex is tube-
like but when γ → −∞ the vortex is ring-like [19]. This
orthogonal pair of vortices, locked non-linearly together, has
only a finite lifetime and is destroyed by the two-sided blow-up.
Moreover, the finite lifetime of these vortices is consistent with
experimental observations in turbulent flows where, among the
collective set, individual tubes squirm around and then vanish
after a short period [22–24]. A class of analytical singular
solutions of a special case of (8)–(10) has been found using
the method of characteristics [25].

3. The three-dimensional Euler singularity problem

One of the great open questions in mathematical fluid dy-
namics today is whether the incompressible three-dimensional
Euler equations develop a singularity in the vorticity field in a
finite time. Opinion is largely divided on the matter with strong
positions taken on each side. That the vorticity accumulates
rapidly from a variety of initial conditions is not under dispute,
but whether the accumulation is sufficiently rapid to manifest
singular behaviour or whether the growth is merely exponen-
tial, or double-exponential, has not been answered definitively.
The interest in singularities comes from many directions. Phys-
ically their formation may signify the onset of turbulence and
may be a mechanism for energy transfer to small scales: see the
companion article in this issue by Eyink [26]. Numerically they
require very special methods and are thus a challenge to com-
putational fluid dynamics. Finally, the question is of interest to
mathematicians because of the question of global existence of
solutions. This section reviews some of the theoretical and com-
putational work of the last 25 years.

3.1. The Beale–Kato–Majda Theorem

Work on the existence of solutions culminated in what
is known as the Beale–Kato–Majda Theorem [27]. It was
originally proved on an infinite domain with solutions decaying
sufficiently rapidly at infinity but the domain Ω could easily be

taken to be periodic instead. We refer the reader to the recent
review by Bardos and Titi [28]. There are various ways of
stating the result but the following form will be used:

Theorem 1. There exists a global solution of the 3D Euler
equations u ∈ C([0, ∞]; Hs)∩ C1([0, ∞]; Hs−1) for s ≥ 3 if,
for every T > 0
∫ T

0
‖ω(·, τ )‖L∞(Ω)dτ < ∞. (11)

Ferrari [29] has also proved a version of this result on boundary
conditions where u · n̂ = 0. Kozono and Taniuchi [30] have
more recently proved a version of this theorem in the BMO-
norm (bounded mean oscillations) which is weaker than the
L∞-norm. For literature on variations of the BKM theorem see
Ponce [31] and Chae [32–35].

There are several other points to note about this important
result which settled several outstanding questions. First it says
that only one object, the maximum norm, needs to be monitored
in a numerical calculation. Second, this object is different
from the point-wise enstrophy ‖ω‖L2(Ω). Having the latter
bounded guarantees the regularity of the three-dimensional
Navier–Stokes equations but this is not enough for Euler; it
is theoretically possible that ‖ω‖L2(Ω) could remain finite but
‖ω‖L∞(Ω) blow up.

Third, the result also says something subtle about the nature
of singular behaviour in numerical experiments. For instance,
say that a numerical integration of the three-dimensional Euler
equations produces data that suggests that the maximum norm
grows like (β > 0)

‖ω(·, t)‖L∞(Ω) ∼ (T − t)−β. (12)

The theorem says that the solution remains regular, including
‖ω‖L∞(Ω) itself, if the time integral in (11) is finite. If the
observed value of β lies in the range 0 < β < 1, however, the
time integral of (12) is finite and thus the theorem contradicts
the numerical result. The observed singularity is likely to be an
artefact of the numerics. The theorem contains no information
on whether a singularity occurs but it does say that β must
satisfy β ≥ 1 for the singularity to be genuine.

3.2. Numerical search for singularities

There have been many numerical experiments over the last
quarter of a century that have attempted to determine, from
specific initial data, whether the vorticity field in the three-
dimensional Euler equations develops a singularity in a finite
time. At this stage I would like to pay tribute to Richard
Pelz (1957–2002), who was a much-valued and gentlemanly
member of our community. His interests lay in the potential
development of Euler singularities under Kida’s high-symmetry
conditions [36]. His work and that with his collaborators is
referenced in the list below. Shigeo Kida has also edited a
volume in his memory [37]. The list is a revised and up-
dated version of one originally compiled by Rainer Grauer
of Bochum. The “yes/no” in each item refers to whether the
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authors detected the development of a singularity from their
initial data. Except for item 2 all calculations refer to the 3D
Euler equations.

1. Morf, Orszag and Frisch [38–40]: complex time singular-
ities of the 3D Euler equations were studied using Padé-
approximants. Singularity; yes.

2. Pauls, Matsumoto, Frisch and Bec [41]: this paper is a
recent study of complex singularities of the 2D Euler
equations and contains a good list of references for the
student.

3. Chorin [42]: Vortex–method. Singularity; yes.
4. Brachet, Meiron, Nickel, Orszag and Frisch [43]:

Taylor–Green calculation. Singularity; no.
5. Siggia [44]: Vortex–filament method; became anti–parallel.

Singularity; yes.
6. Pumir and Siggia [45]: results from their adaptive

grid method showed a tendency to develop quasi-two-
dimensional structures with exponential growth of vorticity.
Singularity; no.

7. Bell and Marcus [46]: the evolution of a perturbed vortex
tube was studied using a projection method with 1283 mesh
points; amplification of vorticity by 6. Singularity; yes.

8. Brachet, Meneguzzi, Vincent, Politano and Sulem [47]:
pseudospectral code, Taylor–Green vortex, with a resolu-
tion of 8643. They achieved an amplification of vorticity by
5. Singularity; no.

9. Kerr [48,49]: Chebyshev polynomials with anti–parallel
initial conditions; resolution 5122 × 256. Amplification of
vorticity by 18. Observed vorticity growth ‖ω‖L∞(Ω) ∼
(T − t)−1. Singularity; yes.

10. Between 1994–2001 Boratav and Pelz [50,51], Pelz and
Gulak [53] and Pelz [52,54] performed a series of
10243 grid-point simulations under Kida’s high-symmetry
condition. Singularity; yes.

The recent memorial issue for Pelz [37] contains:
(a) Cichowlas and Brachet [55]: Singularity; no.
(b) Gulak and Pelz [56]: Singularity; yes.
(c) Pelz and Ohkitani [57]: Singularity; no.

11. Grauer, Marliani and Germaschewski [58]: using an
adaptive mesh refinement of the Bell and Marcus initial
condition [46] with 20483 mesh points, they achieved an
amplification factor of vorticity of 21. Singularity; yes.

12. Hou and Li [59]: A 1536 × 1024 × 3072 pseudo-spectral
calculation agreed with Kerr [48] until the final stage and
then the growth slowed; the vorticity grew no faster than
double-exponential in time. Singularity; no.

13. Germaschewski and Grauer (2001, unpublished): revisited
the Boratav-Pelz simulations but observed strong vortex
flattening that halted singular growth. This is consistent
with the results of Hou and Li [59]. Singularity; no.

14. Orlandi and Carnevale [60]: using Lamb dipoles as
initial conditions, they performed a 10243 finite difference
calculation with two symmetry planes. They found a period
of rapid growth of vorticity consistent with ‖ω‖L∞(Ω) ∼
(T − t)−1: Singularity; yes.

The interested reader may wish to consult the other articles in
this volume written by Hou [61], Bustamente and Kerr [62] and
Grauer [63] which contain more references on this topic.

3.3. Results on the direction of vorticity

The yes/no aspect of the results in Section 3.2 is deceptive
because the list may have hidden the fact that while a result may
have been “no” the vorticity growth may nevertheless have been
very strong. It is easy to overlook the directional mechanisms
that induce strong early growth even if that growth slows during
the final stage. Thus it is important to consider the direction of
vorticity growth in its own right [64]. The reader is referred to
the companion article in this volume by Constantin [65].

The pioneering paper by Constantin, Fefferman and
Majda [66] contains a discussion on the idea of how vortex lines
may be considered to be “smoothly directed” in a region of their
greatest curvature. A digest of their results is the following:
consider the three-dimensional Euler equations with smooth
localized initial data and assume the solution is smooth on
0 ≤ t < T . The velocity field defines particle trajectories
X(x0, t) that satisfy

DX
Dt

= u(X, t), (13)

where X(x0, 0) = x0. The image Wt of a set W0 is given by
Wt = X(W0, t). Then the set W0 is said to be smoothly directed
if there exists a length ρ > 0 and a ball 0 < r < 1

2ρ such that
the following conditions are satisfied: (i) ω̂(·, t) has a Lipschitz
extension to the ball B4ρ of radius 4ρ centred at X(x0, t); (ii) if
the velocity is finite in a ball B4ρ ; (iii) if

lim
t→T

sup
W0

∫ t

0
‖∇ω̂(·, τ )‖2

L∞(B4ρ)dτ < ∞. (14)

One needs a chosen neighbourhood that captures large and
growing vorticity which does not overlap with another similar
region. Under these circumstances, there can be no singularity
at time T . Cordoba and Fefferman [67] have weakened
condition (ii) in the case of vortex tubes to
∫ T

0
‖u(·, s)‖L∞(Ω)ds < ∞. (15)

A result a decade later by Deng, Hou and Yu [68,69] follows in
the same spirit; they take the arc length L(t) of a vortex line Lt
with n̂ the unit normal and κ the curvature. Let 0 < B ≤ 1− A,
and C0 be a positive constant with M(t) defined as

M(t) ≡ max
(
‖∇ · ω̂‖L∞(Lt ), ‖κ‖L∞(Lt )

)
. (16)

They prove that there will be no blow-up at time T if

Uω̂(t) + Un̂(t) ! (T − t)−A, (17)

M(t)L(t) ≤ C0, (18)

L(t) " (T − t)B . (19)

Uω̂(t) is the maximum value of the tangential velocity of the
difference between any two points x and y on the vortex
line length Lt ; likewise for Un̂(t) with respect to the normal
velocity.
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4. The pressure Hessian

4.1. Ertel’s Theorem and its consequences

The traditional view in fluid mechanics has taken the
velocity vector field u as the dominant variable with the
pressure p considered as an auxiliary. Given that there exists
no evolution equation for p, which must be determined
from the elliptic equation (3), there is much to be said for
this philosophy. Following Leray, this is normally put into
practice in Navier–Stokes and Euler analysis by projection onto
divergence-free vector fields, thus covertly hiding the pressure.
An alternative route is to avoid this projection process and
make a virtue of openly keeping the pressure in the calculation.
The key to this route is to use what is generally called Ertel’s
theorem, which is stated as the following formal result [71]:

Theorem 2. If ω satisfies the three-dimensional incompress-
ible Euler equations then any arbitrary differentiable µ satisfies

D
Dt

(ω · ∇µ) = ω · ∇
(

Dµ

Dt

)
. (20)

The proof is a simple exercise: consider ω · ∇µ ≡ ωiµ,i

D
Dt

(ωiµ,i ) = Dωi

Dt
µ,i + ωi

{(
Dµ

Dt

)

,i
− uk,iµ,k

}

= ωi

(
Dµ

Dt

)

,i
+ {ω j ui, jµ,i − ωi uk,iµ,k}.

The last term is zero under summation. Another way of
expressing this result is that D/Dt and ω · ∇ commute
[

D
Dt

, ω · ∇
]

= 0. (21)

In Lie-derivative form this means that ω · ∇(t) = ω · ∇(0) is a
Lagrangian invariant and is “frozen in”.

In geophysical fluid dynamics, if µ is chosen as the density
ρ in a Boussinesq fluid then

Dρ

Dt
= 0 (22)

implies that ω · ∇ρ (potential vorticity) is a constant of the
motion [70]. Credit is normally given to Ertel [71] although the
general result has been known for much longer [72–74]. Both
Klainerman [75] and Ohkitani [76,77] used Theorem 2 in the
following way. The choice of µ = ui gives a relation for the
vortex stretching vector

D(ω · ∇u)

Dt
= ω · ∇

(
Du
Dt

)
= −Pω, (23)

where P is the Hessian matrix of the pressure

P =
{

p,i j
}

=
{

∂2 p
∂xi∂x j

}
. (24)

This result illustrates the relative merits or demerits of
cancelling non-linearity of O(|ω||∇u|2) while being forced to
include the Hessian of the pressure.

4.2. Restricted Euler equations: Modelling the pressure
Hessian

The results of the previous subsection have shown that if the
pressure field is to remain in the calculation then it is important
to understand its Hessian matrix. Because there are numerical
difficulties in accurately computing this matrix there have been
a variety of attempts at modelling it. In effect, this produces
restricted versions of the Euler equations. Consider the gradient
matrix Mi j = ui, j which satisfies the matrix Riccati equation

DM
Dt

+ M2 + P = 0, (25)

Tr P = −Tr (M2), (26)

where Eq. (26) has its origins in the divergence-free condition
Tr M = 0 and is an economical way of writing ∆p =
−ui, j u j,i . Several attempts have been made to model
the Lagrangian-averaged pressure Hessian by introducing a
constitutive closure — see [78] for a summary. The idea
goes back to Léorat [79], Vieillefosse [80], Novikov [81] and
Cantwell [82]. The Eulerian pressure Hessian P is generally
assumed to be isotropic

P = −1
3

I Tr (M2), Tr I = 3, (27)

which results in the “restricted Euler equations”. There is a
also a variety of literature on modelling the velocity gradient
matrix [83–86]. The elliptic pressure constraint given in (3),
re-expressed as −Tr P = Tr (S2) − 1

2ω2, is concerned solely
with the diagonal elements of P , whereas in computations its
off-diagonal elements turn out to be important.

An different attempt at modelling the effect of the Hessian
has been made by Constantin who derived the “distorted Euler
equations” [87]. The Euler equations for the gradient composed
with the Lagrangian path map a 0→ X(a, t), N = M ◦ X are
rewritten in Lagrangian form as

∂ N
∂t

+ N 2 + Q(x, t)Tr(N 2) = 0, (28)

Qi j = Ri R j ◦ X, Ri = (−∆)−1/2 ∂

∂xi
, (29)

where Ri is the Riesz transform and X represents the
Lagrangian path-map a 0→ X(a, t). The distorted equations
arise through replacing Qi j (t) with Qi j (0), solutions of
which have been proved to blow up [87]. Other models of
interest include the tetrad model of Chertkov, Pumir and
Shraiman [88] which has recently been developed by Chevillard
and Meneveau [89]. More ideas regarding the modelling of
the pressure Hessian through a transformation from Eulerian
to Lagrangian coordinates using a Lagrangian flow map have
recently been discussed in [78].

5. A formulation in quaternions

The material of Section 3.3 has been devoted to the issue of
the directional growth of vorticity. Ultimately, the mechanisms
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that guide this growth will determine whether the Euler
equations develop a finite-time singularity and so alternative
ways of formulating this problem may be of value. It turns out
that Hamilton’s quaternions are useful not only for this purpose
but are also ideal for understanding how fluid particles rotate
within their trajectories. Before moving on to more technical
aspects of quaternions some motivation is in order to explain
why their introduction into Euler analysis is natural.

Firstly, based on the unit vector of vorticity ω̂, let us define
the respective scalar and 3-vector variables designated as α and
χ

α = ω̂ · Sω̂, χ = ω̂ × Sω̂. (30)

These respectively represent the rates of growth and swing
of the vorticity. Then the vortex stretching vector Sω can be
decomposed into components parallel and perpendicular to ω

Sω = αω + χ × ω, (31)

from which it is trivial to show that ω = |ω| and ω̂ satisfy

Dω

Dt
= αω,

Dω̂

Dt
= χ × ω̂. (32)

It is clear that in the evolution of α(x, t) and χ(x, t) lies
the key to the growth and direction of vorticity. Given that
α and χ , by definition, contain Sω, it is also clear from
(23) that material differentiation of them will introduce the
pressure Hessian P into the problem and thus the advantages
and disadvantages discussed in Section 4 regarding its use come
into play. Combining α and χ into a 4-vector quaternion is
an obvious first step; thereafter we wish to exploit the elegant
algebraic properties that quaternions possess.

The second area where quaternions have an application lies
in the recent experimental advances that have made in the
detection of the trajectories of tracer and other particles in
fluid flows [90–99]. The curvature of their paths can be used
to extract statistical information about velocity gradients from
a single trajectory. Fluid particles not only take complicated
trajectories but they also rotate in motion. Recent work has
shown that Hamilton’s quaternions are applicable to this type
of problem [78,100–103]. In his lifetime Hamilton’s ideas did
not meet with the approval of his contemporaries [104–106]
but in the context of modern-day problems the crucial property
that quaternions possess – that they represent a composition
of rotations – has made them the technical foundation of
modern inertial guidance systems in the aerospace industry
where tracking the paths and the orientation of satellites and
aircraft is critical [107]. The graphics community also uses
them to control the orientation of tumbling objects in computer
animations [108] because they avoid the difficulties incurred
at the poles when Euler angles are used [108–110]. When
quaternions are applicable to a problem it is usually evidence
that geometrical structures are dominant. This aspect of the
Euler equations has been long been debated [64,103,111–114].
Given the available equations for the evolution of the vorticity
ω, the strain matrix S, and the Hessian matrix P , a pertinent
question to ask is whether this is enough information to make a
satisfactory formulation of this problem.

In the first of future subsections a general class of
Lagrangian evolution equations will be considered of which
Euler is the most important member. Then the properties of
quaternions and their association with rigid body dynamics is
summarized in Section 5.2 and applied in Section 5.3 to the
description the flight and rotation of fluid particles. In this it will
be seen how the pressure Hessian is the key factor in driving
the system. Sections 5.4 and 5.5 are devoted to some of the
properties of the Euler equations themselves.

5.1. A class of Lagrangian evolution equations

Suppose w is a contravariant vector quantity attached to
a particle following a flow along the characteristic paths
dx/dt = u of a velocity field u(x, t). Now consider the formal
Lagrangian flow equation [78]

Dw
Dt

= a(x, t), (33)

where the material derivative is given by (2). Let us also
suppose that a itself is formally differentiable

Da
Dt

= b(x, t), (34)

where b(x, t) is known. Together (2), (33) and (34) define a
quartet of 3-vectors

{u, w, a, b}. (35)

For a passive particle, u and w are independent vectors but for
the three-dimensional Euler equations u and w ≡ ω are tied by
the fact that ω = curl u. The quartet in (35) is now

{u, w, a, b} = {u, ω, Sω, −Pω}, (36)

where P is the pressure Hessian discussed in Section 4. This
is not the whole story because the divergence-free condition
means that P , S and ω are not independent of each other
because of the elliptic pressure constraint

−Tr P = Tr
(

S2
)

− 1
2
ω2. (37)

Another example that could be cast into this format are the
equations of ideal MHD in Elsasser form (see [78,100,101]
although the existence of two material derivatives requires some
generalization.

In Section 5.3 it will be shown how the quartet in (35), based
upon the pair of Lagrangian evolution equations (33) and (34),
can determine the evolution of an ortho-normal frame for a fluid
particle in a trajectory. In graphics problems the usual practice
is to consider the Frenet-frame of a trajectory. This consists
of the unit tangent vector, a normal and a bi-normal [108].
In navigational language, this represents the corkscrew-like
pitch, yaw and roll of the motion. In turn, the tangent vector
and normals are related to the curvature and torsion. While
the Frenet-frame describes the path, it ignores the dynamics
that generates the motion. Here we will discuss another ortho-
normal frame associated with the motion of each Lagrangian
fluid particle, designated the quaternion-frame. This may be
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envisaged as moving with the Lagrangian particles, but their
evolution derives from the Eulerian equations of motion.

5.2. Quaternions and rigid body dynamics

Rotations in rigid body mechanics have given rise to a
rich and longstanding literature in which Whittaker’s book is
a classic example [110]. This gives explicit formulae relating
the Euler angles to the Euler parameters and Cayley–Klein
parameters of a rotation. Quaternions are not only much more
efficient but they also circumvent the messy inter-relations that
are unavoidable when Euler angle formulae are involved [105,
110].

In terms of any scalar p and any 3-vector q, the quaternion
q = [p, q] is defined as

q = [p, q] = pI −
3∑

i=1

qiσi , (38)

in which Gothic fonts denote quaternions (see [78,100]). The
three Pauli spin matrices σi are defined by

σ1 =
(

0 i
i 0

)
σ2 =

(
0 1

−1 0

)
σ3 =

(
i 0
0 −i

)
(39)

and I is the 2 × 2 unit matrix. The relations between the Pauli
matrices σiσ j = −δi j I − εi jkσk then give a non-commutative
multiplication rule

q1 # q2 = [p1 p2 − q1 · q2, p1q2 + p2q1 + q1 × q2]. (40)

It is not difficult to demonstrate that they are associative.
Let p̂ = [p, q] be a unit quaternion with inverse p̂∗ =

[p, −q]: this requires p̂ # p̂∗ = [p2 + q2, 0] = [1, 0]. For a
pure quaternion r = [0, r] there exists a transformation

r = [0, r] 0→ R = [0, R] (41)

that can explicitly be written as

R = p̂ # r # p̂∗ = [0, (p2 − q2)r + 2p(q × r) + 2q(r · q)].
(42)

Choosing p and q such that p̂ = ±[cos 1
2θ, n̂ sin 1

2θ ], where n̂
is the unit normal to r, we find that

R = p̂ # r # p̂∗ = [0, r cos θ + (n̂ × r) sin θ ]
≡ O(θ, n̂)r. (43)

Eq. (43) is the Euler–Rodrigues formula for the rotation
O(θ, n̂) by an angle θ of the 3-vector r about its normal n̂ and
(θ, n̂) are called the Euler parameters. The elements of the unit
quaternion p̂ are the Cayley–Klein parameters which are related
to the Euler angles [110], and form a representation of the Lie
group SU (2). When p̂ is time-dependent, the Euler–Rodrigues
formula in (43) can be rewritten as

r = p̂∗ # R(t) # p̂ (44)

and thus the time derivative Ṙ is given by

Ṙ(t) = ( ˙̂p # p̂∗) # R − (( ˙̂p # p̂∗) # R)∗, (45)

where we have used the fact that R∗ = −R. Because p̂ = [p, q]
is of unit length, and thus p ṗ + qq̇ = 0, this means that
˙̂p # p̂∗ = [0, 1

2Ω0(t)] which is also a pure quaternion. The
3-vector entry in this defines the angular frequency Ω0(t) as
Ω0 = 2(− ṗq + q̇p − q̇ × q) thereby giving the well-known
formula for the rotation of a rigid body

Ṙ = Ω0 × R. (46)

For a Lagrangian particle, the equivalent of Ω0 is the Darboux
vector Da in Theorem 3 of Section 5.3.

5.3. An ortho-normal frame and particle trajectories

Having set the scene in Section 5.2 by describing some of
the essential properties of quaternions, it is now time to apply
them to the Lagrangian relation (33) between the two vectors
w and a. Through the multiplication rule in (40) quaternions
appear in the decomposition of the 3-vector a into parts parallel
and perpendicular to w, which is expressed as

a = αaw + χa × w = [αa, χa] # [0, w]. (47)

The scalar αa and 3-vector χa in (47) are defined as

αa = w−1(ŵ · a), χa = w−1(ŵ × a). (48)

It is now easily seen that αa is the growth rate of the scalar
magnitude (w = |w|) which obeys

Dw

Dt
= αaw, (49)

while χa , the swing rate of the unit tangent vector ŵ = ww−1,
satisfies

Dŵ
Dt

= χa × ŵ. (50)

Now define the two quaternions

qa = [αa, χa], w = [0, w], (51)

where w is a pure quaternion. Then (33) can automatically be
rewritten equivalently in the quaternion form

Dw

Dt
= qa # w. (52)

Moreover, if a is differentiable in the Lagrangian sense so that
its material derivative is b, as in (34) then another quaternion qb
can be defined, based on the variables

αb = w−1(ŵ · b), χb = w−1(ŵ × b), (53)

where

qb = [αb, χb]. (54)

Clearly there exists a similar decomposition for b as that for a
as in (47)

D2w

Dt2 = [0, b] = [0, αbw + χb × w] = qb # w. (55)
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Using the associativity property, compatibility of (55) and
(52) implies that (w = |w| '= 0)
(

Dqa

Dt
+ qa # qa − qb

)
# w = 0, (56)

which establishes a Riccati relation between qa and qb

Dqa

Dt
+ qa # qa = qb, (57)

whose components yield

D
Dt

[αa, χa] + [α2
a − χ2

a , 2αaχa] = [αb, χb]. (58)

These lead to a general theorem on the nature of the
dynamics of the ortho-normal frame (see Fig. 1):

Theorem 3 ([78,100]). The ortho-normal quaternion-frame
(ŵ, χ̂a, ŵ × χ̂a) ∈ SO(3) has Lagrangian time derivatives
expressed as (w '= 0)

Dŵ
Dt

= Da × ŵ, (59)

D(ŵ × χ̂a)

Dt
= Da × (ŵ × χ̂a), (60)

Dχ̂a

Dt
= Da × χ̂a . (61)

The Darboux angular velocity vector Da is defined as

Da = χa + cb

χa
ŵ, cb = ŵ · (χ̂a × χb). (62)

Remark 1. The proof of Theorem 3 is simple and can be found
in [78,100]. The Darboux vector Da sits in a two-dimensional
plane and is driven by the vector b which itself sits in cb in (62).
The analogy with rigid body rotation expressed in (46) is clear.

Remark 2. This theorem is much more general than might be
initially apparent. It provides an elegant and simple means of
constructing the dynamic equations for an ortho-normal frame
for any system driven by a field b. An example of this is
the construction of a frame for the Kepler system which is
illustrated in [114].

5.4. Relation to the Euler equations

For the three-dimensional Euler equations themselves the
scalar and vector variables α, χ have already been defined in
(30) as the scalar and vector products between ω and Sω. The
variables αp, χ p corresponding (53) (with a change of sign) are
defined in the same manner [101,102]

αp = ω̂ · Pω̂, χ p = ω̂ × Pω̂, (63)

which avoids the null points that arise in the definition in (48)
and (53). The definitions of α, αp, χ , χ p were first written
down in [103]. In fact, α and αp are Rayleigh quotient
estimates for eigenvalues of S and P respectively although they
are only exact eigenvalues when ω aligns with one of their

Fig. 1. Three unit vectors [ŵ, χ̂ , ŵ × χ̂ ] form an ortho-normal coordinate
system on a characteristic curve dx/ds = u. The two curves are drawn at times
t1 and t2: the dotted curve represents the particle trajectory.

Fig. 2. Vortex lines (solid) on which sit an ortho-normal frame ω̂, χ̂ , ω̂ × χ̂ for
the Euler equations. The two curves are drawn at times t1 and t2: the dotted
curve represents a fluid particle trajectory.

eigenvectors. Constantin [64] has a Biot–Savart formula for α.
These variables form natural tetrads associated with [0, ω]

q = [α, χ ] , −qb = qp =
[
αp, χ p

]
. (64)

Thus it is the pressure Hessian P that lies in qp and controls the
particle trajectories through

Dq

Dt
+ q # q + qp = 0. (65)

Theorem 3 furnishes us with an equivalent set of equations for
the ortho-normal frame (ω̂, χ̂ , ω̂×χ̂) of a fluid particle through
(62) where

cp = −ω̂ · (χ̂ × χ p). (66)

The dynamics of the ortho-normal frame could be seen as
a competition between S and P with the divergence-free
constraint (37) applied.

5.5. The Frenet frame

Modulo a rotation around the unit tangent vector ω̂ of Fig. 2,
with χ̂ as the unit bi-normal b̂ and ω̂ × χ̂ as the unit principal
normal n̂ to the vortex line, the matrix F can be formed

F =
(
ω̂T , (ω̂ × χ̂)T , χ̂T

)
, (67)

and (59)–(61) can be re-written as

DF
Dt

= AF, A =




0 −χ 0
χ 0 cpχ

−1

0 −cpχ
−1 0



 . (68)
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For a space curve parameterized by arc-length s, then the Frenet
equations relating dF/ds to the curvature κ and the torsion τ of
the vortex line curve are

dF
ds

= N F, where N =




0 κ 0

−κ 0 τ

0 −τ 0



 . (69)

It is now possible to relate the t and s derivatives of F given in
(68) and (69). At any time t the integral curves of the vorticity
vector field define a space-curve through each point x. The arc-
length derivative is defined by

d
ds

= ω̂ · ∇. (70)

The evolution of the curvature κ and torsion τ of a vortex line
may be obtained from Ertel’s theorem in (21), expressed as the
commutation of operators
[

d
ds

,
D
Dt

]
= α

d
ds

. (71)

Applying this to F and using the relations (68) and (69)
establishes the following consistency relation on the matrices
N and A

DN
Dt

− αN = dA
ds

+ [A, N ] (72)

which relates the evolution of the curvature κ and the torsion τ

to α, χ and cp defined in (30) and (62).

6. Final remarks

It is clear that despite past endeavours there is still a very
long way to go before we can say that there exists a clear
mathematical understanding of the behaviour of solutions of the
incompressible three-dimensional Euler equations. While weak
solutions in the conventional sense of Leray are not known to
exist, certain very special weak solutions have been found, such
as those constructed by Brenier [115] and Shnirelman [116].
These are obtained by relaxing the variational problem and are
not the same as weak solutions of the initial value problem for
the Euler equations themselves.

The existence or non-existence of singularities is still an
open problem. The numerical results of Hou and Li [59], which
have focused anew on Kerr’s numerical calculations performed
fourteen years ago [48], suggest that a new generation of
numerical experiments may be needed to look more carefully
at not only the amplitude but also the direction of vorticity
at high amplitudes. Even with a combination of analysis, as
in [59,66–69], and with potentially much greater computing
power, we may still have to wait some time until this matter is
settled decisively. Much of the literature in modern mechanics
has stressed that the three-dimensional Euler equations have
inherent geometrical properties [11,64,66,111–113]. It is thus
possible that the open problem of the regularity of solutions
may become clearer after using a combination of geometrical
and topological fluid mechanics [10–15] in combination with
analysis and large-scale numerical computations. However,

it is not clear what theorem might emerge from these
considerations. Until then, the singularity problem will remain
as one of the great challenges in modern applied mathematics.

A further area of endeavour has lain in the modelling of
the pressure Hessian and the velocity gradient matrix. The
traditional view in fluid mechanics holds that the pressure
should be treated as an auxiliary variable. The alternative is to
treat the Hessian P on an equal footing with the strain matrix
S. Out of necessity this is certainly the case when quaternions
are used to describe the problem. The elliptic equation for the
pressure

−∆p = −Tr P = Tr
(

S2
)

− 1
2
ω2, (73)

is by no means fully understood and locally holds the key to
the formation of vortical structures through the sign of Tr P .
In this relation, which is often thought of as a constraint,
may lie a deeper knowledge of the geometry of both the
Euler and Navier–Stokes equations. In turn, this may lead to
a better understanding of the role of the pressure. Eq. (73)
certainly plays a role in three-dimensional Navier–Stokes
turbulence calculations in which the vortical topology has
the classic signature of what are called “thin sets”, where
the vorticity concentrates into quasi-two-dimensional vortex
sheets which later have a tendency to roll up into quasi-one-
dimensional tubes. These tubes have a complicated topology
and a finite lifetime, vanishing in one location and reappearing
in another [22]. The fact that these thin sets are dynamically
favoured may be explained by inherent geometrical properties
of the Euler equations but little is known about these features.

Let us end with an analogy: if work on the Euler equations,
beginning as a spring of water in the hills 250 years ago, has
now become a mature river in full flow, it is probable that it still
has far to go before it reaches its distant estuary and ocean. Will
the participants at the meeting Euler 500 years on in the year
2257 be able to testify that sufficient progress has been made
that many of the outstanding problems in this area have been
solved?
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Abstract

We present an α-regularization of the Birkhoff–Rott equation, induced by the two-dimensional Euler-α equations, for the vortex sheet
dynamics. We show that an initially smooth self-avoiding vortex sheet remains smooth for all times under the α-regularized dynamics, provided
the initial density of vorticity is an integrable function over the curve with respect to the arc-length measure.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

One of the novel approaches for subgrid scale modeling
is the α-regularization of the Navier–Stokes equations (NSE).
The inviscid Euler-α model was originally introduced in
the Euler–Poincaré variational framework in [1,2]. In [3–
7] the corresponding Navier–Stokes-α (NS-α) [also known
as the viscous Camassa–Holm equations or the Lagrangian-
averaged Navier–Stokes-α (LANS-α)] model was obtained
by introducing the appropriate viscous term into the Euler-
α equations. The extensive research into the α-models (see,
e.g., [3–24]) stems from the successful comparison of their
steady state solutions to empirical data, for a large range of
huge Reynolds numbers, for turbulent flows in infinite channels
and pipes. On the other hand, the α-models can also be
viewed as numerical regularizations of the original, Euler or
Navier–Stokes, systems. The main practical question arising is
that of the applicability of these regularizations to the correct
predictions of the underlying flow phenomena.

∗ Corresponding author. Tel.: +972 8 9342761; fax: +972 8 9342945.
E-mail addresses: bardos@ann.jussieu.fr (C. Bardos),

jasmine.tal@weizmann.ac.il (J.S. Linshiz), etiti@math.uci.edu,
edriss.titi@weizmann.ac.il (E.S. Titi).

In this paper we present some results concerning the α-
regularization of the two-dimensional (2D) Euler equations
in the context of vortex sheet dynamics. A vortex sheet is a
surface of codimension 1 (a curve in the plane) in inviscid
incompressible flow, across which the tangential component
of the velocity has a jump discontinuity, while the normal
component is continuous. The evolution of the vortex sheet
can be described by the Birkhoff–Rott (BR) equation [25–
27]. This is a nonlinear singular integro-differential equation,
which can be obtained formally from the Euler equations
assuming that the evolution of a vortex sheet retains a curve-like
structure. However, the initial data problem for the BR equation
is ill-posed due to the Kelvin–Helmholtz instability [25,28].
Numerous results show that an initially real analytic vortex
sheet can develop a finite time singularity in its curvature. This
singularity formation was studied with asymptotic techniques
in [29,30] and numerically in [30–32]. Specific examples of
solutions were constructed in [33,34], where the development,
in a finite time, of curvature singularity from initially analytic
data was rigorously proved.

The problem of the evolution of a vortex sheet can also be
approached, in the general framework of weak solutions (in the
distributional sense) of the Euler equations, as a problem of
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evolution of the vorticity, which is concentrated as a measure
along a surface of codimension 1. The general problem of
existence for mixed-sign vortex sheet initial data remains an
open question. However, in 1991, Delort [35] proved a global
in time existence of weak solutions of the 2D incompressible
Euler equation for the vortex sheet initial data with initial
vorticity being a Radon measure of a distinguished sign; see
also [36–41]. This result was later obtained as an inviscid limit
of the Navier–Stokes regularizations of the Euler equations [37,
39], and as a limit of vortex methods [38,40]. The Delort result
was also extended to the case of mirror-symmetric flows with
distinguished sign vorticity on each side of the mirror [42].
However, the problem of uniqueness of a weak solution with
fixed sign vortex sheet initial data is still unanswered; numerical
evidence of non-uniqueness can be found, e.g., in [43,44].
Furthermore, the structure of weak solutions given by Delort’s
theorem is not known, while the Birkhoff–Rott equations
assume a priori that a vortex sheet remains a curve at a
later time. A proposed criterion for the equivalence of a weak
solution of the 2D Euler equations with vorticity being a Radon
measure supported on a curve, and a weak solution of the
Birkhoff–Rott equations can be found in [45]. Also, another
definition of weak solutions of Birkhoff–Rott equation has been
proposed in [46,47]. For a recent survey of the subject, see [48].

The question of global existence of weak solutions for the
three-dimensional Euler-α equations is still an open problem.
On the other hand, the 2D Euler-α equations were studied
in [49], where it has been shown that there exists a unique
global weak solution to the Euler-α equations with initial
vorticity in the space of Radon measures on R2, with a unique
Lagrangian flow map describing the evolution of particles. In
particular, it follows that the vorticity, initially supported on a
curve, remains supported on a curve for all times.

We present in this paper an analytical study of the α-
analogue of the Birkhoff–Rott equation, the Birkhoff–Rott-
α (BR-α) model, which is induced by the 2D Euler-α
equations. The BR-α model was implemented computationally
in [50], where a numerical comparison between the BR-α
regularization and the existing regularizing methods, such as
a vortex blob model method [38,51–54], has been performed.
We remark that, unlike the vortex blob methods that regularize
the singular kernel in the Birkhoff–Rott equation, the α-model
method regularizes instead the Euler equations themselves to
obtain a smoother kernel.

We report in Section 4 our main result, which states that the
initially smooth self-avoiding 2D vortex sheet, evolving under
the BR-α equation, remains smooth for all times. In this short
communication we only report the results and sketch some of
their proofs; the full details will be reported in a forthcoming
paper. In Section 2 we describe the BR-α equation. Section 3
studies the linear stability of a flat vortex sheet with uniform
vorticity density for the 2D BR-α model. The linear stability
analysis shows that the BR-α regularization controls the growth
of high wavenumber perturbations, which is the reason for the
well-posedness. This is unlike the case for the original BR
problem which exhibits the Kelvin–Helmholtz instability, the
main mechanism for its ill-posedness.

2. Birkhoff–Rott-α equation

The incompressible Euler equations in R2 in the vorticity
form are given by

∂q
∂t

+ (v · ∇) q = 0,

v = K ∗ q,

q(x, 0) = qin(x),

(1)

where K (x) = 1
2π ∇⊥ log |x |, v is the fluid velocity field,

q = curl v is the vorticity, and qin is the given initial vorticity.
The 2D Euler-α model [1,2,5,55–57] is an inviscid

regularization of the Euler equations, such that the vorticity is
governed by the system

∂q
∂t

+ (u · ∇) q = 0,

u = K α ∗ q,

q(x, 0) = qin(x).

(2)

Here u represents the “filtered” fluid velocity, and α > 0 is a
length scale parameter, which represents the width of the filter.
At the limit α = 0, we formally obtain the Euler equations (1).
The smoothed kernel is K α = Gα ∗ K , where Gα is the Green
function associated with the Helmholtz operator

(
I − α2∆

)
,

given by

Gα (x) = 1
α2 G

( x
α

)
= − 1

α2
1

2π
K0

( |x |
α

)
, (3)

where x = (x1, x2) ∈ R2 and K0 is a modified Bessel function
of the second kind [58].

Let M(R2) denote the space of Radon measures on R2; G
denote the group of all homeomorphisms of R2 which preserve
the Lebesgue measure; and η = η(·, t) denote the Lagrangian
flow map induced by (2) and obeying the equation ∂tη(x, t) =
u(η(x, t), t), η (x, 0) = x .

Oliver and Shkoller [49] showed global well-posedness of
the Euler-α equations Eq. (2) with initial vorticity in M(R2)

(which includes point-vortex data).

Theorem 1 (Oliver and Shkoller [49]). For initial data qin ∈
M(R2), there exists a unique global weak solution (in the sense
of distribution) to (2) with

η ∈ C1 (R;G) , u ∈ C
(
R; C

(
R2

))
,

q ∈ C
(
R;M(R2)

)
.

The Birkhoff–Rott-α equation, based on the Euler-α
equations, is derived similarly to the original Birkhoff–Rott
equation. Detailed descriptions of the Birkhoff–Rott equation
as a model for the evolution of the vortex sheet can be found,
e.g., in [27,41,59]. We remark that while the BR equations
assume a priori that a vortex sheet remains a curve at a
later time, in the 2D Euler-α case, if the vorticity is initially
supported on a curve, then due to the existence of the unique
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Lagrangian flow map given by Theorem 1, it remains supported
on a curve for all times. Hence the BR-α equation gives a
description of the vortex sheet evolution equivalent to the
description given by the 2D Euler-α equations. It is described
in the following proposition.

Proposition 2. Let q be the solution of (2) in the sense
of Theorem 1. Assume, furthermore, that q has the
density γ (σ, t) supported on the sheet (curve) Σ (t) ={

x = x(σ, t) ∈ R2|σ0 (t) ≤ σ ≤ σ1 (t)
}
, that is, the vorticity

q(x, t) satisfies
∫

R2
ϕ(x)dq(x, t) =

∫ σ1(t)

σ0(t)
ϕ (x(σ, t)) γ (σ, t)|xσ (σ, t) |dσ,

for every ϕ ∈ C∞
0

(
R2). Then this sheet evolves according to

the equation

∂

∂t
x (σ, t)

=
∫ σ1(t)

σ0(t)
K α

(
x (σ, t) − x

(
σ ′, t

))
γ

(
σ ′, t

) ∣∣xσ

(
σ ′, t

)∣∣ dσ ′.

Additionally, if Γ (σ, t) =
∫ σ
σ ∗ γ

(
σ ′, t

) ∣∣xσ

(
σ ′, t

)∣∣ dσ ′, where
x (σ ∗, t) is some fixed reference point on Σ (t), defines a
strictly increasing function of σ (e.g., as in the case of
positive vorticity), then the evolution equation is given by the
Birkhoff–Rott-α (BR-α) equation

∂

∂t
x (Γ , t) =

∫ Γ1

Γ0

K α
(
x (Γ , t) − x

(
Γ ′, t

))
dΓ ′ (4)

with γ = 1/|xΓ | being the vorticity density along the sheet.

Here σ0, σ1 (and, consequently, Γ0,Γ1) can represent either
a finite length curve, or an infinite one. In our existence
Theorem 3, stated in Section 4, we will make the assumption
that γ (·, t) ∈ L1(|xσ | dσ), i.e., |Γ0| , |Γ1| < ∞.

Notice that

K α (x) = ∇⊥Ψα (|x |) = x⊥

|x | DΨα (|x |) ,

where

Ψα (r) = 1
2π

[
K0

( r
α

)
+ log r

]

and

DΨα(r) = dΨα

dr
(r) = 1

2π

[
− 1

α
K1

( r
α

)
+ 1

r

]
.

K0 and K1 denote modified Bessel functions of the second
kind of orders zero and one, respectively. For details on Bessel
functions, see, e.g., [58]. We remark that the smoothed kernel
K α (x) is a bounded continuous function, that for |x |

α → 0

behaves as K α (x) = − 1
4π

1
α2 x⊥ log |x |

α + O
(

|x |
α2

)
. That is, it

is non-singular kernel. The assumption γ (·, t) ∈ L1(|xσ | dσ)

allows us to show the integrability of the relevant terms, even
though |K α (x)| is decaying like |x |−1 at infinity.

3. Linear stability of a flat vortex sheet with uniform
vorticity density for 2D BR-α model

The initial data problem for the BR equation is highly
unstable due to an ill-posed response to small perturbations
called Kelvin–Helmholtz instability [25,28]. The linear stability
analysis of the BR-α equation shows that the ill-posedness of
the original problem is mollified, and the Kelvin–Helmholtz
instability of the original system now disappears.

When the vortex sheet can be parameterized as a graph of a
function in the form x2 = x2 (x1, t) the BR-α system (4) takes
the form

∂x2

∂t
= −∂x2

∂x1
u1 + u2, (5)

∂γ

∂t
= − ∂

∂x1
(γ u1) ,

with velocity u = (u1, u2)
t given by

u (x1, t) = p.v.

∫

R
K α

(
x (x1, t) − x

(
x ′

1, t
))

γ
(
x ′

1, t
)

dx ′
1,

where x (x1, t) = (x1, x2 (x1, t))t . The flat sheet x0
2 ≡ 0 with

uniformly concentrated intensity γ0 is a stationary solution of
(5). By linearization about the flat sheet we obtain the following
linear system:

∂ x̃2

∂t
= ũ2,

∂γ̃

∂t
= −γ0

∂ ũ1

∂x1
,

where

ũ1 (x1, t) = −γ0(sgn (x1) DΨα (|x1|)) ∗ ∂ x̃2

∂x1
,

ũ2 (x1, t) =
(
sgn (x1) DΨα (|x1|)

)
∗ γ̃ ,

and (x̃2, γ̃ ) is a small perturbation about the flat sheet.
Consequently, the equation for the Fourier modes is given by

d
dt

(̂̃x2
̂̃γ

)
=




0

i
2

sgn(k)d(k)

−i
γ 2

0
2

k2 sgn(k)d(k) 0




(̂̃x2

̂̃γ

)
, (6)

where

d(k) =
(

1 + 1
α2k2

)−1/2

− 1.

Observe that in order to calculate the Fourier transform

F(sgn (x1) DΨα (|x1|)) (k) = i
2

sgn(k)d(k),

we used the integral representation of the modified Bessel func-
tion of the second kind K1 (x1) = x1

∫ ∞
1 e−x1t (

t2 − 1
)1/2 dt

(see, e.g., [58]). The eigenvalues of the coefficient matrix, given
in (6), are

λ(k) = ±1
2

|γ0| |k|
(

1 −
(

1 + 1
α2k2

)−1/2
)

. (7)
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To conclude, the α-regularization mollifies the Kelvin–
Helmholtz instability as follows: we have an algebraic decay
of the eigenvalues to zero of order 1

α2|k| , as k → ∞ (α fixed),
while, for α → 0, for fixed k, we recover the eigenvalues of the
original BR equations ± 1

2 |γ0| |k| (see, e.g., [60]).
For the sake of comparison, we observe that for the vortex

blob regularization of Krasny [32], where the singular BR
kernel, K (x), was replaced with the smoothed kernel

Kδ (x) = K (x)
|x |2

|x |2 + δ2
= 1

2π

x⊥

|x |2 + δ2
,

the eigenvalues are

λ(k) = ±1
2

e−δk |γ0| |k|

with an exponential decay to zero, as k → ∞ (δ > 0 is fixed).
As δ → 0, for fixed k, one recovers again the eigenvalues of the
original BR equations.

The behavior of the eigenvalues of the linearized system
(6) indicates that high wavenumber perturbations grow
exponentially in time with a rate that decays to zero as k → ∞,
which is the reason for the well-posedness of the α-regularized
model. This is unlike the case for the original BR problem
which exhibits the Kelvin–Helmholtz instability. It is worth
mentioning that the α-regularization is “closer” to the original
system than the vortex blob method at the high wavenumbers,
due to the algebraic decay instead of the exponential one
in the vortex blob method. This result was also evaluated
computationally in [50].

4. Global regularity for BR-α equation

In this section we present the global existence and
uniqueness of solutions of the BR-α equation (4) in the
appropriate space of functions. We show that initially smooth
solutions of (4) remain smooth for all times.

Let us first describe the Hölder space Cn,β
(
Σ ⊂ R; R2),

0 < β ≤ 1, which is the space of functions x : Σ ⊂ R → R2,
with finite norm

‖x‖Cn,β (Σ ) =
n∑

k=0

∣∣∣∣
dk

dΓ k x
∣∣∣∣
C0(Σ )

+
∣∣∣∣

dn

dΓ n x
∣∣∣∣
β(Σ )

,

where

|x |C0(Σ ) = sup
Γ∈Σ

|x (Γ )|

and |·|β is the Hölder semi-norm

|x |β(Σ ) = sup
Γ ,Γ ′∈Σ
Γ .=Γ ′

∣∣x (Γ ) − x
(
Γ ′)∣∣

|Γ − Γ ′|β
.

We also use the notation

|x |∗ = inf
Γ ,Γ ′∈Σ
Γ .=Γ ′

∣∣x (Γ ) − x
(
Γ ′)∣∣

|Γ − Γ ′| .

Next we state our main result.

Theorem 3. Let n ≥ 1, 0 < β < 1, x (Γ , 0) = x0 (Γ ) ∈
Cn,β (Γ0,Γ1)∩{|x |∗ > 0}; then for any T > 0 there is a unique
solution x ∈ C1 (

[−T, T ]; Cn,β (Γ0,Γ1) ∩ {|x |∗ > 0}) of (4).
In particular, if x0 ∈ C∞ (Γ0,Γ1) ∩ {|x |∗ > 0} then x ∈

C1 ([−T, T ]; C∞ (Γ0,Γ1) ∩ {|x |∗ > 0}).

We remark that, although the kernel K α is a continuous
bounded function, its derivatives are unbounded near the origin,
and the condition |x |∗ > 0, which generally means self-
avoiding curves, allows us to show the integrability of the
relevant terms. Furthermore, it is also worth mentioning that
|x |∗ being bounded away from zero is similar to the chord arc
hypothesis [61], used later in [46,47].

Now we sketch the main steps involved in the proof of
Theorem 3. First, we apply the Contraction Mapping Principle
to the BR-α equation (4) to prove the short time existence and
uniqueness of solutions in the appropriate space of functions.
We show that initially C1,β smooth solutions of (4) remain C1,β

smooth for a finite short time. Next, we derive an a priori bound
for the controlling quantity for continuing the solution for all
time. Then we extend the result for higher derivatives. The full
details will be reported in a forthcoming paper.

Sketch of the proof. We consider the BR-α equation as an
evolution functional equation in the Banach space Cn,β

∂x
∂t

(Γ , t) =
∫ Γ1

Γ0

K α
(
x (Γ , t) − x

(
Γ ′, t

))
dΓ ′,

x (Γ , 0) = x0 (Γ ) ∈ Cn,β ∩ {|x |∗ > 0}
(8)

with γ = 1/|xΓ | being the vorticity density along the sheet.
Notice that the initial density is well defined for the subset
{|x |∗ > 0}.

Step 1. We show the local existence and uniqueness of
solutions. To apply the Contraction Mapping Principle to the
BR-α equation (8) we first prove the following proposition:

Proposition 4. Let 1 < M < ∞, −∞ < Γ0 < Γ1, and let SM

be the set
{
Γ 1→ x (Γ ) ∈ C1,β (Γ0,Γ1) , |xΓ |C0 < M, |x |∗ >

1
M

}
.

Then the mapping x (Γ , t) 1→

u (x (Γ , t) , t) =
∫ Γ1

Γ0

K α
(
x (Γ , t) − x

(
Γ ′, t

))
dΓ ′

defines a locally Lipschitz continuous map from SM into C1,β .

This implies the local existence and uniqueness of solutions:

Proposition 5. Given x0 (Γ ) ∈ C1,β (Γ0,Γ1) ∩ {|x |∗ > 0},
there exists 1 < M < ∞ and a time T (M) such that the system
(8) has a unique local solution x ∈ C1((−T (M), T (M)); SM ).

Step 2. The local solutions obtained can be continued in
time provided that we have global, in time, bounds on 1

|x(·,t)|∗
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and |xΓ (·, t)|β . To control these quantities we need to bound
∫ T

0 ‖∇x u (x(·, t), t)‖L∞(Γ0,Γ1) dt . We sketch the proof of this
bound. We write ∇x u (x(Γ , t), t) as

∇x u (x(Γ , t), t) =
∫ Γ1

Γ0

∇x K α
(
x (Γ , t) − x

(
Γ ′, t

))
dΓ ′

=
∫

Eε

+
∫

(Γ0,Γ1)\Eε

= I1 + I2,

where

Eε =
{

Γ ′ ∈ (Γ0,Γ1) :
∣∣x (Γ , t) − x

(
Γ ′, t

)∣∣

α
< ε

}

,

for a fixed small 0 < ε < 1, to be further refined later. Let η

denote the unique Lagrangian flow map given by Theorem 1.
Denote the distance between two points η(x, t) and η(x ′, t) by
r (t) =

∣∣η (x, t) − η
(
x ′, t

)∣∣, where r (0) =
∣∣x − x ′∣∣.

Then, using the estimate (2.14) of [49], we have
∣∣∣∣

d
dt

r (t)
∣∣∣∣ ≤

∫

R2

∣∣K α (x, y) − K α
(
x ′, y

)∣∣ |q (y, t)| dy

≤ C
1
α

ϕ

(
r (t)
α

)
‖q‖M(R2)

= C
1
α

ϕ

(
r (t)
α

) ∥∥∥qin
∥∥∥

M(R2)
,

where

ϕ (r) =






0, r = 0,

r (1 − log r) , 0 < r < 1,

1, r ≥ 1.

By comparison with the solution of the differential equation

d
dt

r (t) = −C
1
α

ϕ

(
r (t)
α

) ∥∥∥qin
∥∥∥
M(R2)

,

we can choose ε = ε
(

t, 1
α ,

∥∥qin
∥∥
M(R2)

)
small enough such

that, for |x(Γ ,t)−x(Γ ′,t)|
α < ε,

∣∣x (Γ , t) − x
(
Γ ′, t

)∣∣

α

≥
(∣∣x (Γ , 0) − x

(
Γ ′, 0

)∣∣

α

)etC1

e1−etC1
, (9)

where C1 = C
α2

∥∥qin
∥∥
M(R2). Now, using also that |x0|∗ is

bounded away from zero, we can bound |x(Γ ,t)−x(Γ ′,t)|
α from

below, which in turn implies the bound

I1 ≤ C
(

t,
1
α

,
∥∥∥qin

∥∥∥
M(R2)

, |x0|∗
)

,

while to bound I2, we use the boundedness of |∇x K α(x(Γ , t),
x(Γ ′, t))| in {Γ ′ ∈ (Γ0,Γ1) : |x(Γ ,t)−x(Γ ′,t)|

α ≥ ε}. Hence
∫ T

0
‖∇x u (x(·, t), t)‖L∞(Γ0,Γ1) dt

≤ C
(

1
α

, T,
∥∥∥qin

∥∥∥
M(R2)

, |x0|∗
)

. (10)

Now, by the Grönwall inequality the bound (10) provides
bounds on 1

|x(·,t)|∗ and |xΓ (·, t)|C0 on [0, T ]. The bound on
|xΓ (·, t)|β on [0, T ] is a consequence of

d
dt

xΓ (Γ , t) = ∇x u (x (Γ , t) , t) · xΓ (Γ , t) ,

|∇x u (x (·, t) , t)|β ≤ C
(

1
α

, |xΓ |L∞ , |x |∗ ,Γ1 − Γ0

)
,

(10) and the Grönwall inequality.
This yields global in time existence and uniqueness of C1,β

solutions of (8).
Step 3. To provide an a priori bound for higher derivatives in

terms of lower ones, we show that for x ∈ SM ∩ Cn,β (Γ0,Γ1),

|u (x (·, t) , t)|n,β ≤ C
(

1
α

, M, |x (·, t)|n−1,β

)
|x (·, t)|n,β ,

and hence by the Grönwall inequality and the induction
argument, it is enough to control |x (·, t)|∗ and |xΓ (·, t)|β , to
guarantee that x (Γ , t) ∈ Cn,β (Γ0,Γ1), for all n ≥ 1 (and
consequently in C∞ (Γ0,Γ1), whenever x0 ∈ C∞ (Γ0,Γ1) ∩
{|x |∗ > 0}). !

5. Conclusions

The 2D Euler-α model [1,2,5,55–57] is an inviscid
regularization of the Euler equations. In [49] there has been
shown the existence of a unique global weak solution of 2D
Euler-α equations, when the initial vorticity is in the space
of Radon measures on R2. The Birkhoff–Rott-α equation for
the evolution of the 2D vortex sheet is induced by the 2D
Euler-α equations, and it is an α-analogue of the Birkhoff–Rott
equation, induced by the 2D Euler equations.

The structure of weak solutions of 2D Euler equations, for
the vortex sheet initial data with initial vorticity being a Radon
measure of a distinguished sign, given by Delort [35–41] is not
known, yet the BR equations assume a priori that a vortex sheet
remains a curve at a later time. In contrast, in the 2D Euler-α
case, if the vorticity is initially supported on a curve, it remains
supported on a curve for all times; hence the BR-α equation
gives an equivalent description of the vortex sheet evolution, as
the 2D Euler-α equations.

In this paper we report the global regularity of the BR-α
approximation for the 2D vortex sheet evolution. We show that
the initially smooth self-avoiding vortex sheet remains smooth
for all times, under the condition that the initial density is an
integrable function of the vortex curve with respect to the arc-
length measure.

Unlike the original BR problem which exhibits the Kelvin–
Helmholtz instability, the linearized, about the flat solution,
BR-α model has growth rates that decay to zero for large
wavenumbers, larger than O(α). This, in turn, is also an
indication of the role that the parameter α plays in slowing
the process of formation of scales smaller than α. Another
indication that α controls the development of small scales,
smaller than α, arises from the Lagrangian description of the
flow. The lower bound (9) implies that the evolution of small
scales, relative to α, at each instant of time, is controlled from
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below by the initial ratio. That is, for any finite time, the spatial
scales smaller than alpha develop at a controlled rate.

The linear stability analysis also implies that the BR-α ap-
proximation could be closer to the original BR equation than the
existing regularizing methods, such as the vortex blob model,
due to the less regular kernel. A numerical study comparing the
α and the vortex blob regularizations for planar and axisymmet-
ric vortex filaments and sheets is reported in [50].

The full details of the results reported in this paper will be
presented in a forthcoming paper.
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Abstract

Initial results from new calculations of interacting anti-parallel Euler vortices are presented with the objective of understanding the origins of
singular scaling presented by Kerr [R.M. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations, Phys. Fluids
5 (1993) 1725–1746] and the lack thereof by Hou and Li [T.Y. Hou, R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D
incompressible Euler equations, J. Nonlinear Sci. 16 (2006) 639–664]. Core profiles designed to reproduce the two results are presented, new more
robust analysis is proposed, and new criteria for when calculations should be terminated are introduced and compared with classical resolution
studies and spectral convergence tests. Most of the analysis is on a 512×128×2048 mesh, with new analysis on a just completed 1024×256×2048
used to confirm trends. One might hypothesize that there is a finite-time singularity with enstrophy growth like Ω ∼ (Tc − t)−γΩ and vorticity
growth like ‖ω‖∞ ∼ (Tc − t)−γ . The new analysis would then support γΩ ≈ 1/2 and γ > 1. These represent modifications of the conclusions
of Kerr [op. cit.]. Issues that might arise at higher resolution are discussed.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

One definition of solving Euler’s 3D incompressible
equations [1] is determining whether or not they dynamically
generate a finite-time singularity if the initial conditions are
smooth, in a bounded domain and have finite energy. The
primary analytic constraint that must be satisfied [2] is:
∫ T

0
‖ω‖∞dt → ∞ (1)

where ‖ω‖∞ is the maximum of vorticity over all space.
To date, [3] remains the only fully 3D simulation of Euler’s
equations with evidence for a singularity consistent with this
and related constraints [4]. Growth of the enstrophy production
and stretching along the vorticity, plus collapse of positions,
supported this claim [3]. Additional weaker evidence related
to blowup in velocity and collapsing scaling functions was
presented later [5].

∗ Corresponding author.
E-mail address: mig busta@yahoo.com (M.D. Bustamante).

There is only weak numerical evidence supporting these
claims [6,7]. In a recent paper, as described in one of the invited
talks of this symposium, [8] found evidence that the above
scenario failed at late times.

This contribution will first comment on four issues raised at
the symposium, then present preliminary new results. The four
issues are:

• How should spurious high-wavenumber energy in spectral
methods be suppressed?

• What criteria should be used to determine when numerical
errors are substantial?

• What effect do the initial conditions have on singular trends?
A cleaner initial condition is proposed.

• We introduce a new approach for determining whether
there is singular behavior of the primary properties and the
associated scaling. This is applied to both new and old data.

All calculations will be in the following domain: Lx × L y ×
Lz = 4π × 4π × 2π with free-slip symmetries in y and z and
periodic in x with up to nx × ny × nz = 1024 × 256 × 2048
mesh points. Using these symmetries only one-half of one of
the anti-parallel vortices needs to be simulated.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.007
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The “symmetry” plane will be defined as xz free-slip
symmetry through the maximum perturbation of the initial
vortices and the “dividing” plane will be defined as the xy free-
slip symmetry between the vortices.

2. How should spurious high-wavenumber energy in
spectral methods be suppressed?

A generic difficulty in applying spectral methods to localized
physical space phenomena is the accumulation of spurious
high-wavenumber energy that leads to numerical errors.

What is the best approach for eliminating these spurious
modes? We have compared the old-fashioned 2/3rds dealiasing
versus the recently proposed 36th-power hyperviscous filter [8,
11]. Detailed tests to be described in a later paper show that
the latter is better in the sense that for several quantities, such
as the peak vorticity, lower resolution calculations follow the
high-resolution cases longer. But a combination of the two
approaches works even better, and that is what is used here.

Still, caution is required for any of these approaches as
the hyperviscosity can dissipate small structures such as the
anomalous negative vorticity in the squared-off profile below.
Surprisingly the 36th-order hyperviscosity does not appear to
produce the ghost vortices that are a known artifact of lower-
order schemes.

3. What criteria should be used to determine when
numerical errors are substantial?

There are traditionally two approaches to this problem, one
emphasizing local quantities such as ‖ω‖∞, and the other
emphasizing global quantities such as the mean square vorticity
or enstrophy. We use both.

3.1. Local quantities and resolution

To determine local resolution it is important to check the
convergence of local quantities such as:

• The maximum of vorticity ‖ω‖∞. The location of ‖ω‖∞ will
be defined as x∞.

• The local stretching of vorticity

α = ω̂i ei j ω̂ j (2)

where ω̂ = ω/|ω| and ei j = 1
2 (ui, j + u j,i ).

Following earlier work [3,8], we use the criteria that x∞
cannot be closer than 6 mesh points from the dividing plane.

3.2. Integral quantities

Examples of integral quantities we could monitor are:
energy, circulation (which are in principle conserved),
enstrophy and helicity (which are in principle changing).

(i) Energy is robustly conserved by spectral methods even
when under-resolved and therefore is not a useful test.
Convergence of the energy spectrum [8] is only a partial
test because it neglects phase errors.

(ii) Circulation in the upper half of the symmetry plane
(i.e., the z > 0 half of the xz-plane, which is perpendicular
to the primary direction of vorticity y) is conserved.
Circulation in the equivalent half of the dividing plane is
also conserved. In all of the initial conditions considered
here, it is initially zero and ideally should remain
so. Therefore, the circulations of the symmetry and
dividing planes, σy =

∫
z>0 ωy(x, 0, z, t)dx dz and σz =∫

y>0 ωz(x, y, 0, t)dx dy were monitored.
We have found that serious depletion of σy is controlled

by nz and the time this begins is independent of the high-
wavenumber filter. Once nz is set, by convergence of
‖ω‖∞, we find that there is good convergence if nx = nz/2
and ny = nz/4. A later paper will provide more details on
these convergence tests. We will violate the condition on
ny at late times due to current memory restrictions.

Without the circulation test, it is difficult to draw
conclusions about the late times in [8] where they claim
to see divergence from the scaling of Kerr [3].

(iii) Enstrophy Ω grows in time, so one test is to check how
it is balanced by its production Ωp, which we determine
directly. The enstrophy and its production are

Ω =
∫

dV ω2, Ωp = 2
∫

dV ωi ei jω j . (3)

(iv) Helicity grows within the quadrant simulated (not over
the full anti-parallel geometry), but its production is
determined by pressure which has not been calculated.

4. What is the effect of the initial conditions on the
potentially singular behavior?

4.1. Earlier descriptions

As ambiguities in the earlier description of the initial
condition of [3] led to differences in the initial condition of
Hou and Li [8], the community needs a clear description of
a reproducible, clean initial condition that yields the trends of
Kerr [3]. Ideally, we want an initial condition whose vorticity
is purely positive in the upper half of the symmetry plane,
which following Kelvin’s theorem will remain positive for all
subsequent times. These steps were used [3] to massage the
vortex profile in order to achieve this:

(A) The first step in creating the initial profile of the vorticity
core is to use an explicit function where the value and all
derivatives went smoothly to zero at a given radius. See
references in [3] for earlier work that had used a similar
profile. To this, a localized perturbation in its position in x
was given [9].

(B) The second step is to remove high-wavenumber noise by
applying a symmetric high-wavenumber filter of the form:
exp(−a(k2

x + k2
y + k2

z )
2). Kerr [10] showed the undesirable

side-effects if this is not done. However, it has become
apparent that the high-wavenumber filter is not sufficient.
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Fig. 1. ωy in the symmetry plane from two initial conditions for t = 0 and for early times with roughly the same growth in max(ωy) in the symmetry plane. The
first squared profile is nearly the same as used by [8] using step (A) with max(ωy) = 0.49 in the symmetry plane (over all space ‖ω‖∞ = max(|ω|) = .67) and for
step (B) a squared-off high-wavenumber filter (exp(−a(k4

x + k4
y + k4

z ))). Note the large negative vorticity in the lee (right) of the primary vortex as in [8] (Fig. 2)
and how this is entrained underneath the primary vortex at t = 6, whereupon the hyperviscous filter will dissipate it. In the new profile step (C) is included: adding
positive ωy(z). In this case max(ωy) = 0.83 in the symmetry plane and over all space ‖ω‖∞ = 1.05. There is no anomalous negative vorticity and numerical
solutions require less resolution.

4.2. Effect of a negative region

The upper frames in Fig. 1 come from a reproduction of
the squared-off profile of Hou and Li [8] which follows the
procedure above with the exception of using a different high-
wavenumber filter. Note the negative region in the lee of the
primary vortex and how this is sucked underneath the primary
vortex at t = 6. The t = 6 frame represents the vortices
simulated with the 36th-order hyperviscosity [8,11]. For t >

6 this secondary vortex is dissipated by the hyperviscosity
and circulation is dissipated, meaning these calculations are
not faithfully representing the Euler equations. Without the
hyperviscosity, numerical noise would dominate as an extra
boundary layer needs to be resolved.

4.3. Final step (C) for purely positive

What is apparently missing from the previous description [3]
is the addition of a mean shear designed to remove the final
negative regions in the symmetry plane. This was achieved
before [3] as part of an interpolation procedure from a uniform
mesh to a Chebyshev mesh. Here it is imposed. Details will
appear in a full paper. Initial vorticity in the symmetry plane
and a slightly later time (t = 4.38) are shown. This is the initial
condition for which we have now done up to 1024×256×2048
calculations to assess the scaling proposed earlier [3].

5. A new approach for determining whether there is
singular behavior of the primary properties and the
associated scaling

Once reliable data (according to the criteria discussed above)
has been obtained, it is common to interpret it in terms of power
laws and other simple formulae. For example, assume that

f (t) ∼ C/(Tc − t)γ . (4)

To properly find all three free parameters (C , Tc and γ ) to a set
of points requires a minimization procedure.

Kerr [3] avoided this by assuming particularly simple values
for γ for several quantities. In particular γ = 1 was assumed
for ‖ω‖∞, for the maximum of the stretching of the vorticity
(2) in the symmetry plane: max(α)|y=0, and for the enstrophy
production (3). This procedure was extended to the velocity by
assuming that γu = 1/2 for sup(|u|) [5].

While fits with these assumptions gave consistent results for
the singular time Tc, this consistency existed only at late times
when resolution was becoming questionable. Analysis of this
data by two new methods has shown that the lack of scaling
at earlier times is due in part to some of the more restrictive
assumptions that were made.

5.1. Three-parameter fitting

Our first indication that earlier assumptions [3,5] might be
incorrect was obtained by allowing γ to be free. The three
parameters (C , Tc and γ ) were then obtained as follows: by
minimizing the sum of squares of the differences between the
logarithm of the data and the logarithm of the fit function, with
respect to C and γ , allows one to solve for these two parameters
in terms of Tc. Then the sum of squares is further minimized
with respect to Tc to obtain all three parameters.

This analysis was applied to ‖ω‖∞ and Ωp, the enstrophy
production, both of which previously were assumed to have
1/(Tc − t) behavior.

It was immediately observed that

• The fitting parameters depended upon the range of times
chosen.

• γ in each case was consistently greater than 1.

This would not be inconsistent with known bounds. Recall
if power-law behavior is expected for ‖ω‖∞, (1) only requires
that γ ≥ 1.
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Fig. 2. Upper frames: Resolution study of the predicted singular time Tc and the predicted exponent γΩ in the power-law behavior of the total enstrophy Ω using
the new data at resolutions: 512 × 64 × 2048 (dashed), 512 × 128 × 2048 (dotted) and 1024 × 256 × 2048 (solid). Lower frames: Predicted Tc and γΩ for the
Kerr [3] data at the highest resolution (solid). Dashed lines denote gaps in data. In the graphs for the predicted Tc , the dash-dotted diagonal lines denote the Tc = t
singularity asymptote.

5.2. Logarithmic time derivatives of enstrophy and ‖ω‖∞:
Instantaneous two-parameter fitting

The original analysis would be possible if there is a
secondary quantity which must go as 1/(Tc − t) if the primary
quantity obeys the power law 1/(Tc − t)γ . An example of a
secondary quantity of that sort is the logarithmic time derivative
of the primary quantity, which can be computed if we know
independently the quantity f (t) and its time derivative ḟ (t).

Therefore we propose a new approach to inferring a singular
time and identifying the scaling behavior:

• Find a quantity f (t) whose growth and the growth of its
time-derivative can be determined directly. Consider the new
function:

g(t) =
(

d
dt

log f (t)
)−1

= f

ḟ
= 1

γ
(Tc − t). (5)

Note that the parameter C drops out and the function is
linear, so we can predict instantaneous values of γ and Tc
by fitting this new function using adjacent points in time.

• Calculating in this manner, using nearest neighbours in
time, yields instantaneous predicted singular times Tc(t)
and power laws γ (t). These instantaneous parameters will
generically depend on time.

• See if these converge or relax (as time increases).

Pairs of quantities to which this procedure can be applied
are:

• ‖ω‖∞ and its logarithmic time derivative α∞ (local
stretching at the point x∞).

• Enstrophy Ω and its production Ωp (3) where we assume
that

Ω ∼ CΩ

(Tc − t)γΩ
. (6)

• Helicity in the simulated quadrant of space and its
production.

This approach is applied to enstrophy and its production
on our highest-resolution simulations. As enstrophy and its
production are global quantities they converge numerically
longer (to t = 11.25) than ‖ω‖∞, for which x∞ is less than
6 mesh points from the dividing plane for t > 10. Running
estimates for Tc and γΩ are shown in Fig. 2. For the new
data (upper frames), the latest data point gives an estimate
Tc ≈ 13.16 and γΩ ≈ 0.47. The bottom frames show the same
analysis applied to the data used by [3]. Nearly identical power
laws are obtained (γΩ ≈ 0.50), with a predicted singular time
Tc ≈ 19.69, greater than in [3].

One advantage of finding running estimates of Tc is that it
can be used to identify cases that are not singular, or would
take an unusually long time to become singular. This is done
by looking at the instantaneous estimated value of Tc. If Tc
continues to increase with time, then there is evidence for
regularity. In both the new calculations and for the data from
Kerr [3], eventually the estimated Tc decreases and relaxes to
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Fig. 3. Top: Resolution study of ‖ω‖∞, for resolutions nx × ny × nz of:
512 × 64 × 2048 (dashed), 512 × 128 × 2048 (dotted) and 1024 × 256 × 2048
(solid). Bottom: Anisotropic energy spectrum (direction kx ) at time t = 10 for
resolution 1024 × 256 × 2048. Points correspond to numerical data. The solid
curve corresponds to the fit of the spectrum according to log E(kx ) = C −
n log(kx ) − 2δ kx , where the fit interval is defined by the vertical dashed lines.

a finite value. It is quite possible that there is a large pre-factor
in front of the power law, which the time dependence of the
estimated γΩ and CΩ might be able to shed light on.

This approach assumes smooth values for both quantities in
a pair. Unfortunately, we have found that because ‖ω‖∞ sits on
a steep gradient of α, values of α∞ on the lower resolution mesh
were not smooth enough in time to perform this analysis. The
analysis will be attempted on the higher resolution (‖ω‖∞, α∞)
data when that additional analysis of the new data sets is
available.

5.3. Convergence studies: Is the evidence for singularity
conclusive?

Further tests at higher resolution are needed to support the
singular trends seen here. Both current cases (old and new data)
could be reliably integrated up to times t ≈ Tc − 2.75. This
would only be the beginning of the asymptotic regime of the
potentially singular solution, as is suggested by the late-time
behavior of the curves for the predicted singular time Tc in
Fig. 2. New calculations in progress should go beyond that
barrier and help to test the validity of the hypothesis of finite-
time singularity.

In this subsection we show resolution studies with nz fixed
to give a flavor of what will be shown in the next paper (we
have also made resolution checks with fixed nx or ny and

Fig. 4. Resolution study of: the enstrophy in the symmetry plane ΩS P (top); the
error in the circulation through the dividing plane σz normalized with the initial
circulation through the symmetry plane σy (bottom), for resolutions 512×64×
2048 (dashed), 512 × 128 × 2048 (dotted) and 1024 × 256 × 2048 (solid).

varying the other two, not shown here). The resolution study
is a classical tool to validate and find reliability times for the
numerical results. Another now widely accepted study that we
present is a spectral convergence test (Sulem et al. [12]) used
recently by Cichowlas and Brachet (see [13] and the references
therein), where the exponential decay of the energy spectrum as
a function of the wavenumber is employed to give a criteria for
the reliability time. Finally we complement the above classical
tests with our newly proposed tests of reliability: conservation
of circulation through the symmetry plane and conservation of
circulation through the dividing plane.

We consider first the behavior of local quantities, in the
sense of Section 3. Fig. 3 (top) is a resolution study of the
time dependence of the maximum vorticity; the bottom figure
is a t = 10 anisotropic energy spectrum E(kx , t), defined by
averaging the Fourier transform û(k′, t) of the velocity field on
flat duplicated sheets of width ∆kx = 1,

E(kx , t) = 1
2

∑

kx −∆kx /2<|k′
x |<kx +∆kx /2

|û(k′, t)|2.

Following [13], we fit: log E(kx ) = C −n log(kx )−2δ kx (solid
line in the figure). The test consists in monitoring the parameter
δ as a function of time. The idea is that δ, being the width in
the complex plane of the analyticity strip of the velocity field,
should always be numerically resolved, at least by the mesh
size. Another way to look at this condition is to ask that the
contribution of the exponential term to the change of log E(kx )
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Fig. 5. Euler anti-parallel vortices in full periodic domain near t = 2.51. Bright (yellow online) tubes are isosurface contours of vorticity modulus corresponding
to 60% of the instantaneous maximum of vorticity modulus. Dark (red online) elongated blobs are isosurfaces corresponding to 90% of the maximum of vorticity
modulus.

from the largest to the smallest scale allowed by the numerical
resolution, be greater than a prescribed factor. In more explicit
terms, we can only fully trust the simulation up until the
condition δ kmax

x ≥ 1 is violated, where kmax
x = nx/3 is the

maximum relevant wavenumber of the Fourier representation.
Notice that different authors use different factors in the RHS
of the last inequality. For our t = 10 spectrum in resolution
1024 × 256 × 2048 we obtain δ kmax

x ≈ 1.07, and therefore
our simulation is validated by this method up to t = 10. In this
way we could extrapolate the convergence of ‖ω‖∞ up to t =
10, whereas a conservative extrapolation based solely on the
resolution study in Fig. 3 (top) would see the 1024×256×2048
computation converged up to t = 9.

We consider now the behavior of 2D integral quantities.
Due to its 2D character, enstrophy in the symmetry plane
ΩS P =

∫
y=0 ω2

y dx dz, shown in Fig. 4 (top), is a more sensitive
measure than total enstrophy Ω (Eq. (3), figure not shown),
which converges more rapidly than ΩS P . A conservative
extrapolation would imply convergence of ΩS P up to times
t ! 11.

Fig. 4 (bottom) is a resolution study of the normalized error
in the conservation of circulation through the dividing plane
σz . We observe that, for a given resolution, the numerically
induced deviation in σz becomes unstable after a certain time.
Errors (and fluctuations thereof) less than 10−4 are acceptable,
as long as they are stable. Then, a reasonable reliability time
can be defined for each resolution as the time when the error

in σz attains its last extremum before the instability takes over.
According to this criteria we conclude that the simulation at
resolution 512 × 128 × 2048 (dotted line) is converged up to
t ≈ 10.7 and the simulation at resolution 1024 × 256 × 2048
(solid line) converges up to t ≈ 11.25. In order to display
the unstable behavior of the mid-resolution simulation (dotted
line), we show data beyond its reliability time.

Finally we return to Fig. 2, considering all three resolutions.
For each resolution, Tc has a peak for t ≈ 9 − 10, and then
asymptotes, well within the reliability time for the highest
resolution. Similar trends towards convergence appear for γΩ .
The key question regarding the existence of a finite-time
singularity is if the curve for predicted Tc crosses the asymptote
Tc = t (dashed-dotted line) in a finite time or not, but we need
further tests at higher resolutions (to be shown in a future paper)
in order to conclude on these matters.

We have enough resolution to conclude that the power laws
are not the ones proposed in [3,5] but not enough resolution
to reach definitive conclusions on the singular behavior, since
‖ω‖∞ does not converge as rapidly as the volumetric quantities
studied.

6. Graphics

In this section, 3D isosurface contours of the vorticity
modulus are shown, corresponding to the simulation of initially
anti-parallel vortices, using a resolution of 512 × 128 × 2048
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Fig. 6. From left to right, and from top to bottom: six successive, zoomed snapshots of the Euler anti-parallel vortices at times t =
5.625, 6.25, 6.875, 7.5, 7.8125, 8.125. The contours are sectioned through the y = 0 symmetry plane, to facilitate the view of the structures. The contours are
isosurfaces of vorticity modulus corresponding, respectively from outer to inner, to the 40%, 60%, 80% and 90% of the value of the instantaneous maximum
vorticity modulus.
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in the fundamental quarter of the full domain, corresponding to
an effective resolution of 512 × 256 × 4096 in the full domain.
For memory-optimizing purposes, the output data used to make
the figures has an effective resolution of 512 × 128 × 1024,
corresponding to a memory size of 65 MB. The freeware
visualization program VisIt has been used to make the plots.

Fig. 5 shows the vortices after some time of evolution in
the whole periodic domain. The large tubes are isosurfaces
corresponding to 60% of the maximum vorticity modulus.
These tubes cross along the periodic Y -Axis and deform
notably near the symmetry plane (y = 0). The elongated blobs
in the interior of the tubes are isosurfaces corresponding to 90%
of the maximum vorticity. These isosurfaces are very localized
and flattened near the symmetry plane.

Fig. 6 shows successive snapshots at later stages of the flow,
of isosurfaces corresponding to the following percentages of the
instantaneous value of the maximum vorticity modulus: from
outer to inner contours, 40%, 60%, 80% and 90%. Only half of
the total domain is shown so that a section of the isosurfaces
through the symmetry plane (y = 0) is visible. The snapshots
are all seen from the same angle and with the same zoom with
respect to the fixed box. To read the snapshots going forward in
time one advances from left to right and from top to bottom.

The flattening in the z-direction results in structures similar
to flattened pillows with some curvature in x (and less in y)
that becomes more pronounced at the later times along the cut
at the symmetry plane. These empirical observations provide
further support for the choice of anisotropic resolution in the
simulations.

7. Looking forward

The calculation reported here was the largest possible on the
Warwick SGI Altix with our code. In the near future we will
have a cluster capable of simulating a 2048 × 1024 × 4096
mesh. We might also use UK national computing resources.

Once our new cluster arrives we anticipate the following
calculations:

• Further tests to determine if an initial condition closer to that
of Kerr [3] can be obtained.

• After further resolution checks, at least one calculation on a
2048 × 512 × 4096 mesh either on the new profile here or
that of Kerr [3].

• At least one modest resolution calculation on the square-off
initial condition of Fig. 1.

• Our goal in high-resolution calculations will be to include
spectral convergence tests, in particular the analyticity
strip method (Sulem et al. [12], see also [13,14] and the
references therein) which gives independent evidence of
singular/nonsingular behavior of the flow and allows one to
extrapolate the convergence of ‖ω‖∞.

• Convergence of ‖ω‖∞ and other local quantities should
allow us to study regularity bounds from Constantin,
Fefferman and Majda [4] and from Deng, Hou and Yu [15].

The finite-time singularity hypothesis of the 3D, incom-
pressible Euler equations, leads to conclusions that are in quali-
tative agreement with Kerr [3]. However, we have found that the

previously proposed scaling laws and estimated singular time
must be modified.

One possible outcome which will require further investi-
gation is whether constant circulation is trapped within the
collapsing region. If this is confirmed, the two length scaling
parameterization proposed [5] cannot be correct.

It is anticipated that in addition to these much higher-
resolution anti-parallel calculations, there will soon be new
high-resolution calculations of the Kida–Pelz flow (anticipated
in these proceedings by the contribution of Grafke et al. [16])
and the Taylor–Green calculations initiated by Brachet
et al. [17] will soon be continued by Brachet. If these prove
to be singular, and anti-parallel, it is possible that they will
reproduce the scalings hinted at here.
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Abstract

In incompressible Euler flows, vorticity is intensified by line stretching, a process that can come either from the action of shear, or from
advection with curvature. Focusing on the latter process, we derive some estimates on the maximal growth of vorticity in axisymmetric flow
without swirl, given that vorticity support volume or kinetic energy is fixed. This leads to consideration of locally 2D anti-parallel vortex structures
in three dimensions. We exhibit a class of line motions which lead to infinite vorticity in a finite time, with only a finite total line stretching. If the
line is replaced by a locally 2D Euler flow, we obtain a class of models of vorticity growth which are similar to the paired vortex structures studied
by Pumir and Siggia. We speculate on the mechanisms which can suppress the nonlinear effects necessary for the finite-time singularity exhibited
by the moving line problem.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The question of the global regularity of three-dimensional
solutions of the incompressible Euler equations continues to
be of considerable interest to both mathematicians and fluid
dynamicists, see e.g. the papers of Constantin, Gibbon, and Hou
in this volume. According to the seminal Beale–Majda–Kato
criterion, singularity formation must be accompanied by infinite
(integral of) maximum vorticity, which in turn requires that
some vortex tubes stretch to zero cross-section. The question
of global regularity thus depends upon how fast vorticity can
grow through line stretching.

In the present note, we re-examine anti-parallel vortex
structures as a mechanism for the self-stretching of vorticity.
We will also be interested in the existence of Euler flows which
maintain quasi-two-dimensionality even as vorticity grows. In a
perfect fluid, vortex lines are material and therefore move with
the velocity created by the self-same vorticity, as described by
the Biot–Savart law. Let us consider a curve C(t), restricted for
simplicity to a plane, moving in the plane with velocity u(ζ0, t).

∗ Tel.: +1 212 998 3000; fax: +1 212 995 4121.
E-mail address: childress@cims.nyu.edu.

Here ζ0 is a Lagrangian parameter of the line, here arc length is
measured from a reference point at t = 0.

Resolving u into tangential and normal components relative
to the curve, a point x(ζ0, t) of C moves according to

∂x
∂t

∣∣∣∣
ζ0

= u(ζ0, t)n + w(ζ0, t)t, (1)

where (n, b, t) is the orthonormal triad of normal, tangent, and
binormal vectors to the curve. As is well known, the equations
of motion of the curve can be expressed for given u, w as a pair
of equations for the Jacobian J = ∂ζ

∂ζ0
(ζ0, t) and the curvature

κ(ζ,t), where ζ is the current arc length:

∂ J
∂t

∣∣∣∣
ζ0

= wζ J − Juκ, (2)

∂κ

∂t

∣∣∣∣
ζ0

− wκζ − κ2u − uζ ζ = 0. (3)

Note that it is derivatives in ζ , not ζ0, which occur in (3). The
two terms on the right of (2) we may call, in order, the shear
stretching and the expansive stretching terms.

Since shear stretching involves the tangential component w,
it can be caused by the global vorticity only if the nearby lines

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.028
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are suitably skew to the line to be stretched. Shear-induced
stretching can play a significant role in the amplification of
vorticity, as was recognized by Pelz, see e.g. [1]. Expansive
stretching is available to locally parallel but curved vortex lines.
It is the basis for much of the line stretching in numerical
experiments utilizing paired anti-parallel vortex structures, see
e.g. [2–4].

We here focus on the intensification of vorticity by expansive
stretching. We shall first consider stretching of vorticity in the
simplest of 3D Euler flows, namely axisymmetric flow without
swirl. In that case we may formulate and solve a maximization
problem under global constraints on volume and energy. Next,
we set w = 0 in (2), (3) and close the system with an
equation for u. The resulting equations of motion of a line by its
normal are solved, and it is found that finite time singularities,
involving only finite total stretching, may occur. If we regard
the line as the locus of a locally 2D three-dimensional Euler
flow, we make contact with the calculations in [3]. We discuss
an attempt to formulate this problem in terms of generalized
partial differential equations, and the limitations on growth of
vorticity for more general quasi-2D flows. We shall omit most
details and refer to [12] for supporting calculations.

2. Axisymmetric flow without swirl

This special class of Euler flows, probably the simplest
allowing vortex stretching, is worth considering from the
viewpoint established above. How fast can vorticity grow in this
class of flows? Does vorticity necessarily become indefinitely
large somewhere as t → ∞? What bounds on growth can be
given?

Any axisymmetric flow having no swirl has a vorticity field
of the form (0, 0, ωθ (z, r, t)) in cylindrical polar coordinates
z, r, θ . We deal here only with flows in R3 for which the initial
vorticity is contained within a finite volume. Such a flow is
known to exist globally in time, and a very direct proof of a
bound exponential in time on the maximum vorticity is given
in [5]. The proof utilizes the constancy of the volume support
of the vorticity in an Euler flow, and also the material invariance
of r−1ωθ(x, t).

The exponential bound is not however sharp; the bound on
the growth of vorticity may be improved by making further use
of the special geometry. The sustained growth of vorticity must
involve continual expansion of a vortex ring. The expansive
stretching of this ring must be due to nearby rings. Thus, if
we want to find the fastest growth a ring can attain given the
initial vorticity field, we can, at each instant in time, assemble
the available vorticity in a kind of toroidal “cocoon” about the
selected growing ring, termed below the core ring. We remark
that, for simplicity in constructing the cocoon producing fastest
growth of the core ring, we shall in fact allow rings larger than
the core, as long as global constraints are met. The core ring
itself should be thought of as a “test” vortex tube of small cross-
section and circulation.

2.1. Construction of a t2 bound

Let the initial vorticity have a finite initial support of volume
V0. Suppose that −c1 ≤ ωθ(z, r, 0) ≤ c2 for some positive

constants c1, c2, and let the region of the support where ωθ ≥ 0
have volume V0+, that where ωθ < 0 have volume V0− =
V0 − V0+. We suppose that r−1|ωθ(x, 0)| ≤ C .

Consider a core ring of radius r at time t , lying on the plane
z = 0. Taking the z axis as the axis of symmetry, we may
assume the ring has radius r at time t , and lies on the plane
z = 0. It is clear that to maximize the rate of growth at time t
of the ring in question, we can take rings of negative vorticity
ωθ = −Cr distributed over a volume V/2 in z ≥ 0, and rings
of positive vorticity ωθ = +Cr distributed over a volume V/2
in z ≤ 0. Indeed, we can have no stronger vorticity and any
deviation from an optimal equal partition will be sub-optimal.
Note that θ increases counterclockwise looking onto the x, y
plane from z > 0, so by the right-hand-rule a negative ωθ in
z > 0 induces a positive ur at the core ring.

Consider now the value of ur induced at the core ring by
a ring of radius ρ and cross-sectional area 2πρdA carrying
vorticity −Cρ at height z = ζ > 0. From the Biot–Savart law
one finds

ur (r, 0, t) ≤ Cρ2|ζ |
4π

[∫ +π

−π
H−3/2dψ

]
dA (4)

where H = (r − ρ)2 + 2rρ(1 − cos ψ) + ζ 2. Since 1 −
cos ψ ≥ k2ψ2, ; |ψ | ≤ π, k =

√
2/π , we may make this

substitution and carry out the integral with the range extended
from [−π, +π ] to [−∞, +∞], to obtain

ur (r, 0, t) ≤ C |ζ |ρ3/2

4
√

r
((r − ρ)2 + ζ 2)−1dA. (5)

We introduce local polar coordinates in the r, z plane,
defined by ρ − r = R cos Θ, ζ = R sin Θ . Then, since

ur ≤ C | sin Θ |(r + R cos Θ)3/2dRdΘ
4
√

r

≤ C
4

| sin Θ |(r + R cos Θ)(1 + R/r)1/2dRdΘ, (6)

we seek to maximize U =
∫
A f (R,Θ)dRdΘ , where

f = C
4

| sin Θ |(r + R cos Θ)(1 + R/r)1/2, (7)

subject to the volume constraint

V =
∫

A
g(R,Θ)dRdΘ, g = 2π(r + R cos Θ)R. (8)

Here A is a set to be determined. It can be shown that A may
be assumed to be mirror symmetric with respect to the plane
z = 0, and star-like with respect to the core ring.

We may then formulate the optimization problem as the
variational problem for the boundaryR(Θ), 0 ≤ Θ ≤ π , given
by

δ

∫ π

0

∫ R

0
( f (R,Θ) − λg(R,Θ)) dRΘ, (9)

with scalar multiplier λ.
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Fig. 1. Top: 3
C L2

dr
dt (as defined by (10)) versus r/L . Bottom: Cocoon shape for

various position of the core ring. The cocoon is mirror symmetric with respect
to the r/L line.

Fig. 2. z A−1τγ−1 versus x A−1τγ−1 for the case β = 2, γ = 1
9 (1 +

√
19).

This variational problem may be easily solved. The extremal
leads to the estimate on growth rate of r∗ = r/L , where
V = 2π L3, in the form

dr∗
dt

≤ sup U ≤ C Lr ∗2

3
U(r∗). (10)

We show this relation in Fig. 1, along with the cocoon
boundaries at various values of r/L .

The behavior for large r∗ leads to an estimate on the
vorticity: For axisymmetric flow with initial support volume V
and initial vorticity satisfying |ωθ/r | ≤ C , there is a constant
C1 depending only upon V, C such that

sup |ωθ | ≤ C
(

C
8

√
V t + C1

)2

. (11)

Thus vorticity grows no faster than O(t2) for large time.
We remark that the 2D “vortex couple”, see [6], p. 535,
and also [15], if formed into a toroidal structure, realizes
kinematically a sub-optimal cocoon of constant volume.

2.2. Kinetic energy

In terms of basic scaling in r , the cocoon of constant
volume is characterized by J, a, ωθ , U ∼ r, 1/

√
r , r,

√
r , a

being a transverse dimension, and the kinetic energy is of
order ra2(ω2

θa2) ∼ r . Thus the kinetic energy of the cocoon
of constant volume grows with r . This suggests that a lower
estimate of growth can be obtained by requiring that the kinetic
energy of the cocoon be fixed.

If constant kinetic energy is imposed as the side constraint
instead of constant volume, it can be seen that a, the lateral
dimension of the resulting cocoon, must scale as r−3/4. The
optimizing cocoon for large r then can be shown to yield an
O(t4/3) growth estimate for ωθ . The optimizing cocoon shrinks
in volume, behaving as 1/

√
r , and has a somewhat different

shape from the cocoon of constant volume, but remains star-
like.

What estimate can be obtained if volume and energy are
simultaneously conserved? We have studied this question in a
“thin-layer” version of the cocoon construction in the limit r →
∞. Our results suggest that an optimizing cocoon under both
volume and energy constraints consists of the cocoon under
the energy constraint, with the same estimate on growth, but
now having attached to it a filament or filaments (see Section 4)
which contain the missing volume but have negligible energy.
Thus we conjecture that a t4/3 bound on growth is the best
available from the cocoon construction. It is likely that the
exponent 4/3 can be reduced by other methods.

Since the Jacobian of the core vortex is proportional to
r , and since the speed U of the cocoon is ∼ r1/2 under
constant volume and ∼ r1/4 under constant energy, we see that
the growth is ultimately associated with quasi-2D structures
with J ∼ U 2 and J ∼ U 4 respectively. Of course these
considerations are essentially kinematic and, even in the case
of constant energy, need not have any implication for the actual
dynamics. On the other hand it is of interest to understand
what kind of growth can be realized in three dimensions under
similar kinematic constraints by quasi-2D vortex structures.
The remainder of this note will deal with this extension to three-
dimensional structure.

3. Singular motion of a line by its normal

Motivated by the results just given, we augment the system
(2), (3) (with w = 0) by

J = α′(ζ0)(−u)β . (12)

Here β ≥ 2, and we assume u < 0, i.e. the curve is moving
opposite to the direction of n. These assumptions are motivated
by the kinematics of propagating, quasi 2D vortex structures,
as will be discussed below. With (12) the equations may be
reduced to the following equation for u:

utt + (β − 2)
u2

t

u

+ u2

βα′(ζ0)(−u)β
∂

∂ζ0

1
α′(ζ0)(−u)β

∂u
∂ζ0

= 0. (13)
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If C is initially a circle, it will remain a circle for all time. If
its radius is R(t) we see easily that dR/dt = cR1/β for some
positive constant c, and so

R =
(

c(1 − 1/β)t + R(0)
β−1
β

) β
β−1

. (14)

When the curvature is not independent of ζ , more
complicated behavior, including finite time singularities may
occur. We consider here only solutions of (13) having the
similarity form

u = −τ−γ Ag(σ ), σ = α(ζ0)τ
−µ. (15)

Here A is an arbitrary constant, and

τ = −t, t < 0. (16)

We take γ for the moment as an arbitrary positive number
less than 1. The time of the hypothetical singularity is here
stipulated to be t = 0. Substituting (15) into (13) we obtain
a solution if

µ = (β − 1)γ + 1. (17)

The equation for g can then be integrated once. Applying the
conditions g(0) = 1 (given the arbitrary constant A), and
g′(0) = 0 (a symmetry condition), we obtain the following
equation for g:

µγσgβ−1 + σ 2µ2gβ−2g′ + 1
β A2β−2

g′

gβ
= 0. (18)

A second integration gives

µβ A2β−2σ 2g
2µ
γ + g

2
γ = 1. (19)

Let us regard C as oriented so that at σ = 0, t points in the
direction of the positive x-axis. We define θ as the angle made
by t with the z-axis, so that κ = ∂θ

∂ζ . Then

∂θ

∂σ
= −Aβ−1[gβ−1γ + µσgβ−2g′] = 0, (20)

and so, from (18)

θ = −A1−βµ−1
∫

g−βσ−1dg. (21)

Here, from (19),

σ = A1−β

√
µβ

g−µ/γ
√

1 − g2/γ . (22)

So

θ = γ

√
β

µ

[π

2
− sin−1(g1/γ )

]
. (23)

These formulas allow us to calculate the shape of the
curve. At large arc length the curvature tends to zero and the
asymptotes make an angle π − 2θ∞ where

θ∞ = γπ

2

√
β

µ
. (24)

Note that θ∞ < π/2 if γ < 1. Setting β = 2 and requiring
that θ∞ = π/3 we find γ = 1

9 (1 +
√

19) = .5954. As we shall
see, it will be important for us that we take γ > 1/2. We show
in Fig. 2 the shape of C for β = 2, γ = 1

9 (1 +
√

19). When
γ = 1/2, θ∞ ≈ 52◦. Since θ∞ = π/2 when γ = 1, we restrict
this parameter to the interval (1/2, 1).

The distribution of stretching along C can be calculated, and
the total stretching experienced by the curve between some
time τ = T > 0 and τ = 0 demonstrated to be finite if
0 < γ < 1 and β ≥ 2. If we specify J (ζ0, T ) = 1 then
α0(ζ0) is determined, and the evolution of J may be calculated.
One finds that the stretching is concentrated at the tip as τ → 0,
with J → 1 at points distant from the tip.

If we regard C as the axis of a circular tube of incompressible
fluid, stretching of C is accompanied by shrinking of the area of
the cross section, and assuming this shrinkage is the same in all
lateral directions, the radius of the tube will vary in proportion
to 1/

√
J . Thus the ratio of this radius to the radius of curvature

of C varies as κ/
√

J . This is a quantity of order τ 2γ−1. If
γ > 1/2, The 3D tube has a non-self-similar development
since the two radii grow as τ−γ and τγ−1; moreover “local
quasi-two-dimensionality” is maintained as τ → 0. Note that
nonexistence of 3D Euler singularities of self-similar form has
been established by Chae, see [13].

Of course our interest here is that the “tube” is in fact
a locally 2D Euler flow consisting of anti-parallel vortex
structures moving according to (12). There are two main
problems with such a scenario. First, the 2D propagation of
a vortex structure of unchanging form according to (12) does
not insure the same for a curved, quasi-2D variant with self-
similar cross-sections, because of the failure of conservation of
energy. A case in point is the vortex couple already mentioned
and discussed in [3]. The result must be what we shall broadly
classify as core deformation. Because of this deformation, the
distribution of vorticity changes, (12) need not be sustained in
the 3D problem, and no singularity can be inferred.

Second, the nonuniform stretching of vortex tubes leads to
an axial pressure gradient, hence to axial flow within the tubes,
and a disruption of area changes occuring during stretching.
Some preliminary results, summarized below, suggest that this
axial flow is unlikely to be a strong inhibitor of singularity
formation, although it cannot be overlooked in a singularity
construction involving quasi-2D vortex tubes.

4. Dynamics

The numerical simulations referred to above, as well as more
recent ones (see [7–10]) indicate a flattening of the vorticity
field and a kind of “tadpole” cross-section not unlike we have
described for the cocoon under constraints of volume and
energy. It is also interesting that the “vee”-shaped structure of
our singular line is similar to some of the proposed singular
flows [2]. Our estimates of growth have been essentially
kinematic, and cannot address the ultimate dynamical growth.
In [3] an attempt was made to calculate what we may refer to
here as a “dynamical cocoon”, meaning that the asymptotic
dynamical evolution of a locally anti-parallel structure, 2D
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to first approximation, was sought. We have made a similar
attempt for structures collapsing according to the moving
line, under the working hypothesis that a system could be
derived which would either indicate dynamically consistent
singularities, or else provide an analytic example of depletion
and extinction of the singularity.

Our approach utilized the scalings of the moving line,
and contour averaging over closed streamlines of structures
similar to the vortex couple [11]. The dominant flow is 2D,
and it is assumed that the needed propagating dipole-like
solutions exist. To first order, the transverse flow velocities
are of order τ−γ . The velocity associated with expansive
stretching and the shrinking of the cross-section of vortex tubes
is smaller, of order τ 1−γ (recall 1/2 < γ < 1). Evolution
of the structure, including presumably core deformation on
a time scale s ∼ − ln τ , is obtained from compatibility
conditions on the perturbed 2D system. The result is a system of
generalized partial differential equations. A singular flow would
be determined as a “fixed point” of the system, steady in the
time scale s.

One case that can be calculated approximately is that of
two thin anti-parallel vortex tubes. We find, using the model
of [14], a system allowing tangential vorticity and velocity to
be calculated simultaneously. On the other hand the collapse
of the two vortices toward each other under mutual self-
induction (see [6], p. 509) provides the core deformation and
will presumably arrest the process. As yet we have no examples
of a consistent fixed point solution of our system, and the non-
existence or existence of the finite-time collapse remains open.

Finally, the Fourier spectrum of a collection of identical
singularity forming vortex couples, averaged over orientation
and lifetime, yields a k−2/γ spectrum for large wavenumber k,
indicating a slope between −2 and −4. Such singular flows,
should they exist, would have no effect on the −5/3 inertial
spectrum of turbulence [16].

The ultimate fate of the vorticity in axisymmetric flow
without swirl could well be some configuration of thin anti-
parallel vortex tubes and we examine now its possible structure.
We shall assume that a thin bilayer sheet is attached to a “rim”
at position r ∼ t4/3 representing the cocoon of constant energy.
(In the estimates we omit all constants fixed by the initial
conditions.) The cocoon originates from some finite radius
r0 - V , where V is the initial cocoon volume, thereafter
sheds volume, forming the sheet. As t → ∞ the cocoon
contains negligible volume, is moving with velocity ∼t1/3, and
has a cross-section of dimension ∼t−1. As the sheet is created,
it will evolve slowly as a thin vortex layer, but we neglect
this evolution. The time rate of change of cocoon volume is
∼r−5/4 and this must balance r Hr1/4 where H is the half-
thickness of the bilayer at position r . Thus H ∼ r−5/2. This
shed vorticity carries away the volume at a negligible loss of
energy as r → ∞. The maximal sustained growth realizable
in this symmetric flow remains an open question. Although
such vortices may be rare in fully developed turbulence, general

quasi-2D anti-parallel structures and expansive stretching can
provide substantial vorticity growth in 3D Euler flows.

The key mechanism for suppression of singularity formation
in the structures studied here is a core deformation which can
alter the simple kinematic scaling given by (12). An interesting
related question, which to our knowledge has not been studied,
is the dynamical fate of dipole structures at large distance
from the axis in the flow without swirl. Finally, it would be
interesting to determine whether or not the flow with swirl,
involving the additional circulation invariant and having no
known bounds on vorticity growth, might be accessible by the
methods of this paper.
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Abstract

We will describe necessary and sufficient conditions for blowup and discuss weak solutions for the incompressible Euler equations. We will
also describe a result concerning anomalous dissipation of energy.
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1. Introduction

The incompressible Euler equations are

∂u
∂t

+ (u · ∇)u + ∇ p = 0, (1)

∇ · u = 0. (2)

We will discuss the case of x ∈ R3 and require that the velocity
decays at infinity fast enough. The curl of u, ω = ∇ × u obeys
the quadratic vorticity equation,

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u. (3)

The right-hand side of this equation equals Sω where S =
1
2

(
∇u + (∇u)T)

and S can be expressed as a principal-value
singular integral

(S(x, t))i j = P · V ·
∫

Ki jk( ŷ )ωk(x − y, t)
dy
|y|3 (4)

with

Ki jk( ŷ ) = 3
8π

(
εi pk ŷ j + ε j pk ŷi

)
ŷp (5)

and ŷ = y
|y| . The integral operator ω &→ S is of classical

Calderon–Zygmund type. This means that the equation of

E-mail address: const@math.uchicago.edu.

evolution for ω is quadratic nonlinear nonlocal. There exist
equations of this type that exhibit blowup, the formation of
finite time singularities from smooth and localized initial data.

2. Conditions for the absence of blowup

Assuming that the initial data u0 is smooth enough, the
Beale–Kato–Majda criterion [1] states that if the time integral
of the spatial maximum of vorticity is finite, i.e. if
∫ T

0

(
sup

x
|ω(x, t)|

)
dt < ∞ (6)

then the solution is smooth on the time interval [0, T ].
2.1. A necessary criterion based on the direction of vorticity

The evolution of |ω| is given by

(∂t + u · ∇) |ω| = α|ω| (7)

with

α = (∇u)ξ · ξ = Sξ · ξ, (8)

ξ = ω

|ω| (9)

and it turns out [2] that

α(x, t) = 3
4π

P · V

·
∫

R3
D(ŷ, ξ(x − y, t), ξ(x, t))|ω(x − y, t)| dy

|y|3 (10)

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.006
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with

D(e1, e2, e3) = (e1 · e3) det(e1, e2, e3). (11)

Clearly, if ξ does not vary in space then α = 0; this situation is
encountered in two space dimensions. In general

|D(ŷ, ξ(x − y, t), ξ(x, t))|
≤ |ξ(x − y, t) × ξ(x, t)| = | sin φ| (12)

where φ is the angle between the unit vortex line tangent vectors
ξ(x − y, t) and ξ(x, t). Some degree of smoothness of the
bundle of vortex lines near a potential singularity may result in
averting blowup [3]. For simplicity, we will discuss Lipschitz
continuous cases, although Hölder continuous cases may be
analyzed in a similar fashion. We distinguish between the sine-
Lipschitz case (i.e. sin φ is locally Lipschitz), when the vortex
lines are at worst locally osculating anti-parallel

|ξ(x − y, t) × ξ(x, t)| ≤ Ca |y|, for |y| ≤ r(t) (13)

and the Lipschitz case (i.e. ξ is locally Lipschitz) when the
vortex lines are at worst locally osculating parallel

|ξ(x − y, t) − ξ(x, t)| ≤ C p|y|, for |y| ≤ r(t). (14)

Clearly, Lipschitz implies sine-Lipschitz because

|ξ(x − y, t) − ξ(x, t)| ≥ |ξ(x − y, t) × ξ(x, t)| . (15)

But the other implication is not true in general. In order
to analyze the depletion effect due to organized vortex line
structure we take a fixed ρ > 0, consider r < ρ, we take a
smooth function 0 ≤ χ ≤ 1 compactly supported in the unit
ball in R3 and define an inner rate of strain Sr as

(Sr (x, t))i j

= P · V ·
∫

χ
( y

r

)
Ki jk( ŷ )ωk(x − y)

dy
|y|3 . (16)

Similarly, we define an outer rate of strain Sρ as

(Sρ(x, t))i j

= P · V ·
∫ (

1 − χ

(
y
ρ

))
Ki jk( ŷ )ωk(x − y)

dy
|y|3 (17)

and an intermediate rate of strain as
(
Sρ

r (x, t)
)

i j

= P · V ·
∫ (

χ

(
y
ρ

)
− χ

( y
r

))
Ki jk( ŷ )ωk(x − y)

dy
|y|3 .

(18)

This yields a decomposition

S = Sr + Sρ
r + Sρ. (19)

Using (8) we have a corresponding decomposition of the
stretching factor:

α(x, t) = αr (x, t) + αρ
r (x, t) + αρ(x, t). (20)

For instance, the inner stretching factor is

αr (x, t) = 3
4π

P · V ·
∫

χ
( y

r

)

× D(ŷ, ξ(x − y, t) ξ(x, t))|ω(x − y, t)| dy
|y|3 . (21)

Now let us make some specific assumptions about the
blowup. These are not exhaustive, but exemplify the method
of [3] in slightly different circumstances. Our statements will
be for the time interval [0, T ) and we should think of this being
a short time before the blowup, by adjusting t = 0 to be just
before the suspected blowup time. We assume that there exists
a point in space (without loss of generality, this can be x = 0)
so that the vorticity is going to blow up at t = T somewhere in
the neighborhood Bt = {x ||x | < r(t)} of this point. We do not
assume that the vorticity is small outside this region, nor do we
assume that the velocity is bounded.

Blowup assumption A: We assume that there exists one
vortex line that is sine-Lipschitz and stays in Bt , that is,

(A)






∃q ∈ B0 such that x = X (q, t) ∈ Bt for t ∈ [0, T ),

(13) holds for x = X (q, t), |y| ≤ r(t),
∃c, 0 < c ≤ 1, such that

|ω(X (q, t), t)| ≥ c sup
z∈R3

|ω(z, t)|.

Here X (q, t) is the Lagrangian trajectory with initial label q.
The assumption is thus that there exists one trajectory carrying
a fraction of the maximum vorticity and which has a coherent
sine-Lipschitz vortex line field near it at each instance of time,
short time before blowup.

From (13) and (21) we obtain with x = X (q, t), for r ≤ r(t)
∣∣αr (x, t)

∣∣ ≤ rCa sup
z∈R3

|ω(z, t)|. (22)

For the intermediate stretching factor we obtain from (18) and
one integration by parts that

∣∣αρ
r (x, t)

∣∣ ≤ c
U (x, t)

r
(23)

with

U (x, t) = sup
|x−z|≤ρ

|u(z, t)|. (24)

The outer stretching factor is bounded

∣∣αρ(x, t)
∣∣ ≤ cρ− 3

2 ‖u0‖L2 . (25)

Denoting

U (t) = sup
x

U (x, t), Ω(t) = sup
z∈R3

|ω(z, t)| (26)

we can prove using only the Biot–Savart law [4] and the
conservation of kinetic energy that

U (t) ≤ c‖u0‖
2
5
L2Ω(t)

3
5 (27)

holds for t < T . This is done by splitting the Biot–Savart
integral in an inner integral, where we use Ω(t), and an outer
integral, where we integrate by parts and use ‖u‖L2 . The
inequality (27) then follows by choosing the optimal splitting in
order to minimize the bound. Putting together the inequalities
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(22), (23) and (25) and using

|ω(X (q, t), t)| ≤ |ω0(q)| exp
∫ t

0
|α(X (q, s), s)|ds (28)

we see that if
∫ T

0
inf

r≤r(t)

{
U (t)

r
+ rCaΩ(t)

}
dt < ∞ (29)

then no blowup occurs. For example, let us make the
assumption that

(T − t)Ω(t) ≤ C (30)

holds with some constant C . If r(t) ∼ (T − t)a, then we have

two possibilities. If a < 1
5 then we may choose r =

√
U (t)

CΩ(t) for
T − t small, optimizing in (29), and using (27); we see then that
no blowup may occur. If a ≥ 1

5 , then we have to take r = r(t)
in (29) and in that case no blow up occurs if a < 2

5 .
Thus, if the blow up assumption A holds and also (30) is

valid then a ≥ 2
5 is necessary for blowup. That means that

in order for blow up to occur, the vortex lines must become
incoherent at distances that are rapidly vanishing.

This kind of argument can yield more restrictive results if
more information about the geometry of the vortical region is
provided.

There are many results giving criteria for the absence of
blowup. In [5] it is shown that simple one-scale selfsimilar
blowup is impossible. Absence of squirt singularities is proved
in [6]. In [7] a detailed analysis was carried out based on a
number of assumptions concerning the geometry of vortex lines
and the magnitude of velocity.

2.2. A sufficient criterion based on the pressure Hessian

Let

Π (x, t) =
(

∂2 p
∂xi ∂x j

)
(31)

and consider

Q(t) = {x |Π (x, t) > 0} (32)

the region where Π is positive definite. (Note that nondegener-
ate local minima of p(x, t) are in Q(t).) Then the following is
sufficient for blowup:

(B)






∃a ∈ Q(0), such that X (a, t) ∈ Q(t), ∀t ∈ [0, T ]
ω0(b) = 0, for |b − a| small enough,

Tρ(S0)(a) > 3
where ρ(S0) = is the spectral radius of S0.

The idea of the proof was used in [8] to prove blowup for
distorted Euler equations. We consider the equation obeyed by
the rate of strain matrix,

Dt S + S2 + Π − |ω|2
4

P⊥
ω = 0 (33)

where Dt = ∂t +u·∇ and P⊥
ω is the matrix that projects a vector

onto the plane perpendicular on the direction of ω. The proof of

the result is by contradiction. We assume that the solution is
smooth up to time T . Then one can find a smooth function φ0
with small support so that





∫

R3
|φ0(a)|2da = 1,

∫

R3
S0(a)φ0(a) · φ0(a)da < 0,

T
∣∣∣∣

∫

R3
S0(a)φ0(a) · φ0(a)da

∣∣∣∣ > 1,

φ0|ω0|2 = 0,

(34)

and also, if we solve

Dtφ = 0, φ(a, 0) = φ0(a) (35)

then

supp φ(t) ⊂ Q(t) holds, for 0 ≤ t ≤ T . (36)

We take

y(t) =
∫

S(x, t)φ(x, t) · φ(x, t)dx . (37)

This blows up before T :

d
dt

y + y2 ≤ 0 (38)

because

|ω(x, t)|2|φ(x, t)| = 0, (39)
∫

R3
|φ(x, t)|2dx = 1 (40)

and Cauchy–Schwarz
∫

R3
|Sφ|2dx ≥ y2(t). (41)

3. Weak solutions

The Navier–Stokes equations have global weak solutions
in a natural space [9]. The same cannot be said about the
Euler equations, but can be said about the surface quasi-
geostrophic equations [10,11]. A general methodology for the
construction of useful weak solutions does not exist, but the
steps are usually: good approximation, integration by parts,
weak continuity. Minimal requirements for weak solutions for
the Euler equations are that they should be given by a weakly
continuous function of time u(t) with values in the space of
locally L2 functions (uniformly, a technical requirement)

u ∈ Cw[0, T ; L2
loc,u]

such that, for every divergence-free compactly supported
smooth function ϕ
∫

u(t) · ϕdx −
∫

u0 · ϕdx

=
∫ t

0

∫
Trace [(u ⊗ u) (∇ϕ)] dxds
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holds. The surface quasi-geostrophic equation (QG henceforth)
{
∂tθ + u · ∇θ = 0,

u = R⊥θ
(42)

has served as a didactic model for 3D Euler equations [2,12].
Here R = (∇)Λ−1 are Riesz operators and Λ = (−∆)1/2 is the
Zygmund operator. The equations are in two spatial dimensions
and θ is a scalar. Analogous to vortex lines, the iso-θ lines are
material, and the “vorticity” equation

∂t

(
∇⊥θ

)
+ u · ∇

(
∇⊥θ

)
=

(
∇⊥θ

)
· ∇u (43)

has the same stretching term as (3). A criterion like the
Beale–Kato–Majda criterion is valid, and the geometric
depletion of nonlinearity via the direction of “vorticity” takes
place as well. In order to understand why these equations have
weak solutions, the easiest route is via Fourier series in the
periodic case.

3.1. Weak solutions for QG

For periodic θ = ∑
j∈Z2 θ̂ ( j)ei( j ·x), the Eq. (42) is

equivalent to an infinite sequence of ordinary differential
equations:

d
dt

θ̂ (l) =
∑

j+k=l

(
j⊥ · k

)
| j |−1θ̂ ( j)θ̂(k). (44)

Using the fact that j⊥ · k is antisymmetric in j, k while the
sum is over a symmetric set of vectorial indices and θ̂ ( j)θ̂(k)

is symmetric in j, k, it follows that

d
dt

θ̂ (l) =
∑

j+k=l

γ l
j,k θ̂ ( j)θ̂(k) (45)

where

γ l
j,k = 1

2
( j⊥ · k)

(
1
| j | − 1

|k|

)
. (46)

Now clearly

∣∣∣γ l
j,k

∣∣∣ ≤ |l|2
max{| j |, |k|} . (47)

Consequently

‖(−∆)−1 [B(θ1, θ1) − B(θ2, θ2)] ‖w ≤ C
(
‖θ1‖L2 + ‖θ2‖L2

)

×
{
‖θ1 − θ2‖w

(
1 + log+ ‖θ1 − θ2‖w

)}
(48)

where the weak norm ‖θ‖w = sup j∈Z2 |θ̂ ( j)|. We see that
the nonlinearity is weakly quasi-Lipschitz, with loss of two
derivatives. The loss of derivatives does not impede existence
theory for weak solutions. It does however prevent a proof of
uniqueness of these weak solutions, and that is still open. The
inequality allows a simple strategy of proof of existence of
weak solutions. Any approximation procedure that gives long
lived solutions and respects the conservation law θ ∈ L2 can
be used. Then passing to a weakly convergent subsequence we
obtain the fact that the weak limit solves weakly the equation,

because of the inequality (48) and the strong convergence
in ‖ ‖w that follows from weak L2 convergence. Although
the QG equation is two dimensional, the reason for the
property that allowed the global weak solutions is structural,
not dimensional.

3.2. Littlewood–Paley decomposition and Euler equations

The Littlewood–Paley decomposition is a useful tool. For
functions that are sufficiently well behaved at infinity it is
enough to look at the so called inhomogeneous decomposition:

u =
∞∑

j=−1

∆ j (u). (49)

The operators ∆ j are defined using the Fourier transformF and
have the properties

supp F(∆ j (u)) ⊂
{
ξ ; |ξ | ∈ 2 j

[
1
2
,

5
4

]}

∆ j∆k 2= 0 ⇒ | j − k| ≤ 1,
(
∆ j + ∆ j+1 + ∆ j+2

)
∆ j+1 = ∆ j+1

∆ j (Sk−2(u)∆k(v)) 2= 0 ⇒ k ∈ [ j − 2, j + 2]

where Sk(u) =
k∑

j=−1

∆ j (u).

Specifically,

∆ j = Ψ j (D) = Ψ0(2− j D), ∆−1u = Φ−1(D)u

where Φ−1 is radial, nonincreasing, C∞ and





Φ−1 = 1, 0 ≤ r ≤ a
Φ−1 = 0, r ≥ b
0 < a < b < 1

Ψ0(r) = Φ−1(r/2) − Φ−1(r), Ψ j (r) = Ψ0(2− j r).

(Ψ(D)u)(x) = (2π)−n
∫

Rn
ei(x ·ξ)Ψ(ξ )̂u(ξ)dξ

û(ξ) = F(u)(ξ) =
∫

Rn e−i(x ·ξ)u(x)dx and a < b < 4
3 a (for

instance a = 1/2, b = 5/8 works).
The Littlewood decomposition can be used to define

inhomogeneous Besov spaces

‖u‖Bs
p,q =

∥∥∥∥
{

2s j‖∆ j (u) ‖L p

}

j

∥∥∥∥
-q (N)

and the space Bs
p,c(N) which is the closed subspace of Bs

p,∞
formed with functions such that

lim
j→∞

2s j‖∆ j (u)‖L p = 0.

In Bs
p,q , s counts the number of derivatives, p refers to the L p

space and q is an interpolation index.

3.3. Euler weak solutions: Main difficulty

The nonlinearity in the Euler equations is

B(u, v) = P(u · ∇v) = ΛH(u, v) (50)
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with P the Leray–Hodge projection on divergence-free
functions and

[H(u, v)]i = R j (u jvi ) + Ri (Rk Rl(ukvl)), (51)

and Rk = ∂kΛ−1 Riesz transforms. Applying ∆q we have

∆q(B(u, v)) = Cq(u, v) + Iq(u, v) (52)

where

Cq(u, v) =
∑

p≥q−2,|p−p′|≤2

∆q(ΛH(∆pu,∆p′v)) (53)

and

Iq(u, v) =
2∑

j=−2

[∆qΛH(Sq+ j−2u,∆q+ jv)

+∆qΛH(Sq+ j−2v,∆q+ j u)] (54)

is essentially the Bony paraproduct [13]. For L2 weak solutions
it would be desirable to have a bound of the type

‖Λ−M (B(u1, u1) − B(u2, u2))‖w

≤ C‖u1 − u2‖a
w[‖u1‖L2 + ‖u2‖L2 ]2−a (55)

with a > 0 and ‖ f ‖w a weak enough norm so that
weak convergence in L2 implies, after localization, strong
convergence in the w norm. The number M could be as large
as needed. An inequality (55) is true for I (u, v) but not for
C(u, v). On the other hand, if one wishes weak solutions with
positive derivative exponents, for instance weak solutions in

B
1
3
3,q , then C(u, v) has good continuity properties, and I (u, v)

does not [14]. The terms Iq , if retained alone, would produce a
leaky Galerkin approximation

∂∆q(u)

∂t
= Iq(u, u),

and the terms Cq(u, u) an ill-formed shell model

∂∆q(u)

∂t
= Cq(u, u).

A description of the regularity of some shell models is given
in [15].

3.4. The Onsager conjecture

Although weak solutions with positive smoothness have
not been proven to exist (see [16,17] for examples of weak
solutions), the subject is important because of the relation
to turbulence. The Onsager conjecture [18,19] asserts that
kinetic energy is conserved for solutions in Cs with s >
1
3 and dissipated for rougher solutions, in particular in C

1
3 .

The paper [20] proves that if weak solutions belong to
L3[0, T ; Bs

3,∞] with s > 1
3 then they conserve kinetic energy.

The paper [21] extended this to spaces in which the fractional
derivative Ds (2 js in the Littlewood–Paley decomposition) is
replaced with any function of f (D) such that f (D)D− 1

3 → ∞
as D → ∞. This actually follows also from the proof in [20].
More recently, it was shown [14] that weak solutions of the

3D Euler equations in u ∈ L3([0, T ], B1/3
3,c(N)) conserve kinetic

energy. On the other hand, there exist functions in B
1
3
3∞ that are

divergence-free and do not conserve energy in the sense to be
made more precise below. Consider the flux

ΠN :=
∫

R3
Trace[SN (u ⊗ u)∇SN (u)]dx . (56)

This is the (formal) time derivative

ΠN = 1
2

d
dt

∫

R3
|SN (u(t))|2 dx

of the energy contained in SN (u) when u solves the Euler
equation. There exist functions in B1/3

3,∞ that are divergence-
free and obey lim infN→∞ |ΠN | > 0. On the other hand, if

u ∈ B
1
3

3,c(N) then lim supN→∞ |ΠN | = 0. More specifically,
if we let

K ( j) =
{

2
2 j
3 , j ≤ 0;

2− 4 j
3 , j > 0,

and

d j = 2 j/3‖∆ j (u)‖3, for j ≥ −1,

d j = 0 for j < −1d2 = {d2
j } j .

If u ∈ L2 then it can be shown that

|ΠN | ≤ C(K ∗ d2)3/2(N ) (57)

where ∗ means convolution of sequences. Consequently, of
course

lim sup
N→∞

|ΠN | ≤ lim sup
N→∞

d3
N , (58)

but moreover, a strong localization of the flux results from (57).
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Abstract

The numerical simulation of the 3D incompressible Euler equations is analyzed with respect to different integration methods. The numerical
schemes we considered include spectral methods with different strategies for dealiasing and two variants of finite difference methods. Based on this
comparison, a Kida–Pelz-like initial condition is integrated using adaptive mesh refinement and estimates on the necessary numerical resolution
are given. This estimate is based on analyzing the scaling behavior similar to the procedure in critical phenomena and present simulations are put
into perspective.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The question, whether the incompressible Euler equations
develop singularities in finite time starting from smooth initial
conditions, remains an outstanding open problem in applied
mathematics. Although substantial progress has been made in
recent years using a more geometrical viewpoint [1–5], it is not
yet clear from numerical simulations, whether the assumptions
of the theorems for non-blow up are fulfilled for flows evolving
from simple smooth initial conditions. Singular structures,
evolving in finite time or simply “fast enough”, may play a
similar role as shock-like structures in compressible flows,
providing structures which dominate energy dissipation even
in the non-viscous situation (see Eyink [6–8] and references
therein).

In this paper, we study a Kida–Pelz-like flow with different
numerical schemes: spectral methods with different strategies
of dealiasing (this extends the study of Hou and Li [9] and
confirms their results), two finite difference methods and a finite
volume method. Studying the structures of vorticity, it turns out

∗ Corresponding author.
E-mail address: grauer@tp1.rub.de (R. Grauer).

that the differences between the various methods of dealiasing
are more pronounced than that between the spectral methods
and the finite difference/volume methods. This result suggests
that resolving the vorticity structures is more important than
the order of the numerical scheme. It also justifies the use of
finite difference/volume methods in adaptive mesh refinement
(AMR) simulations to resolve the vorticity structures.

Using AMR simulations up to an effective resolution
of 40963 mesh points and comparing the results to lower
resolution runs, we observe that the standard way of presenting
a 1/|ω| plot in time may lead to misleading conclusions.
However, observing normalized plots reveals the issue of
numerical resolution in a convincing manner.

2. Numerical schemes

In this section we compare spectral methods with different
dealiasing and finite difference/volume methods.

2.1. Spectral methods and dealiasing

We use a standard spectral method where the time stepping
is performed with a strongly stable third-order Runge–Kutta
method [10] in Fourier space and where non-linearities are

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.006
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calculated in real space. On Linux-clusters, the FFTW-library
is used whereas the library P3DFFT [11] from the San Diego
Supercomputer Center is used on the IBM Regatta series and
on BlueGene/L.

We use three ways of dealiasing the spectral data:

1. Spherical mode truncation: this is used in turbulence
simulations (Biskamp and Müller [12]). The spherical mode
truncation puts a sphere of radius N

2 in Fourier space and
nullifies all modes outside this sphere.

2. Standard 2/3 rule: same as above, but using a radius of
2
3

N
2 = N

3 [13]. This is the most common way of dealiasing
spectral data.

3. High-order exponential cut-off: this method was introduced
by Hou and Li [9] and consists of introducing a high-order
exponential filter function ρ(k) = exp(−α(|k|/N )m) with
α = 36 and m = 36.

2.2. Finite difference/volumes methods

All the presented finite difference/volume methods are of
second order and use the same strongly stable third-order
Runge–Kutta method [10] as used in the spectral simulations.

We implemented three different versions of real-space
methods:

1. Staggered grid formulation of Harlow and Welsh [14]:
Normal components of the velocity are located at their
respective cell faces and the pressure is defined at the cell
centers. This allows an exact Hodge decomposition such
that no pressure oscillations occur. In addition, it conserves
momentum and energy and could thus also been seen as a
finite volume method.

2. Vorticity formulation for AMR: From our previous
AMR studies [15,16] we know that the coarse-fine grid
interpolations are very sensitive in the 3D Euler simulations.
As in the former simulations we choose to perform all
data exchange and interpolation using the vorticity ω =
∇ × u. Here, the vorticity is defined at cell centers and
we applied a tri-cubic interpolation for coarse-fine grid
interpolation. Then, three Poisson equations are solved for
the cell-centered vector Potential A and staggered values for
the velocity u = ∇ × A are obtained.

3. Finite volume method: this method is similar to the former
but a finite volume method [15,17,18] is used instead of
finite differences.

2.3. Comparison

We first compare the growth of the maximum vorticity
according to the Beale–Kato–Majda result [19,20] for all
six numerical methods described above. The initial condition
was chosen similar to Kida–Pelz 12 vortices [21–23] with a
Gaussian shape for the vorticity distribution. Resolution of all
the spectral simulations were 5123 mesh points (corresponding
to the full domain) and in addition the Hou–Li exponential
filtering was repeated with 10243 mesh points. The finite
difference/volume simulations were performed with 5123 and
10243 mesh points. The growth of max |ω| is shown in Fig. 1.

Fig. 1. Growth of max |ω| for all implemented numerical schemes.

All simulations agree very well up to the time when the flow is
underresolved. This is about t = 0.4 for the simulations using
5123 mesh points and t = 0.47 for the 10243 runs. There is no
particular criterion under which the simulation performs better
once the simulation is underresolved. The very simple message
from this comparison is: you just have to resolve the flow and
this is more important than the order of the scheme.

In order to display the differences and similarities of
the various numerical methods, we used a “low resolution”
simulation with 5123 mesh points at a late time t = 0.5 where
the flow is already underresolved. Therefore, we looked at
very low levels (5% of the maximum vorticity) as suggested
and done by Kerr [24] and Hou and Li [25]. Due to the high
symmetry of the flow, only 1/8 of the total configuration is
shown in Fig. 2. (To get a better impression for the geometry
of the vortices, see Fig. 4, which shows an isosurface of 70% of
the peak vorticity.)

The spherical truncation produces highly visible artifacts
due to heavy oscillations which grow to substantial values.
This is mostly suppressed in the simulation using the classical
2/3 rule and nearly vanishes for the high-order exponential
smoothing. Thus our comparison confirms the analysis of Hou
and Li [25]. The strong similarity of the real-space methods to
the spectral simulation with high-order exponential smoothing
is remarkable. This is especially visible in Fig. 3, which shows
the energy spectrum for spectral and finite difference/volume
methods at time t = 0.5. In the spectral schemes, the spherical
truncation and the 2/3 rule show strong Gibbs phenomena
which is absent in the exponential filtering and the finite
difference/volume schemes. The Harlow–Welsh method is
slightly more dissipative than the vorticity formulation. From
the comparison with the spectral schemes using exponential
filtering and 10243 mesh points, it is safe to say that the finite
difference schemes with an approximately 1.3 times larger
resolution in each spatial direction perform equally well as the
spectral code with exponential filtering. Thus, our conclusions
of this comparison is that the differences in the simulation
results caused by the choice of the dealiasing method are larger
than the difference to and between the real-space methods. Our
finding thus confirms the viewpoint of Orlandi and Carnevale
[26] and justifies the use of finite difference/volume methods
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Fig. 2. Isosurface plots of vorticity. From top to bottom: spherical truncation,
2/3 rule, exponential filtering, Harlow–Welsh, vorticity formulation, 5123

mesh points.

Fig. 3. Energy spectra at time t = 0.5 for spectral and finite difference
methods: a) spherical model truncation (5123), (b) high-order exponential cut-
off (5123), (c) 2/3 rule (5123), (d) high-order exponential cut-off (10243), (e)
vorticity formulation (10243), (f) staggered grid formulation (10243).

Fig. 4. Isosurface plot of max |ω| at 70% of maximum vorticity. Shown is also
the trajectory of a particle moving to the position of maximum vorticity.

as an integration scheme in an adaptive mesh refinement
treatment.

2.4. Lagrangian trajectories

As pointed out in [3,4], the Lagrangian treatment of vorticity
amplification is closely related to the local geometric properties
– like curvature and torsion – of vortex lines. In Fig. 4 the
trajectory of a Lagrangian tracer particle is shown. To obtain
this trajectory, we first identified the spatial position of the
maximum vorticity at a late time of the simulation and then
traced back the actual trajectory. Fig. 5 shows the temporal
evolution of vorticity following this trajectory. A tendency to an
exponential growth of vorticity along the trajectory is obvious.
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Fig. 5. Growth of vorticity along the Lagrangian trajectory (red) which ends
near the point of maximum vorticity and a fitted exponential (green). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

3. Adaptive mesh refinement simulations

3.1. The framework racoon

For the adaptive mesh refine calculations, we use our
framework racoon [27] which is designed for massive parallel
computations and scales for hyperbolic systems linearly up
to 16 384 processors on BlueGene BG/L. However, for the
incompressible Euler equations, the pressure respectively the
vector potential are solved using an adaptive multigrid method
[28,29] which presently scales only up to 64 processors.
Therefore, the present simulations are limited to an effective
resolution of 40963 mesh points. Parallelization and load
balancing are performed using a space-filling Hilbert curve
[27].

Using the framework racoon and the vorticity formulation,
we solve the incompressible Euler equations with an effective
resolution of 40963 mesh points. Fig. 6 shows a volume
rendering of vorticity at the latest time t = 0.5 including the
adaptive meshes. Memory consumption is quite moderate using
less than 80 GBytes.

3.2. Analyzing the growth of vorticity

Observing Fig. 7 which shows the time evolution of
1/ max |ω| it is tempting to identify a finite time singularity.
However, a more appropriate presentation is obtained by
plotting max |ω| × (t0 − t) where t0 is the expected singularity
time. This quantity should converge to a horizontal line in this
plot if a singularity occurs in finite time. The time t0 = 0.638
is chosen in such a way that this scaling is observed in the late
phase of the simulation while the numerics are still resolved.
This is shown in Fig. 8 and the zoom in the inlet of this
figure. Especially the zoom of the late phase of the simulation
demonstrates, how sensitive the growth of vorticity depends
on the numerical resolution and that conclusions drawn from
underresolved simulations must be handled with care.

Fig. 6. Volume rendering of vorticity at time t = 0.5.

Fig. 7. Temporal evolution of 1/ max |ω|.

Fig. 8. Scaling of the growth of vorticity. Red: 10243 mesh points, Blue:
20483 mesh points, Green: 40963 mesh points. The inlet shows the late phase
of the simulation and highlights the importance of numerical resolution. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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4. Conclusions and outlook

We demonstrated the extreme sensitivity of the growth
of vorticity on the numerical resolution. In order to gain
further insight into the mechanism of vorticity amplification,
future simulations should include the following analysis and
diagnostics:

(i) If a finite time singularity is expected, then the blow-
up time of vorticity must occur at the same time when the
spatial positions of maximum vorticity and maximum strain
come together.

(ii) The Lagrangian viewpoint should be analyzed according
to Deng, Hou and Xu [4] and Gibbon [3].

(iii) Simulations should use initial conditions including the
Kida–Pelz flow [21] and Bob Kerr’s orthogonal tubes [30].
However, the shape of the initial vortex tube should be chosen
in such a way that vortex shedding will not pollute the vorticity
growth. For orthogonal vortex tubes this was achieved by
Orlandi and Carnevale [26] starting with Lamb dipoles.
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Abstract

The question of whether the 3D incompressible Euler equations can develop a finite time singularity from smooth initial data has been an
outstanding open problem in fluid dynamics and mathematics. Recent studies indicate that the local geometric regularity of vortex lines can lead
to dynamic depletion of vortex stretching. Guided by the local non-blowup theory, we have performed large scale computations of the 3D Euler
equations on some of the most promising blowup candidates. Our results show that there is tremendous dynamic depletion of vortex stretching. The
local geometric regularity of vortex lines and the anisotropic solution structure play an important role in depleting the nonlinearity dynamically
and thus prevents a finite time blowup.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The question of whether the 3D incompressible Euler
equations can develop a finite time singularity from smooth
initial data is one of the most outstanding open problems
in fluid dynamics and mathematics. This open problem is
closely related to the Clay Millennium Open Problem on
the 3D Navier–Stokes equations. The understanding of this
problem could improve our understanding on the onset of
turbulence and the intermittency properties of turbulent flows.
A main difficulty in answering this question is the presence of
vortex stretching, which gives a formal quadratic nonlinearity
in vorticity. There have been many computational efforts in
searching for finite time singularities of the 3D Euler equations,
see e.g. [2–5,11–13,17,18,21–23]. For a more comprehensive
review of this subject, we refer the reader to the book by Majda
and Bertozzi [20] and the excellent review article by J. Gibbon
in this issue [10].

Computing Euler singularities numerically is an extremely
challenging task. First of all, it requires huge computational

∗ Corresponding author. Tel.: +1 626 395 4546; fax: +1 626 578 0124.
E-mail address: hou@acm.caltech.edu (T.Y. Hou).

resources. Tremendous resolutions are required to capture the
nearly singular behavior of the Euler equations. Secondly, one
has to perform a careful convergence study. It is dangerous to
interpret the blowup of an under-resolved computation as an
evidence of finite time singularities for the 3D Euler equations.
Thirdly, if we believe that the numerical solution we compute
leads to a finite time blowup, we need to demonstrate the
validation of the asymptotic blowup rate, i.e. is the blowup
rate ‖ω‖L∞ ≈ C

(T −t)α asymptotically valid as t → T ?
One also needs to check if the blowup rate of the numerical
solution is consistent with the Beale–Kato–Majda non-blowup
criterion [1] and other non-blowup criteria [7–9]. The interplay
between theory and numerics is clearly essential in our search
for Euler singularities.

There has been some interesting development in the
theoretical understanding of the 3D incompressible Euler
equations. It has been shown that the local geometric regularity
of vortex lines can play an important role in depleting
nonlinear vortex stretching [6–9]. In particular, the recent
results obtained by Deng, Hou, and Yu [8,9] show that
geometric regularity of vortex lines, even in an extremely
localized region containing the maximum vorticity, can lead
to depletion of nonlinear vortex stretching, thus avoiding finite

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.018
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time singularity formation of the 3D Euler equations. To obtain
these results, Deng–Hou–Yu [8,9] explore the connection
between the stretching of local vortex lines and the growth
of vorticity. In particular, they show that if the vortex lines
near the region of maximum vorticity satisfy some local
geometric regularity conditions and the maximum velocity
field is integrable in time, then no finite time blowup is
possible. These localized non-blowup criteria provide stronger
constraints on the local geometry of a potential finite time
singularity. They can be used to re-examine some of the well-
known numerical evidences for finite time singularities of the
3D Euler equations.

2. A brief review

We begin with a brief review on the subject. Due to the
formal quadratic nonlinearity in vortex stretching, only short
time existence is known for the 3D Euler equations. One of
the most well-known results on the 3D Euler equations is due
to Beale–Kato–Majda [1] who show that the solution of the 3D
Euler equations blows up at T ∗ if and only if

∫ T ∗
0 ‖ω‖∞(t) dt =

∞, where ω is vorticity.
There have been some interesting recent theoretical

developments. In particular, Constantin–Fefferman–Majda [7]
show that local geometric regularity of the unit vorticity vector
can lead to depletion of the vortex stretching. Let ξ = ω/|ω|
be the unit vorticity vector and u be the velocity field. Roughly
speaking, Constantin–Fefferman–Majda show that if (1) ‖u‖∞
is bounded in a O(1) region containing the maximum vorticity.
(2)

∫ t
0 ‖∇ξ‖2

∞dτ is uniformly bounded for t < T , then the
solution of the 3D Euler equations remains regular up to t = T .

There have been some numerical evidences which suggest a
finite time blowup of the 3D Euler equations. One of the most
well-known examples is the finite time collapse of two anti-
parallel vortex tubes by Kerr [17,18]. In Kerr’s computations,
he used a pseudo-spectral discretization in the x and y
directions, and a Chebyshev discretization in the z direction
with resolution of order 512 × 256 × 192. His computations
showed that the maximum vorticity blows up like O((T − t)−1)

with T = 18.9. In his subsequent paper [18], Kerr showed that
the maximum velocity blows up like O((T − t)−1/2) with T
being revised to T = 18.7. It is worth noting that there is still
a considerable gap between the predicted singularity time T =
18.7 and the final time t = 17 of Kerr’s computations which he
used as the primary evidence for the finite time singularity.

Kerr’s blowup scenario is consistent with the Beale–Kato–
Majda non-blowup criterion [1] and the Constantin–Fefferman–
Majda non-blowup criterion [7]. But it falls into the critical case
of the Deng–Hou–Yu local non-blowup criteria [8,9]. Below we
describe the local non-blowup criteria of Deng–Hou–Yu.

3. The local non-blowup criteria of Deng–Hou–Yu [8,9]

Motivated by the result of [7], Deng, Hou, and Yu [8] have
obtained a sharper non-blowup condition which uses only very
localized information of the vortex lines. Assume that at each
time t there exists some vortex line segment Lt on which the

local maximum vorticity is comparable to the global maximum
vorticity. Further, we denote L(t) as the arclength of Lt , n the
unit normal vector of Lt , and κ the curvature of Lt .

Theorem 1 (Deng–Hou–Yu [8], 2005). Assume that (1)

maxLt (|u · ξ | + |u · n|) ≤ CU (T − t)−A with A < 1,
and (2) CL(T − t)B ≤ L(t) ≤ C0/ maxLt (|κ|, |∇ · ξ |) for
0 ≤ t < T . Then the solution of the 3D Euler equations remains
regular up to t = T if A + B < 1.

In Kerr’s computations, the first condition of Theorem 1 is
satisfied with A = 1/2 if we use ‖u‖∞ ≤ C(T − t)−1/2 as
alleged in [18]. Kerr’s computations suggested that κ and ∇ · ξ
are bounded by O((T − t)−1/2) in the inner region of size
(T − t)1/2 × (T − t)1/2 × (T − t) [18]. Moreover, the length of
the vortex tube in the inner region is of order (T − t)1/2. If we
choose a vortex line segment of length (T −t)1/2 (i.e. B = 1/2),
then the second condition is satisfied. However, we violate the
condition A + B < 1. Thus Kerr’s computations fall into
the critical case of Theorem 1. In a subsequent paper [9],
Deng–Hou–Yu improved the non-blowup condition to include
the critical case, A + B = 1.

Theorem 2 (Deng–Hou–Yu [9], 2006). Under the same
assumptions as Theorem 1, in the case of A + B = 1, the
solution of the 3D Euler equations remains regular up to t = T
if the scaling constants CU , CL and C0 satisfy an algebraic
inequality, f (CU , CL , C0) > 0.

We remark that this algebraic inequality can be checked
numerically if we obtain a good estimate of these scaling
constants. For example, if C0 = 0.1, which seems reasonable
since the vortex lines are relatively straight in the inner region,
Theorem 2 would imply no blowup up to T if 2CU < 0.43CL .
Unfortunately, there was no estimate available for these scaling
constants in [17]. One of our original motivations to repeat
Kerr’s computations using higher resolutions was to obtain a
good estimate for these scaling constants.

4. The high resolution 3D Euler computations of Hou and
Li [14,15]

In [14,15], we repeat Kerr’s computations using two pseudo-
spectral methods. The first pseudo-spectral method uses the
standard 2/3 dealiasing rule to remove the aliasing error.
For the second pseudo-spectral method, we use a novel 36th
order Fourier smoothing to remove the aliasing error. For the
Fourier smoothing method, we use a Fourier smoother along the
x j direction as follows: ρ(2k j/N j ) ≡ exp(−36(2k j/N j )

36),
where k j is the wave number (|k j | ≤ N j/2). The time
integration is performed by using the classical fourth order
Runge–Kutta scheme. Adaptive time stepping is used to satisfy
the CFL stability condition with CFL number equal to π/4. In
order to perform a careful resolution study, we use a sequence
of resolutions: 768 × 512 × 1536, 1024 × 768 × 2048 and
1536 × 1024 × 3072 in our computations. We compute the
solution up to t = 19, beyond the alleged singularity time T =
18.7 by Kerr [18]. Our computations were performed using
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256 parallel processors with maximal memory consumption
120 Gb. The largest number of grid points is close to 5 billions.

As a first step, we demonstrate that the two pseudo-spectral
methods can be used to compute a singular solution arbitrarily
close to the singularity time. For this purpose, we perform a
careful convergence study of the two pseudo-spectral methods
in both physical and spectral spaces for the 1D inviscid Burgers
equation. The advantage of using the inviscid 1D Burgers
equation is that it shares some essential difficulties as the 3D
Euler equations, yet we have a semi-analytic formulation for
its solution. By using the Newton iterative method, we can
obtain an approximate solution to the exact solution up to 13
digits of accuracy. Moreover, we know exactly when a shock
singularity will form in time. This enables us to perform a
careful convergence study in both the physical space and the
spectral space very close to the singularity time.

We have performed a sequence of resolution study with
the largest resolution being N = 16, 384 [15]. Our extensive
numerical results demonstrate that the pseudo-spectral method
with the high order Fourier smoothing (the Fourier smoothing
method for short) gives a much more accurate approximation
than the pseudo-spectral method with the 2/3 dealiasing rule
(the 2/3 dealiasing method for short). One of the interesting
observations is that the unfiltered high frequency coefficients
in the Fourier smoothing method approximate accurately the
corresponding exact Fourier coefficients. Moreover, we observe
that the Fourier smoothing method captures about 12 ∼
15% more effective Fourier modes than the 2/3 dealiasing
method in each dimension, see Fig. 1. The gain is even higher
for the 3D Euler equations since the number of effective
modes in the Fourier smoothing method is higher in three
dimensions. Further, we find that the error produced by the
Fourier smoothing method is highly localized near the region
where the solution is most singular. In fact, the pointwise error
decays exponentially fast away from the location of the shock
singularities. On the other hand, the error produced by the
2/3 dealiasing method spreads out to the entire domain as we
approach the singularity time, see Fig. 2.

Next, we present our high resolution computations for the
two anti-parallel vortex tubes [14]. We used the same initial
condition whose analytic formula was given by Kerr (see
Section III of [17], and also [14] for corrections of some typos
in the description of the initial condition in [17]). However,
there is some difference between our discretization and
Kerr’s discretization. We used a pseudo-spectral discretization
in all three directions, while Kerr used a pseudo-spectral
discretization only in the x and y directions and used a
Chebyshev discretization in the z direction. Based on the results
of early tests, positive vorticity in the symmetry plane was
imposed in the initial condition of Kerr [17]. How this was
imposed as the vorticity field was mapped onto the Chebyshev
mesh was not documented by Kerr [17]. This has led to some
ambiguity in reproducing that initial condition which is being
resolved by Kerr’s group (private communication).

We first illustrate the dynamic evolution of the vortex tubes.
In Figs. 4 and 5, we plot the isosurface of the 3D vortex tubes at
t = 0 and t = 6 respectively. As we can see, the two initial

Fig. 1. Spectra comparison on different resolutions at a sequence of moments.
The additional modes that kept the Fourier smoothing method higher than the
2/3rd dealiasing method are in fact correct. The initial condition is u0(x) =
sin(x). The singularity time for this initial condition is T = 1.

Fig. 2. Pointwise errors of the two pseudo-spectral methods as functions of
time using different resolutions. The plot is in a log scale. The error of the 2/3rd
dealiasing method (the top curve) is highly oscillatory and spreads out over the
entire domain, while the error of the Fourier smoothing method (the bottom
curve) is highly localized near the location of the shock singularity.

vortex tubes are very smooth and relatively symmetric. Due
to the mutual attraction of the two anti-parallel vortex tubes,
the two vortex tubes approach each other and become flattened
dynamically. By time t = 6, there is already a significant
flattening near the center of the tubes. In Fig. 6, we plot the
local 3D vortex structure of the upper vortex tube at t = 17.
By this time, the 3D vortex tube has essentially turned into a
thin vortex sheet with rapidly decreasing thickness. The vortex
lines become relatively straight. The vortex sheet rolls up near
the left edge of the sheet.

We would like to make a few important observations. First of
all, the maximum vorticity at later stage of the computation is
actually located near the rolled-up region of the vortex sheet
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Fig. 3. The energy spectra vs wave numbers. The dashed lines and dash-dotted
lines are the energy spectra with the resolution 1024 × 768 × 2048 using the
2/3 dealiasing rule and the Fourier smoothing, respectively. The times for the
spectra lines are at t = 15, 16, 17, 18, 19 respectively.

Fig. 4. The 3D view of the vortex tube at t = 0.

and moves away from the bottom of the vortex sheet. Thus
the mechanism of strong compression between the two vortex
tubes becomes weaker dynamically at later time. Secondly, the
location of maximum strain and that of maximum vorticity
separate as time increases. Thirdly, the relatively “strong”
growth of the maximum velocity between t = 15 and t = 17
becomes saturated after t = 17 when the location of maximum
vorticity moves to the rolled-up region, see Fig. 7. All these
factors contribute to the dynamic depletion of vortex stretching.
The origin of this behavior need to be analyzed in the future
study.

We have performed a convergence study for the two
numerical methods using a sequence of resolutions. For the
Fourier smoothing method, we use the resolutions 768 × 512 ×
1536, 1024×768×2048, and 1536×1024×3072 respectively.
Except for the computation on the largest resolution 1536 ×
1024×3072, all computations are carried out from t = 0 to t =
19. The computation on the final resolution 1536×1024×3072
is started from t = 10 with the initial condition given by the
computation with the resolution 1024×768×2048. For the 2/3
dealiasing method, we use the resolutions 512 × 384 × 1024,

Fig. 5. The 3D view of the vortex tube at t = 6.

Fig. 6. The local 3D vortex structures and vortex lines around the maximum
vorticity at t = 17.

Fig. 7. Maximum velocity ‖u‖∞ in time using three different resolutions.

768 × 512 × 1536 and 1024 × 768 × 2048 respectively. The
computations using these three resolutions are all carried out
from t = 0 to t = 19. See [14,15] for more details.

In Fig. 3, we compare the Fourier spectra of the energy
obtained by using the 2/3 dealiasing method with those
obtained by the Fourier smoothing method. For a fixed
resolution 1024×768×2048, we can see that the Fourier spectra
obtained by the Fourier smoothing method retain more effective
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Fourier modes than those obtained by the 2/3 dealiasing
method. This can be seen by comparing the results with the
corresponding computations using a higher resolution 1536 ×
1024 × 3072 (the solid lines). Moreover, the Fourier smoothing
method does not give the spurious oscillations in the Fourier
spectra. In comparison, the Fourier spectra obtained by the 2/3
dealiasing method produce some spurious oscillations near the
2/3 cut-off point. We would like to emphasize that our Fourier
smoothing method conserves the total energy extremely well,
at least up to six digits of accuracy. More studies including the
convergence of the enstrophy spectra can be found in [14,15].

It is worth emphasizing that a significant portion of those
Fourier modes beyond the 2/3 cut-off position are still accurate
for the Fourier smoothing method. This portion of the Fourier
modes that go beyond the 2/3 cut-off point is about 12 ∼
15% of total number of modes in each dimension. For 3D
problems, the total number of effective modes in the Fourier
smoothing method is about 20% more than that in the 2/3
dealiasing method. For our largest resolution, we have about
4.8 billions unknowns. An increase of 20% effective Fourier
modes represents a very significant increase in the resolution
for a large scale computation.

5. Dynamics depletion of vortex stretching

In this section, we present some convincing numerical
evidences which show that there is a strong dynamic depletion
of vortex stretching due to local geometric regularity of the
vortex lines. We first present the result on the growth of the
maximum velocity in time, see Fig. 7. The growth rate of
the maximum velocity plays a critical role in the non-blowup
criteria of Deng–Hou–Yu [8,9]. As we can see from Fig. 7,
the maximum velocity remains bounded up to t = 19. This
is in contrast with the claim in [18] that the maximum velocity
blows up like O((T − t)−1/2) with T = 18.7. We note that
the velocity field is smoother than the vorticity field. Thus it
is easier to resolve the velocity field than the vorticity field.
We observe an excellent agreement between the maximum
velocity fields computed by the two largest resolutions. Since
the velocity field is bounded, the first condition of Theorem 1
is satisfied by taking A = 0. Furthermore, since both ∇ · ξ and
κ are bounded by O((T − t)−1/2) in the inner region of size
(T − t)1/2 × (T − t)1/2 × (T − t) [18], the second condition of
Theorem 1 is satisfied with B = 1/2 by taking a segment of the
vortex line with length (T − t)1/2 within this inner region. Thus
Theorem 1 can be applied to our computation, which implies
that the solution of the 3D Euler equations remains smooth at
least up to T = 19.

We also study the maximum vorticity as a function of time.
The maximum vorticity is found to increase rapidly from the
initial value of 0.669 to 23.46 at the final time t = 19, a factor
of 35 increase from its initial value. Our computations show
no sign of finite time blowup of the 3D Euler equations up to
T = 19, beyond the singularity time predicted by Kerr. The
maximum vorticity computed by resolution 1024 × 768 × 2048
agrees very well with that computed by resolution 1536 ×
1024 × 3072 up to t = 17.5. There is some mild disagreement

Fig. 8. Study of the vortex stretching term in time, resolution 1536 × 1024 ×
3072. The fact |ξ · ∇u · ω| ≤ c1|ω| log |ω| plus D

Dt |ω| = ξ · ∇u · ω implies |ω|
bounded by doubly exponential..

Fig. 9. The plot of log log ‖ω‖∞ vs time, resolution 1536 × 1024 × 3072.

toward the end of the computation. This indicates that a very
high space resolution is needed to capture the rapid growth of
maximum vorticity at the final stage of the computation.

In order to understand the nature of the dynamic growth in
vorticity, we examine the degree of nonlinearity in the vortex
stretching term. In Fig. 8, we plot the quantity, ‖ξ · ∇u · ω‖∞,
as a function of time. If the maximum vorticity indeed blew up
like O((T − t)−1), as alleged in [17], this quantity should have
been quadratic as a function of maximum vorticity. We find that
there is tremendous cancellation in this vortex stretching term.
It actually grows slower than C‖-ω‖∞ log(‖-ω‖∞), see Fig. 8. It
is easy to show that ‖ξ ·∇u ·ω‖∞ ≤ C‖-ω‖∞ log(‖-ω‖∞) would
imply at most doubly exponential growth in the maximum
vorticity. Indeed, as demonstrated by Fig. 9, the maximum
vorticity does not grow faster than doubly exponential in time.
We have also generated the similar plot by extracting the data
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Fig. 10. The energy spectra for velocity at t = 15, 16, 17, 18, 19 (from bottom
to top) in log–log scale. The dashed line corresponds to k−3.

from Kerr’s paper [17]. We find that log(log(‖ω‖∞)) basically
scales linearly with respect to t from 14 ≤ t ≤ 17.5 when
his computations are still reasonably resolved. This implies that
the maximum vorticity up to t = 17.5 in Kerr’s computations
does not grow faster than doubly exponential in time. This is
consistent with our conclusion.

We study the decay rate in the energy spectrum in Fig. 10
at t = 16, 17, 18, 19. A finite time blowup of enstrophy would
imply that the energy spectrum decays no faster than |k|−3. Our
computations show that the energy spectrum approaches |k|−3

for |k| ≤ 100 as time increases to t = 19. This is in qualitative
agreement with Kerr’s results. Note that there are only less than
100 modes available along the |kx | or |ky | direction in Kerr’s
computations, see Fig. 18 (a)–(b) of [17]. On the other hand, our
computations show that the high frequency Fourier spectrum
for 100 ≤ |k| ≤ 1300 decays much faster than |k|−3, as one
can see from Fig. 10. This indicates that there is no blowup in
enstrophy.

It is interesting to ask how the vorticity vector aligns with the
eigenvectors of the deformation tensor. Recall that the vorticity
equations can be written as [20]

∂

∂t
ω + (u · ∇)ω = S · ω, S = 1

2
(∇u + ∇T u). (1)

Let λ1 < λ2 < λ3 be the three eigenvalues of S. The
incompressibility condition implies that λ1 + λ2 + λ3 = 0. If
the vorticity vector aligns with the eigenvector corresponding to
λ3, which gives the maximum rate of stretching, then it is very
likely that the 3D Euler equations would blow up in a finite
time.

In Table 1, we document the alignment information of the
vorticity vector around the point of maximum vorticity with
resolution 1536 × 1024 × 3072. In this table, θi is the angle
between the i-th eigenvector of S and the vorticity vector. One
can see clearly that for 16 ≤ t ≤ 19 the vorticity vector at the
point of maximum vorticity is almost perfectly aligned with the
second eigenvector of S. Note that the second eigenvalue, λ2,

Table 1
The alignment of the vorticity vector and the eigenvectors of S around the point
of maximum vorticity with resolution 1536 × 1024 × 3072

Time |ω| λ1 θ1 λ2 θ2 λ3 θ3

16.012 5.628 −1.508 89.992 0.206 0.007 1.302 89.998
16.515 7.016 −1.864 89.995 0.232 0.010 1.631 89.990
17.013 8.910 −2.322 89.998 0.254 0.006 2.066 89.993
17.515 11.430 −2.630 89.969 0.224 0.085 2.415 89.920
18.011 14.890 −3.625 89.969 0.257 0.036 3.378 89.979
18.516 19.130 −4.501 89.966 0.246 0.036 4.274 89.984
19.014 23.590 −5.477 89.966 0.247 0.034 5.258 89.994

Here, θi is the angle between the i th eigenvector of S and the vorticity vector.

is positive and is about 20 times smaller in magnitude than the
largest and the smallest eigenvalues. Although the alignment
of the vorticity vector with the second eigenvector of the
deformation tensor does not rule out a finite time blowup, this
alignment is another indication that there is a strong dynamic
depletion of vortex stretching.

6. The Kida–Pelz high-symmetry data

Another well-known numerical evidence for finite time
Euler singularities is the Kida–Pelz high-symmetry initial data
[3,19]. Some people have argued that the singular solution of
the 3D Euler equations, if it exists, could be very unstable. A
highly symmetric initial condition may have a better chance
to produce a finite time singularity. It is also believed that
a computer code needs to build in this symmetry property
explicitly in order to capture the potentially unstable singular
solution. This consideration motivated Boratav and Pelz to
perform numerical simulations using a high-symmetry initial
condition for the Navier–Stokes equations in [3].

The initial condition that Boratav and Pelz used [3] has
the rotational symmetry and the permutation symmetry, which
was first introduced by Kida [19]. Their simulations suggested
a possible finite time blowup of the maximum vorticity in
the limit of infinite Reynolds numbers. However, as they
realized later, their simulations were under-resolved at later
times when the solution became nearly singular. The vortex
structure near the region of maximum vorticity motivated Pelz
to construct a vortex filament model to understand this singular
behavior. In [21], Pelz presented some numerical evidences
which suggest that his filament model develop a self-similar
blowup in a finite time. It is interesting to note that Pelz’s
self singular solution also falls into the critical case of the
Deng–Hou–Yu local non-blowup criteria (see Theorem 2). To
understand if the same initial condition that led to a finite time
blowup in Pelz’s filament model would lead to a finite time
blowup of the full 3D Euler equations, we decide to repeat
Pelz’s computations.

Pelz’s original filament model was designed for the entire
free space. To perform the numerical simulation of the 3D
Euler equations in the free space R3 is very expensive. As
a first step, we derive a corresponding periodic filament
model. The periodic filament model involves an infinite sum
over all the periodic images of the Biot–Savart kernel. This
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Fig. 11. The validity check of singularity fitting using the asymptotic
expression ‖u‖∞ = C√

tcrit−t . The figure shows tcrit as a function of the

computational steps, with tcrit → 0.0257874. Adaptive time stepping is used
with the time step chosen to be proportional to the inverse of ‖u‖∞.

Fig. 12. The locations of the filaments at the end of our computation. The figure
gives a closeup view of the filaments around the origin.

makes the computation of the periodic filament kernel more
expensive than the one over the free space. To reduce the
computational cost, we apply the Ewald summation formula,
which significantly reduces the computational cost.

We solve the periodic filament model using an initial
condition which is qualitatively the same as the one used
by Pelz [21]. Our numerical computations show that the
periodic filament model indeed develops a finite time self-
similar singularity around t = 0.0257874, see Figs. 11 and 12.
However, when we use the same initial condition to solve the
full 3D Euler equations, we find that the solution of the 3D
Euler equations has a completely different behavior from that
of the filament model. We observe no finite time singularity
for the 3D Euler equations using the same initial condition.
We use a sequence of space resolutions with the two largest
resolutions being 10243 and 20483. More than 100Gb memory
is used in our computation on the 20483 computations. As we
can see from Figs. 13 and 14, the growth of maximum vorticity

Fig. 13. Maximum vorticity in time of the full Euler equations with two
resolutions: 10243 (dashed line) vs N = 20484 (solid line).

Fig. 14. Maximum velocity in time of the full Euler equations with resolution:
10243. The maximum velocity seems to saturate at a later time.

in time is very mild. The maximum velocity is bounded and
becomes saturated around t = 0.0325. The 3D isosurface of the
vortex tubes at t = 0.03 plotted in Fig. 15 also shows that the
vortex tubes remain quite regular. We remark that Grauer and
his coworkers have recently carried out the full Euler simulation
using a simplified Pelz’s high-symmetry initial condition which
consists of 12 straight parallel bars [13]. They find that the
vortex tubes become severely flattened as they approach each
other and the growth of maximum vorticity is only exponential
in time.

Finally, we remark that we have repeated Boratav’s
and Pelz’s Navier–Stokes computations [3] using the same
initial condition, building both the rotational and permutation
symmetries of the solution explicitly into our code. Our
resolution study shows that their computations are resolved
only up to t = 1.6 when the growth of the maximum vorticity
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Fig. 15. The 50% isosurface of | -ω| at t = 0.03. Full 3D Euler equations.

is only exponential in time. The nearly singular growth of
maximum vorticity around t = 2.06 seems due to under-
resolution.

7. Concluding remarks

Our analysis and computations reveal a subtle dynamic
depletion of vortex stretching. Sufficient numerical resolution is
essential in capturing this dynamic depletion. Our computations
for the two anti-parallel vortex tubes’ initial data and the high-
symmetry initial data show that the velocity is bounded and that
the vortex stretching term is bounded by C‖ω‖L∞ log(‖ω‖L∞).
It is natural to ask if is this dynamic depletion generic? and what
is the driving mechanism for this depletion of vortex stretching?
Some exciting progress has been made recently in analyzing the
dynamic depletion of vortex stretching and nonlinear stability
for 3D axisymmetric flows with swirl [16]. The local geometric
structure of the solution near the region of maximum vorticity
and the anisotropic scaling of the support of maximum vorticity
seem to play a key role in the dynamic depletion of vortex
stretching.
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Abstract

We study the complex singularities of solutions of some classes of 1D hydrodynamic models. The method is based on the renormalization group
theory. We derive the equation for the corresponding fixed point and study the spectrum of the linearized map near this point. This information
allows to describe the initial condition for which blow ups at finite time can occur. We should stress that our solutions having blow ups are
complex-valued.
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1. Introduction

In this paper we consider two 1D hydrodynamic models:

model A: ∂tθ + Hθ · θx = θxx

model B: ∂tθ + 1
2
(Hθ · θ)x = θxx ,

where Hθ is the usual Hilbert transform of θ :

(Hθ)(x) := 1
π

P.V .

∫ ∞

−∞

θ(y)

x − y
dy.

These and related models were considered in many papers. See
for example the famous paper by Constantin, Lax and Majda [1]
and also the papers by Schochet [7], De Grigorio [2] (see also
the book by Majda and Bertozzi [6]). For both the models A
and B we shall show that there are solutions with complex
singularities. Denote by θ̂ (k, t) the Fourier transform of θ(x, t).
It is easy to see that for model A, θ̂ (k, t) satisfies the equation:

θ̂ (k, t) = e−tk2
θ̂ (k, 0) +

∫ t

0
e−(t−s)k2

ds

∗ Corresponding author. Tel.: +1 609 734 8396.
E-mail addresses: dongli@math.ias.edu (D. Li),

sinai@math.princeton.edu (Ya.G. Sinai).

×
∫ ∞

−∞
sign(k − k′)θ̂(k − k′, s)k′θ̂ (k′, s)dk′, (1)

where

sign(x) =
{

1 if k > 0,

−1 if k < 0.

Similarly in the case of model B, the equation for θ̂ (k, t) has
the form:

θ̂ (k, t) = e−tk2
θ̂ (k, 0) + 1

2

∫ t

0
e−(t−s)k2

ds

×
∫ ∞

−∞
sign(k − k′)θ̂(k − k′, s)kθ̂ (k′, s)dk′. (2)

For both the models A and B, we choose initial data θ̂ (k, 0)

which are compactly supported in (0, ∞). From (1) and (2),
it follows easily due to the convolutions (in k) the support of
θ̂ (k, t) is in the positive half-axis, i.e. θ̂ (k, t) = 0, if k ≤ 0. This
observation implies that θ̂ (k, t) actually satisfies the following
Burgers-type equation written in the mild form:

θ̂ (k, t) = e−tk2
θ̂ (k, 0) + 1

2

∫ t

0
e−(t−s)k2

ds

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.015
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×
∫ ∞

−∞
θ̂ (k − k′, s)kθ̂ (k′, s)dk′. (3)

For model A, the derivation of (3) follows by a change of
variable and symmetrizing the integral in k′. As in [4,5] we
use power series to represent solutions of (3). Let θ̂A(k, 0) =
Aθ̂ (k, 0), A is a real parameter. The solution θ̂A(k, t) of Eq. (3)
can be written as the series

θ̂A(k, t) = Ae−tk2
θ̂ (k, 0) +

∫ t

0
e−(t−s)k2 ∑

p>1

Apgp(k, s)ds.(4)

Substituting (4) into (3) we get the following system of
recurrent relations for the functions gp:

g1(k, s) = e−sk2
θ̂ (k, 0),

g2(k, s) = k
2

∫ ∞

−∞
θ̂ (k − k′, 0)θ̂(k′, 0)e−s(k−k′)2−s(k′)2

dk′,

gp(k, s) =
∫ s

0
ds2

∫ ∞

−∞
k
2
θ̂ (k − k′, 0)gp−1(k′, s2)

× e−s(k−k′)2−(s−s2)(k′)2
dk′ +

∑

p1+p2=p
p1,p2>1

∫ s

0
ds1

∫ s

0
ds2

×
∫ ∞

−∞
gp1(k − k′, s1)gp2(k

′, s2)

× k
2

e−(s−s1)(k−k′)2−(s−s2)(k′)2
dk′

+
∫ s

0
ds1

∫ ∞

−∞
k
2
θ̂ (k′, 0)gp−1(k − k′, s1)

× e−(s−s1)(k−k′)2−s(k′)2
dk′. (5)

The same methods as in [8,9] can be used to show that the
series (4) converges for small t . It is clear from (5) that the first
and last terms are different from the other terms in (5) because
they contain explicitly the initial condition.

As in [4,5], our main strategy is to extract the main part
of (5). By taking suitable limit transformations we obtain a
nonlinear equation whose solution gives the “fixed point” of
the renormalization group (see Section 2). In the 1D case
considered here, our solutions form a one-parameter family
of Gaussian functions. This is much simpler than in the cases
considered in [4,5] and in a way exemplifies our approach of
constructing blow up solutions. In Section 3 following [4,5] we
study the spectrum of the linearized operator. Then by using the
same technique as in [4,5] we prove the following results.

Main Theorem. There exists an open set in the space of 3-
parameter families of initial conditions such that for each
family from this set there exist the values of parameters so
that the solution having the corresponding initial condition
develops a blow up at time tcr . If E(t) =

∫
R |θ̂ (k, t)|2dk,

Ω(t) =
∫
R |k|2|θ̂ (k, t)|2dk are the energy and the enstrophy of

the solution, then E(t) ≈ 1
(tcr −t)5 , Ω(t) ≈ 1

(tcr −t)7 as t → tcr .

2. The derivation of the fixed point equation and the
analysis of its solutions

As in [4,5], we take some number k0 which later will
be assumed to be sufficiently large. Then all gp will be

concentrated near the points pk0. For this reason we write
k = pk0 + √

pk0Y . Then instead of k we use the new variable
Y which typically takes values O(1). In all integrals over s1, s2

in Eq. (5) make another change of variables s j = s
(

1 − θ j

p2
j

)
,

j = 1, 2. Instead of the integration over k′ we introduce Y ′
such that k′ = p2k0 + √

pk0Y ′. Denote g̃r (Y, s) = gr (rk0 +√
rk0Y, s) and γ = p1/p. Then we obtain from (5) a slightly

modified recurrent equation:

g̃p(Y, s) = gp(pk0 +
√

pk0Y, s)

= (pk0)
3
2




∑

p1+p2=p
p1,p2≥1

∫ p2
1

0
dθ1

∫ p2
2

0
dθ2 · s2

p2
1 · p2

2
·

1 + Y√
pk0

2

×
∫ ∞

−∞
g̃p1

(
Y − Y ′

√
γ

, s

(

1 − θ1

p2
1

))

× g̃p2

(
Y ′

√
1 − γ

, s

(

1 − θ2

p2
2

))

× e
−sθ1

∣∣∣k0+
√

k0
Y−Y ′√

pγ

∣∣∣
2
−sθ2

∣∣∣k0+
√

k0
Y ′√

p(1−γ )

∣∣∣
2

dY ′



 . (6)

This will be our main recurrent relation. It is of some
importance that in front of the sum in Eq. (6) we have the factor
p3/2 and inside the sum the factor 1

p2
1
· 1

p2
2
. As will be clear later

the terms corresponding to p1 = 1 or p2 = 1 can be regarded
as small remainders. When p → ∞ the recurrent relation (6)
takes some limiting form. The main contribution to (6) is from
p1, p2 of order p. Therefore in the main order of magnitude
we can replace the Gaussian terms in (6) by e−s(θ1+θ2)|k0|2 , s1
and s2 by s and the integration over θ1, θ2 and Y ′ can be done
separately. Since Y takes values of O(1), in the main order of
magnitude the factor (1+ Y√

pk0
)/2 can be replaced by 1/2. Thus

in the limit p → ∞, instead of (6) we obtain a simpler recurrent
relation:

g̃p(Y, s) = 1

2k5/2
0

∑

p1+p2=p
p1,p2>

√
p

p3/2

p2
1 · p2

2

×
∫ ∞

−∞
g̃p1

(
Y − Y ′

√
γ

, s
)

g̃p2

(
Y ′

√
1 − γ

, s
)

dY ′.

(7)

As in [4,5] we make the following inductive assumption
concerning the form of g̃p(Y, s): there exist intervals S(p) =
[S(p)

− , S(p)
+ ], S(p+1) ⊂ S(p) on the time-axis, functions Z(s),

Λ(s) defined for s ∈ S(1) and a positive number σ such that for
all r < p

g̃r (Y, s) = Z(s)Λr (s)r
3
2

√
σ

2π
e− σ

2 Y 2 · (H(Y ) + δ(r)(Y, s)). (8)

We shall derive below the equation for the function H . The
main idea of the proof is to carefully organize the inductive
procedure so that the remainder terms δ(r) will tend to zero as
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r → ∞. Substituting (8) into (7) and neglecting all remainders
δ(r), we get

g̃p(Y, s) = Z(s)2

2k
5
2
0

· p3/2 · Λp(s)

×
∑

γ=p1/p

1
p

·
∫ ∞

−∞
H

(
Y − Y ′

√
γ

)

× H
(

Y ′
√

1 − γ

) √
σ

2πγ
e− |Y−Y ′|2

2γ

×
√

σ

2π(1 − γ )
e− |Y ′|2

2(1−γ ) dY ′.

Here we do not mention explicitly the dependence of H on s.
The last sum looks like the usual Riemannian integral sum and
as p → ∞ its limit has the form:

H(Y )

√
σ

2π
e− Y 2

2 = Z(s)2

2k
5
2
0

∫ 1

0
dγ

∫ ∞

−∞
H

(
Y − Y ′

√
γ

)

× H
(

Y ′
√

1 − γ

) √
σ

2πγ
e− |Y−Y ′|2

2γ

√
σ

2π(1 − γ )
e− |Y ′|2

2(1−γ ) dY ′.

Put Z(s) = 2k
5
2
0 . Then the final equation does not contain k0

and we have

H(Y )

√
σ

2π
e− Y 2

2 =
∫ 1

0
dγ

∫ ∞

−∞
H

(
Y − Y ′

√
γ

)
H

(
Y ′

√
1 − γ

)

×
√

σ

2πγ
e− |Y−Y ′|2

2γ

√
σ

2π(1 − γ )
e− |Y ′|2

2(1−γ ) dY ′. (9)

This equation is the fixed point equation of our renormalization
group. Similar but more complicated fixed point equations were
derived in [4,5].

The solutions to (9) have natural scaling with respect to the
parameter σ . Namely if we solve Eq. (9) for σ = 1 and denote
the corresponding solution by H(Y ), then the general solution
for arbitrary σ is given by the formula

Hσ (Y ) = √
σ H(

√
σY ).

Similar scaling relations were also used in [4,5] to find the exact
solutions. Thus it is enough to study (9) for the case σ = 1. As
in [4,5] we use expansions over Hermite polynomials:

H(Y ) =
∑

m≥0

hm Hem(Y ), (10)

where Hem(Y ) are the Hermite polynomials of degree m with

respect to the Gaussian density 1√
2π

e− Y 2
2 . Recall the following

properties of Hermite polynomials:

1. He0(z) = 1 and He1(z) = z.
2. zHem(z) = Hem+1(z) + m Hem−1(z), m > 0.

3.
∫ ∞
−∞ Hem1(

Y−Y ′√
γ

) 1√
2πγ

e− (Y−Y ′)2
2γ 1√

2π(1−γ )
e− (Y ′)2

2(1−γ )

Hem2(
Y ′√
1−γ

)dY ′ = γ
m1
2 (1 − γ )

m2
2 Hem1+m2(Y ) 1√

2π
e− Y 2

2

Substituting (10) into (9) and using properties 1, 2, 3 above, we
obtain recurrent equations for the Hermite coefficients hm :

hm =
∑

m1+m2=m

(∫ 1

0
γ

m1
2 (1 − γ )

m2
2 dγ

)

hm1 hm2 . (11)

Clearly the coefficient in (11) is Euler’s Beta function. It is not
difficult to show that the only solution to (11) is given by

hm =
{

1 if m = 0,

0 if m ≥ 1.

We formulate this result as the following theorem:

Theorem 2.1. There exists a unique solution to (9) given by
Hσ (Y ) = √

σ .

This means that all fixed points of our renormalization group
are Gaussian!

3. The linearized equation and the analysis of the spectrum

As in [4,5] our proof is based on the method of Renormal-
ization group. We write

g̃r (Y, s) · Z(s)−1 · Λ(s)−r r− 3
2

√
2π

σ
e

Y 2
2σ = 1 + δ(r)(γ, Y, s),

where δ(r)(γ, Y, s) = {δ(r)
j (γ, Y, s), 1 ≤ j ≤ n} =

δ̃(p)(γ, Y, s), γ = r
p and γ ≤ 1. It is natural to consider the

set of functions {δ̃(p)(γ, Y, s)} as a small perturbation of our
fixed point. As we go from p to p + 1

δ̃(p+1)(γ, Y, s) = δ̃(p)

(
p + 1

p
γ, Y, s

)
, γ ≤ p

p + 1
.

The formula for δ̃(p+1)(1, Y, s) follows from (9):

δ̃(p)(1, Y, s)
√

σ

2π
e− σY 2

2 =
∫ 1

0
dγ

(
δ̃(p)

(
γ,

Y − Y ′
√

γ
, s

)

× H
(

Y ′
√

1 − γ

)
+ H

(
Y − Y ′

√
γ

)
δ̃(p)

×
(

1 − γ,
Y ′

√
1 − γ

, s
))

×
√

σ

2πγ
e− σ(Y−Y ′)2

2γ

√
σ

2π(1 − γ )
e− σ(Y ′)2

2(1−γ ) dY ′. (12)

We did not include in the last expression terms which are
quadratic in δ(p) because in this section we only study the lin-
earized part.

Definition 3.1. A real-valued function Φα(Y ) is called an
eigenfunction if the function Φγ (γ, Y ) = γ α · Φα(Y ) satisfies
the equation:

Φα(Y )

√
σ

2π
e− σY 2

2 =
∫ 1

0
dγ

∫ ∞

−∞

(
γ αΦα

(
Y − Y ′

√
γ

)

× H
(

Y ′
√

1 − γ

)
+ H

(
Y − Y ′

√
γ

)
(1 − γ )α
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×Φα

(
Y ′

√
1 − γ

))
· e− σ(Y−Y ′)2

2γ

√
σ

2π(1 − γ )
e− σ(Y ′)2

2(1−γ ) dY ′.

(13)

The meaning of Definition 3.1 is the following. Assume that

we have a perturbation proportional to δ(r)(Y ) =
(

r
p

)α
Φα(Y ),

r < p. If we apply (12) then in the main order of magnitude we
shall get Φα(Y ).

Below we study in more detail the set of eigenfunctions Φα .
If α > 0, α = 0, α < 0 then the corresponding eigenfunctions
are called unstable, neutral or stable correspondingly. We shall
show that there exist the eigenvalue α = 1 of multiplicity
ν1 = 1, the eigenvalue α = 1/2 of multiplicity ν1/2 = 1 and the
eigenvalue α = 0 of multiplicity ν0 = 1. All other eigenvalues
are stable. In view of the

√
σ scaling mentioned in Section 2,

it is enough to consider σ = 1. Again we expand over Hermite
polynomials:

Φα(Y ) =
∑

m≥0

fα(m)Hem(Y ).

Then we come to the following linear recurrent relations:

fα(m) =
∑

m1+m2=m

(∫ 1

0
γ

m1
2 (1 − γ )

m2
2 +αdγ

)

hm1 fα(m2)

+
(∫ 1

0
γ

m1
2 +α(1 − γ )

m2
2 dγ

)

fα(m1)hm2 ,

where hm are the coefficients of the expansion H(Y ). By
Theorem 2.1 we have hm = δ0m where δ0m is the usual
Kronecker delta function. Then we get

fα(m) ·
(

1 − 2
∫ 1

0
γ

m
2 +αdγ

)

= 0. (14)

It is not difficult to see that α = N/2 for some integer N ≤
2. Otherwise all fα(m) vanish. For any fixed eigenvalue α,
we can calculate the explicit expression of the corresponding
eigenfunction fα(m). It is not difficult to find that

α = N/2, N = 2, 1, 0, −1, . . . ,

fα(m) = Const · δm,2−2α.

Thus we have the following theorem concerning the spectrum
of our linearized operator.

Theorem 3.2. The spectrum of the linearized operator A
consists of

spec(A) =
{

1,
1
2
, 0, −m

2
, m ≥ 1

}
.

All eigenvalues have multiplicity 1. The set of eigenfunctions
forms a complete basis in the Gaussian weighted space L2(R).
In fact for eigenvalue α, the corresponding (unnormalized)
eigenfunction is He2−2α(Y ).

Remark 3.3. Let Γ (u) be the unstable subspace generated
by all eigenfunctions with eigenvalues λ > 0, and Γ (n)

the neutral subspace generated by all eigenfunctions with
eigenvalue λ = 0, Γ (s) the stable subspace generated by
eigenfunctions with eigenvalue λ < 0. Then it is clear
that Γ (u) = span{He0(Y ), He1(Y )}, Γ (n) = span{He2(Y )},
Γ (s) = span{Hem(Y ), m ≥ 3}.

4. Choice of initial conditions and main steps of the proof

As in [4,5], we take k0 to be sufficiently large and introduce
the neighborhood A1 = {k : |k − k0| ≤ D1

√
k0lnk0} where

D1 is also sufficiently large. Our initial conditions will be zero
outside A1. Inside A1 we take

v(k, 0) = 1√
2π

e− Y 2
2 ·

(
1 + b(u)

0 He0(Y ) + b(u)
1 He1(Y )

+ b(n) He2(Y ) + Φ(Y ; b(u)
0 , b(u)

1 , b(n))
)

,

where k = k0 + √
k0Y . Recall that the constant 1 is our fixed

point with σ = 1, He0(Y ), He1(Y ) are unstable eigenfunctions
and He2(Y ) are neutral eigenfunctions of the linearized group.
b(u)

0 , b(u)
1 , b(n) are our main parameters. We assume that −ρ1 ≤

b(u)
0 , b(u)

1 , b(n) ≤ ρ1 where ρ1 is a positive constant. Each
function Φ(Y ; b(u)

0 , b(u)
1 , b(n)) is small in the sense that

sup
Y,b

|Φ(Y ; b(u)
0 , b(u)

1 , b(n))| ≤ D2,

sup ‖Φ(Y ; b̄(u)
0 , b̄(u)

1 , b̄(n)) − Φ(Y ; ¯̄b(u)

0 , ¯̄b(u)

1 , ¯̄b(n)
)‖

≤ D2(|b̄(u)
0 − ¯̄b(u)

0 | + |b̄(u)
1 − ¯̄b(u)

1 | + |b̄(n) − ¯̄b(n)|).
We have l = 3-parameter families of initial conditions and due
to the presence of Φ we have an open set in the space of such
families. We now outline the main steps of the proof. More
details can be found in [4,5].

Step 1: Initial part of the induction procedure. There are
several substeps.

Substep 1: Assume that for p < p0 and ∀r < p,

gr (k, s) = ZΛr (s)r
3
2

1√
2π

e− Y 2
2 (1 + δ(r)(Y, s)), (15)

where Z is a constant to be specified. Λr (s) is a function of s
for each r and k = rk0 + √

rk0Y with |Y | ≤ D1
√

ln(rk0). The
values of gr (k, s) for which |Y | > D1

√
ln(rk0) will be treated

as remainders and can be estimated.

Substep 2: substitute the Ansatz (15) into (6) and extract the
main terms. Then we obtain the recurrent relation for Λp:

Λp = 1
p

∑

p1+p2=p
Λp1Λp2(1 − e−s(p1k0)

2
)(1 − e−s(p2k0)

2
).

Using the results from [3,10] one can show that the limiting
asymptotics of Λp is given by

Λp = Λ(s)p(1 + O(p−3/2)).

Substep 3: estimate all the remainders and adjust the
parameters b accordingly.
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Step 2: Procedure for p > p0. Introduce a sequence of
numbers pm = (1 + ε)m p0 where ε is sufficiently small. For
p 0= pm no changes are made. At each p = pm make changes
of parameters by the procedure similar to substep 3 in step 1. As
a result we can obtain a decreasing sequence of closed intervals
for the main parameters b and also for the time interval S. The
whole procedure is organized in such a way that δ(r) → 0 as
r → ∞.

5. Formulation of the main result and discussion of the
behavior of solutions near the singularity point

Now we give a more detailed formulation of our main
theorem.

Theorem 5.1 (Main Theorem). Take a 3-parameter family of
initial conditions described in Section 4 and let all constants
satisfy the needed inequalities. Then one can find an interval
S = [S−, S+], the functions Z(s), Λ(s), and the values b(u)

0 (s),
b(u)

1 (s), b(n)(s) of parameters such that
(1) For |Y | ≤ D1

√
pk0,

g̃p(Y, s) = gp(pk0 +
√

pk0Y, s)

= Z · Λ(s)p · p
3
2

1√
2π

e− Y 2
2 (1 + δ(p)(Y, s)),

and supY |δ(p)(Y, s)| → 0 as p → ∞.
(2) For |Y | > D1

√
pk0, |g̃p(Y, s)| ≤ B1Λp(s)

pλ1
where B1 and λ1

are constants.
(3) The function Λ(s) is strictly increasing on S. Moreover for
s ∈ S, we have

Λ′(s) ≥ B > 0,

where B > 0 is another constant independent of s.

The main theorem allows us to study the behavior of our
constructed solutions near the blow up point. Consider again
our power series:

vA(k, t) = e−tk2
Av(k, 0) +

∫ t

0
e−(t−s)k2 ∑

p>1

Apgp(k, s)ds.

(16)

Take t ∈ [S−, S+] and find the values of parameters b(u)
0 , b(u)

1 ,
b(n) for which the main theorem holds. Put Acr (t) = Λ−1(t). If
so then Apgp(k, t) is concentrated in the domain whose center
is κ(0) p and the size is O(

√
p). In this domain it takes values

O(p). This immediately implies that at t the energy is infinite.
Consider t ′ < t and denote -t = t − t ′. It follows from the

properties of Λ(s) (see the formulation of the main theorem)
that Λ(t ′) /Λ(t) = (1 − B-t + O(-t)) for some constant
B > 0. Since Ap

cr · (Λ(t ′))p = Ap
cr · (Λ(t))p ·

(
Λ(t ′) /Λ(t)

)p =
(1 − B-t + o(-t))p, it is clear that the terms in (16) with
p ≤ O

(
1

-t

)
are close to the limiting terms corresponding to t .

For p 1 O
(

1
-t

)
the product Ap

cr (Λ(t ′))p tends exponentially
to zero and dominates other terms in the expression for gp.
Therefore for t ′ < t both the energy and the enstrophy are finite.

In the domain |k| ≤ O
(

1
-t

)
, the solutions grow as k2. The

extra factor |k| 1
2 appears because for any k the values of p for

which the terms in (16) giving the essential contribution to the
solution belong to an interval of size O(

√|k|) = O(
√

p). From
this argument one can easily derive that E(t ′) = O(1)

(-t)5 and

Ω(t ′) = O(1)
(-t)7 .

It is interesting to understand the form of the solution at
t = tcr in the x-space. Some information can be obtained using
(16). Consider the series g(k, tcr ) = ∑

p>1 Ap
cr gp(k, tcr ). We

neglect all remainders δ and take g̃p in the form

g̃r (Y, tcr ) = Z(tcr )Λr (tcr )r
3
2

1√
2π

e− Y 2
2 .

In this way since Acr = Λ(tcr )
−1 we have

∑

p>1

Ap
cr gp(k, tcr ) = Z(tcr )

∑

p>1

p
3
2

1√
2π

× exp

{

−1
2

∣∣∣∣
k − pk0√

pk0

∣∣∣∣
2
}

.

Therefore the Fourier transform of g(k, tcr ) has the form

ĝ(x, tcr ) =
∫

R1
ei〈x,k〉g(k, tcr )dk

= Z(tcr )
∑

p>1

p2 · 1√
k0

eipk0x · e− 1
2 pk0x2

.

This expression shows that for all x 0= 0 the function ĝ(x, tcr )

is finite but ĝ(x, tcr ) tends to infinity as O( 1
|x |6 ) as x → 0. The

whole energy and enstrophy gets concentrated near x = 0. In
this sense our solution at tcr is a tornado-like solution as in [4,
5].
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Abstract

We show that, for 2D space-periodic incompressible flow, the solution can be evaluated numerically in Lagrangian coordinates with the
same accuracy that is achieved in standard Eulerian spectral methods. This allows the determination of complex-space Lagrangian singularities.
Lagrangian singularities are found to be closer to the real domain than Eulerian singularities and seem to correspond to fluid particles which
escape to (complex) infinity by the current time. Various mathematical conjectures regarding Eulerian/Lagrangian singularities are presented.
c© 2007 Elsevier B.V. All rights reserved.

PACS: 47.10.A-; 47.15.ki; 47.27.er

Keywords: Complex singularities; Euler equation; Lagrangian frame; Analyticity strip method

1. Introduction

Solutions to the incompressible Euler equation, starting from
entire initial data (e.g. trigonometric polynomials), can be
analytically continued to the complex space as long as they stay
analytic in the real space. Furthermore it is known since the
seventies that any singularities in the real space, if they exist,
have to be preceded by complex-space singularities [1,2]. In
2D Euler flows, it is known that initial real-space analyticity for
periodic solutions is never lost. This was proven in Refs. [3,4]
in which it was shown that the distance δ(t) to the real domain
of the nearest complex-space singularity, measured by the
exponential falloff of the Fourier amplitude, decreases at large
times at most as a double exponential. Actually, already twenty
five years ago, spectral simulations with 2562 Fourier modes
indicated that the decrease is more like a simple exponential [5].
Spectral simulations at much higher resolutions, up to 81922,
which will be published elsewhere also indicate a behavior
much closer to a single than to a double exponential.1 The

∗ Corresponding author at: Department of Physics, Kyoto University,
Kitashirakawa Oiwakecho Sakyoku, Kyoto 606-8502, Japan. Tel.: +81
757533805; fax: +81 757533805.

E-mail address: takeshi@kyoryu.scphys.kyoto-u.ac.jp (T. Matsumoto).
1 We nevertheless conjecture that by suitable analytic regularization of the

flow considered in Ref. [6], long-lasting transients with a double exponential
decrease can be achieved.

discrepancy between the simple and the double exponential is
generally believed to be due to the phenomenon of depletion:
the flow organizes itself into ribbon-like vortical structures in
which the nonlinearity is almost completely suppressed (the
nonlinearity would vanish identically if the flow depended on a
single Cartesian coordinate). The same phenomenon also exists
in three dimensions and could conceivably prevent finite-time
blowup.

In three dimensions the Beale–Kato–Majda (BKM) theorem
implies that any blowup must be accompanied by the
unboundedness of the modulus of the vorticity in the real
domain [7] (see also [8]). In two dimensions, when the
initial vorticity is bounded, this is of course ruled out by
vorticity conservation. More precisely, it is ruled out in the real
domain, but not in the complex domain. Actually, increasing
strong numerical evidence has been obtained indicating that
the vorticity is infinite at complex singularities [9–11].2 Such
numerical results were obtained only for flows in which the
initial stream function is a trigonometric polynomial (the 2D
analogues of the famous Taylor–Green flow [12]), which are
instances of entire functions, that is, analytic functions that have
no singularity at finite complex locations.

2 We have tried but failed to derive such a result from a complex version of
the BKM argument.

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.007

http://dx.doi.org/10.1016/j.physd.2007.11.007
http://www.elsevier.com/locate/physd
mailto:takeshi@kyoryu.scphys.kyoto-u.ac.jp


1952 T. Matsumoto et al. / Physica D 237 (2008) 1951–1955

The “experimental result” about infinite vorticity along the
complex singularities in two dimensions has an important
consequence: because the conservation of vorticity along
fluid particle trajectories carries over to complex trajectories,
(Eulerian) complex locations with infinite vorticity are
associated with fluid particles initially at complex infinity;
indeed, this is the only place where an entire function
can be infinite. We were thus led to investigate the issue
of (complex) singularities in Lagrangian coordinates. A
Lagrangian singularity is a location at which the (analytic
continuation of the) Lagrangian map goes singular. Could it be
that for 2D flow there are no (complex) Lagrangian singularities
at finite distance? In other words: does the flow in Lagrangian
coordinates preserve its initial entire character? A few years ago
we performed very accurate numerical simulations, reported
here for the first time, and we found strong evidence that the
answer is “no”. W. Pauls and one of us (TM) [14] then found
a very simple counterexample to the preservation of the entire
character: the “AB flow” ψ = sin x1 cos x2 is an entire steady
solution to the 2D Euler equation in Eulerian coordinates. For
this flow, the trajectories of fluid particles can be expressed by
elliptic functions and it was shown that, for any real-positive
time t , there exist complex-initial locations of fluid particles
which are mapped to infinity at time t and which thus are
Lagrangian singularities.

There is a considerable renewal of interest in the Lagrangian
structure of flows, both from a theoretical and experimental
point of view (such issues frequently came up during the Euler
conference). It is thus of interest to show that the Lagrangian
description of flows can be obtained numerically with an
accuracy comparable to that available by spectral methods for
the Eulerian description. The present paper is organized as
follows. In Section 2 we describe two numerical algorithms,
which can be used for Lagrangian integration. In Section 3
we apply this to the identification of complex-Lagrangian
singularities. Here, all numerical studies are presented for the
(unsteady) 2D flow with the simple initial condition

ψ0 = cos x1 + cos 2x2, (1)

which has been used in Refs. [9–11]; key results are also
checked with the flow

ψ0 = cos x1 + cos 2x2 + sin(2x1 − x2), (2)

which has less symmetry than Eq. (1). Some concluding
remarks, with emphasis on mathematical conjectures, are
presented in Section 4.

2. Numerical solution in Lagrangian coordinates with
spectral accuracy

Our goal here is to obtain the velocity field u as a function
of the Lagrangian location a and time t . This Lagrangian field
will be denoted uL(a, t).

With simple boundary conditions, e.g. spatial periodicity, the
easiest way to obtain high accuracy in a Eulerian simulation is
to use a spectral or pseudo-spectral method [13]. For analytic
flow, whose Fourier transform decreases exponentially at high

wavenumbers, the truncation error will then also decrease
exponentially with the resolution.

How does one carry this over to Lagrangian coordinates? In
principle one can write an integro-differential equation for the
(time-dependent) Lagrangian map a $→ x. This equation has
however nonlinearities with denominators which are not easily
handled numerically.

We present here two alternative methods, the spectral
particle-tracking method (Section 2.1) and the spectral
displacement-Newton method (Section 2.2).

2.1. Particle-tracking method

Obviously, the Lagrangian velocity field can be obtained
by composing the Eulerian velocity field u(x, t) with the
Lagrangian map x(a, t). The former can be obtained by
standard spectral integration. The latter is the solution of the
characteristic equation

∂t x(a, t) = u(x(a, t), t), x(a, 0) = a. (3)

In the tracking method, we select a uniform grid of Lagrangian
points and “track” the fluid particles by integrating (3) along
all the relevant fluid particle trajectories. This can be done,
e.g. using a fourth-order Runge–Kutta method. The problem
is that, even if the initial positions coincide with Eulerian
collocation points, this usually ceases to hold subsequently.
Hence the Eulerian field must be interpolated. In order not to
lose the spectral accuracy, the interpolation can be done using
the Fourier series representation

u(x, t) =
∑

k
û(k, t)eik·x. (4)

A difficulty is that, since the relevant x’s are not collocation
points, the velocities given by (4) cannot be evaluated using fast
Fourier transforms but must be calculated “naı̈vely” in O(N 4)

operations if we use an N × N grid. Furthermore this has to
be done at every time step. Since the number of time steps
needed to reach a given time t order unity is proportional to
the resolution N , this method has a fairly large computational
complexity O(N 5) and thus also a significant accumulation of
round-off errors. For large values of the resolution N (512 or
more) the particle-tracking method is not very practical unless
we restrict the Lagrangian grid to being much coarser than the
Eulerian grid.

2.2. Displacement-Newton method

This method makes use of the fact that the inverse
Lagrangian map a(x, t) satisfies, in Eulerian coordinates, the
equation

∂t a + u(x, t) · ∇a = 0, (5)

which just expresses the constancy of the Lagrangian location
a under advection by the velocity field. This equation can be
solved along with the basic Euler equation, both in Eulerian
coordinates. This will however yield a map which still has to be
inverted to obtain the direct Lagrangian map.
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For periodic boundary conditions the direct and inverse
maps are not periodic and it is more convenient to work with
the displacement field, here defined as

d(x, t) ≡ a(x, t) − x. (6)

It follows from (5) and (6) that the displacement satisfies the
following equation in Eulerian coordinates

∂t d(x, t) + (u(x, t) · ∇)d(x, t) = −u(x, t), (7)

with the initial condition d(x, 0) = 0. This equation can be
solved along with the Euler equation to obtain the displacement
in Eulerian coordinates on a uniform grid of N × N collocation
points.

Then comes the difficult step, namely the inversion. For this
we define the off-grid displacement, as above, by its Fourier
series, extended off-grid and we try to find the x locations
associated to a set of Lagrangian collocation points on the
regular grid A = (2π i/N , 2π j/N ), i, j = 0, . . . N−1. We then
determine the direct Lagrangian map x(A, t) as the solution of
the equation

d(x, t) = A(x, t) − x. (8)

First we determine an approximate on-grid solution X(A, t) by
finding from the inverse map the a point nearest to A and its
inverse Lagrangian antecedent X. We then set x = X + δx
and refine the solution of (8) by using a standard-Newton
method. This requires the calculation of off-grid values of
derivatives, which are again obtained from “naı̈ve” evaluations
of the corresponding Fourier series

∂d
∂x j

=
∑

k
ik j d̂(k, t)eik·x, (9)

where d̂(k, t) are the Fourier coefficients of the displacement
(evaluated in Eulerian coordinates). For each stage of the
Newton iteration O(N 4) operations are required. The number
of stages needed to achieve an accuracy ε consistent with
double precision is typically five. If the number of output times
at which we want to evaluate the Lagrangian velocity field is
much smaller than the resolution N , the displacement-Newton
method is much faster than particle tracking.

3. Results

We have applied the two methods described in the previous
section to the flow with the initial condition (1). The methods
give consistent results but the highest resolution (here N =
512) is more easily achieved with the displacement-Newton
method, which has been used to obtain the results reported here.

The solution of the Euler equation

∂t u + u · ∇u = −∇ p, ∇ · u = 0, (10)

together with the displacement equation (7) was obtained by
a standard pseudo-spectral method with two-thirds dealiasing
and a fourth-order Runge–Kutta temporal integration.

Then we applied the displacement-Newton method (with
five iterations) and ε = 10−14. The results were checked by

Fig. 1. Shell-summed amplitudes of Eulerian and Lagrangian velocities at time
t = 1.245 in lin-log coordinates. The initial velocity is given by (1). Inset:
time variation (at short times) of the width of the analyticity strip in Eulerian
coordinates (δ(t)) and Lagrangian coordinates (δL(t)).

computing the Lagrangian vorticity, which should be equal to
its initial value for 2D Euler flow, and was indeed found to be
so with an accuracy of 10−10.

In order to locate complex-space singularities for the
Lagrangian solution, we applied the tracing method [5]: the
Lagrangian solution is represented by its Fourier series

uL(a, t) =
∑

k
ûL(k, t)eik·a. (11)

Then the following asymptotic representation is used for the
shell-summed high wavenumber Fourier amplitudes ([10])

∑

k≤|k|<k+1

|ûL(k, t)| * C(t)kα(t) exp[−δL(t)k]. (12)

Here δL(t) is the width of the Lagrangian analyticity strip, that
is the distance at time t from the real domain of the nearest
(Lagrangian) complex-space singularity. The same analysis is
applied also to the Eulerian velocity.

Fig. 1 shows the wavenumber dependence of the shell-
summed amplitudes for the Eulerian and Lagrangian velocities
at the same time, chosen in such a way that there is only a
modest range of wavenumbers at high k ≡ |k| at which the
rounding errors swamp the (roughly) exponential signal. They
both exhibit exponential decay from which the Eulerian δ(t)
and its Lagrangian counterpart δL(t) are measured. It is seen
that the Lagrangian δ is significantly smaller than the Eulerian
one. Actually, δL(t) < δ(t) holds for all times t < 1.245
(the latest time analyzed). We also checked that the inequality
δL < δ holds for the flow with the initial condition (2) which
has less symmetry than (1).

The exponential decay with the wavenumber k of the shell-
summed Lagrangian Fourier amplitude is strong evidence that
there are singularities of the Lagrangian velocity uL(a, t) at
a finite distance from the real domain; thus it cannot be an
entire function. We also obtained numerical evidence that the
Lagrangian map has the same locations of complex-Lagrangian
singularities as the Lagrangian velocity and that the inverse
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Lagrangian map has the same locations of complex-Eulerian
singularities as the Eulerian velocity. For the very simple
Eulerian steady flow investigated in Ref. [14], Lagrangian
singularities are mapped to Eulerian (complex) infinity. Is this
also the case for the present flow which has nontrivial Eulerian
dynamics? Here, the answer appears to be “yes”. Specifically,
let a' be a Lagrangian singular location corresponding to time
t > 0, say the one closest to the real domain or the one near
this position. Does d(a, t) ≡ a − x(a, t) tend to infinity as
a → a'? In principle we can find the scaling law of any
component of d as a → a', if we have sufficiently accurate
high-resolution data for the Fourier transform of d(a) at high
wavenumbers. This is explained in Section 4.2 of Ref. [11].
This requires the determination not only of the exponential
decrement δL but of the exponent of the algebraic prefactor
in front of the exponential which controls the nature of the
singularity in complex a-space. With a resolution of only 5122,
such exponents are rather poorly determined. It is likely that
both components of d(a) blow up as s−β where s is the modulus
of a − a' and the exponent β is about 3/2 but with an error bar
so large that a negative value cannot be completely ruled out.3

We shall revisit such issues from a theoretical point of view in
the concluding section.

4. Concluding remarks

We have shown that the simple 2D incompressible nonsteady
flow with the initial condition (1) has complex singularities
not only in Eulerian but also in Lagrangian coordinates. The
Lagrangian singularities are significantly closer to the real
domain than the Eulerian ones. A possible interpretation of
this was given by S. Orszag (private communication 2003): in
Eulerian coordinates the buildup of singularities is slowed down
by the aforementioned phenomenon of depletion, whereas in
Lagrangian coordinates any flow which is nonuniform will
keep changing nontrivially, even if it is steady in Eulerian
coordinates. To illustrate this we have shown in Fig. 2 the
(Eulerian) Laplacian of the vorticity ∇2ω in both Eulerian and
Lagrangian coordinates. The former representation displays
strongly depleted ribbon-shaped structures, not seen in the
latter.

Now we wish to comment on the results concerning the
analytic structure in Lagrangian coordinates and on possible
generalizations to other 2D flow with space-periodic entire
initial data. The most obvious result is that, since the vorticity
remains unchanged along fluid particle trajectories in 2D, the
Lagrangian vorticity field stays entire for all times and thus
is devoid of any singularities other than at complex infinity.
The Lagrangian velocity field and the Lagrangian map both
have complex singularities (presumably along 1D complex
manifolds) and the numerical evidence shows that these are
at the same locations. Proving this partially can perhaps be

3 We have applied the same method of analysis to the behavior of d(x) when
an Eulerian singularity is approached at x'. The displacement seems again to
diverge with an exponent β around 3/2 (implying also the divergence of the
Eulerian vorticity) but the quality of the scaling is again dubious.

Fig. 2. Contours of the Laplacian of the vorticity shown for the same flow
as in Fig. 1, shown at t = 1.245. Upper figure: Eulerian coordinates;
lower figure: Lagrangian coordinates. For both figures the contour values
are 0, ±12.5, ±25, ±50, ±75, ±100, ±125; red: positive, green: zero, blue:
negative. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

done by writing the velocity in terms of the vorticity using the
(periodicity-modified) Biot–Savart integral representation and
then making the change of variable from Eulerian to Lagrangian
coordinates. On the resulting integral, using the fact that the
initial vorticity is entire, it may be possible to show that if the
Lagrangian map x(a, t) is analytic for some (complex) a, the
same holds for the Lagrangian velocity.

One of the most striking results reported in Section 3, but
one for which the evidence is a bit shaky, is that Lagrangian
singularities at time t > 0 correspond to fluid particles which
at time t escape to infinity. Here are some observations which
could be useful for proving this. The idea is to show that there
is a contradiction if at time t > 0, a Lagrangian singularity
a' at a finite location is mapped to a point x' which is not at
infinity. Indeed, if x' is at a finite distance, from the fact that the
Jacobian of the Lagrangian map is one, it follows that x' must
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be a singularity of the inverse Lagrangian map x $→ a. The
Eulerian vorticity can be obtained by composing the inverse
Lagrangian map and the initial (entire) vorticity. Composing
a function singular at x' with one which is entire does not
necessarily yield a singular function. Perhaps with some extra
work it can be proved that the Eulerian vorticity is indeed
singular at x'. We already pointed out in the Introduction that
for 2D space-periodic initially entire flow there is numerical
evidence that the vorticity is infinite at (complex) Eulerian
singularities. If this can also be proved, it then follows that a'

is at infinity and thus we have a contradiction.
The global picture emerging from all this is (tentatively)

the following: for entire periodic initial data in 2D, the
solutions of the incompressible Euler equation have complex-
Eulerian singularities corresponding to fluid particles initially
at infinity and Lagrangian singularities corresponding to
fluid particles currently at infinity. In both coordinates
singularities correspond to some particle escaping to infinity;
this mechanism for incompressible fluids is very different from
the one operating for the 1D or multi-dimensional compressible
Burgers equation for which singularities are mostly associated
to the vanishing of the Jacobian of the the Lagrangian map (see,
e.g., Ref. [15]).

We cannot at present rule out that the same scenario holds in
three dimensions but it may not be consistent with real blowup.
Of course, there are major differences in 3D; for example,
vorticity is not conserved. However, the Lagrangian numerical
techniques presented in this paper are easily extended to the 3D
case.
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Abstract

We discuss Onsager’s conjecture that non-vanishing energy dissipation in high-Reynolds-number turbulence is associated to singular
(distributional) solutions of the incompressible Euler equations. We carefully explain the physical and mathematical meaning of the conjecture
and also review relevant theoretical, experimental and numerical work, emphasizing some of the dramatic successes of Onsager’s point of view.
Finally, we present several new ideas and results on Lagrangian dynamics of circulations and vortex-lines that we believe will be important for
future progress.
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1. Introduction

It is widely accepted that simple molecular fluids are
described in the double limit of small Knudsen number Kn and
small Mach number Ma by the incompressible Navier–Stokes
equation with kinematic viscosity ν > 0:

∂t u + (u · ∇)u = −∇ p + ν $ u, ∇ · u = 0. (1)

There are good grounds for this belief. For example, Quastel
and Yau [1] have rigorously derived these equations in such
a limit for a stochastic lattice-gas model. Their proof shows
that the coarse-grained velocity fields in the model must satisfy
some Leray solution [2] of (1), even if the latter develops
singularities at which the velocity field locally becomes infinite.
See also the contribution of Saint-Raymond in this volume [3].
There is no apparent limitation on the Reynolds number Re in
such results. For example, in Kolmogorov’s 1941 theory [4]
of turbulence Re = (Ma/K n)4, where Kn = #m f /η is the
Knudsen number based on the Kolmogorov microscale η and
the mean-free path #m f , so that Re % 1 as long as Kn &

∗ Corresponding address: Department of Applied Mathematics & Statistics,
The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218,
USA. Tel.: +1 410 516 7201; fax: +1 410 516 7459.

E-mail address: eyink@ams.jhu.edu.

Ma & 1 [5]. The Navier–Stokes equation (1) is thus expected
to describe the dynamics of turbulent fluids at any Reynolds
number.

It may be less commonly appreciated that singular solutions
of the incompressible Euler equations

∂t u + (u · ∇)u = −∇ p, ∇ · u = 0 (2)

are a good candidate to describe turbulent flow in the
asymptotic limit Re → ∞, as first conjectured by Onsager [6].
The present paper reviews this idea, both its physical meaning
and its current mathematical status.

2. Empirical foundations

Our story begins with an experimental fact. Energy
dissipation ε = ν|∇u|2 appears not to vanish in the limit
Re → ∞ or ν → 0, for a variety of turbulent flows. The basis
of this statement is empirical: there is still no a priori derivation
from the Navier–Stokes equation (1). The basic observation
was made by the great British fluid-dynamicist, G. I. Taylor,
semi-phenomenologically. Discussing turbulent pipe flow in a
classic 1935 paper [7], he wrote:

“It has been shown by V. Karman that if the surface stress in a
pipe is expressed in the form τ = ρv2

× then

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.005
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Uc − U
v×

= f
( r

a

)
, (54)

where Uc is the maximum velocity in the middle of the pipe
and U is the velocity at radius r . This relationship is associated
with the conception that the Reynolds’ stresses are proportional
to the squares of the turbulent components of velocity. It seems
that the rate of dissipation of energy in such a system must be
proportional, so far as changes in linear dimensions, velocity,
and density are concerned, to ρu′3/ l, where l is some linear
dimension defining the scale of the system.”

Taylor’s claim is that turbulent energy dissipation per unit mass
should scale at high Reynolds number, on average, as 〈ε〉 ∼
U 3/L , where U is rms velocity and L is the integral length.
This is a remarkable formula, since it is completely independent
of molecular viscosity.

Empirically, the formula may be tested by studying the non-
dimensional dissipation rate D(Re) = 〈ε〉/(U 3/L), which
is a function of Reynolds number Re = U L/ν. Here 〈·〉
stands for either a space-, time- or spacetime-average, over a
finite domain, as employed in experimental studies. If Taylor’s
observation is correct, then

lim
Re→∞

D(Re) = D∗ > 0. (3)

Confirmation of (3) was provided in the 1940’s by the data
of H. L. Dryden on decaying turbulence in wind-tunnels [8].
Although the early tests were fairly crude, later experiments
have demonstrated (3) more convincingly. For a compilation
of data from various free flows (decaying grid turbulence, jets,
wakes, etc.), see [9,11]. The non-vanishing of mean energy
dissipation rate is surprising, since there is no reason a priori
that any of the hydrodynamic energy must be converted to heat
as ν → 0. Perhaps the best checks of (3) have come from
numerical simulation of homogeneous, isotropic turbulence
in a periodic domain, as summarized by Sreenivasan [12].
The recent numerical study of forced turbulence by Kaneda
et al. [13] on a 40963 spatial grid has confirmed that
D(Re) asymptotes to a constant at high Reynolds numbers.
Furthermore, the mean kinetic energy remains bounded in the
same limit. This implies that energy is not accumulating in
the hydrodynamic modes but, instead, is being transferred to
the small-scales where it is efficiently dissipated by viscosity
into heat. The experimental situation in wall-bounded flows
is more complex. According to classical theories of the “log-
layer”, the friction velocity u∗ (and thus the rms velocity U )
are logarithmically decreasing functions of Re for smooth walls
and Reynolds-number-independent for rough walls [14]. In an
experimental study of Taylor–Couette flow with smooth walls,
Cadot et al. [10] have observed distinctly different behaviors in
the bulk of the flow and at the boundary. Most of the dissipation
was found to occur in a boundary layer at the walls of the
apparatus, but this dissipation was a weakly decreasing function
of the Reynolds number. On the other hand, the dissipation in
the bulk appeared to obey (3) at high Reynolds number.

Summarizing a somewhat complicated experimental picture,
we may say that (3) is observed to hold well in a wide range
of turbulent flows. Non-vanishing of mean energy dissipation

at infinite-Reynolds number was a basic assumption of the
Kolmogorov 1941 similarity theory of turbulence [4]. This
property is so important – both practically and theoretically –
that it is sometimes called the “zeroth law of turbulence” [15].

3. Dissipation and singularities

The Yale chemist, Lars Onsager, was actively interested
in the problem of fluid turbulence in the 1940’s, and,
indeed, rediscovered the Kolmogorov 1941 similarity theory
independently of Kolmogorov. For an in-depth historical
discussion, see [16]. Onsager was aware of Taylor’s estimate
of mean turbulent energy dissipation and of Dryden’s related
experiments. In his only full-length journal article on fluid
turbulence in 1949, he drew from these observations a
remarkable conclusion [6]:

“It is of some interest to note that in principle, turbulent
dissipation as described could take place just as readily without
the final assistance by viscosity. In the absence of viscosity, the
standard proof of the conservation of energy does not apply,
because the velocity field does not remain differentiable! In
fact it is possible to show that the velocity field in such “ideal”
turbulence cannot obey any LIPSCHITZ condition of the form

|v(r′ + r) − v(r′)| < (const.)rn (26)

for any order n greater than 1/3; otherwise the energy is
conserved. Of course, under the circumstances, the ordinary
formulation of the laws of motion in terms of differential
equations becomes inadequate and must be replaced by a more
general description . . . .”

In this section and the next we shall explicate Onsager’s rather
concise assertions above.

Perhaps the most physical way to explain these statements
is in terms of effective “coarse-grained” equations obtained
from the incompressible Navier–Stokes equation, as in [17,18].
Consider a locally space-averaged (low-pass filtered) velocity

u#(x) =
∫

ddrG#(r)u(x + r). (4)

for an averaging kernel G#(r) = #−d G(r/#) that is non-
negative, smooth, and rapidly decaying. Averaging out the
small-scales from the Navier–Stokes equation yields effective
equations at a continuum of length-scales #:

∂t u# + ∇ · [u#u# + τ #] = −∇ p# + ν $ u#, ∇ · u# = 0 (5)

where τ # is the subscale stress tensor

τ # = (u ⊗ u)# − u# ⊗ u# (6)

from the eliminated modes. This approach is similar to
what in physics is called Wilson–Kadanoff renormalization
group (RG) [19]. The same technique is used in Large-Eddy
Simulation (LES) of turbulent flow, where a closure equation is
employed for the stress tensor τ # [20].

Simplifications occur in these equations for Re % 1. An
elementary estimate of the viscous diffusion term is

‖ν $ u#‖2 ≤ (const.)(ν/#2)‖u‖2
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where ‖u‖2
2 =

∫ T
0 dt

∫
ddx |u(x, t)|2 is (twice) the time-

average kinetic energy. Thus, this term is negligible for small
ν or large # and can be dropped, like “irrelevant” terms in RG
analysis. Simpler effective equations therefore result for the
inertial-range of length-scales #:

∂t u# + ∇ · [u#u# + τ #] = −∇ p#, ∇ · u# = 0 (7)

which retain only the contributions from the nonlinear
interactions. Eq. (7) can easily be seen to hold rigorously if the
Navier–Stokes solution uν for viscosity ν converges uν → u
in L2 norm as ν → 0, i.e. if the residual energy in u − uν

vanishes. Hereafter we shall consider (7) at fixed, inertial-range
length-scales #, from which negligible viscous terms have been
dropped.

The large-scale energy balance that follows from (7) is

∂t e# + ∇ · J# = −Π#

where e# = 1
2 |u#|2 is large-scale energy density per mass,

J# = (e# + p#)u# + u# · τ #

is space transport of large-scale energy, and

Π# = −∇u#:τ # (8)

is the rate of work of the large-scale velocity-gradient
against the small-scale stress, or “deformation work” in the
terminology of Tennekes and Lumley [14]. Turbulent energy
cascade is the dynamical transfer of kinetic energy from large-
scales to small-scales via the “energy flux” Π# through the
inertial-range.

A key realization of Onsager was that this energy flux
depends only upon velocity-increments

δu(r; x) ≡ u(x + r) − u(x).

In particular, this holds both for stress

τ # =
∫

ddrG#(r)δu(r) ⊗ δu(r)

−
∫

ddrG#(r)δu(r) ⊗
∫

ddrG#(r)δu(r)

and the velocity-gradient

∇u# = −(1/#)

∫
ddr(∇G)#(r)δu(r).

It follows directly from these that

Π# = O(|δu(#)|3/#) (9)

as a rigorous upper bound, where δu(#) = supr<# |δu(r)|.
This can be regarded as a refinement of the estimate proposed
earlier by Taylor and, indeed, is a consequence of the fact that
turbulent stress is “proportional to the squares of the turbulent
components of velocity”.

From the estimate (9), Onsager’s assertion about singular-
ities easily follows. Assume that the inertial-range velocity
field u(t) at time t is Hölder continuous at point x with an
exponent 0 < α < 1. Here we follow the standard defi-
nition of Hölder–Lipschitz continuity that u(t) ∈ Cα(x) iff

|δu(r; x, t)| = O(rα). Substituting into estimate (9), one ob-
tains the bound

Π#(x, t) = O(#3α−1).

In particular, Π#(x, t) → 0 as # → 0 if α > 1/3 and
there can then be no asymptotic energy flux to the small-scales
where viscosity is effective. The reverse statement is perhaps
more interesting: to explain the observed energy dissipation
requires α ≤ 1/3 in the infinite-Reynolds number limit.
Onsager’s prediction of such (near) singularities in turbulent
flow has been well-confirmed by experiment and simulation.
For example, see the papers [21,22] where an entire multifractal
dimension spectrum of Hölder singularities has been obtained
from experiments and simulations, with the most probable
exponent α 3 1/3. The a priori prediction of such velocity
singularities is striking confirmation of Onsager’s views on
turbulent energy dissipation.

The singularities predicted by this argument need not be
finite-time inviscid singularities, however. At fixed positive
viscosity ν or large but finite Reynolds number Re, a nonzero
flux of energy may form for length-scales in the inertial-
range L % # % η, between the integral scale L and the
dissipation scale η. If the smallest length-scale #(t) down to
which flux is constant goes to zero exponentially quickly, for
example, then the time τdis to reach the dissipation scale η

will grow weakly (logarithmically) with the Reynolds number.
For times t & τdis no energy will be dissipated by viscosity.
Nevertheless, in externally forced turbulence, real singularities
down to zero length-scale may be obtained by first allowing
the flow to reach steady-state at fixed Reynolds number and
then taking subsequently the limit of infinite-Reynolds number.
That is, singularities and non-vanishing dissipation may appear
in the mathematical limit t → ∞ first and ν → 0 second.
The situation is different in freely-decaying turbulence. In free
decay from smooth initial data, nonzero energy dissipation
at finite times for Re → ∞ requires that the time τdis
be independent of Reynolds number. Thus, observation of
non-vanishing energy dissipation at high Reynolds number
in decaying grid-turbulence is consistent with a finite-time
inviscid singularity. Of course, this is rather weak evidence for a
finite-time singularity, because current experiments can hardly
distinguish between a time τdis which is independent of Re and
one which grows very slowly, say as log(Re) or as loglog(Re).

4. Generalized Euler solutions

We have not yet explained Onsager’s assertion about the
possibility of energy dissipation “in the absence of viscosity”
for “a more general description” of the ideal fluid equations.
The effective Eqs. (7) for a length-scale # in the inertial-range
are identical to those that would be obtained by coarse-graining
not the Navier–Stokes equations but instead the incompressible
Euler equations

∂t u + ∇ · (uu) = −∇ p, ∇ · u = 0. (10)

The above equations with the classical notions of space–time
derivatives will not make sense for the singular velocity fields
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u considered by Onsager. However, Eq. (10) is meaningful
in the sense of distributions, i.e. after smearing with smooth
test functions ϕ(x, t). The effective Eqs. (7) at length-scale #
can be obtained (interpreted distributionally in time) by spatial
smearing of (10) with the special set of test functions ϕx,#(x′) =
#−d G((x′ − x)/#). In fact, Eq. (10) in the distributional sense
is mathematically equivalent to the set of effective Eqs. (7) for
all # > 0. The gist of the matter was well-expressed by Landau
& Lifshitz in the 1954 Russian edition of their fluid-dynamics
text [23]:

“We therefore conclude that, for the large eddies which are the
basis of any turbulent flow, the viscosity is unimportant and
may be equated to zero, so that the motion of these eddies
obeys Euler’s equation. . . . The viscosity of the fluid becomes
important only for the smallest eddies, whose Reynolds number
is comparable with unity.”

In RG language, one may regard the Euler equations as “bare”
equations obtained in the ultraviolet limit # → 0 from the
sequence of effective Eqs. (7) at length-scales # > 0, after
having first taken the limit ν → 0.

As realized by Onsager, the Euler equations in this
generalized sense do not guarantee conservation of energy. If
the Euler solution u ∈ L3 in spacetime, then energy balance
can be derived distributionally in the form

∂t

(
1
2
|u|2

)
+ ∇ ·

[(
1
2
|u|2 + p

)
u
]

= −D(u), (11)

where the distribution D(u) need not vanish. It can be defined
as the asymptotic energy flux to zero length-scale, D(u) =
lim#→0 Π#, with Π# given by (8). The energy balance (11) was
first derived by Duchon and Robert [24], who also obtained the
alternative expression

D(u) = lim
#→0

1
4#

∫
ddr (∇G)#(r) ·

[
δu(r)|δu(r)|2

]
. (12)

This is Onsager’s dissipative anomaly. As was pointed out
by Polyakov [25], the violation of naı̈ve conservation laws
for Euler solutions due to turbulent cascade is very similar to
conservation-law anomalies in quantum field theory, such as the
axial-anomaly in quantum electrodynamics (QED).

It is worthwhile to sketch briefly the proof of (11) and (12)
from [24], which is based on another form of the large-scale
energy balance. Using a smooth point-splitting regularization
of the energy density

e∗
# ≡ 1

2
u · u# = 1

2

∫
ddr G#(r) u(x, t) · u(x + r, t),

one can derive the balance equation

∂t e∗
# + ∇ ·

[
e∗
#u + 1

2
(p#u + pu#)

+ 1
2

(
(|u|2u)# − (|u|2)#u

)]
= −D#(u)

with

D#(u) = 1
4#

∫
ddr (∇G)#(r) ·

[
δu(r)|δu(r)|2

]
.

Using the assumption that u ∈ L3, it is easy to show that the
left-hand side of the above balance equation has the left-hand
side of (11) as its distributional limit for # → 0. This gives both
(11) and (12). These expressions imply immediately Onsager’s
assertion about Hölder exponent α > 1/3. In fact, it follows
from the above expression that D#(u) = O(#3α−1) if u(t) ∈ Cα

globally in spacetime. Thus, D(u) = 0 when α > 1/3 and the
generalized Euler solution must conserve kinetic energy.

There are several interesting historical aspects of the above
argument. First, this derivation of the dissipative anomaly in
turbulence is quite close to the derivation of the axial-anomaly
in QED by a (gauge-invariant) point-splitting regularization, as
first given by J. Schwinger in 1951 [26]. Second, it appears that
the above argument was Onsager’s own proof of his statement
about Hölder singularities! The point-split energy balance (in
a space-integrated form) was communicated by Onsager to C.
C. Lin in a private letter in 1945. See [16] for a reprinting
of this letter. Onsager himself never published his proof and
considerable time elapsed before his ideas were rediscovered.
Sulem and Frisch [27] showed that spectral energy flux
Π (k) → 0 as k → ∞ for an Euler solution with energy
spectral exponent n > 8/3. Eyink [28] showed that spectral flux
averaged over an octave band must vanish at high-wavenumber
if a condition is assumed on Fourier amplitudes somewhat
stronger than Hölder continuity with exponent α > 1/3. He
also showed that Onsager’s result is optimal by constructing
an instantaneous (single-time) velocity field u ∈ C1/3 such
that Π# ! 0 as # → 0. Shortly thereafter, Constantin,
E and Titi [17] found the simple argument presented in
Section 3, which proved Onsager’s original assertion for Hölder
continuous velocities. In fact, their argument gave stronger
results for u merely in a “Besov space”, discussed more below,
and yielded the Sulem–Frisch result [27] as another corollary.

The paper of Duchon and Robert [24] contained some
further important results related to the zero-viscosity limit. It
is not hard to see that, if a sequence of Navier–Stokes solutions
uν for viscosities ν → 0 converges uν → u in L3 norm, then
the limiting u is a distributional Euler solution that satisfies the
energy balance (11). Furthermore, [24] observed in that case
that

D(u) = lim
ν→0

ν|∇uν |2 ≥ 0. (13)

Here we have assumed, for simplicity, that the Leray solutions
of Navier–Stokes are themselves globally smooth; otherwise,
there will be additional dissipation in (13) arising from the
Navier–Stokes singularities [24]. The important implication of
(13) is the positivity of D(u), which shows that the special
Euler solutions obtained as strong L3 limits of Navier–Stokes
solutions will be dissipative. Since a positive distribution is
a nice (Radon) measure, the limit in (13) implies that the
dissipative anomaly D(u) is given by a spacetime measure. This
is the multifractal dissipation measure ε extensively studied
experimentally at high Reynolds number, e.g. by Meneveau and
Sreenivasan [29]. One minor difference is that experimentalists
consider instantaneous time-slices. However, it is reasonable
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for any nice (Borel) set ∆ ⊂ R3 to interpret

ε(∆, t) = 1
2τ

∫

∆
dd x ′

∫ t+τ

t−τ
dt ′ D(u)(x′, t ′),

taking into account the finite temporal resolution τ of
measurements.

There is one last result of Duchon and Robert [24] which
deserves to be mentioned. They derived a further expression for
the dissipative anomaly, of the form

D(u) = −3
4

lim
r→0

〈δuL(r)|δu(r)|2〉ang

r
,

where δuL(r) = r̂ · δu(r) is the longitudinal velocity
increment and 〈·〉ang denotes an angular average over the
direction r̂ = r/r of the separation vector r. This result,
together with (13), is a generalization of a famous result of
Kolmogorov in 1941, the 4/5 th-law [4]. Whereas Kolmogorov
proved his result by averaging over ensembles assuming
homogeneity and isotropy, the above form of the 4/5th-law
is valid for individual realizations and locally in spacetime
in the sense of distributions. Actually, the above result is
properly a version of the “4/3rd-law” [30], but a bit of further
manipulation yields a local version of the 4/5th-law in its
standard form [31].

5. Mathematical foundations

As we emphasized at the outset, the basic motivations of
our subject are empirical. From the point of view of pure PDE
theory, the problem of dissipative Euler solutions remains open.
Almost nothing is proved mathematically about existence,
uniqueness or regularity of such solutions. We review here the
little that is known.

Existence: Shnirelman [32] has constructed an example of
a velocity field u ∈ L2(R3 × R+) in three-dimensional space
(3D) which is a distributional solution of the Euler equations
for which the energy E(t) = 1

2

∫
d3x |u(x, t)|2 is monotone

decreasing in time. His construction is related to the notion of a
generalized Euler flow proposed by Brenier [33–35] to solve
the least-action minimization problem with initial and final
conditions. Shnirelman’s solution lacks the regularity expected
of a turbulent velocity field (see below). More importantly, it
is not obtained from a Leray solution uν of the Navier–Stokes
equation in the limit ν → 0. In most fluid mechanical contexts,
the physically-relevant Euler solutions u should be obtained
as approximations to Navier–Stokes solutions uν with small
but positive viscosities ν > 0. Thus, the existence problem,
from the physical point of view, is intimately related to the
problem of the zero-viscosity limit. We noted above that a limit
u = limν→0 uν in the strong L2-norm sense is necessarily a
distributional Euler solution. If, furthermore, convergence is in
the strong L3-norm sense, then u satisfies the energy balance
(11) with D(u) ≥ 0. The problem is, precisely, that such
strong convergence is not known to occur. Zero-viscosity limits
of Navier–Stokes solutions have only been shown to exist for
weaker notions of convergence that give “Euler solutions” in
some still more generalized sense.

For example, DiPerna and Majda [36] have shown that uν

converges weakly (along a suitable subsequence) to a Young
measure Px,t (dv) which is a measure-valued Euler solution.
Roughly speaking, this means that distributionally in spacetime

∂t 〈v〉x,t + ∇ · 〈vv〉x,t = −∇ p(x, t)

for some distribution p, where 〈·〉x,t is average with respect
to Px,t . If Px,t = δu(x,t) for some u ∈ L2, then this
reduces to the standard notion of a distributional solution. It
is interesting that this concept of Euler solution returns to a
“kinetic-theory description,” similar to a Boltzmann or Vlasov
equation. Brenier [33,35] has discussed relations of DiPerna-
Majda solutions with his own notion of a generalized Euler
flow. As a second example, we mention the concept of a
dissipative Euler solution introduced by Lions [37]. He defines
u to be a dissipative solution if u ∈ L∞(R+, L2(Rd)) ∩
C(R+, L2

w(Rd)), ∇ · u = 0 and if it satisfies the inequality

(d/dt)
∫

dd x
1
2
|u − v|2 ≤ ‖γ −(v)‖∞

∫
dd x |u − v|2

+
∫

dd x E(v) · (u − v)

for all “nice” v ∈ C(R+, L2(Rd)), ∇ · v = 0, where γ −(v)

is the most negative eigenvalue of the strain matrix Si j (v) =
(1/2)(∂iv j + ∂ jvi ) and

E(v) ≡ −∂t v − P⊥[(v · ∇)v].
P⊥ is the Leray projector onto divergence-free fields. Despite
the cumbersome formulation, this definition has some desirable
properties. Lions proved that “dissipative solutions” can always
be obtained as suitable weak limits of Leray solutions uν as
ν → 0 (along a subsequence). It is a consequence of the
definition of dissipative solutions that they coincide with any
classical Euler solutions with strain field S ∈ L1([0, T ], L∞).
Furthermore, when such a smooth solution u of Euler exists,
conserving energy, then the solution uν of the Navier–Stokes
equation always converges to u as ν → 0 and one has:

lim
ν→0

∫ T

0
dtν‖∇uν(t)‖2

2 = 0. (14)

This remark applies to a domain without boundary (torus
or infinite-space) but the same result is not known for
domains with boundary and no-slip boundary condition on the
velocity (see Section IX). As to conjectured distributional Euler
solutions that dissipate energy, i.e. satisfying the energy balance
(11) with D(u) ≥ 0, Duchon and Robert [24] have remarked
that these also are “dissipative solutions” in the sense of Lions.

Uniqueness: Distributional Euler solutions, unfortunately,
are not unique. For example, Scheffer [38] has constructed
a two-dimensional (2D) solution u ∈ L2(R2 × R) which
he dubbed an “Euler froth” and that has compact support in
spacetime. That is, with initial condition u0 = 0 the solution
u has nontrivial evolution and then comes again to rest in
finite time! For the initial condition u0 = 0 there is a unique
classical solution of the 2D Euler equation, which is u ≡ 0
everywhere in spacetime. This is also the unique zero-viscosity
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limit of the 2D Navier–Stokes solutions uν ≡ 0 with the same
initial conditions. However, many other pathological “Euler
solutions” in the sense of distributions exist as well. Somewhat
simpler examples of this non-uniqueness have been constructed
by Shnirelman [39] and by de Lellis and Székelyhidi Jr. [40].
The latter have shown that such weird solutions with compact
spacetime support exist with even more regularity, u, p ∈
L∞(Rd × R), for any dimension d.

These examples show that the concept of distributional
Euler solution is too general and that there are infinitely many
such “solutions” which are physically irrelevant. It is natural
to ask whether there is a selection criterion to guarantee
uniqueness for generalized solutions. In the case of hyperbolic
conservation laws, e.g. Burgers equation and 1D compressible
Euler equations, it is known that there are unique distributional
(and even measure-valued) solutions of the inviscid equations
with appropriate ancillary conditions. For example, adding the
2nd law of thermodynamics as an “entropy condition” leads to
a unique class of solutions. Furthermore, these are the same
solutions that are obtained by the zero-viscosity limit and by the
continuum limit of suitable dissipative numerical schemes. See
[41–43]. It is an outstanding problem whether similar selection
criteria may be formulated for incompressible Euler solutions
and what form such criteria may take. Physical considerations
discussed below suggest some intriguing possibilities.

Regularity: Experiments and simulations of high-Reynolds-
number turbulence show that scaling laws hold,

〈|δu(r)|p〉1/p ∼ rσp ,

for all p ≥ 1 and r in the inertial-range η & r & L . Whereas
Kolmogorov 1941 theory predicts that σp = 1/3 for all p,
the measured exponents appear to be monotone decreasing
and to lie in the range 0 < σp < 1, for experimentally
accessible values of p. See [15]. It should be noted that
Parisi and Frisch [44] were led by such empirical results to
conjecture that turbulent velocity fields for ν → 0 consist of
Euler solutions with Hölder singularities, independent of the
suggestions of Onsager based on energy dissipation. Indeed,
the observations suggest that Euler solutions relevant to infinite-
Reynolds turbulence have u ∈ B

σp
p , where Bs

p is the so-called
Besov space consisting of u ∈ L p with

sup
|r|<L

‖δu(r)‖L p

|r|s < ∞.

See [45] for discussion. (Even if 〈·〉 is interpreted as an
ensemble average, then the observed scaling together with
Kolmogorov’s continuity theorem [46] imply that Besov
regularity holds for individual realizations with probability
one; see [45], Theorem 4.) Of course, there may be other
explanations of the empirical data. For example, if the relevant
Euler solutions are measure-valued, then it is plausible that
the observed velocity fields are average values, u(x, t) =∫

vPx,t (dv). But “averaging lemmas” show that u(t) will
then have Besov regularity if Px,t (dv) = f (v, x, t)dv and if
the density f and its transport-derivative (v · ∇x) f have L p
regularity [47,48].

In any case, there is no PDE theory of distributional Euler
solutions with u ∈ Bs

p for p ≥ 1, 0 < s < 1. Such solutions
have not been shown even to exist, but only short-time classical
solutions in Sobolev or Hölder spaces with much higher degrees
of smoothness [49]. Constantin, E, and Titi [17] generalized
Onsager’s original result to show that distributional Euler
solutions with u ∈ Bs

p for p ≥ 3 and s > 1/3 (if any exist)
will conserve energy. It is very intriguing that experiments
and simulations show that σp 3 1/3 for p 3 3. Turbulent
solutions of the Euler equations thus appear to have the least
degree of singularity consistent with positive dissipation. This
suggests that a “generalized energy estimate” may be useful to
prove Besov regularity of dissipative Euler solutions, in which
a priori bounds on total dissipation,

∫ T
0 dt

∫
dd x D(u)(x, t),

imply the observed regularity.

6. Other turbulent cascades

We have focused so far on the conjectured role of the
Euler equations in the 3D energy cascade. However, similar
possibilities exist for other turbulent cascade phenomena, as we
briefly discuss here.

6.1. 2D enstrophy cascade

Smooth solutions of 2D Euler equations conserve not only
energy but also enstrophy:

Ω(t) = 1
2

∫
d2x ω2(x, t),

where ω = ẑ · (∇×u). Just as in 3D where energy cascades
from large- to small-scales – a forward cascade – it was
suggested by Kraichnan [50] and Batchelor [51] that in 2D
there can be a forward cascade of enstrophy. In addition, it
was predicted by Kraichnan [50] that there can be an inverse
cascade of energy in 2D, or transfer of energy from small-
to large-scales. Here we shall focus mainly on the enstrophy
cascade, where there has been more mathematical work, but
similar ideas should also apply to the inverse energy cascade.
E.g., see [52].

The 2D Euler equation in vorticity form is

∂tω + (u · ∇)ω = 0. (15)

When “coarse-grained” at length-scale # it becomes

∂tω# + ∇ · [u#ω# + σ #] = 0

where σ # = (uω)# − u#ω# is the turbulent vorticity transport
vector. The large-scale vorticity does not move with the large-
scale velocity, but has a relative “drift velocity” ∆u# = σ #/ω#.
The large-scale enstrophy density η# = (1/2)|ω#|2 satisfies the
balance equation:

∂tη# + ∇ · [η#u# + ω#σ #] = −Z#,

with the enstrophy flux to small-scales:

Z# = −∇ω# · σ #.
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Enstrophy suffers “ideal dissipation” when the enstrophy
transport σ # tends to be down the vorticity-gradient ∇ω#, or
σ # ∝ −∇ω#, persistently as # → 0.

Since the enstrophy flux satisfies “Onsager-type” bounds

Z# = O(|δu(#)/#|3) = O(|δω(#)|3),
very modest smoothness of ω implies lim#→0 Z# = 0. E.g. if
the vorticity is Hölder continuous, ω ∈ Cα for any small α > 0,
then enstrophy is conserved. The sharpest results along these
lines were obtained by DiPerna and Lions [53]. They defined
ω to be a “renormalized solution” of the transport Eq. (15) if it
satisfies suitable conservation properties, namely, if

∂t h(ω) + (u · ∇)h(ω) = 0

in the sense of distributions for all h ∈ C1, bounded, vanishing
near 0. Such renormalized solutions preserve in time the entire
vorticity-distribution

F(ζ, t) = area({x ∈ R2 : |ω(x, t)| > ζ }).
If ω ∈ L∞([0, T ], L p(R2)) is a distributional solution of the
Euler equations for p ≥ 2, then it follows from the work of
[53] that it is a renormalized solution. In particular, any solution
of 2D Euler equations with finite enstrophy must conserve
enstrophy. See Lions [37], Eyink [54], Lopes-Filho, Mazzucato
& Nussenzveig-Lopes [55].

Note that Kraichnan–Batchelor (KB) theory [50,51] predicts
an enstrophy spectrum Ω(k) ∼ k−1 (with log-correction)
having infinite total enstrophy as ν → 0. Thus, the above results
are consistent with KB-theory. An infinite-enstrophy solution of
2D Euler with ω ∈ B0

2 has been constructed as a zero-viscosity
limit in [55], with limν→0 ν|∇ων |2 > 0 but with vanishing
nonlinearity. It remains an open problem to construct a 2D Euler
solution with nonzero enstrophy flux. Much better PDE results
are available for distributional Euler solutions in 2D than in 3D.
For example, weak Euler solutions have been shown to exist as
zero-viscosity limits of 2D Navier–Stokes solutions for initial
data with ω0 ∈ L p, p > 1 [56] or even p = 1 [57]. 2D Euler
solutions are unique if ω0 ∈ L∞ [58] or if ω0 ∈ L p, p > 1 and
ω0 has also some “borderline” Besov regularity [59]. However,
none of the classes of 2D Euler solutions that have so far been
proved to exist can have non-vanishing enstrophy flux.

6.2. 3D helicity cascade

Smooth solutions of 3D Euler conserve in addition to the
energy also the helicity:

H(t) =
∫

d3x ω(x, t) · u(x, t),

with ω = ∇×u, as first noted by Moreau [60]. See also
Betchov [61] and Moffatt [62], who emphasized the topological
interpretation of the helicity-invariant. According to a theorem
of Arnold [63,64], the helicity H of a smooth vorticity field is
the average self-linking number of the vortex-lines. Brissaud
et al. [65] proposed that in reflection-nonsymmetric turbulence
there should be a forward cascade of helicity, coexisting with
the forward energy cascade.

Fig. 1. Helicity generation by force parallel to vorticity.

To explain helicity cascade, we may “coarse-grain” the 3D
Euler equations in vorticity formulation, to obtain

∂tω# = ∇×(u#×ω# + f#),

where f# = −∇ · τ # is the turbulent (subscale) force. From
this equation and from (7) follows a balance equation for the
large-scale helicity density h# = u# · ω#:

∂t h# + ∇ · [h#u# + (p# − e#)ω# + u#×f#] = −Λ#

with scale-to-scale helicity flux

Λ# = −2ω# · f#.

The mechanism of transfer of helicity can be understood from
Fig. 1. The component of the turbulent force f# parallel to
ω# accelerates fluid about closed vortex loops L , driving a
circulation around them. Vorticity-flux is thus created through
the vortex loop, corresponding to helicity. For more discussion
of such issues, see [66].

The helicity flux Λ# can easily be shown to satisfy an
“Onsager bound”

Λ# = −2ω# · f# = O(|δu(#)|3/#2).

This suggests conservation if δu(#) ∼ #s with s > 2/3.
Cheskidov et al. [67] have proved that helicity is conserved
for any distributional solution of 3D Euler with u ∈ Bs

3 ∩
H1/2 for s > 2/3, improving an earlier result of Chae [68].
The additional H1/2 condition is imposed so that helicity
is guaranteed to exist (but note that this implies an energy
spectrum E(k) ≤ Ck−2, steeper than Kolmogorov’s k−5/3.)
Thus, even more regularity is required for the conservation of
helicity than for the conservation of energy. These results are
consistent with constant helicity flux coexisting with constant
energy flux in a k−5/3-type inertial-range, in agreement with
numerical studies [69]. Note that [67] in fact proves somewhat
sharper results, and also improves slightly upon earlier results
for energy conservation in any dimension and enstrophy
conservation in 2D.

7. A cascade of circulations?

We have seen in our discussion of helicity cascade that
turbulent, subscale forces at length-scale # can generate
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circulations around closed vortex loops. This raises the
possibility that there may be a similar generation of circulation
around any advected loop. If the effect is persistent as # → 0,
it may vitiate the standard Kelvin theorem. This possibility is a
bit disconcerting, however, because conservation of circulations
and the Helmholtz laws of vortex motion are often believed
to be essential for turbulent energy dissipation in 3D! For
example, we may quote Onsager from his 1949 paper [6]:

“Two-dimensional convection, which merely redistributes
vorticity, cannot account for the rapid dissipation which
one observes. However, as pointed out by G.I. Taylor [7],
convection in three dimensions will tend to increase the total
vorticity. Since the circulation of a vortex tube is conserved, the
vorticity will increase whenever a vortex tube is stretched. Now
it is very reasonable to expect that a vortex-line – or any line
which is deformed by the motion of the liquid – will tend to
increase in length as a result of more or less haphazard motion.
This process tends to make the texture of the motion ever finer,
and greatly accelerates the viscous dissipation.”

The italics in the quote above are ours and intended to
draw attention to the importance of Kelvin’s theorem in the
argument. This point of view originated, as Onsager states, with
Taylor [70,71], who first realized the importance of vortex-
line-stretching in the process of generating turbulent energy
dissipation.

This motivates us to examine more closely the conservation
of circulations. For any initial rectifiable loop C and time t , we
may define the large-scale circulation Γ #(C, t) at length-scale
# as

Γ #(C, t) =
∮

C#(t)
u#(t) · dx =

∫

S#(t)
ω#(t) · dA. (16)

Here C#(t) is the loop which coincided with C at the initial
time t0 and was then advected to time t by u#, which generates
a flow of diffeomorphisms whenever u ∈ L2. Correspondingly,
S#(t) is the advection by u# to time t of a smooth surface S that
spanned the initial loop C at time t0. It is worth remarking that
these are the quantities that an experimentalist would consider
who wished to test the validity of the Kelvin theorem, by taking
measurements of velocity with successively finer resolutions #

in space. At a fixed resolution, however, the circulation is not
conserved but instead the balance holds:

(d/dt)Γ #(C, t) =
∮

C#(t)
f∗#(t) · dx (17)

where f∗# = (u×ω)# − u#×ω# is the turbulent vortex-force.
Rather than the latter, one may also employ in the balance
(17) the subscale force f# = −∇ · τ # by means of the identity
f∗# = f# +∇k#, with k# = (1/2)Tr τ # the subgrid kinetic energy.
The quantity on the right-hand side of the balance (17) defines
a (turbulent) subscale torque

K#(C) = −
∮

C
f∗# · dx = −

∮

C
f# · dx,

which drives a circulation around the loop.

Fig. 2. (a) PDF and (b) RMS of the subscale loop-torque K#(C) for square
loops C of edge-length 64 in a 10243 DNS of forced 3D hydrodynamic
turbulence. From [77].

If the velocity is Hölder continuous with exponent α, u ∈
Cα, and L(C) is the length of C , then it is not hard to derive
the rigorous bound

|K#(C)| ≤ (const.)L(C)#2α−1. (18)

See [72,73]. The key estimate on the vortex-force is that f# =
O(|δu(#)|2/#). The bound (18) allows violation of the Kelvin
Theorem, either if α ≤ 1/2 or if advected loops C are non-
rectifiable. Both of these conditions hold in the inertial-range
of turbulent flow. As we have already discussed, a spectrum of
Hölder singularities is observed in turbulence, with the most
probable exponent close to the K41 value α = 1/3 [15].
Furthermore, loops C(t) advected by such a rough velocity field
are expected to become fractal [74–76], and thus L(C#(t)) →
∞ as # → 0. Hence, there is every reason to expect that
circulations will not be conserved – at least in the usual sense –
in turbulent flow at infinite-Reynolds number.

The issue is difficult to address mathematically but may be
studied in experiment and simulation. In Fig. 2 we present
results from a recent numerical study [77]. The statistics of
the torques K#(C) were obtained for square loops C with
fixed edge-length in the inertial-range of a forced, steady-
state simulation of 3D homogeneous turbulence. As shown in
Fig. 2, the probability density function (PDF) and root-mean-
square (RMS) value of the torques are nearly independent of
the effective coarse-graining wavenumber kc = 2π/#, for kc
in the inertial-range. According to this evidence, the cascade
of circulations is persistent in scale! The non-vanishing torques
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Fig. 3. A random family of non-unique Lagrangian trajectories emanating from
a fixed initial point x.

correspond to a turbulent diffusion of vortex-lines out of the
loop and a consequent breakdown of the Helmholtz Laws of
vortex motion. The subscale force f# may be decomposed into
components longitudinal and transverse to vortex-lines:

f# = α#ω# + (∆u#)×ω#

where

α# = ω# · f#/|ω#|2, ∆u# = ω#×f#/|ω#|2.
We have seen that the longitudinal force is responsible for
helicity cascade and is a hydrodynamic analogue of the MHD
α-effect [78]. The transverse part corresponds to a “drift” of the
vortex-lines, with relative velocity ∆u#, which diffuses lines
out of advected loops moving with velocity u#. The transverse
force can be interpreted as a turbulent Magnus force associated
to this drift motion.

8. Spontaneous stochasticity

Note that, formally,

α# ∼ ∆u# ∼ δu(#) → 0

as # → 0. For example, in K41 theory, δu(#) ∼ #1/3.
This suggests that there may be some sense in which the
Kelvin–Helmholtz results can still be valid in the infinite-
Reynolds inertial-range. However, before we can consider this
possibility, we must address another complication: Lagrangian
trajectories are expected to be non-unique and stochastic
for a fixed realization of a rough (Hölder) velocity field!
This phenomenon, called spontaneous stochasticity [79], is
illustrated in Fig. 3. Suppose that Lagrangian particles are
started at initial positions sampled from some smooth density
φρ supported in the ball of radius ρ centered at x0. Particles
advected by the smoothed velocity u# have unique Lagrangian
trajectories. However, if one considers first the limit of infinite
resolution (# → 0) and subsequently the limit of zero particle
separation (ρ → 0), then the distribution of Lagrangian
histories may converge (weakly) to a nontrivial probability
distribution for a fixed realization of the velocity u. More
formally, this means that for a smooth φρ with supp φρ ⊂
B(0, ρ), for bounded, continuous ψ , and for t 9= t0:

lim
ρ→0

lim
#→0

∫
ddr0 φρ(r0)ψ(ξ

t,t0
# (x0 + r0))

=
∫

Pu(dx, t |x0, t0)ψ(x). (19)

Here ξ
t,t0
# is the smooth flow generated by u#. This phenomenon

was discovered by Bernard, Gawȩdzki and Kupiainen [80] in
the Kraichnan model of random advection by a velocity Hölder
continuous in space and white-noise in time; see also [81–
85]. The stochastic splitting of Lagrangian trajectories was
rigorously proved to occur in the Kraichnan model by Le
Jan and Raimond [86,87]. The physical mechanism of this
non-uniqueness is the famous Richardson pair-diffusion in a
turbulent flow [88], which allows a pair of Lagrangian particles
to separate to a mean-square distance ∆x2

t ∼ t3 at time t
independent of their initial separation ρ in the inertial-range.

Spontaneous stochasticity is deeply connected with dissipa-
tive anomaly for the passive scalar in the Kraichnan model of
random advection. This model problem corresponds to the lin-
ear stochastic PDE

∂tθ
κ + (u ◦∇)θκ = κ $ θκ , ∇ · u = 0 (20)

where u is a Gaussian random field, space-homogeneous, zero
mean 〈u〉 = 0, whose increments for r & L satisfy

〈δu(r, t) · δu(r, t ′)〉 ∼ D|r|2αδ(t − t ′), 0 < α < 1.

The circle “◦” in the advection term of (20) indicates that
the Stratonovich interpretation of the multiplicative noise is
employed. See [82] for an extensive review of the physical
literature on this model. It is known that there is a dissipative
anomaly for the scalar, in the sense that limκ→0 κ|∇θκ |2 > 0.

Furthermore, as κ → 0, θκ → θ in the sense of distributions to
a unique solution of the hyperbolic equation

∂tθ + (u ◦∇)θ = 0, ∇ · u = 0. (21)

This solution has a beautiful stochastic representation as an
average over the random ensemble of (backward) Lagrangian
characteristics:

θ(x, t) =
∫

Pu(dx′, t ′|x, t)θ(x′, t ′), t > t ′, (22)

where Pu is the distribution defined in (19) [80,83,86]. This
representation directly implies by Jensen’s inequality that
∫

dx |θ(x, t)|2 <

∫
dx |θ(x, t ′)|2

for t > t ′, which shows that the scalar “energy”
∫

θ2(t)
decreases monotonically in time. The same solution θ is also
obtained by solving the zero-diffusion equation

∂tθ
(#) + (u# ◦∇)θ(#) = 0, ∇ · u# = 0, (23)

with a regularized velocity u# and then taking the limit θ =
lim#→0 θ(#). It is important to note that this uniqueness of the
dissipative solutions of (21) – obtained as limits of different
approximations (20) or (23) – depends upon the assumption
of incompressibility of u. If the velocity field is sufficiently
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compressible, then there are distinct distributional solutions of
(21) [and also distinct distributions on Lagrangian histories in
(19)] depending upon the limiting procedure adopted [81,83,84,
86,87].

The Kraichnan model (21) is a perfect paradigm for
Onsager’s vision of generalized “inviscid” solutions of PDE’s
that sustain turbulent dissipation. There is a unique class of
dissipative solutions of (21) for incompressible flow that are
robustly obtained by different, physical limiting procedures.
The only other case where a comparable mathematical
theory has been developed is the “entropy solutions” of
hyperbolic conservation laws, such as Burgers equation [41–
43]. However, the mechanism of dissipation is quite different
in these compressible flow problems, in which Lagrangian
particles collide and stick. What is very distinctive about
the incompressible version of the Kraichnan model (21) is
the “spontaneous stochasticity” or “stochastic splitting” of
Lagrangian particles. The irreversibility or arrow of time is
introduced in (22) by the stipulation that future values of the
scalar θ(t) are represented by averaging past values θ(t ′) for
t ′ < t , rather than the reverse.

It remains a huge challenge to carry over these important
insights from the Kraichnan model to the incompressible
Euler equation. We mention just one idea that seems to us
promising [72,89]. It was pointed out some years ago by
the field-theorist Migdal [90] that the incompressible Euler
equation in any dimension d can be transformed into an active
scalar equation but with the scalar defined in the infinite-
dimensional loop-space. This transformation is obtained by
introducing the Eulerian circulations

ΓE (C, t) =
∮

C
u(t) · dx,

where – in contrast to (16) – the loop C is fixed in space. It is
not difficult to show that these solve

∂tΓE (C, t) +
∫ 1

0
dsui (C(s), t)

δ

δCi (s)
ΓE (C, t) = 0, (24)

which is a functional advection equation in loop-space. Migdal
has shown that this equation is an equivalent, independent
formulation of the Euler equation, in which the velocity
u can be recovered from the circulations ΓE (C, t) by
loop-calculus [90]. In fact, the standard Kelvin theorem is
the solution of Midgal’s loop equation by the method of
characteristics. If we formally apply the same results to (24)
that are rigorously demonstrated for the Kraichnan model
(21), then we would conjecture that the physical “dissipative”
solution of (24) for turbulent flow can be represented as

ΓE (C, t) =
∫

Pu(dC ′, t ′|C, t)ΓE (C ′, t ′), t > t ′. (25)

Here Pu(dC ′, t ′|C, t) should be a stochastic process of material
loops advected by u, obtained similarly as (19). Eq. (25)
is a generalization of the Kelvin theorem which states that
circulations will be conserved on average for material loops
propagated backward in time. That is, the circulations are
“backward martingales” of a generalized Euler flow, roughly

in the sense of Brenier [33,35]. It would be very interesting to
relate the arrow of time introduced by (25) to that associated
with vortex-line-stretching and with positive energy dissipation.

9. Return to pipe flow

We began our story by quoting a passage about energy
dissipation in turbulent pipe flow from a paper of G.I. Taylor.
As a cautionary remark, we may cite another important
observation of Taylor from an earlier paper [91]. This 1932
work is well-known for introducing Taylor’s mixing-length
theory of vorticity transfer. However, Taylor also derived there
an interesting exact result on turbulent pipe flow. To state this
result, let us employ curvilinear cylindrical coordinates, with
z-coordinate down the pipe axis and with radial coordinate r
and azimuthal angle θ. Following Taylor, let us introduce the
quantity

Σrθ = urωθ − uθωr − ν

[
1
r

∂

∂r
(rωθ) − 1

r
∂ωr

∂θ

]
, (26)

which describes vorticity transport of the azimuthal component
of vorticity ωθ in the radial direction r . The first term in (26)
corresponds to advective transport of vorticity, the second to
transport by vortex stretching and tilting, and the third term
in brackets to viscous diffusion of vorticity. The expression
(26) is just the z-component of the nonlinear and viscous terms
in the Navier–Stokes equation, Σrθ = (u×ω − ν∇×ω)z . It
is therefore straightforward to show that its time-average in
steady-state, fully-developed turbulence is equal to the mean
pressure drop down the pipe [91]:

〈Σrθ 〉 = ∂

∂z
〈p〉 < 0. (27)

In fully-developed turbulence in an infinitely long pipe it
follows from (27) that 〈Σrθ 〉 is a constant, independent of r, θ
and z [14]. This constant flux of mean vorticity corresponds
to vortex rings generated at the pipe wall which then shrink
and annihilate at the pipe axis. The structure and dynamics of
individual vortex-lines in turbulent pipe flow is quite complex,
with very random twisting and stretching. However, whatever
the details, the mean flux of azimuthal vorticity must be
maintained.

Owing to (27), constant flux of azimuthal vorticity is directly
related to turbulent energy dissipation. Indeed, the energy input
into the turbulent fluctuations is provided by the pressure head.
Multiplying by the mean mass flux J through the pipe therefore
gives the turbulent energy dissipation per length:

(1/Lz)

∫

pipe
d3x ρ ε = J |〈Σrθ 〉|.

This result can be regarded as a classical analogue of the
Josephson–Anderson relation in quantum superfluids, relating
cross-stream transport of vorticity and energy dissipation. See
Anderson [92] and Huggins [93], who rediscovered Taylor’s
result in the quantum setting. The cross-stream motion or
“phase slippage” of quantized vortex-lines is widely recognized
to be a key mechanism of energy dissipation in quantum
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superfluids and superconductors [94,95]. This observation may
bring a certain unity to the problems of classical and superfluid
turbulence; see [96] and the contribution to these proceedings
by Barenghi [97].

The lesson to be drawn here is that energy dissipation
in realistic inhomogeneous turbulent flows requires not just
random line-stretching but also organized motion of vorticity.
This remark underlines the extreme subtlety of the relation
between vortex motion and energy dissipation. The presence
of a solid wall or flow boundary can dramatically alter
the turbulence dynamics [98]. Onsager’s conjecture is very
interesting for wall-bounded flows. It is known that a
Navier–Stokes solution uν in a bounded domain can converge
to a smooth solution of Euler u conserving energy, if and only if
the viscous energy dissipation vanishes in the limit, in the sense
of Eq. (14). In fact, only the energy dissipation in a viscous
sublayer of thickness O(ν) must vanish for this to be true [99]
or even just the dissipation from tangential velocity-gradients
in a slightly thicker layer [100]. In their Taylor–Couette
experiments with smooth walls, Cadot et al. [10] found that the
energy dissipation in the boundary layer indeed decreases with
Reynolds number but that the energy dissipation in the bulk
appears to satisfy Taylor’s relation (3) and to be independent
of Reynolds number.

10. Conclusion

If Onsager is correct, then inertial-range dynamics of
turbulent flow are governed by singular solutions of the Euler
fluid equations. Observational evidence and rigorous results
are consistent with the idea. We have reviewed much of the
relevant mathematical literature, but we hope to have made
clear the importance of the problem also to experimentalists
and simulators. Onsager’s conjecture is not about an esoteric
or unphysical mathematical problem but, rather, about the
fluid dynamics of turbulence at high Reynolds numbers. The
theory makes testable predictions, some of which have not
yet been confirmed or disproved. Indeed, the foundations of
the subject are empirical, and further laboratory and numerical
investigations are necessary to shed light on many difficult
and basic questions, still beyond the scope of mathematical
analysis. A major open problem, in particular, is how to relate
turbulent dissipation of energy, precisely, to the inviscid motion
of vortex-lines. Leonhard Euler would doubtless be delighted
to see that his equations on their 250th anniversary are of vital
interest to the problem of turbulence and remain at the forefront
of engineering, physics and mathematics.

Acknowledgments

We would like to thank many people for the discussions on
this subject over the years, including H. Aluie, P. Ao, C. Bardos,
D. Bernard, S. Chen, M. Chertkov, P. Constantin, J. Duchon,
W. E, G. Falkovich, U. Frisch, K. Gawȩdzki, R.H. Kraichnan,
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Abstract

We review recent progresses on anomalous scaling and universality in anisotropic and homogeneous hydrodynamic turbulent flows. As a
central matter, we discuss the validity and the limits of classical ideas of statistical isotropy restoration. Finally, we comment on a still open issue,
the observed different scaling behaviour of longitudinal and transverse velocity increment moments in purely statistically isotropic ensemble.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Turbulence; Anisotropy; Intermittency

1. Introduction

Statistical restoration of symmetries of the Navier–Stokes
equations is at the base of modern theories of turbulence [1].
The presence of geometrical boundaries or obstacles, or the way
energy is injected in the flow usually break exact symmetries of
the equation of motion. However, for high enough Reynolds
number flows, those symmetry properties are supposed to be
locally restored in a statistical sense, e.g. only for average
quantities. Local homogeneity and local isotropy deserve a
particular attention, since they are key features of theoretical
approaches to turbulence and transport models. While there
has been just a few attempts to make a systematic theory for
deviations from statistical homogeneity [2] (see also [3,4] for
recent results), it is remarkable that about isotropy restoration,
there has been a considerable progress in the last years, as
reviewed in Ref. [5]. As a result of this progress, effective
data analysis and systematic theoretical studies have been
possible, such as to separate isotropic from anisotropic features

∗ Corresponding author. Tel.: +39 06 4993 4289.
E-mail address: a.lanotte@isac.cnr.it (A.S. Lanotte).

of turbulent homogeneous statistical fluctuations. Motivation
for these researches is related to puzzling experimental and
numerical observations, dubbed persistence of anisotropies,
contradicting classical expectations of recovery of isotropy
[6–9]. Persistence of anisotropy accounts for the fact that purely
anisotropic adimensional quantities, such as the skewness of
velocity gradients transverse to the mean flow do not decay, but
remain order O(1) at very large Reynolds numbers.

On a more general perspective, a proper understanding of
scaling behaviours in statistically homogeneous but anisotropic
flows is crucial to assess the universality of statistical properties
of hydrodynamic turbulence [10].

Some crucial steps toward a clear understanding of the
statistics of anisotropic fluctuations have been done in the
context of Kraichnan models [11–13], simple linear models for
passive transport of scalar or vector quantities by homogeneous,
isotropic and Gaussian velocity fields, in the presence of large-
scale homogeneous but anisotropic forcing [14–18]. While
we cannot review these works, it is worth to recall their
fundamental results. Isotropic and anisotropic fluctuations
can be characterized by different scaling exponents, whose
statistical importance is governed by their degree of anisotropy;
these exponents are independent of large-scale forcing or

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.008
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boundary conditions, hence universal (see also [19] for a
discussion of the case in the presence of an anisotropic and
inhomogeneous forcing). The symmetry breaking and peculiar
nature of the forcing is revealed in the coefficients appearing in
the scaling laws, which are not universal.

In the absence of analytical approaches able to show the
validity of these results in the full nonlinear problem, accurate
experimental [20–24] and numerical [25–31] measurements
become of fundamental importance. Encompassing all results
achieved so far, or attempting an historical review of different
approaches to homogeneous isotropic – where anisotropic
effects are neglected, – and anisotropic turbulence, go beyond
our goal and can be found in Ref. [5]. Also we mention
that different approaches to anisotropy, mainly focused on
large scale flow properties, have been extensively studied in
Ref. [32].

Our focus is on small-scale anisotropy. At this purpose,
we will first discuss the use of the SO(3) decomposition of
statistical observables in terms of their projections on different
sectors of the group of rotations in three dimensions [33]
(see also Ref. [34] for a rewiew focusing on experimental
measurements). The use of SO(3) decomposition, providing
a complete basis for angular decomposition, enables us to
systematically describe the limits of the idea of isotropy
restoration at sufficiently small scales (or sufficiently high
Reynolds number), as postulated by the Kolmogorov theory [1].
Key working hypothesis, that we will discuss in the sequel, is
that forcing has its support at scales much larger than those of
the inertial range.

Secondly, we will consider the specific case of large-
scale shear flows, for which a theoretical prediction for
the dimensional scaling of exponents of velocity increment
moments (structure functions) of any order and any degree of
anisotropy can be done [35]. Results point to the existence
of universal isotropic and anisotropic scaling exponents,
deviating from their dimensional values. Anomalous scaling
and universality of turbulent fluctuations appear as two
concepts intimately related, as highlighted in Kraichnan
models.

Finally, we will consider statistically homogeneous and
isotropic turbulent flows, which can be realized with some
degree of accuracy in experiments and in numerics. Compared
to strongly anisotropic situations as those encountered in
geophysical or plasma applications, they represent a much
simpler problem. However, a large number of studies
[7,22,36–44] report possible different behaviours for the
longitudinal and transverse velocity structure functions in 3D
flows, for moments high enough. These results contradict
our expectations (for second and third moments, analytical
constraints resulting from isotropy and incompressibility
impose the same scaling to longitudinal and transverse
fluctuations). Recent observations will be here reviewed, and
commented in the light of the SO(3) decomposition.

The paper is organized as follows. Section 2 recalls
the theoretical framework to deal with weak anisotropic
fluctuations and the notion of isotropy recovery; this is done
by means of the SO(3) decomposition, briefly sketched.

In Section 3, by means of the specific case of homogeneous
shear flows, a dimensional argument for the scaling of
anisotropic fluctuations is recalled and compared to numerical
observations. Last Section 4, before concluding remarks, is
devoted to the issue of longitudinal and transverse structure
functions scaling in homogeneous isotropic turbulence.

2. Anisotropic hierarchy and the SO(3) decomposition

The starting point of a systematic approach to small-
scale anisotropic turbulence is to suppose that both boundary
conditions and forcing – which break the invariance under
rotation of the Navier–Stokes equations [45], – give a
dominant contribution only at large scales, while the transfer of
fluctuations from large to small scales is driven by the rotational
invariant terms of the equations of motion. This is equivalent
to say that anisotropy is only weakly affecting the statistical
properties of the turbulent field under exam. Strongly sheared
flows constitute a noticeable exception [46,47], as well as
magneto-hydrodynamic (MHD) flows in the presence of a mean
field for which we still do not have clear evidences [48,49].
However, when the previous hypothesis of large-scale forcing
holds, we can study the behaviour of velocity correlation
functions in the inertial range, at scales η # r # L where
η is the dissipation scale and L is the scale of the forcing.

To separate isotropic from anisotropic contributions, it
is useful to consider their projections on the irreducible
representations of the SO(3) group. As a standard observable,
we consider the two-points homogeneous second-order
structure function

Sαβ(r) ≡
〈
(vα(r) − vα(0))(vβ(r) − vβ(0))

〉
.

The decomposition of Sαβ(r) in terms of the eigenfunctions
of the rotational operator is made by a set of functions
labelled with the usual indices j = 0, 1, . . . and m =
− j, . . . ,+ j , corresponding to the total angular momentum and
to the projection of the total angular momentum on a arbitrary
direction, respectively.

For scalars quantities, as the longitudinal structure function,
S(2)

L (r) ≡
〈
[(v(r) − v(0)) · r̂]2〉, the set of basis functions

are the spherical harmonics, Y jm(r̂). For a generic pth order
tensor, in addition to indices j and m, another index q is
necessary, labelling different irreducible representations within
each fixed j sector [5,33]. It is easy to show that there are only
q = 1, . . . , 6 irreducible representations of the SO(3) group
for the space of two-indices symmetrical tensors as Sαβ(r).
Accordingly, the second order structure function can be exactly
decomposed as

Sαβ(r) ≡
6∑

q=1

∞∑

j=0

+ j∑

m=− j

S(2)
qjm(r)Bαβ

qjm(r̂), (1)

where the tensors Bαβ
qjm(r̂), defined on the unit sphere, can

be seen as a generalization of the spherical harmonics to the
tensorial case, and the superscript 2 in the projection S(2)

qjm(r)

reminds the order of the analysed correlation function.
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In Ref. [33], it has been shown that, if the forcing is at
large scales, by projecting the rotational invariant part of the
evolution equation for Sαβ(r) on the irreducible representations
of the SO(3) group, we obtain a set of dynamic – unclosed –
equations for each projection, in each separate sector. The terms
of the equations that are not coupled with the forcing, do not
depend explicitly on the index m (invariance of Navier–Stokes
eqs. with respect to the orientation of the z-axis) and they
mix all possible q-representations, for a given j . In other
words, if forcing terms are neglected, projections obey separate
dynamic equations within each j sector, which corresponds to
the foliation of the dynamic equation for any correlation in each
given sector j of the rotational group [5]. This is a powerful
result since, if forcing can be neglected at small scales, it allows
to analyse separately the scaling behaviour of isotropic and
anisotropic fluctuations in a systematic and quantitative way by
studying the behaviour of the projection coefficients S(2)

q jm(r),
for any degree of anisotropy j .

Moreover, in the limit of infinite Reynolds numbers,
Navier–Stokes equations become scaling invariant, sector by
sector. It is thus natural to expect the existence of scaling laws
characterizing each sector separately, that is:

S(2)
qjm(r) ∼ c(2)

qjmr ξ j (2), (2)

where the coefficients c(2)
jmq have to be matched with large-

scale boundary conditions and forcing. Decomposition similar
to that of Eq. (1) can be generalized to any p-th order tensor,
associated to velocity increment moments of order p > 2.
In principle, nothing prevents the existence of more than one
exponent characterizing each separate anisotropic sector, so that
the power-law in Eq. (2) has to be considered the dominant
term.

When we deal with numerical or experimental data,
measuring behaviour of undecomposed velocity increment
moments at smaller and smaller scales might not be enough
to extract clean results about scaling exponents, even for
very large Reynolds number flows. Indeed the presence of
anisotropic fluctuations which have not yet decayed even
at very small scales, can spoil scaling, thus resulting in a
superposition of different power laws.

In particular, measuring scaling properties in each separate
sector becomes compulsory if we mean to assess isotropy
recovery of turbulent statistics. Such a recovery may exist only
if, for any moment of given order p, the isotropic scaling
exponent is always smaller than the anisotropic ones,

ξ j=0(p) < ξ j (p), ∀ j. (3)

More generally, a whole hierarchy among the different
anisotropic exponents is naturally expected, within any order
p:

ξ j=0(p) ≤ ξ j=1(p) ≤ ξ j=2(p) < · · · , (4)

where the exponents ξ j (p) are supposed to be independent of
the (m, q) indices.

In models for passive advection [15,17,18], it has been
demonstrated that a similar hierarchy exists, and also that

scaling exponents do not show any dependence on the q, m
indices. On such basis, we expect that a hierarchy like (4) might
exist also in the full hydrodynamic case, and that it is robust at
changing large-scale conditions.

The independence of scaling exponents from the m index
is given by the arbitrariness in defining the orientation of the
coordinate axis in 3D space. That from the q index, i.e. from
the set of irreducible representations of the rotation group,
is much less trivial and with interesting consequences. A
dependence on the q index would weaken the whole foliation
pattern, according to which rotationally invariant properties
do not depend on the set of eigenfunctions (with the same
rotational properties) chosen to decompose the observables.
For example, admitting that projections with different
q-indices have different scaling properties could possibly
explain the observed different scaling between transverse
and longitudinal high-order structure functions in a isotropic
statistics ( j = 0) [22,36,39].

In Ref. [15], it has been shown for the case of passive vector
advection that the differential equations for the vector field
covariance foliate into independent closed equations for each
j sector, which mix different irreducible representations of the
SO(3) group, but the scaling exponents do not exhibit any
dependence on the q index. We cannot prove that the very same
happens for the Navier–Stokes case, although, on a physical
ground, we do not see any reason why it should not be like that.

A possible explanation for the observed discrepancy in the
scaling exponents of longitudinal and transverse high-order
moments might rather be sought in terms of finite Reynolds
effects, which prevent from having a unique clear scaling in the
inertial range. In this case the differences would become smaller
and smaller by going to larger and larger Reynolds numbers. In
Section 4, we will come back to this point.

Experimental and numerical measurements often deal with
the scaling properties of longitudinal structure functions
S(p)

L (r) ≡ 〈[(v(r)− v(0)) · r̂]p〉. As anticipated before, these are
scalar objects whose decomposition onto the eigenfunctions of
the SO(3) group is particularly simple,

S(p)
L (r) =

∞∑

j=0

j∑

m=− j

S(p)
jm (r)Y jm(r̂). (5)

In the sequel, we will consider the scaling behaviour of low
order (in p and in j) projections S(p)

jm (r).

3. Dimensional prediction for anisotropic fluctuations

A phenomenological theory for dimensional expectation of
the scaling exponents of structure functions is important when
we try to assess the intermittent behaviour of homogeneous
turbulent fluctuations, isotropic as well as anisotropic.
Lumley [50] first formulated a dimensional prediction for the
scaling exponent of the second order structure function in the
sector j = 2: ξ

( j=2)
d (p = 2) = 4/3. In Ref. [35] an argument

was given for the dimensional value of scaling exponents of
longitudinal structure functions of any order and any degree of
anisotropy, which generalizes Lumley’s one.
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The idea is the following. The overall effect of the large-
scale energy pumping and/or boundary conditions is to produce
a large-scale anisotropic driving velocity field U. This is quite
natural and very often encountered in geophysical or laboratory
flows. The time evolution equation for the velocity field v can
be written as

∂tvα + vβ∂βvα + Uβ∂βvα + vβ∂βUα = −∂α p + ν∆vα. (6)

The major effect of the large-scale field is the instantaneous
shear Iαβ = ∂βUα which acts as an anisotropic forcing term
on small scales, i.e. for scales much smaller than the typical
shear-injection scale, L S =

√
ε/|I|3.

To build up a dimensional matching for velocity fluctuations,
we first consider the equation of motion for two points
quantity 〈vα(r)vδ(0)〉 in the stationary regime. Inertial and
shear-induced contributions can be balanced:
〈
vδ(0)vβ(r)∂βvα(r)

〉
∼

〈
Iαµ(r)vδ(0)vµ(r)

〉
, (7)

to obtain a dimensional estimate of the anisotropic components
of the LHS in terms of the RHS shear intensity and of the
isotropic part of

〈
v(r̂)v(0)

〉
. Similarly for three point quantities

and higher order velocity correlation. Since the shear is a large-
scale slow quantity, a safe estimate is the following:
〈
Iαµ(r)vδ(0)vµ(r)

〉
∼ Dαµ

〈
vδ(0)vµ(r)

〉
.

The Dαβ tensor, associated to the combined probability to have
a given shear and a given small scale velocity fluctuation, brings
angular momentum only up to j = 2. Composition of angular
momenta ( j = 2 ⊕ j − 2), then results in the following
dimensional matching:

S(p)
j (r) ∼ r |D| · S(p−1)

j−2 (r), (8)

where S(p)
j (r) is a shorthand notation of the projection on the

j- th sector of the p- th order correlation function previously
introduced, neglecting further possible dependencies on q and
m indices. In Eq. (8), |D| denotes the typical intensity of the
shear term Dαβ in the j = 2 sector. For instance, the leading
behaviour of the j = 2 anisotropic sector of the third-order
correlation is: S(3)

j=2(r) ∼ r |D|S(2)
j=0(r) ∼ r ξ2

d (3).
By using a similar argument, we can obtain dimensional

predictions for the j = 2, 4 sectors of the fourth order structure
function. The procedure is easily extended to all orders, leading
to the following expression:

ξ
j

d (p) = (p + j)
3

. (9)

Direct numerical simulations (DNS), at moderate Reynolds
number Reλ ∼ 100, of a fully periodic, incompressible flow
with a statistically homogeneous but anisotropic large-scale
energy injection have been reported in Ref. [27,35]. They can
be used to test the validity of the dimensional prediction (9).

In Fig. 1 isotropic and anisotropic fluctuations, which have
a signal-to-noise ratio high enough to ensure stable results,
are shown. Sectors with odd js are absent due to the parity
symmetry of the longitudinal structure functions. We notice a

Fig. 1. Log–log plot of the second-order structure function projections S(2)
jm (r)

versus the scale r , for sectors with a good signal-to-noise ratio. Sectors:
( j, m) = (0, 0), (+); ( j, m) = (2, 2), (×); ( j, m) = (4, 0), (empty square);
( j, m) = (4, 2), (*); ( j, m) = (6, 0), (◦); ( j, m) = (6, 2), (black square).
The statistical and numerical noise induced by the SO(3) decomposition is
estimated as the threshold where the j = 6 sector starts to deviate from
the monotonic decreasing behaviour ∼O(10−3). This figure is taken from
Ref. [27]. Data come from the integration of Navier–Stokes equation for an
incompressible flow, solved on a triply periodic box with 2563 grid points;
Taylor scale based Reynolds number is Reλ ∼ 100.

clear foliation in terms of the j index: sectors with the same
j but different ms behave very similarly. In Table 1 the best
power law fits for structure functions of orders p = 2, 4, 6
and sectors j = 2, 4, 6 are presented. It is important to
notice the presence of a hierarchical organization as assumed
in (4), which implies isotropy restoration at sufficiently small
scales, and also that there is no saturation for the exponents
as a function of the j value. Second, the measured exponents
in the sectors j = 4 and j = 6 are anomalous, i.e. they
differ from the dimensional estimate ξ

j
d (p) = ( j + p)/3.

This implies that isotropy is restored at small scales, but
subleading anisotropic fluctuations decay slower than predicted
by dimensional argument. Such difference with the dimensional
scaling has been exploited in Ref. [26] to explain the puzzling
results on gradients statistics mentioned in the introduction [6–
9]. Persistence of anisotropy can be understood of a combined
effect of anisotropy and intermittency, causing anisotropic
quantities to decay at high Reynolds at much slower rates that
what expected by dimensional predictions (see e.g. Ref. [51]).

Moreover, the comparison between new experimental and
numerical results [24,29,30] with the data presented in Table 1
suggests that anisotropic fluctuations are indeed universal,
i.e. scaling exponents for scales smaller then the typical shear
length do not depend on the particular mechanism used to
inject anisotropy. A different scenario may emerge if we look
at scaling properties for scales larger than the typical shear
length, L S , i.e. where the external forcing mechanism cannot
be neglected and therefore the foliation pattern is no longer
valid [30,46,47] (consider for example turbulent convection in
the Bolgiano regime). If foliation cannot be invoked, all sectors
are in principle entangled and scaling properties of isotropic
and anisotropic sectors may even become not universal. Further
work is needed in this direction, by comparing experiments
with different injection mechanisms to better highlight the
statistical behaviour at scales r / L S .
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Table 1
Scaling exponents in the isotropic and anisotropic sectors obtained in Refs. [27,35] by means of DNS

p ξ j=0(p) [ξ j=0
d (p)] ξ j=2(p) [ξ j=2

d (p)] ξ j=4(p) [ξ j=4
d (p)] ξ j=6(p) [ξ j=6

d (p)]
2 0.70 ± 0.2 [0.66] 1.15 ± 0.5 [1.33] 1.65 ± 0.5 [2.00] 3.2 ± 0.2 [2.66]
4 1.28 ± 0.4 [1.33] 1.56 ± 0.5 [2.00] 2.25 ± 0.1 [2.66] 3.1 ± 0.2 [3.33]
6 1.81 ± 0.6 [2.00] 2.07 ± 0.8 [2.33] 2.60 ± 0.1 [3.33] 3.3 ± 0.2 [4.00]

Notice that values for the anisotropic sector j = 2, at different order moment order p, are taken from the experiments [21,22]. For the values extracted from the
numerical simulation (columns j = 0, 4, 6), error bars are estimated on the oscillation of the local slopes. For the experimental data, error bars are given as the
mismatch between the two experiments. For all sectors, the dimensional estimates for the scaling exponents ξ

j
d (p) = (p + j)/3 are also reported in square brackets.

4. Discussions and open issues

An issue still much debated concerns scaling in purely
isotropic ensemble. Velocity tensors can be decomposed, inside
the j = 0 isotropic sector, in q-different eigenvectors,
corresponding for example to purely longitudinal, purely
transverse or mixed longitudinal and transverse fluctuations [5].
Purely longitudinal structure functions are given by S(p)

L (r) ≡
〈[δv(r) · r̂]p〉; purely transverse structure functions are:
S(p)

T (r) ≡ 〈[δv(rT )]p〉 (where rT · v = 0). As previously
discussed, arguments based on SO(3) decomposition do
not distinguish among scaling properties inside a given j
sector. If different scaling are observed among transverse and
longitudinal fluctuations within the j = 0 sector for statistically
isotropic flows, new ideas must be presented to explain them.
In Fig. 2, we show a comparison between logarithmic local
slopes of order p = 8 and p = 4 in the ESS sense [52,53],
of longitudinal and transverse structure functions [36,54]:

ζ(p, r) =
d log S(p)

L ,T (r)

d log S(2)
L ,T (r)

,

for data issuing from two different numerical simulations. This
is equal to the ratio of the scaling exponent of the p-th order
longitudinal (transverse) structure function to that of the second
order longitudinal (transverse) one. The two DNS are ideally
statistically isotropic since the forcing mechanism is such, and
the flow has periodic boundary conditions. Residual anisotropic
contribution due to the discretized nature of the numerical grid
and to statistical fluctuations in the velocity statistics induced
by the forcing, can be quantified and result to be very small
in the data shown here. Still, in the inertial range the two
datasets agree in showing a detectable difference between the
longitudinal and the transverse scaling exponents.

This discrepancy is an open theoretical issue, not explainable
using standard symmetry argument in homogeneous and
isotropic turbulence [5]. If this is an effect due to finite-
Reynolds number or a result which remains true even for most
intense turbulent realizations is yet not known (see also [39] for
a discussion on this point).

In recent years, many detailed observations about anisotropic
turbulence have been collected. These have also given a burst
for developing a systematic theory for disentangling isotropic
and anisotropic fluctuations in the case of statistically ho-
mogeneous turbulent flows. We have now observation of
statistical restoration of isotropy in passive transport and hydro-
dynamic turbulence. However, isotropy is recovered at a slower

Fig. 2. Top figure: Log-lin plot of the local slopes, in ESS, of the 8th-order
longitudinal (top lines) and transverse (bottom lines) structure functions versus
the scale r/η, as obtained from DNS data of incompressible turbulence from
Ref. [36], (DNS1: circles). These are compared with DNS data obtained
for a slightly compressible turbulent flow, as reported in Ref. [54], (DNS2:
squares). Bottom figure: The same but for the fourth-order longitudinal and
transverse structure functions. Note the good agreement of the two datasets
in the inertial range, r / η, where they display the same mismatch between
the longitudinal and transverse moments. The discrepancy between DNS1 and
DNS2 data close to the dissipative scale, r/η ∼ 1, is due to the fact that the two
simulations have different small-scale dissipation mechanisms. DNS1 data refer
to an incompressible turbulent flow, with normal viscous dissipation; numerical
resolution is 10243 grid points and Taylor scale-based Reynolds number is
Reλ ∼ 460. DNS2 data refer to a slightly compressible turbulent flow with
Mach number ∼ 0.3; numerical resolution is 18563 grid points, and estimated
Reynolds number is Reλ ∼ 600. In this run, there are two mechanisms of
kinetic energy dissipation. The most important is the transformation of kinetic
energy into heat via compressible effects; the second is a numerical smoothing
of steep velocity gradients tuned to filter out local numerical instabilities. The
latter is important only at scales of the order of the grid spacing.

rate than expected by dimensional argument, due to intermit-
tency. Also, there are evidences that anisotropic exponents, as
well as isotropic ones, are anomalous and universal. Numerical
and experimental results match with the analytical results ob-
tained in linear model for passive advection, where it has been
shown the existence of a hierarchy of exponents depending on
the anisotropy degree, as well as the intermittency and univer-
sality of these exponents.

Our understanding of anisotropic turbulence is, however,
based on the idea that boundary conditions and forcing
contribute only at large scales, and do not break rotational
invariance at scales in the inertial range. This might not be
always true, particularly if we consider the case of MHD
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turbulence, for which there are observations that anisotropy can
grow going at smaller and smaller scales [48]. Similarly, shear
flows in the production range or turbulent convection in the
Bolgiano regime may posses strong departure from the sort of
phenomenology observed within the foliation scheme.
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Abstract

The Robert–Sommeria–Miller equilibrium statistical mechanics predicts the final organization of two dimensional flows. This powerful theory
is difficult to handle practically, due to the complexity associated with an infinite number of constraints. Several alternative simpler variational
problems, based on Casimir’s or stream function functionals, have been considered recently. We establish the relations between all these variational
problems, justifying the use of simpler formulations.
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We consider the 2D Euler equations, on a domain D

∂ω

∂t
+ v·∇ω = 0; v = ez × ∇ψ; ω = ∆ψ (1)

where ω is the vorticity, v the velocity and ψ the stream
function (with ψ = 0 on ∂D, D is simply connected).

The equilibrium statistical mechanics of the 2D Euler
equation (the Robert–Sommeria–Miller (RSM) theory [1–3]),
assuming ergodicity, predicts the final organization of the flow,
on a coarse grained level (see [4] for a recent review of Onsager
ideas, that inspired the RSM theory, see also [5]). Besides its
elegance, this predictive theory is a very interesting and useful
scientific tool.

From a mathematical point of view, one has to solve
a microcanonical variational problem (MVP): maximizing a
mixing entropy S[ρ] = −

∫
D d2x

∫
dσρ log ρ, with constraints

on energy E and vorticity distribution γ

S(E0, γ ) = sup
{ρ|N [ρ]=1}

{S[ρ]|E [ω] = E0,

D [ρ] = γ } (MVP).

∗ Tel.: +33 04 92 96 73 07.
E-mail address: Freddy.Bouchet@inln.cnrs.fr.

ρ (x, σ ) is normalized (N [ρ] = 1, see (6)) and depends on
space x and vorticity σ variables.

The theoretical predictability of RSM theory requires the
knowledge of all conserved quantities. The infinite number of
Casimir’s functionals (this is equivalent to vorticity distribution
γ ) have then to be considered. This is a huge practical
limitation. When faced with real flows, physicists can then
either give physical arguments for a given type of distribution
γ (modeler approach) or ask whether there exists some
distribution γ with RSM equilibria close to the observed
flow (inverse problem approach). However, in any case the
complexity remains : the class of RSM equilibria is huge.

During recent years, authors have proposed alternative
approaches, which led to practical and/or mathematical
simplifications in the study of such equilibria. As a first
example, Ellis, Haven and Turkington [6] proposed to treat
the vorticity distribution canonically (in a canonical statistical
ensemble). From a physical point of view, a canonical ensemble
for the vorticity distribution would mean that the system
is in equilibrium with a bath providing a prior distribution
of vorticity. As such a bath does not exist, the physically
relevant ensemble remains the one based on the dynamics :
the microcanonical one. However, the Ellis–Haven–Turkington
approach is extremely interesting as it provides a drastic
mathematical and practical simplification to the problem of

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.029
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computing equilibrium states. A second example, largely
popularized by Chavanis [7,8], is the maximization of
generalized entropies. Both the prior distribution approach of
Ellis, Haven and Turkington or its generalized thermodynamics
interpretation by Chavanis lead to a second variational
problem: the maximization of Casimir’s functionals, with
energy constraint (CVP)

C(E0, s) = inf
ω

{
Cs[ω] =

∫

D
s(ω)d2x |E [ω] = E0

}
(CVP)

where Cs are Casimir’s functionals, and s a convex function
(Energy-Casimir functionals are used in classical works on
nonlinear stability of Euler stationary flows [9,10], and have
been used to show the nonlinear stability of some of RSM
equilibrium states [2,11]).

Another class of variational problems (SFVP), that involve
the stream function only (and not the vorticity), has been
considered in relation with the RSM theory

D (G) = inf
ψ

{∫

D
d2x

[
1
2

|∇ψ |2 + G (ψ)

]}
(SFVP).

Such (SFVP) functionals have been used to prove the existence
of solutions to the equation describing critical points of
(MVP) [11]. Interestingly, for the Quasi-geostrophic model,
in the limit of small Rossby deformation radius, such a
SFVP functional is similar to the van der Waals-Cahn
Hilliard model which describes phase coexistence in usual
thermodynamics [12,13]. This physical analogy has been
used to make precise predictions in order to model Jovian
vortices [12,14]. Moreover (SFVP) functionals are much more
regular than (CVP) functionals and thus also very interesting
for mathematical purposes.

When we prescribe appropriate relations between the
distribution function γ , the functions s and G, the three
previous variational problems have the same critical points.
This has been one of the motivations for their use in previous
works. However, a clear description of the relations between
the stability of these critical points is still missing (is a
(CVP) minimizer a RSM equilibria, or does a RSM equilibria
minimize (CVP)?). This has led to fuzzy discussions in recent
papers. Providing an answer is a very important theoretical
issue because, as explained previously, it will lead to deep
mathematical simplifications and will provide useful physical
analogies.

The aim of this short paper is to establish the relation
between these three variational problems. The result is that
any minimizer (global or local) of (SFVP) minimizes (CVP)
and that any minimizer of (CVP) is a RSM equilibria. The
opposite statements are wrong in general. For instance (CVP)
minimizers may not minimize (SFVP), but be only saddles.
Similarly, RSM equilibria may not minimize (CVP) but be only
saddles, even if no explicit example has yet been exhibited.

These results have several interesting consequences:

1. As the ensemble of (CVP) minimizers is a sub-ensemble
of the ensemble of RSM equilibria, one cannot claim
that (CVP) are more relevant for applications than

RSM equilibria (for a different point of view, see for
instance [15]).

2. The link between (CVP) and RSM equilibria provides a
further justification for studying (CVP).

3. Based on statistical mechanics arguments, when looking at
the Euler evolution on a coarse-grained level, it may be
natural to expect the RSM entropy to increase. There is
however no reason to expect such a property to be true for
the Casimir’s functional. As explained above, it may also
happen that entropy extrema are (CVP) saddles.

In order to simplify the discussion, we keep only the energy
constraint at the level of the Casimir functional (CVP). Adding
other constraints, such as the circulation [15], or even the
microscopic enstrophy, does not change the discussion.

We note that all the discussion can be easily generalized
to any system with long range interactions (self-gravitating
systems, Vlasov Poisson system) [16].

In the first section, we explain the link between a constrained
variational problem and its relaxed version. We explain that
any minimizer of the second is a minimizer of the first. In
the second section, we present the microcanonical variational
problem (MVP). We then introduce a mixed grand canonical
ensemble by relaxing the vorticity distribution constraint in the
RSM formalism. We prove in the third section that this mixed
ensemble is equivalent to (CVP). Similarly, in the last section
we prove that the (SFVP) variational problem is equivalent to a
relaxed version of (CVP).

1. Relations between constrained and relaxed variational
problems

We discuss briefly relations between a constrained
variational problem and its relaxed version. This situation
appears very often in statistical mechanics when passing
from one statistical ensemble to another. We assume that the
Lagrange’s multipliers rule applies. Let us consider the two
variational problems

G(C) = inf
x

{g(x)|c(x) = C} and

H(γ ) = inf
x

{
hγ (x) = g(x) − γ c(x)

}
.

G is the constrained variational problem and H is the relaxed
one, γ is the Lagrange multiplier (or the dual variable)
associated to C . We have the results:

1. H (γ ) = infC {G(C) − γ C} and G(C) ≥ supγ {γ C +
H(γ )}.

2. If xm is a minimizer of hγ then xm is also a minimizer of
G(C) with the constraint C = c(xm).

3. If xm is a minimizer of G(C), then it exists a value of γ

such that xm is a critical point of hγ , but xm may not be a
minimizer of hγ but just a saddle. Then xm is a minimizer
of hγ if and only if G(C) = supγ {H(γ ) + γ C} if and
only if G(C) coincides with the convex hull of G in C . In
this last situation the two variational problems are called
equivalent.
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Such results are classical. More detailed results in this context
may be found in [15]. Situations of ensemble inequivalence
have been classified, in relation with phase transitions [17].

Equality in point 1. follows from the remark that

H(γ ) = inf
C

{
inf
x

{g(x) − γ c(x)|c(x) = C}
}

= inf
C

{
inf
x

{g(x)|c(x) = C} − γ C
}

.

We remark that −H is the Legendre–Fenchel transform of
G. The inequality of point 1 is then a classical convex analysis
result. We have for any value of γ ,

G(C) = inf
x

{g(x)|c(x) = C}
= inf

x
{g(x) − γ c(x)|c(x) = C} + γ C

≥ inf
x

{g(x) − γ c(x)} + γ C = H(γ ) + γ C. (2)

This is a direct proof of the inequality of point 1.
Point 2: for xm a minimizer of hγ and x with c(x) = c(xm),

we have g(xm) = hγ (xm)+γ c(xm) ≤ hγ (x)+γ c(xm) = g(x).
This proves 2 First assertion of 3. is Lagrange’s multipliers rule.
Clearly, xm is a minimizer of hγ if and only if equality occurs in
(2). It is a classical result of convex analysis that the convex hull
of G is the Legendre–Fenchel transform of −H . This concludes
the proof of 3. Many examples where xm is a saddle may be
found in the literature (see [17], or examples in the context of
Euler equation in [18–20]).

2. RSM statistical mechanics

Euler’s equations (1) conserve the kinetic energy

E [ω] = 1
2

∫

D
d2x (∇ψ)2 = −1

2

∫

D
d2xωψ = E0 (3)

and for integrable s, Casimirs’ functional

Cs[ω] =
∫

D
d2xs(ω). (4)

Let us define A (σ ) the area of D with vorticity values lower
than σ , and γ (σ ) the vorticity distribution

γ (σ ) = 1
|D|

dA
dσ

with A (σ ) =
∫

D
d2xχ{ω(x)≤σ }, (5)

where χB is the characteristic function of the set B ⊂ D, and
|D| is the area of D. As Euler’s Eq. (1) is a transport equation
by an incompressible flow, γ (σ ) (or equivalently A (σ )) is
conserved by the dynamics. Conservation of distribution γ (σ )
and of all Casimir’s functionals (4) is equivalent.

2.1. RSM microcanonical equilibria (MVP)

We present the classical derivation [2] of the microcanonical
variational problem which describes RSM equilibria. Such
equilibria describe the most probable mixing of the vorticity
ω, constrained by the vorticity distribution (5) and energy (3)
(other conservation laws could be considered, for instance if
the domain D has symmetries).

We make a probabilistic description of the flow. We define
ρ (σ, x) the local probability that the microscopic vorticity ω

takes a value ω (x) = σ at position x. As ρ is a local probability,
it satisfies a local normalization

N [ρ] (x) ≡
∫ +∞

−∞
dσρ (σ, x) = 1. (6)

The known vorticity distribution (5) imposes

D [ρ] (σ ) ≡
∫

D
dxρ (σ, x) = γ (σ ) . (7)

We are interested on a locally averaged, coarse-grained
description of the flow. The averaged vorticity is

ω (x) =
∫ +∞

−∞
dσσρ (σ, x) . (8)

ψ = ∆ω̄ is the averaged stream function. The energy may be
expressed in terms of the averaged vorticity distribution as

E [ω] ≡ −1
2

∫

D
ψωdx + E0. (9)

The entropy is a measure of the number of microscopic
vorticity fields which are compatible with a distribution ρ. By
classical arguments, such a measure is given by the entropy

S [ρ] ≡ −
∫

D
d2x

∫ +∞

−∞
dσρ log ρ. (10)

The most probable mixing for the potential vorticity is thus
given by the probability ρeq which maximizes the entropy (10),
subject to the three constraints (6), (7) and (9). The equilibrium
entropy S(E0, γ ), the value of the constrained entropy maxima,
is then given by the microcanonical variational problem (MVP)
(see the introduction).

Using the Lagrange multipliers rule, there exists β and α (σ)
(the Lagrange parameters associated to the energy and vorticity
distribution, respectively) such that the critical points of (MVP)
satisfy

ρeq (x, σ ) = 1
zα

(
βψeq

) exp
[
σβψeq − α (σ)

]
, (11)

where

zα (u) =
∫ +∞

−∞
dσ exp [σu − α (σ)] and

fα (u) = d
du

log zα. (12)

We note that zα is positive, log zα is convex, and thus fα is
strictly increasing.

From (11), using (8), the equilibrium vorticity is

ωeq = fα
(
βψeq

)
or equivalently gα

(
ωeq

)
= βψeq , (13)

where gα is the inverse of fα . The actual equilibrium ωeq is
the minimizer of the entropy while satisfying the constraints,
between all critical points for any possible values of β and α.

We note that solutions to (13) are stationary flows.
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2.2. RSM constrained grand canonical ensemble

We consider the statistical equilibrium variational problem
(MVP), but we relax the vorticity distribution constraint. This
constrained (or mixed) grand canonical variational problem is

G(E0, α) = inf
{ρ|N [ρ]=1}

{Gα[ρ]|E [ω] = E0} , (14)

with the Gibbs potential functional defined as

Gα [ρ] ≡ −S [ρ] +
∫

D
d2x

∫ +∞

−∞
dσα (σ) ρ (x, σ ) .

In the following section, we prove that (14) is equivalent to
the constraint Casimir V.P. (CVP). Using the results of the first
section, relating constrained and relaxed variational problems,
we can thus conclude that minimizers of (CVP) are RSM
equilibria, but the converse is wrong in general, as stated in the
introduction.

3. Constrained Casimir (CVP) and grand canonical
ensembles are equivalent

3.1. Equivalence

We consider a Casimir’s functional (4), where s is assumed
to be convex. The critical points of the constrained Casimir
variational problem (CVP, see introduction) satisfy

ds
dω

(
ωeq

)
= βψeq , (15)

where β is the Lagrange’s multiplier for the energy. Solutions
to this equation are stationary states for the Euler equation.
Moreover, with suitable assumptions for the function s, such
flows are proved to be nonlinearly stable [9].

This last equation is very similar to the one satisfied by RSM
equilibria (13). Indeed let us define sα the Legendre–Fenchel
transform of log zα

sα (ω) = sup
u

{uω − log zα (u)} . (16)

Then sα is convex. Moreover, if log zα is differentiable, then
direct computations lead to

sα (ω) = ωgα (ω) − log (zα (gα (ω))) (17)

and to ds/dω = gα . The equilibrium relations (13) and (15)
with s = sα , are the same ones. It been observed in the past by
a number of authors (see for instance [2]).

Let us prove that (14) and (CVP) are equivalent if s =
sα . More precisely, we assume that Lagrange’s multipliers
rule applies, and we prove that minimizers of both variational
problems have the same ωeq and that C(E0, sα) = G(E0, α).

We consider a minimizer ρeq of (14) and ωeq =
∫

dσσρeq .
Then E

[
ωeq

]
= E0 and G(E0, α) = Gα

[
ρeq

]
. A

Lagrange multiplier β then exists such that ρeq satisfies
Eq. (11). Direct computation gives ρeq log ρeq + αρeq =

exp
(
βσψeq − α (σ)

) [
− log zα

(
βψeq

)
+ βσψeq

]
/zα

(
βψeq

)
.

Using ωeq =
∫

dσσρeq , (13) and (17), we obtain
∫ +∞

−∞
dσ

(
ρeq log ρeq + αρeq

)
= − log zα

(
βψeq

)
+ βψeqωeq

= sα

(
ωeq

)
. (18)

From the definitions of G and C, we obtain G(E0, α) =
Gα

[
ρeq

]
= Csα

[
ωeq

]
. Now, as C is an infimum, Csα

[
ωeq

]
≥

C(E0, sα) and

G(E0, α) ≥ C(E0, sα).

We now prove the opposite inequality. Let ωeq,2 be a
minimizer of (CVP) with s = sα . Then there exists β2 such
that (15) is satisfied with dsα/dω = gα . We then define
ρeq,2 ≡ exp

[
σβ2ψeq,2 − α (σ)

]
/zα

(
β2ψeq,2

)
. Following the

same computations as in (18), we conclude that Gα

[
ρeq,2

]
=

Csα
[
ωeq,2

]
= C(E0, sα). Then using that G is an infimum we

have G(E0, α) ≤ C(E0, sα) and thus

G(E0, α) = C(E0, sα).

Then Csα
[
ωeq

]
= C(E0, sα) = G(E0, α) = Gα

[
ρeq,2

]
. Thus

ωeq and ρeq,2 are minimizers of (CVP) and of (14) respectively.
But as such minimizers are in general not unique, ωeq may be
different from ωeq,2 and β may be different from β2.

A formal, but very instructive, alternative way to obtain
equivalence between (CVP) and (14) is to note that

Csα [ω] = inf
{ρ|N [ρ]=1}

{
Gα [ρ] |

∫ +∞

−∞
dσσρ = ω(x)

}
. (19)

We do not detail the computation. A proof of this result is easy
as we minimize a convex functional with linear constraints.
Then, from (14), using (19), we obtain

G(E0, α)

= inf
ω

{
inf

{ρ|N [ρ]=1}

{
Gα[ρ]|

∫
dσσρ = ω(x)

}
|E [ω] = E0

}

= C(E0, sα).

3.2. Second variations and local stability equivalence

In the previous section, we have proved that the constrained
Casimir (CVP) and mixed ensemble (14) variational problems
are equivalent, for global minimization. Does this equivalence
also hold for local minima ? We now prove that the reply is
positive.

We say that a critical point ρeq of the constrained mixed
ensemble variational problem (14) is locally stable iff the
second variations δ2Jα , of the associated free energy Jα =
Gα + βE , are positive for perturbations δρ that respect the
linearized energy constraints

∫
D ψeqδω = 0, where δω =∫

dσσδρ. Similarly, the second variations δ2Ds of the free
energy Ds = Cs + βE define the local stability of the Casimir
maximization.

By a direct computation, we have δ2Gα [δρ] = −δ2Sα [δρ] =∫
D dx

∫
dσ 1

ρeq
(δρ)2 and δ2Csα [δω] =

∫
D dxs′′

α

(
ωeq

)
(δω)2.
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We decompose any δρ as

δρ = δρ‖ + δρ⊥ with δρ‖

= δω

f ′
α

(−z′
α + σ zα

z2
α

)
exp

[
σβψeq − α (σ)

]
.

In this expression, the functions f ′
α , zα and z′

α are evaluated at
the point βψeq . Using the definition of fα and of zα (12), and
the fact that f ′

α =
(
−z′2

α + zαz′′
α

)
/z2

α we easily verify that the
above expression is consistent with the relation δω =

∫
dσσδρ.

Moreover by lengthy but straightforward computations,
we verify that

∫
dσδρ‖δρ⊥/ρeq = 0. In this sense, the

decomposition δρ = δρ‖+δρ⊥ distinguishes the variations of ρ

that are normal to equilibrium relation (11) from the tangential
ones.

From s′
α = gα and using that (gα)−1 = fα , we obtain

s′′
α =

(
f ′
α

)−1. Using this relation we obtain
∫

dσ
(
δρ‖)2

/ρeq =
s′′
α

(
ωeq

)
(δω)2. We thus conclude

δ2Jα [δρ] =
∫

D
d2x

∫ +∞

−∞
dσ

1
ρeq

(
δρ⊥

)2
+ δ2Dsα [δω] . (20)

To the best of our knowledge, this equality has never been
derived before in this context, see [21] in plasma physics
(information provided by one of the referee). It may be very
useful as second variations are involved in many stability
discussions.

From equality (20), it is obvious that the second variations
of Jα are positive iff the second variations of Dsα are
positive. If we also note that perturbations which respect the
linearized energy constraint are the same for both functionals,
we conclude that the local stabilities of the two variational
problems are equivalent.

4. Relation between RSM equilibria and stream function
functionals

In this section, we establish the relation between stream
function functionals and RSM equilibria. For this we consider
the constrained Casimir variational problem (CVP). However,
we relax the energy constraint. We thus consider the free energy
associated to CVP

F(β, s) = inf
ω

{Fs[ω] = Cs[ω] + βE [ω]} . (21)

This is an Energy-Casimir functional [9]. As previously
explained, minima of this relaxed variational problem are also
minimum (CVP). It is thus also a RSM equilibria.

Let G̃ be the Legendre–Fenchel transform of the function
s: G̃(z) = supy {zy − s(y)}. G̃ is thus convex. Let us define
Gβ (ψ) = G̃ (βψ) /β. Gβ is thus convex for positive β and
concave for negative β. In the following, we will show that the
variational problem (21) is equivalent to the SFVP

D
(
Gβ

)
= inf

ψ

{
DGβ [ψ] =

∫

D
d2x

[
|∇ψ |2 + Gβ (ψ)

]}
.

More precisely in the following discussion we prove that

1. F (β, s) = −β D(Gβ).

2. If ψeq is a local minimizer ofDGβ then it is a local minimizer
of Fs .

3. If we assume that a global minimizer of DGβ exists, then
ωeq = ∆ψeq is a global minimizer of Fs if and only if ψeq
is a global minimizer of DGβ .

When DGβ [ψ] and Fs[ω] are strictly convex, both variational
problems have a single minimizer. As the equations for the
critical points of the variational problems coincide, points
2. and 3. above are thus easily verified [11]. Conditions
for DGβ [ψ] and Fs[ω] to be strictly convex are given, for
instance in [11], or [9] for Fs[ω]. This is obvious for positive
temperature β > 0, as Gβ is convex in this case. For negative
temperature, Gβ is concave. However, if we assume that G̃ ′′ is
bounded 0 ≤ G̃ ′′ (z) ≤ g, then it can be proven that DGβ [ψ] is
strictly convex for βc ≤ β ≤ 0, with βc ≤ λ1/g, where λ1 is the
opposite of the first eigenvalue of the Laplacian over the domain
D (this follows from the Poincaré inequality, see [9,11]). (G̃ ′′ is
actually bounded, for instance if the vorticity distribution γ (σ )
(5) has a compact support, or for the point vortex model). In the
following we prove that results 1., 2. and 3. are valid also when
DGβ [ψ] and Fs[ω] are no longer convex.

In order to prove these results for negative temperature β <

0, it is sufficient to prove:

(a) ωc = ∆ψc is a critical points of Fs if and only if ψc is a
critical point of DG , and then Fs [ωc] = −βDGβ [ψc].

(b) For any ω = ∆ψ , Fs [ω] ≥ −βDGβ [ψ].

Point (a) has been noticed in [13], and is actually sufficient to
prove points 1 and 2. The inequality (b) [22] proves that DGβ

is a support functional to Fs [22]. Let us prove points (a) and
(b). First, the critical points ofFs andDGβ verify s′(ωc) = βψc
and ωc = G ′ (βψc). Now using that G is the Legendre–Fenchel
transform of s, if s is differentiable, we have

(
s′)−1 = G ′. Thus

the critical points of both functionals are the same.
Let us prove point (b)

Fs[ω] = −
∫

D
d2x [−s (ω) + βωψ] +

∫

D
d2x

β

2
ωψ

≥
∫

D
d2x

[
−G(βψ) + β

2
ωψ

]
= −βDGβ [ψ]

where we have used the definition of G, as the Legendre–Fenchel
transform of s, in order to prove the inequality. We now con-
clude the proof of point (a). A direct computation gives G(x) =
x

(
s′)−1

(x)− s
[(

s′)−1
(x)

]
. Thus G(βψc) = βψcωc − s (ωc).

This proves that in the preceding inequality, an equality actually
occurs for the critical points: Fs[ωc] = −βDGβ [ψc].

We have thus established the relations between RSM
equilibria and the simpler Casimirs (CVP) and stream function
(SFVP) variational problems.
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Abstract

Solutions to the Euler equations on a 3D domain D3 (typically the unit cube or the periodic unit cube) can be formally obtained by minimizing
the action of an incompressible fluid moving inside D3 between two given configurations. When these two configurations are very close to each
other, classical solutions do exist, as shown by Ebin and Marsden. However, Shnirelman found a class of data (essentially 2D in the sense that
they trivially depend on the vertical coordinate) for which there cannot be any classical minimizer. For such data, generalized solutions can be
shown to exist, as a substitute for classical solutions. These generalized solutions have unusual features that look highly unphysical (in particular,
different fluid parcels can cross at the same point and at the same time), but the pressure field, which does not depend on the vertical coordinate,
is well and uniquely defined. In the present paper, we show that these generalized solutions are actually quite conventional in the sense they obey,
up to a suitable change of variable, a well-known variant (widely used for geophysical flows) of the 3D Euler equations, for which the vertical
acceleration is neglected according to the so-called hydrostatic approximation.
c© 2008 Elsevier B.V. All rights reserved.
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1. The Euler equations

A fluid moving inside a 3D compact domain D3, such as
the unit cube or the periodic unit cube, can be described by a
time-dependent family t → g(t) of orientation preserving dif-
feomorphisms of D3 giving, at each time t , the position g(t, a)

of each fluid parcel of initial position g(0, a) = a in D3. A fluid
is incompressible if and only if, for each t , the map

a ∈ D3 → g(t, a) ∈ D3

has a unit Jacobian determinant |∂ag(t, a)| = 1 or, equivalently,
∫

D3

f (g(t, a))da =
∫

D3

f (a)da, (1)

for all continuous function f . The fluid obeys the Euler equa-
tions if and only if g satisfies:

∗ Corresponding address: CNRS, FR 2800 Wolfgang Döblin, Université de
Nice, France.

E-mail address: brenier@math.unice.fr.
URL: http://math1.unice.fr/∼brenier/.

∂2
t t g(t, a) = −(∇ p)(t, g(t, a)), (2)

for some time-dependent scalar field p(t, x) (called the pres-
sure field), that plays the role of a Lagrange multiplier for the
incompressibility condition. Introducing the Eulerian velocity
field u(t, x) ∈ R3, defined by:

u(t, g(t, a)) = ∂t g(t, a), (3)

we recover from (2) the more familiar Euler equations written
in “Eulerian coordinates” [9]:

∂t u + (u · ∇)u + ∇ p = 0, (4)

together with the divergence free condition ∇ · u = 0. The
mathematical analysis of this system of non-linear PDEs is one
of the most important and challenging problem in modern anal-
ysis (see [10–12] for discussions). As Euler said: “s’il reste des
difficultés, ce ne sera pas du côté du méchanique, mais unique-
ment du côté de l’analytique” [9] (first page of the original
edition).
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2. The Least Action principle

The Euler equations, written in “Lagrangian coordinates”
(2), have a variational interpretation. For smooth g and p, they
exactly means that, for each time interval [t0, t1], the curve
t → g(t) makes stationary the Action
∫ t1

t0

∫

D3

1
2
|∂t g(t, a)|2 da dt, (5)

among all smooth curves valued in SDiff (D3), the class of
volume and orientation preserving diffeomorphisms of D3, that
coincide with g at t = t0 and t = t1. This can be seen
immediately by varying with respect to both g and p the
Lagrangian:
∫ t1

t0

∫

D3

(
1
2
|∂t g(t, a)|2 − p(t, g(t, a)) + p(t, a)

)
da dt,

that takes into account the incompressibility constraint (1)
(obtained by varying p only). In addition, the curve is not only
a critical point of the Action but also a minimizer if the time
interval is small enough. If D3 is a convex domain, a sufficient
condition for that is:

(t1 − t0)2
∑

i, j=1,3

∂2 p(t, x)

∂xi∂x j
ξiξ j ≤ π2|ξ |2, (6)

for all t ∈ [t0, t1], x ∈ D3 and ξ ∈ R3. (This can be shown
using the 1D Poincaré inequality.) Thus the Euler equations
are governed by the Least Action Principle, as guessed from
the very beginning by Euler himself ([9] p. 287 of the original
edition): “Cette belle propriété convient admirablement avec
le beau principe de la moindre action dont nous devons
la découverte à notre Illustre Président, M. de Maupertuis.”
Through the Least Action Principle, a remarkable geometric
interpretation of the Euler equations has been emphasized by
Arnold (see [2,3] for more details): the Euler equations are
just the equations of geodesics curves (with constant speed)
along the group of all orientation and volume preserving
diffeomorphisms SDiff (D3) for the metric induced by the
embedding of the group in the space L2 of all square integrable
maps from D3 into R3.

3. The Action Minimization problem

The Least Action Principe suggests a possible (and of course
not unique) way to get solutions to the Euler equations. We
minimize (5), where t0 < t1 are fixed and g(t0) = h0,
g(t1) = h are prescribed in SDiff (D3). Due to the homogeneity
of the Euler equations, we can normalize t0 = 0, t1 = 1
and assume h0 to be the identity map, so that the only datum
is h ∈ SDiff (D3). The Action Minimization problem has
indeed smooth solutions (which do satisfy the Euler equations)
provided that h is sufficiently close to the identity in some
suitable norm (typically for the Sobolev norm Hs(D3) with
s > 5/2). This has been shown by Ebin and Marsden in [8].
However, in the large, as shown by Shnirelman [15], in the case
when D3 is the unit cube [0, 1]3, there are data h for which the

existence of a smooth minimizer is impossible. Shnirelman’s
data are of form:

h(a) = (H(a1, a2), a3), a = (a1, a2, a3) ∈ [0, 1]3, (7)

where H belongs to SDiff ([0, 1]2), the set of all area and
orientation preserving diffeomorphisms of the unit square
[0, 1]2.

They are chosen [15] so that whenever a minimizer g exists,
it must have a non-trivial vertical component (i.e. g3(t, a) = a3
is impossible). (In other words, the Action can be reduced
by using some vertical motion between t = 0 and t = 1.
As a matter of fact, this happens for a lot of maps H , since
purely horizontal motions are very rigid in comparison with
fully 3D motions.) Then, we easily see that for such data
H classical minimizers cannot exist. Indeed, any admissible
solution g(t, a) with non-trivial vertical component, as well as
the corresponding Eulerian velocity field u(t, x) defined by (3),
can be rescaled in its vertical component by a positive integer
factor n which leads to a strictly lower value of the Action.
More precisely, let us define the rescaled space coordinate:

x (n) = (x1, x2, nx3 modulo 1), x = (x1, x2, x3),

the rescaled velocity:

u(n)(t, x) = (u1(t, x (n)), u2(t, x (n)), n−1u3(t, x (n))),

and recover the corresponding g(n) through (3). The remarkable
fact is that g(n) is still admissible, with unit Jacobian
determinant (because u(n) is still divergence free) and
unchanged end point values:

g(n)(0, a) = g(0, a) = a,

g(n)(1, a) = g(1, a) = h(a) = (H(a1, a2), a3)

(because h depends trivially on the vertical coordinate), but has
a strictly reduced Action, given by:
∫

1
2
{∂t g1(t, a)2 + ∂t g2(t, a)2 + n−2∂t g3(t, a)2} da dt.

Since there is no end to this rescaling process, we conclude
that there cannot be a minimizer, at least in a classical sense.
(Strictly speaking, there is a flaw in the previous reasoning,
since the renormalized flow may loose the smoothness of
the original flow. This can be cured in two ways. The first
one followed by Shnirelman amounts to slightly mollify the
renormalized flow. The second one is to do the construction on
the periodic unit cube, in which case there is no mollification to
do.)

4. The hydrostatic approximation

In the case of Shnirelman’s data, when we try to minimize
the Action, we cannot get a classical solution because of the
degeneracy of the data in the vertical coordinate, as explained in
the previous section. It is therefore natural to minimize instead
the renormalized Action obtained by dropping the vertical
component of the velocity in definition (5). Then, we expect
to get, at least formally, generalized solutions that substitute
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for the missing classical solutions. More precisely, we are now
looking for a solution t → g(t) still valued in SDiff ([0, 1]3),
with g(0, a) = a, g(1, a) = h(a) = (H(a1, a2), a3), that
minimizes:
∫ 1

0

∫

[0,1]3
{∂t g1(t, a)2 + ∂t g2(t, a)2} da dt, (8)

where the vertical component of the velocity has been dropped.
The corresponding Lagrangian now reads:
∫ {

1
2
(∂t g1(t, a)2 + ∂t g2(t, a)2)

− p(t, g(t, a)) + p(t, a)

}
da dt.

The formal optimality equations are just:

∂2
t t gi (t, a) + (∂i p)(t, g(t, a)) = 0, i = 1, 2, (9)

(∂3 p)(t, g(t, a)) = 0,

in addition to the incompressibility condition (1). Written in
Eulerian coordinates, with the velocity field u given by (3),
these equations

∂t ui (t, a) + (u · ∇)ui + ∂i p = 0, i = 1, 2, (10)

∂3 p = 0, ∇ · u = 0, (11)

are nothing but the Euler equations where the vertical
acceleration is neglected under the so-called “hydrostatic
approximation” which is widely used for the modelling of
geophysical flows [14]. In particular, the pressure field does not
depend on the vertical coordinate.

5. Generalized flows and generalized Euler equations

Although the motion described by the hydrostatic approxi-
mation (10) to the Euler equations is fully 3D, the vertical com-
ponent is actually slaved by the horizontal one. Indeed, we may
completely ignore g3 and still find a self-consistent set of equa-
tions for p and the horizontal components (g1, g2). To do that,
we keep (9), with the boundary conditions at t = 0 and t = 1:

(g1, g2)(t = 0, a1, a2, a3) = (a1, a2), (12)

(g1, g2)(t = 1, a1, a2, a3) = H(a1, a2),

corresponding to a Shnirelman data, and we use the
incompressibility condition (1) only for continuous functions
f (a1, a2) that do not depend on a3, which leads to:
∫

[0,1]3
f ((g1, g2)(t, a1, a2, a3))da1da2da3

=
∫

[0,1]2
f (a1, a2)da1da2. (13)

At this point, the full incompressibility condition (1) is
not needed to get (p, g1, g2) but can be used a posteriori
to recover the vertical component g3 from the horizontal
component (g1, g2). Notice the particular role of a3 in these
equations, which is just an extra parameter without geometrical

meaning, and that we may decide now to call ω (just as
a random variable valued in a probability space Ω ). So the
horizontal component of the 3D Euler flow obtained through the
hydrostatic approximation, G = (g1, g2), can also be seen as a
non-classical 2D flow on the horizontal domain D = [0, 1]2.
This flow does not look conventional at all, since each 2D fluid
parcel initially located at A = (a1, a2) ∈ D may split and
follow different paths (that are allowed to cross each other!),
each of them being labelled by ω ∈ Ω :

t ∈ [0, 1] → G(t, A, ω) ∈ D, (14)

with time boundary conditions:

G(t = 0, A, ω) = A, G(t = 1, A, ω) = H(A). (15)

This unusual description of a 2D flow becomes natural once
it is understood that G actually is the horizontal projection
of a conventional 3D incompressible flow. Indeed, each 2D
fluid parcel initially located at A ∈ D actually corresponds
to an entire vertical column of 3D fluid parcels. This column
ends up at time t = 1 as the vertical column above H(A).
However, at each intermediary time 0 < t < 1, the 3D fluid
parcels initially above A do not necessarily form a vertical
column but rather a curve in [0, 1]3 with horizontal projection
given by ω → G(t, A, ω). So the strange behaviour of the 2D
“generalized” flow described by G comes naturally from the
projection from 3 to 2 dimensions. Also notice that condition
(13) can be understood as a generalized incompressibility
condition, meaning that the density of the fluid parcels stays
uniform on D:
∫

D×Ω
f (G(t, A, ω))dA dω =

∫

D
f (A)dA, (16)

for all function f continuous on D. In this language, the
optimality condition, say (9), becomes a generalized version of
the 2D Euler equation:

∂2
t t G(t, A, ω) + (∇ p)(t, G(t, A, ω)) = 0, (17)

where p = p(t, x) is a time-dependent function defined on D.
Let us finally observe that the renormalized Action (8) can be
easily written as:

1
2

∫ 1

0
dt

∫

D×Ω
|∂t G(t, A, ω)|2dA dω. (18)

So, in this section, we have derived from the hydrostatic
approximation of the Euler equations (that comes up in a natural
way to deal with Shnirelman’s data for the Action Minimization
problem), a generalized framework (14) and (16)–(18), that
can be used outside of the hydrostatic context and still makes
sense for a general d-dimensional domain D, not only the
unit square [0, 1]2, and without referring to any additional
dimension. In particular, D can be taken to be D3 itself. In
addition, time boundary data can be taken in a much more
general class than Shnirelman’s data as in (15). As a matter
of fact, G(t = 0, A, ω) ∈ D and G(t = 1, A, ω) ∈ D can
be chosen arbitrarily provided they are compatible with the
generalized incompressibility condition (16). In particular, we
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Fig. 1. Approximate geodesic for map 1.

can consider boundary data of type (15), where H is chosen
in the class M(D) of all measure preserving map of D, which
means that H is just a (Borel) measurable maps that satisfy
∫

D
f (H(A))dA =

∫

D
f (A)dA, (19)

for all function f continuous on D.

6. Mathematical analysis of the Action Minimization
problem

So far, we have just made a formal analysis of the Action
Minimization problem for Shnirelman’s data (7) leading in
a natural way to the hydrostatic approximation to the Euler
equations, that can rephrased in terms of 2D generalized
incompressible flows and generalized 2D Euler equations. A
rigorous justification of this formal analysis has been provided
in [4,5,16,6,1]. Let us summarize the results obtained in this
series of papers. The results are stated either for D = T d or
D = [0, 1]d and d ≥ 1.

(1) For all generalized data G(0, A, ω), G(1, A, ω), there
is at least one generalized incompressible flow G(t, A, ω) that
minimizes the generalized Action (18) [4,1].

(2) There is a unique pressure gradient ∇ p(t, x) depending
only on the data such that the generalized Euler equation (17)
is satisfied by G (which is not necessarily unique), in a suitable
sense [5]. More precisely, an Eulerian version of the generalized
Euler equations has been established in [6]. More recently,

Ambrosio and Figalli [1] have shown that (almost surely) each
individual trajectories, t → γ (t) = G(t, A, ω), A and ω being
fixed, is a minimizer of the localized Action
∫ 1

0

(
1
2
|γ ′(t)|2 − p(t, γ (t))

)
dt, (20)

γ being fixed at time t = 0 and t = 1. (A key point being
that the known regularity of p is sufficient to give sense to this
localized Least Action principle.)

(3) In the case d = 3, with “deterministic” time boundary
data

G(t = 0, A, ω) = A, G(t = 1, A, ω) = H(A),

where H is a given in M(D) (the class of all measure
preserving maps of D, which includes Shnirelman’s data),
for each generalized solution G and each ε > 0, there is a
classical incompressible flow g(t, A) such that (i) g(0, A) = A,
(ii) g(1, A) − H(A) has an L2 norm less than ε, (iii) the
classical Action of g (5) differs from the generalized Action
of G (18) by less than ε. Moreover, the acceleration field
∂2

t t g◦g−1 approaches −∇ p in the distributional sense as ε tends
to zero.

The last statement shows that generalized solutions can be
approximated by nearly classical solutions to the 3D Euler
solutions. In our opinion, all these results provide a full
legitimacy to the generalized framework in the mathematical
study of the Action Minimization problem for general data H
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Fig. 2. Approximate geodesic for map 2.

given in M([0, 1]3). In addition, as discussed in the previous
sections, in the case of Shnirelman’s data, generalized solutions
have a clear physical interpretation in terms of hydrostatic
approximation to the Euler equations.

7. A numerical scheme

It has been known for a long while that permutations are suit-
able to approximate volume preserving maps. (See [13,15,7],
for example.) This suggests the following strategy to compute
approximate solutions to the Action Minimization problem.
Hereafter, the computational domain will be D = [0, 1]d (and
more specifically d = 1 for actual computations). First, we fix
two integers N and M . Then, we introduce a uniform time step
1/M and we split the unit cube D (up to a set of zero Lebesgue
measure) into N d subcubes, denoted by DN ,i , for i = 1, N d .
The center of mass of each DN ,i will be denoted by xN ,i . To
each permutation σ of the N d first integer, we associate the
map H that rigidly moves the subcube DN ,i to the subcube
DN ,σ (i), for each i = 1, N d . This map is measure-preserving
in the sense of definition (19). We call P(D) the collection of
all “permutation maps” obtained this way, for all integers N .
The class M(D) of all measure preserving maps of D in the
sense of definition (19) can be shown to be the L2 completion
of P(D) for all d ≥ 1. When d ≥ 2, M(D) is also the L2

completion of SDiff (D). (See [13,15,7].) To each sequence of
M + 1 permutations σ0, . . . , σM , we may associate a “discrete
flow” made of the M + 1 corresponding permutation maps and

define a “discrete Action” defined by:
∑

k=1,M

∑

i=1,N d

|xN ,σm (i) − xN ,σm−1(i)|2. (21)

The discrete Action Minimization problem amounts to fix the
initial and final permutations and to minimize the discrete
Action. Typically the initial permutation is just σ0(i) = i and
the final one is chosen so that the corresponding permutation
map is an accurate approximation in L2 of a given measure-
preserving map H ∈ M(D).

8. Numerical results

Let us consider three maps H of the unit cube D = [0, 1]3

of the following form:

H(a1, a2, a3) = (T (a1), a2, a3) (22)

with, successively,

T (s) = min(2s, 2 − 2s), s ∈ [0, 1],
T (s) = s + 1

2
mod 1, s ∈ [0, 1],

T (s) = 1 − s, s ∈ [0, 1].
These three maps H clearly belong to the class of measure
preserving maps M(D) but certainly not to the class of
diffeomorphisms SDiff (D). However, as mentioned earlier,
they do belong to the L2closure of SDiff (D) and we know
that the corresponding generalized solution for the generalized
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Fig. 3. Approximate geodesic for map 3.

Fig. 4. Trajectories for map 1.

Action Minimization problem describes the limit of nearly
solutions to the 3D Euler equations. Therefore, looking for
approximate numerical solutions is not meaningless. Since the
corresponding T actually belong to M([0, 1]), the discrete
minimization problem can be reduced to one space dimension.
Thus, the minimization can be performed very efficiently
by using Gauss–Seidel iterations and sorting algorithms. To
approximate the first map T , we use the permutation σ(i) = 2i ,
for i between 1 and N/2, σ(i) = 2N − 2i + 1, for i between
1 + N/2 and N . For the second one, σ(i) = N/2 + i , for i

Fig. 5. Trajectories for map 2.

between 1 and N/2, σ(i) = i − N/2, for i between 1 + N/2
and N . For the third one, σ(i) = N − i + 1, for i between 1
and N − 2, with σ(N ) = 2 and σ(N − 1) = 1. (These two
last values are introduced in order to break the symmetry of the
algorithm.) Some numerical results are shown at the end of the
paper. First, we show (Figs. 1–3), for the three different maps,
the successive permutation maps computed at t = 0, t = 1/8,
t = 1/4, t = 3/8, t = 1/2, t = 5/8, t = 3/4, t = 7/8
and t = 1. The value of M is 16 and N = 400, N = 100 and
N = 4000 respectively. Next, we draw (Figs. 4–6), for the three
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Fig. 6. Selected trajectories for map 3.

different maps, a collection of trajectories (the time axis being
vertical, and the space axis being horizontal), obtained by linear
interpolation of the discrete trajectories m → xN ,σm−1(i), for a
fixed proportion of grid points i = 1, . . . , N . These pictures
give a good feeling of the missing dimension(s) encoded by the
1D computation. In particular, for the first map, we see that the
particles issued from the right part [1/2, 1] of the unit interval
manage to cover the whole unit interval in reverse order through
a kind of vortical flow, meanwhile the particles coming from
the left also cover the whole interval, but in an order-preserving
way through a potential flow. For the second map, we see a
kind of two-phase flow, without vorticity. Concerning the third
map, for the sake of clarity, we draw trajectories only for the
particles initially located in a neighborhood of x = 3/4. We see
that they form a bundle of trajectories very close at t = 0, then
diverging and meeting again in a neighborhood of x = 1/4 at
t = 1. At the moment, there is no rigorous convergence analysis
of the numerical method. However, for the third map, the exact
unique generalized solution is known (see [4]):

p(x) = π2

2

(
x − 1

2

)2

, x ∈ [0, 1],

G(t, A, ω) = 1/2 + (A − 1/2) cos(π t) + v(A, ω) sin(π t),

v(A, ω) = π

√
A(1 − A)

2
cos(πω),

for t, A, ω ∈ [0, 1]. We can see that the solution is correctly
recovered by the computation. It is striking that a good
resolution requires a much more refined mesh in space (N =
1000) than in time (M = 16).
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Abstract

In [A. Shnirelman, On the non-uniqueness of weak solutions of Euler equations, Comm. Pure Appl. Math. L (1997) 1261–1286], Shnirelman
described the construction of a weak solution of the 2D incompressible Euler equations on a torus, with compact support in time. In this article,
we use computational tools to obtain an explicit approximation of Shnirelman’s flow, with the objective of visualizing its structure. In particular,
the construction was based on the use of the 2D inverse energy cascade, and we obtain an illustration on how the inverse cascade is taking place.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.10.A-; 47.15.ki

Keywords: Mathematical formulations; Inviscid flows with vorticity; Finite difference methods

1. Introduction

In [4], Shnirelman constructed a weak solution of the
incompressible 2D Euler equations on the torus T2 which is
compactly supported in time. This example is fundamental
as it shows that the usual notion of weak solution for
the incompressible Euler equations is not strong enough to
guarantee uniqueness. Although this is not the first such
example, see [3], Shnirelman’s construction is both easier and
more elementary. The construction is roughly based on the idea
of 2D inverse energy cascade. Recently Shnirelman’s example
was included in a more general abstract construction, see [1],
but it is still interesting to understand its specific structure.

Shnirelman’s construction proceeds in an infinite sequence
of approximating steps, but exploring the first few (three, to
be exact), by computational means, can give us a fairly precise
idea of the basic structure of the resulting limiting solution. A
key ingredient of Shnirelman’s construction is the Kolmogorov
flow, an oscillatory, highly unstable solution which exhibits
spontaneous appearance of oscillation at a large scale from
oscillation at a small scale.

To construct the approximate solution of the Euler equations
we used the Levy–Tadmor second order central difference

∗ Corresponding address: UNICAMP, Sergio Buarque de Holanda, 651,
13083-859 Campinas, Sao Paulo, Brazil. Tel.: +55 16 81166182.

E-mail address: annebronzi@ime.unicamp.br (A.C. Bronzi).

scheme in the vorticity formulation of the Euler equations,
see [2], together with spectral inversion of the Laplacian.

In Sections 2 and 3 we present the computational
approximation of Shnirelman’s construction and in Section 4
we use our simulation in order to visualize the inverse cascade.

2. The problem

Consider the 2D incompressible Euler equations on the torus
T2,
{
∂t u + (u · ∇)u + ∇ p = 0
div u = 0

here, u = u(x, t) and p = p(x, t) denote, respectively, the
velocity field and the pressure, x ∈ T2 and t ∈ R.

We define a weak solution as follows:

Definition 1. A vector field u = u(x, t) ∈ L2
loc(T2 × R, R2)

is a weak solution of the incompressible Euler equations with
forcing f ∈ D′ if, for any test function ϕ = ϕ(x, t) ∈
C∞

c (T2 × R, R) and v = v(x, t) ∈ C∞
c (T2 × R, R2) such that

div v = 0, we have:
∫ ∫

−
[

u · ∂u
∂t

+ (u ⊗ u) · ∇v

]
dxdt =

∫ ∫
( f · v)dxdt

and
∫ ∫

−(u · ∇ϕ)dxdt = 0.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.013
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Fig. 1. Energy E1(t) versus time t for the velocity field u1 at the first stage of
the iteration.

The construction in [4] leads to the following result:

Theorem 1 (Shnirelman, 1997). There exists a weak solution
of the Euler equations, u = u(x, t) ∈ L2(T2 ×R, R2) such that
u(x, t) ≡ 0, |t | > C, for some constant C > 0.

In particular, this theorem implies non-uniqueness of weak
solutions of the incompressible 2D Euler equations, in the sense
of Definition 1.

3. The construction

The construction is based on the following fact: if {ui }i is a
weak solution of 2D Euler with forcing { fi }i such that fi ⇀ 0
in D′ and ui → u strongly in L2 then u is a weak solution of
2D Euler without forcing.

We construct a sequence {ui }i such that ui is a weak solution
of 2D incompressible Euler with forcing fi , fi ⇀ 0 in D′ and
ui → u strongly in L2. In order to construct this sequence we
start with an arbitrary non-zero smooth solution of the Euler
equations, namely u0(x, t). We define the first term of the
sequence {ui }i by

u1(x, t) =
{

u0(x, t), |t | < 1
0, |t | > 1.

In our numerical example we use

u0(x, t) = u(x, t)

‖u‖2
L2

,

where

u(x, t) =






(
tanh

(
15
π

(
y − π

2

))
, 0.05 sin(x)

)
, y ≤ π

(
tanh

(
15
π

(
3π

2
− y

))
, 0.05 sin(x)

)
, y > π.

Fig. 1 describes the numerically computed energy of u1 as a
function of time.

The construction of ui+1(x, t) from ui (x, t) is made in the
following way: If ui (x, t) is a smooth solution of the Euler
equations in the interval ti, j < t < ti, j+1, discontinuous at

Fig. 2. Energy E2(t) versus time t for the velocity field u2 at the second stage
of the iteration.

t = ti, j , j = 1, 2, . . . , Ji , and such that ui (x, t) = 0 for
t < ti,1 and t > ti,Ji then ui (x, t) is a weak solution of the
Euler equations with forcing

fi (x, t) =
Ji∑

j=1

fi, j (x)δ(t − ti, j ).

To construct the vector field ui+1(x, t) we insert gaps of size
Ti by translating the solution ui on the interval (ti, j , ti, j+1)

to the interval (ti, j + jTi , ti, j+1 + jTi ). We will further
subdivide the Ti -sized gaps into a finite number of subintervals
in which ui+1(x, t) will be a smooth solution of the Euler
equations, while it will be discontinuous at the endpoints of
these subintervals. Then, ui+1(x, t) will be a weak solution of
the Euler equations with forcing

fi+1(x, t) =
Ji∑

j=1

pi j∑

p=1

fi, j,p(x)δ(t − ti, j,p),

where

fi, j,p(x) = ui+1(x, t+i, j,p) − ui+1(x, t−i, j,p).

Note: In place of each pulse fi, j (x) generating the velocity
jump at t = ti, j , we insert a series of pulses fi, j,p(x) at ti, j,p
with the same (delayed) end-result.

The function ui+1(x, t) is constructed independently in
each gap, so that the construction is completely described by
performing it in the case of a weak solution of the Euler
equations with forcing f (x, t) = f (x)δ(t − t0), f (x) =
u+(x) − u−(x), u±(x) = u(x, t±0 ).

The construction gives us a vector field U (x, t) such that
f (x, t) is changed into a series of pulses having the same net
effect as f itself.

It is enough to define the pulses Fj that will be applied
at times t j ; then, U (x, t−j ) = St j −t j−1(U (x, t+j−1)) and
U (x, t+j ) = U (x, t−j ) + Fj . Here St represents the solution
operator of the incompressible Euler equations.

These pulses are chosen so that they converge weakly to
0 in D′ and at the same time they force the solution from
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Fig. 3. Energy E3(t) versus time t for the velocity field u3 at the third stage of
the iteration.

Fig. 4. Graph of g(x2) = k2α 1
8 (sin 2x2 + 2 cos x2) versus x2.

ui (x, t−i, j ) to ui (x, t+i, j ). The inverse cascade, although not
explicitly accounted for in the construction, explains how this
can actually occur.

Figs. 2 and 3 describe the first and the second steps of the
construction.

As expected, from the pictures we can see that when we go
from step 1 to step 2, some of the pulses that are inserted have
higher energy than the initial pulse. These pulses are actually
oscillating vector fields with high frequency and this is their
key property as this implies they converge weakly to zero and
are still transformed into a non-zero large scale velocity field
via the Euler flow.

4. The inverse cascade

The two main tools to make this construction work are:
a modulated Kolmogorov flow and a special decomposition
theorem for the pulse f .

The modulated Kolmogorov flow is a highly unstable and
oscillatory flow which has been extensively used to study
inverse energy cascades. Given initial velocity v0, there exists
an asymptotic solution which we truncate, obtaining the

Fig. 5. Graph of v1
1 versus x1 and x2.

Fig. 6. Level set of the vorticity at t = 0.

approximate Kolmogorov flow vN (x, t) = v0(x) + (t −
t0)v1(x) + · · · + (t − t0)N vN (x), such that:

∂v(N )

∂t
= A(v(N ), v(N )) + rN

v0(x) = v(x) + w(x),

where A(v, w) = −P[(v · ∇)w],
v(x) = ∇⊥ψ(x), ψ(x) = k−1+αb(x) sin(ka · x)

and P is an orthogonal projector in L2(T2, R2) onto the
subspace of divergence-free vector fields.

The second term v1(x) of the series v(N )(x, t) has the useful
property: v1(x) = k2α 1

2 P[(a⊥ · ∇ B)a⊥] + oscillatory terms
with frequency depending on k, where B(x) = b(x)2.

The decomposition result we mentioned before is:

Theorem 2. Let f be a vector field such that div f = 0
and

∫
f (x)dx = 0. Then there exist vectors a1 and a2,

smooth positive functions B1(x) and B2(x), and two pseudo-
differential operators Φ1 and Φ2 such that B j = Φ j f and we
can write

f =
2∑

j=1

1
2

P[(a⊥
j · ∇ B j )a⊥

j ].
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Fig. 7. Level set of the vorticity at t = 0.15.

We can implement these operations computationally, and we
are able to visualize the spontaneous production of the larger
scale from the smaller scale oscillation.

In the construction, Shnirelman used Theorem 2 in order to
construct pulses that had inverse cascade behavior, as we will
see in the spontaneous period doubling seen in the pictures.

Using v0 with w = 0, we see that the modulated
Kolmogorov flow has this period-doubling behavior, and
therefore, the pulses defined using Theorem 2 will have this
behavior as well.

Let us consider

ψ(x) = k−1+αb(x) sin(ka · x), where

b(x) = 1
2
(sin x2 + 1), k = 4, α = 2/3 and a = (1, −1).

Thus,

B(x) = 1
4
(sin2 x2 + 2 sin x2 + 1) and

(v1
1, v2

1) = k2α 1
2

P[(a⊥ · ∇ B)a⊥] + oscillatory terms (k)

= k2α

(
1
8
(sin 2x2 + 2 cos x2), 0

)

+ oscillatory terms (k).

Fig. 4 describes the function g(x2) = k2α 1
8 (sin 2x2 +

2 cos x2) as a function of x2.
Numerically, we obtain the graph of v1

1 (as shown in Fig. 5)
as a function of (x1, x2).

Therefore, v1 will be the profile in the y-axis of the vorticity
of the approximate Kolmogorov flow v.

Figs. 6 and 7 describe the level sets of the vorticity of the
approximate Kolmogorov flow v.
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Abstract

We introduce a dynamical description based on a probability density φ(σ, x, y, t) of the vorticity σ in two-dimensional viscous flows such that
the average vorticity evolves according to the Navier–Stokes equations. A time-dependent mixing index is defined and the class of probability
densities that maximizes this index is studied. The time dependence of the Lagrange multipliers can be chosen in such a way that the masses
m(σ, t) :=

∫
dxdyφ(σ, x, y, t) associated with each vorticity value σ are conserved. When the masses m(σ, t) are conserved then (1) the mixing

index satisfies an H-theorem and (2) the mixing index is the time-dependent analogue of the entropy employed in the statistical mechanical
theory of inviscid 2D flows. In the context of our class of probability densities we also discuss the reconstruction of the probability density of the
quasi-stationary coherent structures from the experimentally determined vorticity-stream function relations.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

When studying the dynamics of two-dimensional fluid
motion characterized by a vorticity field ω(x, y, t) it can be
useful to turn to a probabilistic description with distributions
φ(σ, x, y, t) for the microscopic vorticity σ such that the
average value of σ over these distributions is equal to
ω(x, y, t). The probability distribution represents an ensemble
of systems, all the ensemble members satisfy the same
constraints. The uncertainties associated with the probability
distribution are due to, e.g., the finite experimental precision
or to thermal fluctuations. In particular, this can be done
in the description of the coherent structures, i.e. the quasi-
stationary states (QSS), which are often reached in (numerical)
experiments after fast mixing has taken place [5,8,12,19,22].
At high Reynolds’ numbers, the vorticity fields ωS(x, y) of
these QSS’s satisfy ω–ψ relations to a good approximation, i.e.,
ωS(x, y) # Ω(ψ(x, y)) where ψ(x, y) is the corresponding
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E-mail addresses: pasmante@science.uva.nl, pasmante@knmi.nl

(R.A. Pasmanter).

stream-function. In other words, the QSS’s are approximate
stationary solutions of the Euler equation.

A statistical mechanical theory of inviscid two-dimensional
steady flows was introduced in [10,11,15–18], an approach that
can be traced back to earlier work of Lynden–Bell in 1967 [7].
Some outstanding aspects of this non-dissipative system are: (1)
an infinite number of conserved quantities associated with each
microscopic-vorticity value σ and (2) non-uniform equilibrium
states (the coherent structures) which often correspond to
negative-temperature states as already predicted by Onsager’s
work on point vortices [13]. Theoretical predictions of the
statistical mechanics approach to the coherent structures were
compared with numerical simulations and with experimental
measurements in quasi-two dimensional fluids, e.g., in [2,3,
8,9,19]. However, under standard laboratory conditions fluids
are viscous and numerical simulations require the introduction
of a non-vanishing (hyper)viscosity in order to avoid some
numerical instabilities and other artifacts. In spite of this,
in many cases it was found that the agreement between
the theoretical predictions based on the statistical mechanics
of Miller, Robert and Sommeria (MRS) [10,11,15–18] and
(numerical) experiments was better than expected.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
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In order to discuss these issues in a more dynamical setting
we consider viscous flows and propose a family of model
evolution equations for the vorticity distribution φ(σ, x, y, t) in
Section 2. In Section 3 we discuss the class of time-dependent
distributions that maximize a mixing index under certain
constraints. In particular, it is shown that the time-dependent
Lagrange multipliers appearing in these distributions can be
chosen in such a way that the masses associated with each
microscopic-vorticity value σ are conserved. When these
masses are conserved, the mixing index satisfies an H-theorem.
Moreover, the mixing index shows a minimal increase in
time [Section 4]. The distribution φS(σ, x, y) associated with
a given QSS can be obtained, at least in principle, by
addressing the reconstruction problem, i.e. how to extract its
defining parameters from the QSS’s ω–ψ relation. This is
discussed in Section 5. In doing so we provide a natural
framework for a time-dependent statistical theory connecting
an appropriate initial distribution to the QSS distribution
associated with the experimental ω–ψ relation and evolving in
agreement with the Navier–Stokes equation. The validity of the
used assumptions should be tested, for example in numerical
simulations.

2. Microscopic viscous models

Let φ(σ, x, y, t)dσ be the probability of finding at time t a
microscopic vorticity value in the range (σ, σ+dσ) at a position
(x, y). It should be non-negative and normalized
∫

dσφ(σ, x, y, t) = 1. (1)

The macroscopic vorticity field is

ω(x, y, t) = 〈σ 〉 :=
∫

dσσφ(σ, x, y, t), (2)

in which the pointed brackets denote averages over this
distribution, In the inviscid case, the dynamics reduces to the
advection of vorticity. Neglecting fluctuations in the velocity
field, the time evolution of φ(σ, x, y, t) can be taken to be

∂φ(σ, x, y, t)
∂t

+ &v(x, y, t) · ∇φ(σ, x, y, t) = 0, (3)

where the macroscopic, incompressible velocity field &v(x, y, t)
is related to the macroscopic vorticity ω(x, y, t) by ∇×&v = ω̃z,
with z̃ a unit vector perpendicular to the (x, y)-plane. Extending
this to the viscous case the models to be considered are of the
form

∂φ(σ, x, y, t)
∂t

+ &v(x, y, t) · ∇φ(σ, x, y, t) = ν∆φ + νφO,(4)

with ν the fluid viscosity and O as yet undefined but
constrained by (1) the conservation of the total probabilty∫

dσφ(σ, x, y, t) = 1, and by (2) the macroscopic
Navier–Stokes equation, i.e.,

∂ω(x, y, t)
∂t

+ &v(x, y, t) · ∇ω(x, y, t) = ν∆ω(x, y, t) (5)

should follow from the microscopic model. These two
conditions are equivalent to,
〈
O

〉
= 0, and

〈
σ O

〉
= 0. (6)

It is convenient to introduce the “masses” m(σ, t) associated
with each value σ of the microscopic vorticity,

m(σ, t) :=
∫

dxdyφ(σ, x, y, t). (7)

In the inviscid case, ν = 0, Eq. (4) has a solution
φ(σ, x, y, t) = δ(σ − ω(x, y, t)) therefore m(σ, t) is the area
occupied by the vorticity field with value σ. As soon as we
introduce a diffusion process, as it is implied by Eq. (4) with
ν *= 0, such an identification becomes impossible. In calling
m(σ, t) a “mass” we stress the analogy between Eq. (4) and an
advection–diffusion process of an infinite number of “chemical
species”, one species for each value σ.

Assuming that there is no leakage of φ(σ, x, y, t) through
the boundary, the time derivative of a mass is

∂m(σ, t)
∂t

= ν

∫
dxdyOφ(σ, x, y, t). (8)

The simplest viscous model satisfying the above require-
ments is the one with O ≡ 0. This model is instructive because,
while it dissipates energy, it has an infinite number of conserved
quantities, i.e., the masses m(σ, t). One of the consequences of
the conservation laws for m(σ, t) is that all the microscopic-
vorticity moments Mn(t) :=

∫
dσσ nm(σ, t) are constants of

the motion, i.e., dMn/dt = 0. In the sequel we shall assume that
the conservation of all the microscopic moments Mn implies in
turn that the masses m(σ, t) are conserved. This is the case if
certain technical conditions are satisfied, see e.g., [20]. By con-
traposition, all even moments of the macroscopic vorticity,

Γ2n(t) :=
∫

dxdyω2n(x, y, t), (9)

are dissipated since,

dΓ2n

dt
= −ν2n(2n − 1)

∫
dxdyω2(n−1) |∇ω|2 ≤ 0. (10)

Under appropriate boundary conditions, e.g., periodic ones, the
energy E = 1/2

∫
dxdy v2 = 1/2

∫
dxdyωψ , and its dissipa-

tion rate is dE/dt = −νΓ2(t), where ψ(x, y, t) is the stream-
function associated with &v(x, y, t).

3. Time-dependent extremal distributions

Equations like (4) have been studied extensively; see for
example [14] and the references therein. Usually a time-
dependent velocity field &v(x, y, t) leads to chaotic trajectories,
namely to the explosive growth of small-scale gradients.
These small-scale gradients are then rapidly smoothed out by
diffusion, the net result being a very large effective diffusion
coefficient, large in comparison to the molecular coefficient ν.

Based on these observations we will consider situations
where during a period of time mixing takes place much faster
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than the changes in the masses m(σ, t). In order to quantify
this we introduce the degree of mixing of m(σ, t), s(σ, t) :=
−A−1 ∫

dxdyφ ln [Aφ/m(σ, t)] , and the corresponding total
degree of mixing at time t,

S(t) = −A−1
∫

dσ

∫
dxdyφ(σ, x, y, t) ln φ(σ, x, y, t) +

A−1
∫

dσm(σ, t) ln
[

A−1m(σ, t)
]
. (11)

The fast-mixing condition can thus be expressed as,

|∂s(σ, t)/∂t | - A−1 |∂m(σ, t)/∂t | . (12)

This inequality is satisfied when the masses m(σ, t) are
conserved, moreover in such a case the second term in (11)
is constant in time so that the total degree of mixing S(t) is
the time-dependent analogue of the entropy which is used in
the MRS statistical mechanics theory and, as shown in the last
paragraph of the present section, it satisfies an H-theorem.

Accordingly, in the sequel we investigate the time-dependent
distributions φ(σ, x, y, t) that maximize the total vorticity mix-
ing S(t) under the following three constraints: (i) normal-
ization, as in (1), (ii) given values of the masses m(σ, t),
and (iii) a given distribution first moment 〈σ 〉 = ω(x, y, t)
which, by construction, evolves according to the Navier–Stokes
equations. Introducing time-dependent Lagrange multipliers
γ (x, y, t), µ̃(σ, t) and χ(x, y, t) associated to the above-
mentioned constraints and denoting the maximizing distribu-
tion by φM (σ, x, y, t), the vanishing of the first variation of
S(t) with respect to φ leads to,

φM (σ, x, y, t) = Z−1 exp [µ(σ, t) + χ(x, y, t)σ ] ,

with Z(x, y, t) :=
∫

dσ exp [σχ(x, y, t) + µ(σ, t)] , (13)

and µ(σ, t) := −µ̃(σ, t) + ln A−1m(σ, t). The functions
χ(x, y, t) and µ(σ, t) will be called the “potentials”.
Two constraints given by (2) and (7) determine these
potentials. For these distributions one has φM (σ, x, y, t) =:
φ̃(σ, χ(x, y, t), t), therefore the (x, y)-dependence of ω as well
as that of the local moments mn := 〈σ n〉 and the centered local
moments Kn :=

〈
(σ − ω)n 〉

is only through χ(x, y, t), i.e.,
Kn(x, y, t) =: K̃n(χ, t), Z(x, y, t) =: Z̃(χ, t), ω(x, y, t) =:
Ω̃(χ, t), mn(x, y, t) =: m̃n(χ, t), and relations like ∂Ω̃/∂χ =
K̃2(χ, t) hold.

In the special case of a QSS at time TS the distribution
obtained from the MRS approach is as in Eq. (13) with
χ(x, y, TS) = −βψ(x, y, TS) where ψ(x, y, TS) is the stream
function at time TS and β is associated with an inverse
temperature. This distribution is obtained by maximizing
S(TS) under the constraints (i) and (ii) and the constraint that
the energy at time TS has some given value E(TS). In the MRS
inviscid approach the connection with the initial state is made
by requiring that the masses at time TS and the energy at time
TS equal their initial values, therefore the QSS can be predicted
from the initial condition. In the context of our present work,
for this to be approximately valid the following fast mixing

condition should be satisfied,

dS(t)/dt - E−1 (dE/dt) , (14)

on top of condition (12).
Assume that at all times the probability density has the

form given in (13). Omitting for convenience the subsript M,

inserting (13) and (2) in the Navier–Stokes equation (5) and
making use of simple algebraic equalities one shows that the
time evolution of φM is given by Eq. (4) with O(σ, x, y, t)
given by,

O(σ, x, y, t) =
[

K2 + K3

K2
(σ − ω) − (σ − ω)2

]
|∇χ |2

+ ν−1
(

∂µ

∂t
−

〈
∂µ

∂t

〉)
− ν−1 (σ − ω)

K2

〈
(σ − ω)

∂µ

∂t

〉
. (15)

As one can check,
〈
O

〉
= 0 and

〈
σ O

〉
= 0 for all possible time-

dependences of ∂µ/∂t.
From (15) it follows that the simplest viscous model with

O(σ, x, y, t) ≡ 0, can be realized only under rather trivial
conditions. Indeed, since O(σ, x, y, t) ≡ 0 has to hold for any
value of σ, Eq. (15) implies that ∂µ/∂t must be quadratic in
σ and that |∇χ |2 may be time-dependent but must be (x, y)-
independent.

For general µ(σ, t) there is no conservation of the masses
m(σ, t). However, choosing a suitable time-dependence of
µ(σ, t) such that

∫
dxdy φO = 0, ensures the conservation

of the masses m(σ, t), confer Eq. (8). This condition and
Eq. (15) lead to a complicated integro-differential equation
for the time-dependence of µ(σ, t). However, using a Taylor
expansion µ(σ, t) = ∑

k µk(t)σ k, we can derive an infinite
set of linear differential equations for the dµk/dt. In fact,
multiplying Eq. (15) by σ nφ(σ, x, y, t) and integrating it over
σ one gets that:

ν
〈
σ n O

〉
= −ν |∇χ |2 hn2 +

∞∑

k=2

hnk
dµk

dt
(16)

with

hnk = mk+n − mkmn − K −1
2 (mn+1 − ωmn) (mk+1 − ωmk) ,

where mn := 〈σ n〉 . The conservation of the moments Mn =∫
dxdy mn requires then that

∫
dxdy

〈
σ n O

〉
= 0 and hence (16)

becomes,

∞∑

k=2

dµk

dt

∫
dxdy hnk = ν

∫
dxdy hn2 |∇χ |2 . (17)

From this infinite set of equations, linear in dµ2/dt, dµ3/dt, . . .,
the dµk/dt can, in principle, be solved. The solution describes
a viscous model with an infinite number of conservation
laws. Such a viscous model becomes physically more relevant
by making it compatible with a quasi-stationary distribution
φ̃S(σ, χ) corresponding to the Ω(ψ) relation at time TS, and
with χ = −βψ(x, y), confer Section 5.
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Using Eq. (4) and the conservation of the masses m(σ, t) one
obtains,

∂s(σ, t)
∂t

= ν

A

∫
dxdyφ

[∣∣∣∣
∇φ

φ

∣∣∣∣
2

− O ln Aφ

]

. (18)

When the distribution is of the form given in Eq. (13), using a
Taylor expansion for µ(σ, t) one sees that after integration over
σ the term containing O vanishes, therefore dS(t)/dt is non-
negative. As shown in Appendix A of Ref. [6] this H-theorem
holds only for one specific measure of spatial mixing, namely
for the one given in (11); see, e.g., Ref. [1,21]. The fast-mixing
condition (14), divided by ν becomes then,

1
A

∫
dxdy

〈
|∇ ln φ|2

〉
- 1

E

∫
dxdyω2. (19)

4. Rate of mixing increase

In order to see whether or not this fast-mixing con-
dition (19)is satisfied by the time-dependent distributions
φM (σ, x, y, t), we derive a lower bound to 〈|∇ ln φ|2〉 and we
determine the extrema of the l.h.s. of Eq. (19). To this end
notice that ∇ω = 〈σ∇ ln φ〉 can also be written as ∇ω =
〈(σ − ω) ∇ ln φ〉 because 〈∇ ln φ〉 = 0. Applying then the
Cauchy–Schwartz inequality to |∇ω|2 = |〈(σ − ω) ∇ ln φ〉|2
leads to |∇ω|2 ≤ 〈(σ − ω)2〉〈|∇ ln φ|2〉 ≡ K2〈|∇ ln φ|2〉, i.e.
to the desired lower bound,

|∇ω|2 K2
−1 ≤

〈
|∇ ln φ|2

〉
. (20)

The lower bound on 〈|∇ ln φ|2〉 that we have just found means
that the fast-mixing condition ((19)) holds whenever

1
A

∫
dxdy

|∇ω|2
K2

- 1
E

∫
dxdyω2.

One can show that the family of probability distributions that
reach the lower bound in (20) coincides with φM (σ, x, y, t)
as given by Eq. (13). Here, the input for the determination of
the potential functions µ(σ, t) and χ(x, y, t) are the first and
second σ -moments. The details concerning the derivation of
this can be found in Appendix B of Ref. [6].

Also the extrema of
∫

dxdy〈|∇ ln φ|2〉 can be investigated
taking into account the constraints given by Eqs. (2) and (1).
It turns out that in order to obtain sensible solutions, it is
necessary to constrain also the distribution’s second moment
〈σ 2〉. We find that all the extremizer distributions are local
minima of

∫
dxdy〈|∇ ln φ|2〉 and coincide with φM (σ, x, y, t),

moreover they all reach the lower bound in (20). The details can
be found in Appendix C of Ref. [6].

5. Reconstructing µ(σ) from experimental data

Suppose that in an experiment one is given an initial vorticity
field with its corresponding energy Eo and that at a time
TS one finds a quasi-stationary vorticity field ωS(x, y) =
Ω(ψ(x, y)), with a monotonic Ω(ψ) and an energy ES ≤

Eo. As we show below these experimental data can be used
in order to determine the potential µ(σ, TS) occuring in the
distribution φM (σ, x, y, TS) as given by Eq. (13) with χ =
−βψ(x, y, TS). Once the distribution has been reconstructed
from the experimental data we can then associate with it a
time-dependent distribution function φM (σ, x, y, t) as given by
Eq. (13) which is a solution of the time-evolution Eq. (4) with
suitable initial conditions and such that at time t = TS one has
φ̃M (σ, χ(x, y, TS), TS) = φ̃S(σ, χ) with χ = −βψ and with
µ(σ, TS) = µ(σ). The time-dependence of µ(σ, t) is chosen as
in Eq. (17) such that all masses m(σ, t) are constant in time.
Here β can be defined such that M2(TS), the microscopic-
vorticity second moment of the QSS at time TS, is equal to Γ 0

2
the enstrophy of the initial vorticity field ωo(x, y), i.e.,

β = −
(
Γ 0

2 − Γ S
2

)−1
∫

A
dxdy (dΩ/dψ) (21)

where Γ S
2 =

∫
dxdy ω2

S(x, y) is the enstrophy of the QSS. All
the quantities on the r.h.s. of this formula are experimentally
accessible.

In order to determine the µ(σ) potential from the
experimental Ω(ψ) use can be made of ω = d lnZ̃(χ)/dχ, at
χ = −βψ, with Z̃(χ) given by (13) and β determined from
Eq. (21). Below we illustrate this by considering some
examples.

A linear ω–ψ scatter plot at time TS , Ωl(ψ) = α1ψ, with
α1 > 0, corresponds to a Gaussian distribution centered on
α1ψ(x, y) and with a width α1/|β|, i.e., µ(σ) = βσ 2/(2α1).

In the present case the expression (21) for β reads, β =
−α1 A/(Γ 0

2 − Γ S
2 ) < 0. It is worthwhile noticing that a

Gaussian distribution with only µ2 *= 0 cannot be preserved
in the context of the models with conserved masses, i.e. those
satisfying Eq. (17).

In the case of nonlinear ω–ψ relations we first notice
that, using vanishing boundary conditions at σ = ±∞, one
has 〈dµ/dσ 〉 = −χ(x, y). Introducing into this equality
the Taylor expansion µ(σ) = ∑

k=2 µkσ
k, one gets∑

k=2 kµkmk−1(χ) = −χ. This is a nonlinear equation in χ

but since Z̃(χ)mn = dn[Z̃(χ)]/dχn it is equivalent to a linear
equation in the partition function Z̃(χ), namely to

∑

k=2

kµk
dk−1 Z̃
dχk−1 = −χ Z̃ . (22)

In general, Eq. (22) is of infinite order, however, it can be
reduced to finite order when dµ/dσ is a rational function. For
example if dµ/dσ = −2q2σ/[1 − q2σ 2] for ‖qσ‖ < 1 and
0 otherwise then Z̃(χ) satisfies a modified Bessel equation, for
the details and more examples see Appendix D of Ref. [6].

It is often experimentally found that the ω–ψ plots satisfy
Ω(−ψ) # −Ω(ψ), or, µ(−σ) = µ(σ). Moreover, in many
cases these plots are nearly linear so that, Ω̃(χ) = f1χ +
f3χ

3 + f5χ
5, on an interval around ψ = 0 or χ = 0,

with | fn+2| χ2 < | fn| for odd n and |µn+2| < |µ2µn| for
even n. Inserting the corresponding powers expansions of Z̃(χ)

and µ(σ) into (22) allows us to express the {µn} in terms of
the { fn} , i.e., to determine the probability density exp µ(σ)
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from the experimentally known scatter-plot Ω̃(χ). For example,
retaining terms up to f5 and f 2

3 in the Taylor expansion of
Eq. (22) one gets that µ2k = 0 for k > 3 and, e.g., that

µ2 = −1
2

f −1
1 − 3

2
f3 f −3

1 + 15
2

f5 f −4
1 − 12 f 2

3 f −5
1 .

6. Discussion and conclusions

In this paper we exploited the fact that the viscous
Navier–Stokes equations are compatible with the conservation
of the microscopic vorticity masses. In Sections 3 and 4 we
studied the family of maximally mixed states described by the
distributions φM (σ, x, y, t) given in Eq. (13). These distribu-
tions show also a minimal mixing increase among all distri-
butions with the same first and second microscopic moments,
ω(x, y, t) and

〈
σ 2〉 . In Section 5 we addressed the problem of

how to determine the QSS distribution φS(σ, x, y) from an ex-
perimental ω–ψ relation observed at a time TS and β given
by Eq. (21). Identifying this φS(σ, x, y) with the distribution
φM (σ, x, y, TS) of Eq. (13) and using a time-dependent µ(σ, t)
satisfying Eq. (17) and such that µ(σ, TS) = µ(σ) we ob-
tained a dynamical model that conserves the masses, i.e., with
m(σ, t) = m(σ, to), and connects the experimental ω–ψ rela-
tion found at time TS with an initial condition φ(σ, x, y, to) of
the form (13) with an appriopriate µ(σ, to), confer Eq. (18).
An extra bonus that follows from this methodology is that an
H-theorem holds. There are some parallels with the inviscid,
statistical mechanics approach of MRS in which the energy is
conserved and so are the masses that, in the inviscid case, co-
incide with the areas occupied by specific vorticity values. In
our dynamical models there is no a priori energy conservation
and the masses are conserved by imposing Eq. (17). In order
to assess the validity of the MRS approach in the case of high-
Reynolds’ number flows, in Subsection III B of an earlier paper
[4], we expressed the quantities

δn :=
∫

dσ

∫
dxdy

[
σ n − ωn

S(x, y)
]
φS(σ, x, y),

n = 2, 3, . . .

in terms of spatial integrals of certain polynomials in Ω(ψ) and
its derivatives {drΩ/dψr } . We then showed that the so-called
yardstick relations (δn/∆Γn) = 1, where ∆Γn := Γ o

n − Γ S
n

are the total change in the n-th moments of the macroscopic
vorticity over the time interval [to, TS], are nontrivial checks of
the validity of the statistical mechanics approach. Choosing β

as in (21) the yardstick relation δ2/
(
Γ 0

2 − Γ S
2

)
= 1 is auto-

matically satisfied. When all the relations δn/(Γ o
n − Γ S

n ) = 1
hold then the quasi-stationary state predicted by the MRS ap-
proach is in agreement with the experimental ω–ψ relation,

moreover, it is also the solution of Eq. (4) at time TS with con-
served total moments Mn and starting from the initial condition
φ(σ, x, y, to) = δ(σ − ω0(x, y)). When not all the yardstick
relations are satisfied then the MRS approach can only give an
approximate prediction of the experimental Ω(ψ) relation.
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Abstract

We adapt the formalism of the statistical theory of 2D turbulence to the case where the Casimir constraints are replaced by the specification of
a prior vorticity distribution. A phenomenological relaxation equation is obtained for the evolution of the coarse-grained vorticity. This equation
monotonically increases a generalized entropic functional (determined by the prior) while conserving circulation and energy. It can be used as a
thermodynamical parametrization of forced 2D turbulence, or as a numerical algorithm for constructing (i) arbitrary statistical equilibrium states
in the sense of Ellis, Haven and Turkington, (ii) particular statistical equilibrium states in the sense of Miller, Robert and Sommeria, (iii) arbitrary
stationary solutions of the 2D Euler equation that are formally nonlinearly dynamically stable according to the Ellis–Haven–Turkington stability
criterion refining the Arnold theorems.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Two-dimensional incompressible and inviscid flows are
described by the 2D Euler equations

∂ω

∂t
+ u · ∇ω = 0, ω = −∆ψ, u = −z × ∇ψ, (1)

where ω is the vorticity and ψ the stream-function. The 2D
Euler equations are known to develop a complicated mixing
process which ultimately leads to the emergence of large-
scale coherent structures like jets and vortices. The Jovian
atmosphere shows a wide diversity of structures: Jupiter’s
great red spot, white ovals, brown barges, and so on. One
goal of fundamental interest is understanding and predicting
the structure and the stability of these quasi-stationary states
(QSS). With that purpose, Miller [1] and Robert and Sommeria
[2] have proposed a statistical mechanics of the 2D Euler
equation (a similar statistical theory had been developed earlier
by Lynden-Bell [3] for describing the violent relaxation of
collisionless stellar systems governed by the Vlasov equation;
see [4] for a description of this analogy). The key idea is to
replace the deterministic description of the flow ω(r, t) by

E-mail address: chavanis@irsamc.ups-tlse.fr.

a probabilistic description where ρ(r, σ, t) gives the density
probability of finding the vorticity level ω = σ in r at time t .
The observed (coarse-grained) vorticity field is then expressed
as ω(r, t) =

∫
ρσdσ . To apply the statistical theory, one must

first specify the constraints attached to the 2D Euler equation.
The circulation Γ =

∫
ωdr and the energy E = 1

2

∫
ωψdr

will be called robust constraints because they can be expressed
in terms of the coarse-grained field ω (the energy of the
fluctuations can be neglected). These integrals can be calculated
at any time from the coarse-grained field ω(r, t) and they are
conserved by the dynamics. By contrast, the Casimir invariants
I f =

∫
f (ω)dr, or equivalently the fine-grained moments of

the vorticity Γ f.g.
n>1 =

∫
ωndr, where ωn =

∫
ρσ ndσ , will

be called fragile constraints because they must be expressed
in terms of the fine-grained vorticity. Indeed, the moments of
the coarse-grained vorticity Γ c.g

n>1 =
∫

ωndr are not conserved
since ωn %= ωn (part of the coarse-grained moments goes into
fine-grained fluctuations). Therefore, the moments Γ f.g.

n>1 must
be calculated from the fine-grained field ω(r, t) or from the
initial conditions, i.e. before the vorticity has mixed. Since we
often do not know the initial conditions or the fine-grained field,
the Casimir invariants often appear as “hidden constraints”.

The statistical theory of Miller–Robert–Sommeria (MRS) is
based on three assumptions: (i) it is assumed that the evolution

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.027
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of the flow is strictly described by the 2D Euler equation (no
forcing and no dissipation); (ii) it is assumed that we know the
initial conditions (or equivalently the values of all the Casimirs)
in detail; (iii) it is assumed that mixing is efficient and that the
evolution is ergodic so that the system will reach, at statistical
equilibrium, the most probable (most mixed) state. Under these
assumptions,1 the statistical equilibrium state of the 2D Euler
equation is obtained by maximizing the mixing entropy

S[ρ] = −
∫

ρ ln ρ drdσ, (2)

at fixed energy E and circulation Γ (robust constraints) and
fixed fine-grained moments Γ f.g.

n>1 (fragile constraints). We must
also account for the normalization condition

∫
ρdσ = 1.

This optimization principle is solved by introducing Lagrange
multipliers, writing the first-order variations as [2,5]

δS − βδE − αδΓ −
∑

n>1

αnδΓ f.g.
n −

∫
ζ(r)δρdσdr = 0. (3)

In the MRS approach, the conservation of all the Casimirs
has to be taken into account. However, in geophysical
situations, the flows are forced and dissipated at small scales
(due to convection in the Jovian atmosphere) so that the
conservation of the Casimirs is destroyed. Ellis, Haven and
Turkington [6] have proposed treating these situations by fixing
the conjugate variables αn>1 instead of the fragile moments
Γ f.g.

n>1 (this is essentially a suggestion that has to be tested in
practice). If we view the vorticity levels as species of particles,
this is similar to fixing the chemical potentials instead of
the total number of particles in each species. Therefore, the
idea is to treat the fragile constraints canonically, whereas
the robust constraints are still treated microcanonically. A
rigorous mathematical formalism has been developed in [7]
and a more physical presentation has been given in [8]. In the
EHT approach, the relevant thermodynamical potential (grand
entropy) is obtained from the mixing entropy (2) by using a
Legendre transform with respect to the fragile moments [8]:

Sχ = S −
∑

n>1

αn Γ f.g.
n . (4)

Making explicit the fine-grained moments, we obtain the
relative (or grand) entropy

Sχ [ρ] = −
∫

ρ ln
[

ρ

χ(σ)

]
drdσ, (5)

where we have defined the prior vorticity distribution χ(σ) ≡
exp{− ∑

n>1 αnσ n}. We shall assume that this function is
imposed by the small-scale forcing so it has to be given a priori
as an input in the theory [6–8].

1 Some attempts have been proposed for going beyond the assumptions of the
statistical theory. For example, Chavanis and Sommeria [5] consider a strong
mixing limit in which only the first moments of the vorticity are relevant instead
of the whole set of Casimirs. They also introduce the concept of maximum
entropy bubbles (or restricted equilibrium states) for accounting for situations
where the evolution of the flow is not ergodic over the whole available domain
but only in a subdomain.

2. Equilibrium statistical mechanics with a prior vorticity
distribution

When a prior vorticity distribution is given, the statistical
equilibrium state is obtained by maximizing the relative (or
grand) entropy Sχ at fixed energy E , circulation Γ and
normalization condition

∫
ρdσ = 1 (grand microcanonical

ensemble). The conservation of the Casimirs has been replaced
by the specification of the prior χ(σ). Writing the first-order
variations as δSχ − βδE − αδΓ −

∫
ζ(r)δρdσdr = 0, we get

the Gibbs state

ρ(r, σ ) = 1
Z(r)

χ(σ )e−(βψ+α)σ , (6)

with Z =
∫ +∞
−∞ χ(σ)e−(βψ+α)σ dσ . This is the product of a

universal Boltzmann factor and a non-universal function χ(σ)

fixed by the forcing. The coarse-grained vorticity is given by

ω =
∫

χ(σ)σe−(βψ+α)σ dσ∫
χ(σ)e−(βψ+α)σ dσ

= F(βψ + α), (7)

with F(Φ) = −(ln χ̂)′(Φ), where we have defined χ̂(Φ) =∫ +∞
−∞ χ(σ)e−σΦdσ . It is easy to show that F ′(Φ) = −ω2(Φ) ≤

0, where ω2 = ω2 − ω2 ≥ 0 is the local centered variance of
the vorticity. Therefore, F(Φ) is a decreasing function. Since
ω = f (ψ), the statistical theory predicts that the coarse-grained
vorticity ω(r) is a stationary solution of the 2D Euler equation
and that the ω–ψ relationship is a monotonic function which
is increasing at negative temperatures β < 0 and decreasing
at positive temperatures β > 0. We have ω′(ψ) = −βω2. We
note that the ω–ψ relationship predicted by the statistical theory
can take a wide diversity of forms (usually non-Boltzmannian)
depending on the prior χ(σ). Furthermore, the coarse-grained
distribution (7) extremizes a generalized entropy in ω-space of
the form [9]

S[ω] = −
∫

C(ω)dr, (8)

at fixed circulation and energy (robust constraints). Writing the
first-order variations as δS − βδE − αδΓ = 0, leading to

C ′(ω) = −βψ − α, (9)

and comparing with Eq. (7), we find that C ′(x) = −F−1(x).
Therefore, C is a convex function (C ′′ > 0) determined by the
prior χ(σ) encoding the small-scale forcing according to the
relation

C(ω) = −
∫ ω

F−1(x)dx = −
∫ ω

[(ln χ̂)′]−1(−x)dx . (10)

We have ω′(ψ) = −β/C ′′(ω). Comparing with ω′(ψ) =
−βω2 we find that, at statistical equilibrium,

ω2 = 1/C ′′(ω), (11)

which links the centered variance of the vorticity to the
coarse-grained vorticity and the generalized entropy. It also
clearly establishes that C ′′ > 0. On the other hand,
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the equilibrium coarse-grained vorticity ω(r) maximizes the
generalized entropy (8)–(10) at fixed circulation and energy iff
ρ(r, σ ) maximizes Sχ at fixed E , Γ (see Appendix and [6,
10]). Therefore, the maximization of S[ω] at fixed E and Γ is
a necessary and sufficient condition of EHT thermodynamical
stability.

The preceding relations are also valid in the MRS approach
except that χ(σ) is determined a posteriori from the initial
conditions by relating the Lagrange multipliers αn>1 to the
Casimir constraints Γ f.g.

n>1. In this case of freely evolving
flows, the generalized entropy (8)–(10) depends on the initial
conditions, while in the case of forced flows considered here, it
is intrinsically fixed by the prior vorticity distribution. On the
other hand, a maximum of Sχ [ρ] at fixed E and Γ is always a
maximum of S[ρ] at fixed E , Γ and Γ f.g.

n>1 (more constrained
problem). Therefore, a maximum of the generalized entropy
S[ω] at fixed E and Γ determines a statistical equilibrium state
from the MRS viewpoint [10]. However, the converse is wrong
in the case of “ensemble inequivalence” [11,12] with respect to
the conjugate variables (Γ f.g.

n>1, αn) because a maximum of S[ρ]
at fixed E , Γ and Γ f.g.

n>1 is not necessarily a maximum of Sχ [ρ]
at fixed E and Γ . Therefore, the maximization of S[ω] at fixed
E and Γ is a sufficient (but not necessary) condition of MRS
thermodynamical stability.

3. Relaxation towards equilibrium

In the case where a small-scale forcing imposes a prior
vorticity distribution χ(σ), it is possible to propose a
thermodynamical parametrization of the turbulent flow in the
form of a relaxation equation that conserves the circulation
and the energy (robust constraints) and that increases the
generalized entropy (8)–(10) fixed by the prior. This equation
can be obtained from a generalized Maximum Entropy
Production Principle (MEPP) in ω-space [9]. We write ω =
ω + ω̃ and take the local average of the 2D Euler equation (1).
This yields Dω/Dt = −∇·ω̃ũ ≡ −∇·J where D/Dt = ∂/∂t+
u · ∇ is the material derivative and J is the turbulent current.
Then, we determine the optimal current J which maximizes
the rate of entropy production Ṡ = −

∫
C ′′(ω)J · ∇ωdr at

fixed energy Ė =
∫

J · ∇ψdr = 0, assuming that the
energy of the fluctuations J2/2ω is bounded. According to this
phenomenological principle, we find that the coarse-grained
vorticity evolves according to [9,8]

∂ω

∂t
+ u · ∇ω = ∇ ·

{
D

[
∇ω + β(t)

C ′′(ω)
∇ψ

]}
, (12)

β(t) = −
∫

D∇ω · ∇ψdr
∫

D (∇ψ)2

C ′′(ω) dr
, ω = −∆ψ, (13)

where β(t) is a Lagrange multiplier enforcing the energy
constraint Ė = 0 at any time. It is shown in [9] that these
equations increase monotonically the entropy (H -theorem,
Ṡ ≥ 0) provided that D > 0. Furthermore, a steady state of (12)
is linearly dynamically stable iff it is a (local) entropy maximum
at fixed circulation and energy (minima or saddle points of

entropy are linearly unstable). Therefore, the relaxation Eqs.
(12) and (13) generically converge towards a (local) entropy
maximum (if there is no entropy maximum the solutions of the
relaxation equations can have a singular behaviour). If there
exist several local entropy maxima the selection will depend
on a complicated notion of a basin of attraction. The diffusion
coefficient D is not determined by the MEPP but it can be
obtained from a Taylor type argument leading to D = K ε2ω

1/2
2

where ε is the coarse-graining mesh size and K is a constant
of order unity [8]. Assuming that the relation (11) remains
valid out of equilibrium (see Appendix C of [8]), we get the
closed expression D = K ε2/

√
C ′′(ω). This position dependent

diffusion coefficient, related to the strength of the fluctuations,
can “freeze” the system in a sub-region of space (“bubble”) and
account for incomplete relaxation and lack of ergodicity [13,4].
The relaxation equation (12) belongs to the class of nonlinear
mean field Fokker–Planck equations introduced in [9]. This
relaxation equation conserves only the robust constraints
(circulation and energy) and increases the generalized entropy
(8)–(10) fixed by the prior vorticity distribution χ(σ). It
differs from the relaxation equations proposed by Robert and
Sommeria [14] for freely evolving flows which conserve all the
constraints of the 2D Euler equation (E , Γ and all the Casimirs)
and monotonically increase the mixing entropy (2). In Eqs. (12)
and (13), the specification of the prior χ(σ) (determined by the
small-scale forcing) replaces the specification of the Casimirs
(determined by the initial conditions). However, in both models,
the robust constraints E and Γ are treated microcanonically
(i.e. they are rigorously conserved). The relaxation equations
of Robert and Sommeria [14] and Chavanis [9] are essentially
phenomenological in nature but they can serve as numerical
algorithms for computing maximum entropy states. In that
context, since we are only interested by the stationary state (not
by the dynamics), we can take D = Cst. and drop the advective
term in the relaxation equation. Then, Eq. (12) can be used to
construct (i) arbitrary EHT statistical equilibria, (ii) a subset of
MRS statistical equilibria (see the last paragraph of Section 2).

4. Explicit examples

Let us consider, for illustration, the prior vorticity
distribution χ(σ) introduced by Ellis, Haven and Turkington
[6] in their model of Jovian vortices. It corresponds to a de-
centered Gamma distribution

χ(σ) = 1
Ω2|λ| R

[
1

Ω2λ

(
σ + 1

λ

)
; 1
Ω2λ2

]
, (14)

where R(z; a) = Γ (a)−1za−1e−z for z ≥ 0 and R = 0
otherwise. The scaling of χ(σ) is chosen such that 〈σ 〉 = 0,
var(σ ) ≡ 〈σ 2〉 = Ω2 and skew(σ ) ≡ 〈σ 3〉/〈σ 2〉3/2 = 2Ω1/2

2 λ.
We get

Z(Φ) = χ̂(Φ) = eΦ/λ

(1 + λΩ2Φ)1/(Ω2λ2)
, (15)

ω(Φ) = −(ln χ̂)′(Φ) = −Ω2Φ
1 + λΩ2Φ

. (16)
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Inverting the relation (16), we obtain

−Φ = 1
Ω2

ω

1 + λω
= C ′(ω). (17)

After integration, we obtain the generalized entropy

C(ω) = 1
λΩ2

[
ω − 1

λ
ln(1 + λω)

]
. (18)

In the limit λ → 0, the prior is the Gaussian distribution

χ(σ) = 1√
2πΩ2

e− σ2
2Ω2 , (19)

and we have Z(Φ) = e
1
2 Ω2Φ2

, ω(Φ) = −Ω2Φ, C(ω) = ω2

2Ω2
.

The generalized entropy S = − 1
2Ω2

∫
ω2dr associated with

a Gaussian prior is proportional (with the opposite sign) to
the coarse-grained enstrophy: S = −Γ c.g.

2 /(2Ω2) [9]. This
Gaussian prior leads to Fofonoff flows [15] that have oceanic
applications.

When the prior is given by Eq. (14), the generalized
entropy satisfies C ′′(ω) = 1/[Ω2(1 + λω)2] and we obtain a
parametrization of the form

∂ω

∂t
+ u · ∇ω = ∇ ·

{
D

[
∇ω + β(t)Ω2(1 + λω)2∇ψ

]}
, (20)

β(t) = −
∫

D∇ω · ∇ψdr∫
DΩ2(1 + λω)2(∇ψ)2dr

,

D = K ε2Ω1/2
2 |1 + λω|. (21)

For λ = 0 (Gaussian limit), we get

∂ω

∂t
+ u · ∇ω = ∇ · {D [∇ω + β(t)Ω2∇ψ]} , (22)

β(t) = −
∫

D∇ω · ∇ψdr∫
DΩ2(∇ψ)2dr

, D = K ε2Ω1/2
2 . (23)

Since D and Ω2 are uniform, we have Dω/Dt = D(∆ω −
β(t)Ω2ω) with β(t) = −Γ c.g.

2 (t)/(2Ω2 E) = S(t)/E (to arrive
at this result, we have used integration by parts in Eq. (23)).

When the prior has two intense peaks χ(σ) = δ(σ − σ0) +
δ(σ − σ1), the equilibrium coarse-grained vorticity is

ω = σ1 + σ0 − σ1

1 + e(σ0−σ1)(βψ+α)
. (24)

This is similar to the Fermi–Dirac statistics. Inverting this
relation to express Φ = βψ + α as a function of ω and
integrating the resulting expression, we obtain the generalized
entropy

S[ω] = −
∫

[p ln p + (1 − p) ln(1 − p)]dr, (25)

where ω = pσ0 + (1 − p)σ1. At equilibrium, we have ω2 =
1/C ′′(ω) = (σ0 − ω)(ω − σ1). For the two-peak distribution,
we get a parametrization of the form

∂ω

∂t
+ u · ∇ω

= ∇ · [D (∇ω + β(t)(σ0 − ω)(ω − σ1)∇ψ)] , (26)

β(t) = −
∫

D∇ω · ∇ψdr∫
D(σ0 − ω)(ω − σ1)(∇ψ)2dr

,

D = K ε2ω
1/2
2 . (27)

These are the same equations as in the MRS theory in the two-
level case ω ∈ {σ0, σ1} [1–4]. They amount to maximizing the
Fermi–Dirac-like entropy (25) at fixed circulation and energy.
This entropy has been used by Bouchet and Sommeria [16] to
model Jovian vortices. From the MRS viewpoint, this entropy
describes the free merging of a system with two levels of
vorticity σ0 and σ1, while from the viewpoint developed here, it
describes the evolution of a forced system where the forcing has
two intense peaks described by the prior χ(σ) = δ(σ − σ0) +
δ(σ − σ1) [8]. Other examples of prior vorticity distributions
and associated generalized entropies are collected in [9].

5. Nonlinear dynamical stability

Let us consider the Casimir functionals S[ω] = −
∫

C(ω)dr
where C is any convex function (C ′′ > 0). Since S, E and
Γ are individually conserved by the 2D Euler equation, the
maximization problem

max
ω

{S[ω] | E[ω] = E,Γ [ω] = Γ } , (28)

determines a steady state of the 2D Euler equation that is
formally nonlinearly dynamically stable [6]. Writing the first
variations as δS − βδE − αδΓ = 0, the steady state is
characterized by a monotonic relation ω = F(βψ+α) = f (ψ)

where F(x) = (C ′)−1(−x). Let us introduce the Legendre
transform J = S −βE and consider the maximization problem

max
ω

{J [ω] = S[ω] − βE[ω]|Γ [ω] = Γ } . (29)

If we interpret J as an energy-Casimir functional, the
maximization problem (29) corresponds to the Arnold criterion
of formal nonlinear dynamical stability. The variational
problems (28) and (29) have the same critical points (cancelling
the first variations) but not necessarily the same maxima
(regarding the second variations). A solution of (29) is always
a solution of the more constrained problem (28). However,
the reciprocal is wrong. A solution of (28) is not necessarily
a solution of (29). The maximization problem (29) and the
associated Arnold theorems provide just a sufficient condition
for nonlinear dynamical stability. The criterion (28) of Ellis,
Haven and Turkington is more refined and allows one to
construct a larger class of nonlinearly stable steady states.
For example, important equilibrium states in the weather
layer of Jupiter are nonlinearly dynamically stable according
to the refined stability criterion (28) while they do not
satisfy the Arnold theorems [6]. The maximization problem
(29) determines a subclass of solutions of the maximization
problem (28). This is similar to a situation of “ensemble
inequivalence” with respect to the conjugate variables (E, β)

in thermodynamics [11,12]. Indeed, (28) is similar to a criterion
of “microcanonical stability” while (29) is similar to a criterion
of “canonical stability” in thermodynamics, where S is similar
to an entropy and J is similar to a free energy [9]. Canonical
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stability implies microcanonical stability but the converse is
wrong in the case of ensemble inequivalence.2 Since the
relaxation equations (12) and (13) solve the maximization
problem (28), they can serve as numerical algorithms for
computing nonlinearly dynamically stable stationary solutions
of the 2D Euler equation according to the criterion of Ellis,
Haven and Turkington. Note that if we fix β, the relaxation
equation (12) increases monotonically the “free energy” J =
S − βE (H -theorem, J̇ ≥ 0) until a (local) maximum
of J at fixed Γ is reached [9]. Therefore, we obtain a
numerical algorithm that solves the maximization problem (29)
and determines a subclass of nonlinearly dynamically stable
stationary solutions of the 2D Euler equation corresponding to
the Arnold criterion.

6. Conclusion

In this paper, we have shown that the maximization of a
functional S[ω] at fixed circulation Γ and energy E in 2D
turbulence can have several interpretations. When S is given
by (8)–(10), this maximization problem determines: (i) The
whole class of stable EHT statistical equilibria for a given prior
vorticity distribution χ(σ) fixed by the small-scale forcing.
(ii) A subclass of stable MRS statistical equilibria for initial
conditions leading to a vorticity distribution χ(σ) at statistical
equilibrium. When S is given by (8) where C is an arbitrary
convex function, this maximization problem determines a
nonlinearly dynamically stable stationary solution of the 2D
Euler equation according to the refined EHT criterion. The next
step is to determine whether particular forms of generalized
entropies are better adapted than others for describing specific
flows and whether they can be regrouped in “classes of
equivalence” [9]. For example, the enstrophy functional turns
out to be relevant for certain oceanic situations [15] and the
Fermi–Dirac-like entropy for Jovian flows [16]. Working with
a suitable generalized entropy S[ω] with only two constraints
(Γ , E) is more convenient than working with an infinite set
of Casimirs as in the MRS theory. This reduced maximization
problem is still very rich because, for any considered form of
generalized entropy S[ω], many bifurcations can take place in
the parameter space (E,Γ ) [5,6,16].

Appendix. Generalized entropy

We can introduce the generalized entropy S[ω] in the
following manner. Initially, we want to determine the vorticity
distribution ρ∗(r, σ ) which maximizes Sχ [ρ] with the robust
constraints E[ω] = E , Γ [ω] = Γ , and the normalization
condition

∫
ρ dσ = 1. To solve this maximization problem,

2 Since the EHT statistical equilibria (with a given prior) satisfy a
maximization problem of the form (28) with C(ω) given by Eq. (10), they
are both thermodynamically stable (with respect to fine-grained perturbations
δρ(r, σ )) and formally nonlinearly dynamically stable (with respect to coarse-
grained perturbations δω(r)). Note that the MRS statistical equilibria may
not satisfy the nonlinear dynamical stability criterion (28) according to the
discussion at the end of Section 2. This intriguing observation demands further
investigation.

we can proceed in two steps. First step: we determine
the distribution ρ1(r, σ ) which maximizes Sχ [ρ] with the
constraints

∫
ρ dσ = 1 and a fixed vorticity profile

∫
ρσ dσ =

ω(r) (note that fixing ω automatically determines Γ and E).
This gives a distribution ρ1[ω(r), σ ] depending on ω(r) and σ .
Substituting this distribution in the functional Sχ [ρ], we obtain
a functional S[ω] ≡ Sχ [ρ1] of the vorticity ω. Second step:
we determine the vorticity field ω∗(r) which maximizes S[ω]
with the constraints E[ω] = E and Γ [ω] = Γ . Finally, we
have ρ∗(r, σ ) = ρ1[ω∗(r), σ ]. Let us be more explicit. The
distribution ρ1(r, σ ) that extremizes Sχ [ρ] with the constraints∫

ρ dσ = 1 and
∫

ρσ dσ = ω(r) satisfies the first-order
variations δSχ −

∫
Φ(r)δ(

∫
ρσdσ)dr−

∫
ζ(r)δ(

∫
ρdσ)dr = 0,

where Φ(r) and ζ(r) are Lagrange multipliers. This yields

ρ1(r, σ ) = 1
Z(r)

χ(σ )e−σΦ(r), (A.1)

where Z(r) and Φ(r) are determined by Z(r) =
∫

χ(σ)e−σΦ(r)

dσ ≡ χ̂(Φ) and ω(r) = 1
Z(r)

∫
χ(σ)σe−σΦ(r)dσ =

−(ln χ̂)′(Φ). This critical point is a maximum of Sχ with the

above-mentioned constraints since δ2Sχ = −
∫ (δρ)2

ρ drdσ ≤ 0.
Then Sχ [ρ1] =

∫
ρ1(σΦ + ln χ̂) drdσ =

∫
(ωΦ + ln χ̂(Φ)) dr.

Therefore S[ω] ≡ Sχ [ρ1] is given by S[ω] = −
∫

C(ω) dr
with C(ω) = −ωΦ − ln χ̂(Φ). Now, Φ(r) is related to ω(r)
by ω(r) = −(ln χ̂)′(Φ). This implies that C ′(ω) = −Φ =
−[(ln χ̂)′]−1(−ω) so

C(ω) = −
∫ ω

[(ln χ̂)′]−1(−x)dx . (A.2)

This is precisely the generalized entropy (10). Therefore,
ρ∗(r, σ ) = ρ1[ω∗(r), σ ] is a maximum of Sχ [ρ] at fixed E
and Γ iff ω∗(r) is a maximum of S[ω] at fixed E and Γ .
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Abstract

In this paper, we theoretically prove a set of fundamental conditions pertaining to discrete velocity sets and corresponding weights. These
conditions provide sufficient conditions for a priori formulation of lattice Boltzmann models that automatically admit correct hydrodynamic
moments up to any given N -th order.
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1. Introduction

Lattice Boltzmann methods (LBM) have been recognized
as advantageous numerical methods for performing efficient
computational fluid dynamics [1,2]. Not only do they offer a
new way of describing macroscopic fluid physics, but also they
have become practical computational tools and already have
been making a substantial impact in real world engineering
applications [3]. Furthermore, according to a more recent
interpretation, LBM models are special discrete approximations
to the continuum Boltzmann kinetic equation [4,5]. Owing
to such an underlying kinetic theory origin, the LBM are
expected to contain a wider range of fluid flow physics than
the conventional hydrodynamic fluid descriptions [6–8,10]. The
latter, such as the Euler or the Navier–Stokes equation, rely
on various “theoretical” closure approximations for the non-
equilibrium effects that are problematic when deviations from
local thermodynamic equilibrium are no longer considered
small. In addition, due to the fact that the fundamental
turbulence modeling is built upon an analogy to regular fluid
flows at finite Knudsen numbers, a kinetic theory representation
is argued to be more suitable than the classical modeling
approach of modified Navier–Stokes equations [22]. However,
how much the original range in kinetic theory can be retained
depends on the order of accuracy in the LBM models used.
Indeed, it has been shown that certain key physical effects

∗ Corresponding author. Tel.: +1 781 676 8512; fax: +1 781 676 8599.
E-mail address: hudong@exa.com (H. Chen).

beyond the Navier–Stokes equations can be accurately captured
using higher order LBM models [5,9].

There have been extensive studies in LBM for more than
a decade. However, popularly known LBM models are only
accurate in the Navier–Stokes hydrodynamic regime (cf., [12,
14]). That is, physics higher than the Navier–Stokes order is
contaminated by numerical artifacts in these LBM models.
Furthermore, there has not been progress in systematically
deriving higher order accurate LBM models until recently [5].
Originated from the framework of the so called lattice gas
automata [15,11], the conventional approach to formulating
LBM models is based on a so called “top down” procedure.
That is, giving a macroscopic equation such as the Euler
or the Navier–Stokes equation, an LBM model may be
constructed via an inverse Chapman–Enskog process and a a
posteriori parameter matching along with various subsequent
“corrections” (cf., [13,14,16,17]). But more fundamentally,
because such an approach relies on the availability of
macroscopic descriptions, it encounters an intrinsic difficulty in
extending physics beyond the original macroscopic equations.
It is well known that there is no well established and reliable
macroscopic equation for deeper non-equilibrium physics
beyond the Navier–Stokes regime.

One can theoretically show that the level of non-equilibrium
physics is directly associated with the hydrodynamic mo-
ments [5]. Specifically, from the representation of the
Chapman–Enskog expansion, there exists an apparent hier-
archical relationship among hydrodynamic moments at vari-
ous non-equilibrium levels. That is, n-th-order hydrodynamic
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doi:10.1016/j.physd.2007.11.010
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moments at the m-th non-equilibrium level are related to the
(n + 1)-th-order moments at (m − 1)-th non-equilibrium level.
Carrying this hierarchy all the way, we see that in order to en-
sure the n-th-moment physics at the m-th non-equilibrium level,
it requires the equilibrium moments of (m + n)-th order to be
accurate. In other words, the higher the order of equilibrium hy-
drodynamic moments captured accurately, the wider the range
of non-equilibrium physics that can be described. Indeed, the
popularly known lattice Boltzmann models are only accurate
up to the second-order equilibrium moment (i.e., the equilib-
rium momentum flux tensor). As a result, these models only
give an approximately correct “level-1” non-equilibrium mo-
mentum flux. This is why the conventional LBM models are
only applicable to the Navier–Stokes (Newtonian) fluid physics
in low Mach number isothermal situations [11–14].

On the basis of the above, we see that the essential
requirement for accurately capturing a wider range of physics
is directly related to achieving equilibrium hydrodynamic
moments to higher orders. Once the higher order moments
are accurately realized, the resulting hydrodynamic equations
such as Euler, Navier–Stokes and beyond are automatically
attained. This is accomplished without the conventional a
posteriori procedure. As shown in this paper, the above
requirement dictates a set of fundamental conditions on the
supporting lattice velocity basis in LBM. That is, given an N -
th-order moment accuracy requirement, the set of fundamental
conditions automatically defines the choice of a discrete lattice
velocity set and its corresponding weights for such a purpose.

In this paper, we theoretically derive this set of fundamental
conditions for LBM models of N -th order. We prove how the
correct hydrodynamic moments up to the corresponding order
are realized once the conditions are satisfied.

2. Achieving correct hydrodynamic moments via discrete
velocities

According to the standard continuum Boltzmann kinetic
theory, an n-th-order equilibrium hydrodynamic moment tensor
in D dimensions is defined as

M(n)(x, t) ≡
∫

d Dc cc · · · c︸ ︷︷ ︸
n

f eq(x, c, t). (1)

Equivalently, it can be expressed in a Cartesian component form
as follows:

M (n)
i1,i2,...,in

(x, t) ≡
∫

d Dcci1 ci2 · · · cin f eq(x, c, t) (2)

where subscripts i1, i2, . . . , in are Cartesian component indices.
ci is the i-th Cartesian component of the microscopic particle
velocity c. The equilibrium distribution has the standard
Maxwell–Boltzmann form

f eq(x, c, t) = ρ(x, t)
[2πθ(x, t)]D/2

× exp
[
− (c − u(x, t))2

2θ(x, t)

]
(3)

where the macroscopic density, fluid velocity, and temperature
are defined, respectively, as

ρ(x, t) =
∫

d Dc f eq(x, c, t)

ρu(x, t) =
∫

d Dc c f eq(x, c, t)

Dρθ(x, t) =
∫

d Dc (c − u(x, t))2 f eq(x, c, t). (4)

Apparently, the above three relations correspond to the zeroth-,
the first-, and the trace of the second-order hydrodynamic
moments. It is well known that these three moments correspond
to conservation laws and are invariant under any local
collisions.

Notice that the density ρ is an overall multiplier on
all moments; without loss of generality for the subsequent
analysis, we set it to unity.

Now let us define an analogous hydrodynamic moment
expression in terms of summations over discrete velocity values
below:

M̃(n)(x, t) ≡
b∑

α=0

cαcα · · · cα︸ ︷︷ ︸
n

f eq
α (x, t). (5)

Or equivalently, in a Cartesian component form,

M̃ (n)
i1,i2···,in

(x, t) ≡
b∑

α=0

cα,i1 cα,i2 · · · cα,in f eq
α (x, t). (6)

In the above, we have assumed there are b + 1 discrete D-
dimensional vector values in the basis discrete velocity set:
{cα : α = 0, . . . , b}. Similarly, we define an analogous
equilibrium distribution function:

f eq
α (x, t) = w̄α(θ(x, t)) exp

[
− (cα − u(x, t))2

2θ(x, t)

]
(7)

where the macroscopic density, fluid velocity, and temperature
are now defined in terms of moment summations instead,

1 =
b∑

α=0

f eq
α (x, t)

u(x, t) =
b∑

α=0

cα f eq
α (x, t)

Dθ(x, t) =
b∑

α=0

(cα − u)2 f eq
α (x, t). (8)

In the above, w̄α is a weighting factor that is at most dependent
on θ(x, t). On the basis of this, we can also re-express
the discrete equilibrium distribution (7) in an alternative and
simpler form:

f eq
α = w̄α(θ) exp

[
− (cα − u)2

2θ

]

= wα(θ) exp
[cα · u

θ

]
exp

[
− u2

2θ

]
(9)
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by defining wα(θ) ≡ w̄α(θ) exp[− c2
α

2θ ]. Therefore, the discrete
moment definition (6) can be re-expressed as

M̃ (n)
i1,i2,...,in

≡
b∑

α=0

cα,i1 cα,i2 · · · cα,in wα(θ)

× exp
[cα · u

θ

]
exp

[
− u2

2θ

]
. (10)

Having all the basic definitions above specified, we are
now ready to prove several fundamental conditions for a
lattice velocity basis supporting an n-th-order hydrodynamic
moment accuracy and its corresponding form for the discrete
equilibrium distribution function. These conditions are set forth
for measuring any given lattice in terms of an intrinsic tensor:

E (n)
i1,...,in

≡
b∑

α=0

wα(θ)cα,i1 cα,i2 · · · cα,in . (11)

Theorem 1. The discrete moment M̃(n) is equal to the
moment M(n) of the continuum Boltzmann kinetic theory, if
the supporting lattice velocity basis satisfies the following
conditions:

E (n)
i1,i2,...,in

=
{

θn/2∆(n)
i1,i2,...,in

, n = 0, 2, 4, . . .

0, n = 1, 3, 5, . . . .
(12)

In the above, ∆(n)
i1,i2,...,in

is the n-th-order delta function
defined as a summation of n/2 (n = even integer) products of
simple Kronecker delta functions δi1i2 · · · δin−1in and those from
distinctive permutations of its sub-indices [11,18–20]. There
are (n − 1)!! (≡ (n − 1) · (n − 3) . . . 3 · 1) distinctive terms
in ∆(n)

i1i2...in
in total. For instance, ∆(2)

i j ≡ δi j , and

∆(4)
i jkl = δi jδkl + δikδ jl + δilδ jk

∆(6)
i jklmn = δi j∆

(4)
klmn + δik∆

(4)
lmnj + δil∆

(4)
mnjk

+δim∆(4)
njkl + δin∆

(4)
jklm . (13)

Obviously, a lattice velocity set that satisfies condition (12) for
E (n) is n-th-order isotropic.

Proof of Theorem 1. First we prove for the zeroth-order
moment, M̃(0) = M(0) = 1. According to (9) we have

M̃(0) = exp
[
− u2

2θ

] b∑

α=0

wα exp
[cα · u

θ

]

= exp
[
− u2

2θ

] ∞∑

l=0

1
θ l l!

b∑

α=0

wα(cα · u)l . (14)

If (12) is satisfied, then all odd valued l terms vanish, and the
even valued terms become

b∑

α=0

wα(cα · u)2l = θ l∆(2l) ⊗ uu · · · u︸ ︷︷ ︸
2l

= (2l − 1)!!θ lu2l . (15)

In the above ⊗ denotes a scalar product of two tensors.
Therefore, (14) reduces to

M̃(0) = exp
[
− u2

2θ

] {

1 +
∞∑

l=1

(2l − 1)!!
(2l)!

u2l

θ l

}

= exp
[
− u2

2θ

] {

1 +
∞∑

l=1

1
l!

u2l

(2θ)l

}

(16)

where the identity (2l − 1)!!/(2l)! = 2−l/ l! is used. Since

1 +
∞∑

l=1

1
l!

u2l

(2θ)l = exp
[

u2

2θ

]
, (17)

substituting this into (16), we have proved that M̃(0) = 1.

Next, we prove M̃(n) = M(n) for n > 0. We start this by
defining a partition function in discrete velocity space,

Q ≡
b∑

α=0

wα exp
[cα · u

θ

]
= exp

[
u2

2θ

]
. (18)

Notice that the second equality in the above is a result of the
analysis of M̃(0) = 1. Consequently, we show that satisfying
the second equality is a sufficient condition for achieving the
correct hydrodynamic moment for any integer n. First of all,
we have the following general relationship:

M̃(n) = exp
[
− u2

2θ

] b∑

α=0

wα cαcα · · · cα︸ ︷︷ ︸
n

exp
[cα · u

θ

]

= exp
[
− u2

2θ

]
θn ∂n

∂un

b∑

α=0

wα exp
[cα · u

θ

]

= exp
[
− u2

2θ

]
θn ∂n

∂unQ. (19)

Since Q = exp
[
u2/2θ

]
, then Eq. (19) becomes

M̃(n) = exp
[
− u2

2θ

]
θn ∂n

∂un

[
exp

(
u2

2θ

)]
. (20)

In comparison, from the continuum Boltzmann kinetic theory,
we have

M(n) = 1
(2πθ)D/2

∫
d Dc c · · · c︸ ︷︷ ︸

n

exp
[
− (c − u)2

2θ

]

= e− u2
2θ

∫
d Dc c · · · c︸ ︷︷ ︸

n

(2πθ)−
D
2 e− c2

2θ + c·u
θ

= e− u2
2θ θn ∂n

∂un

∫
d Dc (2πθ)−

D
2 e− c2

2θ + c·u
θ . (21)

It is easily shown that
∫

d Dc (2πθ)−
D
2 e− c2

2θ + c·u
θ = exp

[
u2

2θ

]
.

Hence, we have shown that (20) and (21) have exactly the
same form. Subsequently, we have proved the theorem that
M̃(n) = M(n) for any positive integer n, if condition (12) is
satisfied.
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It is revealing to check a few obvious representative
examples. First of all, the first moment

M̃(1) = exp
[
− u2

2θ

]
θ

∂

∂u
exp

[
u2

2θ

]
= u.

This is simply the fluid momentum or the fluid velocity.
On the other hand, the second moment

M̃(2) = exp
[
− u2

2θ

]
θ2 ∂2

∂u2 exp
[

u2

2θ

]
= θI + uu

where I is the second-rank unity tensor. Hence the second
moment has precisely the same form of the correct
hydrodynamic momentum flux tensor. Furthermore, we have

1
2

Trace(M̃(2)) = D
2

θ + 1
2

u2

which is exactly the hydrodynamic total energy.

3. Moment accuracy for lattices of finite isotropy

In the previous section, we have proved that condition (12)
sufficiently ensures that all moments defined via summations
over discrete lattice velocity values are equal to that of
the continuum Boltzmann kinetic theory. However, such a
condition is unnecessarily strong, because it requires the
supporting lattice basis to have an infinite isotropy (i.e., n →
∞). Obviously, no lattice velocity set containing a finite
number of discrete values is able to meet such a requirement.
Hence a realistic goal is finding a relationship between the
hydrodynamic moments up to a given finite order and the
corresponding isotropy for the supporting lattice velocity basis.

First of all, we notice the existence of a hierarchical
relationship among the hydrodynamic moments. On the basis
of definition (19), we have

M̃(n) = exp
[
− u2

2θ

] (
θ

∂

∂u

)n

Q. (22)

Hence,

M̃(n+1) = exp
[
− u2

2θ

]
θ

∂

∂u

(
θ

∂

∂u

)n

Q

= exp
[
− u2

2θ

]
θ

∂

∂u

[
e

u2
2θ e− u2

2θ

(
θ

∂

∂u

)n

Q
]

= exp
[
− u2

2θ

]
θ

∂

∂u

[
exp

(
u2

2θ

)
M̃(n)

]
.

This gives the hierarchical relationship,

M̃(n+1) = uM̃(n) + θ
∂

∂u
M̃(n). (23)

Using the hierarchical relationship (23), all higher order
moments are derivable starting from M̃(0) = 1. More
importantly, we realize that n-th-order moment M̃(n) is an n-
th-order polynomial in terms of the power of the fluid velocity.
That is, the highest power in M̃(n) is un . Since hydrodynamic
moments up to a finite order only involve a finite power of fluid
velocity, we expect that moment accuracy up to a finite order
can be achieved by a finite lattice set of adequate isotropy.

Having established these properties, we arrive at the next
theorem below.

Theorem 2. If the supporting lattice velocity basis satisfies the
following conditions:

E (n)
i1,...,in

=
{

θn/2∆(n)
i1,...,in

, n = 0, 2, . . . , 2N
0, n = odd integer

(24)

and if the discrete equilibrium distribution function f eq,(N )
α is a

truncation of the original exponential form by retaining terms
only up to uN , then the discrete moment M̃(n) is accurate and
equal to the moment M(n) of the continuum Boltzmann kinetic
theory for any n ≤ N. N is any given finite positive integer.

It is easily recognized that the basis lattice velocity set
satisfying the above condition must be 2N -order isotropic
(cf., [11,24]).

Proof of Theorem 2. We start by first examining the standard
Maxwell–Boltzmann distribution (3), and express it in an
expanded form in powers of fluid velocity u. This is very easily
accomplished by taking advantage of the following generating
function for Hermite series:

exp
[
2t x − t2

]
=

∞∑

n=0

Hn(x)

n! tn (25)

where Hn(x) is the standard n-th-order Hermite polynomial.

Let us define the unit vector û ≡ u/|u| and |u| ≡
√∑D

i=1 u2
i

as the magnitude, and ξ ≡ c · û/
√

2θ . We can formally express
the distribution (3) as

f eq(x, c, t) = 1

(2πθ)
D
2

exp
[
− (c − u)2

2θ

]

= 1

(2πθ)
D
2

e− c2
2θ exp

[
c · u
θ

− u2

2θ

]

= 1

(2πθ)
D
2

e− c2
2θ

∞∑

n=0

Hn(ξ)

n!

(
u√
2θ

)n

. (26)

A truncated series f eq,(N ) of the above can be defined by
simply retaining the terms up to uN . On the basis of the
orthogonal property of the Hermite polynomials, namely
∫ ∞

−∞
dx e−x2

Hm(x)Hn(x) = 0; ∀m ,= n, (27)

and because c of power N can be fully represented by Hermite
polynomials {Hn; n = 0, . . . , N }, it is straightforward to see
that moments up to N -th order constructed out of f eq are
identical to those of f eq,(N ), for the higher order terms in f eq

give vanishing contributions due to orthogonality.

Next, like in the above, we expand the discrete distribution
(9), and keeping terms only up to uN ,

f eq,(N )
α = wα exp

[
cα · u

θ
− u2

2θ

]

= wα

N∑

n=0

Hn(ξα)

n!

(
u√
2θ

)n

(28)
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where ξα ≡ cα · û/
√

2θ . Hence the task of proving Theorem 2
is that of proving that M̃(n) (∀n ≤ N ) generated by f eq,(N )

α

is equal to M(n) from the full Maxwell–Boltzmann distribution
f eq or its truncation f eq,(N ). According to definition (1), we
have

M(n) ≡
∫

d Dc c · · · c︸ ︷︷ ︸
n

f eq(x, c, t)

= 1
(2πθ)D/2

N∑

m=0

1
m!

(
u√
2θ

)m

×
∫

d Dc c · · · c︸ ︷︷ ︸
n

exp
[
− c2

2θ

]
Hm(ξ). (29)

On the other hand, according to (5), we have

M̃(n) ≡
b∑

i=0

cα · · · cα︸ ︷︷ ︸
n

f eq,(N )
α

=
N∑

m=0

1
m!

(
u√
2θ

)m b∑

α=0

cα · · · cα︸ ︷︷ ︸
n

wα Hm(ξα). (30)

From (29) and (30), we see that both of these involve Hermite
polynomials of orders no greater than N . Furthermore, a given
Hermite function Hn(x) is a polynomial of xm (m = 0, . . . ,≤
n). Therefore, both M(n) and M̃(n) involve powers of c (or cα)
from 0 up to n + N . On the basis of this observation, we see
that it is sufficient to prove M̃(n) = M(n) (∀n ≤ N ), if for all
integers m ≤ 2N the following property is satisfied:

∫
d Dc

exp[−c2/2θ ]
(2πθ)D/2 c · · · c︸ ︷︷ ︸

m

=
b∑

α=0

wα cα · · · cα︸ ︷︷ ︸
m

(31)

∀m = 0, . . . , 2N .

The result for the discrete summation is already given in the
definition of (11) and (24). Hence it is sufficient to just show
that this is also true for the continuum integration. In fact,
according to the basic Gaussian integral property, we know that

1
(2πθ)D/2

∫
d Dc exp

[
− c2

2θ

]
ci1 ci2 · · · cim

=
{

θm/2∆(m)
i1,i2,...,im

, m = 0, 2, 4, . . . , 2N
0, m = 1, 3, 5, . . . , 2N + 1.

(32)

Consequently, we have proved M̃(n) = M(n) (∀n ≤ N ), and
thus Theorem 2.

It is also worthwhile to note, without repeating the explicit
steps of the above, that the same proof applies if the truncation
of the exponential form f eq

α is up to N + 1. Thus, we can retain
an extra term in the expanded form.

4. Discussion

In this paper, we have presented and proved a set of
fundamental conditions for formulating LBM models. Lattice
velocity sets obeying these conditions automatically produce

equilibrium moment accuracy to any given N -th order. As
demonstrated in [5], non-equilibrium moments are theoretically
expressible as spatial and temporal derivatives of equilibrium
moments. Therefore, achieving higher order moment accuracy
enables accurate description of fluid properties into deeper
non-equilibrium regimes [21,22]. This is essential for physical
properties at finite Knudsen or Mach numbers that are beyond
the Navier–Stokes representation.

To make a more direct comparison with conventional LBM
models, we rewrite (28) in a more explicit form (up to O(u5))
below:

f eq
α = wαρ

[
1 + cα · u

θ
+ (cα · u)2

2θ2 − u2

2θ
+ (cα · u)3

6θ3

− (cα · u)u2

2θ2 + (cα · u)4

24θ4 − (cα · u)2u2

4θ3 + u4

8θ2

+ (cα · u)5

120θ5 − (cα · u)3u2

12θ4 + (cα · u)u4

8θ3

]
. (33)

It is immediately recognized that the series for most of the
conventional LBM models terminate at O(u2) or O(u3). For
example, the so called D3Q15 and D3Q19 correspond to the
expansion up to O(u2) [14]. It can be directly verified that their
underlying lattice velocity sets only satisfy the fundamental
conditions (24) up to N = 2, so that the higher order
moment terms beyond O(u3) cannot be accurately supported.
Furthermore, in these models, the temperature is fixed at θ =
1/3. An extended 34-velocity model exists [17,23], and its
temperature has a range of variation between 1/3 to 2/3, and
D3Q19 is its reduced limit as θ = 1/3. But the moment
accuracy is still N = 2.

There are typically two approaches to constructing lattice
velocity sets obeying higher order of accuracies (N > 2)
according to (24). One approach is to rely on relations between
discrete rotational symmetry and tensor isotropy [11,24]. For
instance, we can start with a lattice velocity set consisting of
multiple lattice speeds, namely

L = L1 ∪ L2 · · · ∪ LM (34)

where each subset is defined as

Lβ = {cα,β; i = 0, . . . , bβ}
β = 1, . . . , M.

All lattice velocities in each subset Lβ has the same magnitude,
|cα,β | = cβ . This way, the required isotropy can be imposed
at each speed level. It has been shown that if such a velocity
subset is parity invariant and obeys an n-th-order isotropy (n =
even integer ), then its basic moment tensor has the following
form [24]:

E(n),β
i1,i2,...,in

= bβcn
β

(D − 2)!!
(D + n − 2)!!∆

(n)
i1,i2,...,in

(35)

and it vanishes for all the odd integer moments. Subsequently,
we can assign a weighting factor wβ(θ) for each subset Lβ ,
so that the overall condition (24) is achieved by satisfying the
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following constraint on the weighting factors:

M∑

β=1

bβcn
β

(D − 2)!!
(D + n − 2)!!wβ(θ) = θn/2 (36)

for n = 0, 2, . . . , 2N . There are 2N + 1 such constraints.
Hence, it is necessary to include enough subsets and wβ(θ)

(β = 1, . . . , M ≥ N + 1) in order to have a solution. Using
such a procedure, a 59-velocity model in three dimensions is
formulated that satisfies (24) up to N = 3 with sixth-order
tensor isotropy, so that the expansion in (33) can be carried to
O(u4). On the basis of the analysis above and elsewhere [5],
such an order of moment accuracy is necessary for getting
the correct energy flux in thermal hydrodynamics [25–27].
Another approach is to form the discrete velocity sets via
Gaussian quadrature for higher order models [5]. Indeed, (32)
defines the precise requirement. The only difference here is that
the quadratures need to allow a variable temperature θ . This
approach is relatively more straightforward, so that it enables
a systematic formulation of higher accurate LBM models to
sixth, eighth orders and beyond. There is also a similar work
recently by Sbragaglia et al. on how to construct higher order
isotropic moments [28].

The formulation described in this paper offers a rigorous
measure for evaluating the order of accuracy of a given LBM
model. For future convenience, we may simply refer to an LBM
model that satisfies condition (24) to N -th order as “E(N )-
accurate”.
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Abstract

Different scaling behavior has been reported in various shell models proposed for turbulent thermal convection. In this paper, we show
that buoyancy is not always relevant to the statistical properties of these shell models even though there is an explicit coupling between
velocity and temperature in the equations of motion. When buoyancy is relevant (irrelevant) to the statistical properties, the scaling behavior
is Bolgiano–Obukhov (Kolmogorov) plus intermittency corrections. We show that the intermittency corrections of temperature could be solely
attributed to fluctuations in the entropy transfer rate when buoyancy is relevant but due to fluctuations in both energy and entropy transfer rates
when buoyancy is irrelevant. This difference can be used as a criterion to distinguish whether temperature is behaving as an active or a passive
scalar.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.27-i; 47.27te

Keywords: Shell models; Turbulent thermal convection; Scaling behavior

1. Introduction

Turbulent thermal convection is a problem of great research
interest (see, for example, [1,2] for a review). One interesting
issue is to understand the scaling behavior of the velocity and
temperature fluctuations. Turbulent thermal convection is often
investigated experimentally in Rayleigh–Bénard convection
cells, which are closed cells of fluid heated from below and
cooled on the top. Such confined turbulent convective flows
are highly inhomogeneous as thermal and viscous boundary
layers are formed near the top and bottom of the cell. Scaling
laws for the central region of such confined turbulent thermal
convection have been put forth and shown to be in good
agreement with the existing experimental measurements [3].
On the other hand, shell models focussing on the energy
cascade process have been studied intensively and proved to
be useful for understanding the scaling behavior of velocity

∗ Corresponding author at: Department of Physics, The Chinese University
of Hong Kong, Shatin, New Territories, Hong Kong.

E-mail address: ching@phy.cuhk.edu.hk (E.S.C. Ching).

fluctuations in inertia-driven turbulence (see, for example, [4]
for a review). It is thus natural to also construct shell models for
turbulent thermal convection. Shell models are, by construction,
boundary-free and thus shell models for turbulent thermal
convection are necessarily models of homogeneous turbulent
thermal convection. It is known that the presence of boundaries
generates coherent structures such as plumes and a large-scale
mean flow in confined turbulent thermal convection, and these
coherent structures can affect the scaling behavior [3]. Thus,
scaling behavior in confined turbulent thermal convection and
scaling behavior in homogeneous turbulent thermal convection
as studied in shell models can be different.

Several shell models for turbulent thermal convection have
been proposed and different scaling behavior reported. Specifi-
cally, Bolgiano–Obukhov (BO) scaling [5] plus intermittency
corrections has been reported in the shell model constructed
by Brandenburg [6] and also in the modified model by Suzuki
and Toh [7] for some parameter range. On the other hand, Kol-
mogorov 1941 (K41) scaling [8] plus intermittency corrections
has been reported by Jiang and Liu [9] using a shell model ex-
tended from the Gledzer–Ohkitani–Yamada (GOY) model [10],

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.001

http://dx.doi.org/10.1016/j.physd.2008.01.001
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which we shall denote as the GOYT model. In this paper, we
show that buoyancy is not always significant and directly rele-
vant to the statistical properties even though there is an explicit
coupling between velocity and temperature in the equations of
motion in all these shell models. We clarify that the two differ-
ent types of scaling behavior reported correspond respectively
to the case when buoyancy is relevant to the statistical proper-
ties and the case when it is not. Specifically, the scaling behav-
ior is BO plus intermittency corrections when buoyancy is rele-
vant, and K41 plus intermittency corrections (as one would ex-
pect for temperature behaving as a passive scalar) when buoy-
ancy is irrelevant. We show that the intermittency corrections
of temperature could be solely attributed to fluctuations in the
entropy transfer rate when buoyancy is relevant but due to fluc-
tuations in both energy and entropy transfer rates when buoy-
ancy is irrelevant. This difference might be used as a criterion
to distinguish whether temperature is behaving as an active or a
passive scalar.

2. Shell models proposed for turbulent thermal convection

Two classes of shell models have been proposed for studying
turbulent thermal convection. The first class consists of the
shell model proposed by Brandenburg [6] and its modified
versions [7]. The other class consists of the GOYT model,
the shell model extended from the GOY model [9] and the
SabraT model [11] from the Sabra model [11]. The Sabra
model [12] was proposed to eliminate some undesirable
periodic oscillations in the GOY model, and have essentially the
same scaling behavior as the GOY model. The scaling behavior
in the first class of shell models is BO plus corrections in some
parameter range while the scaling behavior in the second class
of shell models is always K41 plus corrections. In this paper,
we focus on two shell models, one from each class. The first
one, denoted as the Brandenburg model, is the modified model
proposed by Suzuki and Toh [7] without the drag term. The
second is the SabraT model.

The basic idea of a shell model is to consider variables
in discrete “shells” in Fourier k-space, and construct a set of
ordinary differential equations for these variables per shell. For
shell models for turbulent thermal convection, there are two
variables, the velocity and temperature variables, un and θn .
They can be roughly thought of as the Fourier transforms of
the velocity and temperature fields with wavevector #k, whose
magnitude satisfies kn ≤ |#k| ≤ kn+1. Here, kn = 2nk0 is
the wavenumber of the nth shell, with 0 ≤ n ≤ N − 1, and
k0 = 1 is the wavenumber corresponding to the largest scale in
the system. The equations of motion for un and θn are:

dun

dt
= Iu(kn) − νk2

nun + αgθn (1)

dθn

dt
= Iθ (kn) − κk2

nθn + fn (2)

where fn is the forcing term acting only on the first few
shells. The nonlinear terms Iu(kn) and Iθ (kn) are taken to
couple quadratically with the nearest shells and sometimes
also the next nearest shells, and are constructed to satisfy two
conservation laws of energy and entropy (proportional to |θn|2)

in the limit of ν → 0 and κ → 0:

d
dt

[
1
2

N∑

n=1

|un|2
]

− αg
N∑

n=1

Re{unθ∗
n } = 0 (3)

d
dt

[
1
2

N∑

n=1

|θn|2
]

= 0. (4)

As a result, the nonlinear terms u∗
n Iu(kn) and θ∗

n Iθ (kn) should
have a flux-like form such that the evolution equations of energy
and entropy in the nth shell are:

d
dt

[ |un|2
2

]
= Fu(kn) − Fu(kn+1) − νk2

n |un|2

+ αgRe{unθ∗
n } (5)

d
dt

[ |θn|2
2

]
= Fθ (kn) − Fθ (kn+1) − κk2

n |θn|2 + fnθ∗
n . (6)

The fluxes Fu(kn) and Fθ (kn) are respectively the rates of
energy and entropy transfer from the (n − 1)th shell to the nth
shell.

In the Brandenburg model, un and θn are real variables
with [6,7]:

I B
u (kn) = akn(u2

n−1 − 2unun+1)

+ bkn(unun−1 − 2u2
n+1) (7)

I B
θ (kn) = ãkn(un−1θn−1 − 2unθn+1)

+ b̃kn(unθn−1 − 2un+1θn+1) (8)

F B
u (kn) = (aun−1 + bun)knun−1un (9)

F B
θ (kn) = (ãun−1 + b̃un)knθn−1θn (10)

where a, b, ã and b̃ are positive parameters. In the SabraT
model, un and θn are complex variables with [11]:

I S
u (kn) = iknλ

(
u∗

n+1un+2 − δ

2
u∗

n−1un+1

+ 1 − δ

4
un−1un−2

)
, (11)

I S
θ (kn) = ikn(α1u∗

n+1θn+2 + α2un+2θ
∗
n+1

+ β1u∗
n−1θn+1 − β2un+1θ

∗
n−1

− γ1un−1θn−2 − γ2un−2θn−1) (12)

F S
u (kn) = λIm[kn−1u∗

n−1u∗
nun+1

+ (1 − δ)kn−2u∗
n−2u∗

n−1un] (13)

F S
θ (kn) = Im[γ1(knun−1θn−2θ

∗
n + kn+1unθn−1θ

∗
n+1)

− β2knu∗
n+1θn−1θn + γ2knun−2θn−1θ

∗
n ]. (14)

The parameters α1,2, β1,2 and γ1,2 are determined by

α1 = 4τ, β1 = 1 − δ − 2τ, γ1 = −τ,

α2 = 2 − 4τ, β2 = 1 − 2τ, γ2 = τ − 1 − δ

2
(15)

with three free parameters λ, δ and τ . In particular, we fix λ = 2
and τ = 0.7 and vary δ. The value δ = 1 is the boundary
value separating two families of Sabra model: a family of three-
dimensional-like models for 0 < δ < 1 and a family of two-
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Table 1
Values of the parameters used for the results presented

Brandenburg model

a b ã and b̃ ν κ αg N

0.01 1 1 5 × 10−17 5 × 10−15 1 32
0.31 0.6 1 5 × 10−9 5 × 10−9 1 25

SabraT model

δ λ τ ν κ αg N

0.5 2 0.7 10−8 10−8 1 23
0.8 2 0.7 10−8 10−8 1 23

dimensional-like models for 1 < δ < 2. We focus on 0 < δ < 1
in this paper.

We study the scaling behavior of the velocity and
temperature structure functions, 〈|un|p〉 and 〈|θn|p〉, with
scaling exponents ζp and ξp defined by:

〈|un|p〉 ∼ k
−ζp
n ; 〈|θn|p〉 ∼ k

−ξp
n (16)

where 〈. . .〉 denotes a time average. The K41 scaling would
be characterized by ζp = ξp = p/3 while the BO scaling
by ζp = 3p/5 and ξp = p/5. In our numerical calculations,
we integrate the equations of motion using fourth order
Runge–Kutta method with an initial condition of un = θn = 0
except for a small perturbation of θn at intermediate values of
n. The Brandenburg model is forced with fn = f δn,0 where
f is a uniform random noise while the SabraT model is forced
with a Gaussian time-correlated noise acting on n = 3 and 4
only [12]. For the results presented in this work, we summarize
the parameters used in Table 1.

In the Brandenburg model, the scaling behavior depends on
the relative magnitudes of the parameters a and b, as reported
in earlier studies [6]. When b/a is larger than some critical
value of about 2, the scaling exponents ζp and ξp are given by
the BO values plus corrections. The scaling behavior improves
with b/a. On the other hand, when b/a is smaller but close
to the critical value, the scaling exponents ζp and ξp are the
same as those obtained in the case of passive scalar advection in
which the coupling term αgθn with temperature in the velocity
equation of motion is replaced by a random forcing at n =
0. This indicates that buoyancy does not play a part in the
statistical properties in this case and serves only as an effective
large-scale forcing. The scaling exponents for b/a = 100 and
b/a = 1.94 are shown respectively in Figs. 1 and 2. For even
smaller values of b/a, further away from the critical value, the
system is not chaotic, and in most of the shells the solution
is given instantaneously by the fixed-point solution of un =
Ak−1/3

n and θn = Bk−1/3
n , which holds exactly in the limit of

large N and ν = κ = αg = 0.
For the SabraT model, we find that the values of ζp remain

the same as those in the Sabra model without the coupling
term αgθn for all the values of δ studied, again indicating that
buoyancy does not play a role in determining the statistical
properties in the SabraT model for 0 < δ < 1. The precise
values of ζp depend on δ, as was reported in the GOY

Fig. 1. The scaling exponents ζp (squares) and ξp (circles) for Brandenburg
model with a = 0.01 and b = 1. The error increases with p and the largest
errors are shown. Comparing with the two solid lines of slopes 1/5 and 3/5
shown, it can be seen that the scaling behavior is BO with corrections.

Fig. 2. Same as Fig. 1 for a = 0.31 and b = 0.6. The solid line shown has
slope 1/3.

Fig. 3. Same as Fig. 2 for the SabraT model with δ = 0.5. The solid line shown
has a slope of 1/3 while the dashed line is the She–Leveque result [14].

model [13]. In Fig. 3, we present the results for ζp and ξp for
δ = 0.5, a conventional value at which the model conserves
helicity in the inviscid limit [13]. In this case, the values of
ζp are well described by the She–Leveque result [14] of ζp =
p/9 + 2[1 − (2/3)p/3], as was also reported [9] for the GOYT
model with δ = 0.5.

3. The buoyancy scale

In this section, we discuss how to determine whether
buoyancy is relevant or not in determining the statistical
properties. Consider Eq. (5), which is the energy budget. The



2012 E.S.C. Ching et al. / Physica D 237 (2008) 2009–2014

Fig. 4. Comparison of |αg〈unθn〉| (circles) with ε (solid line) in each shell for
the Brandenburg model with a large value of b/a = 100.

Fig. 5. Same as Fig. 4 for a small value of b/a ≈ 1.9.

third term on the right-hand side is the rate of energy dissipation
in the nth shell due to viscosity while the last term is the power
injected into the nth shell by the buoyancy forces. It is thus
reasonable to take buoyancy to be significant in the nth shell if

|αg〈Re{unθ∗
n }〉| > ε (17)

where ε ≡ ν
∑

n k2
n〈|un|2〉 is the average energy dissipation

rate. We denote the scale at which the equality sign in Eq. (17)
holds to be the buoyancy scale kn∗ . Hence buoyancy is relevant
and significant for n < n∗ and irrelevant or insignificant for n >

n∗. It is easy to show that for un and θn satisfying exactly K41
or BO scaling, kn∗ = 1/L B , where L B ≡ ε5/4χ−3/4(αg)−3/2 is
the Bolgiano length [15] and χ is the average thermal or entropy
dissipation rate given by χ ≡ κ

∑
n k2

n〈|θn|2〉.
As shown in Figs. 4 and 5, we find that Eq. (17) is satisfied

for most of the shells only in the Brandenburg model with
b/a larger than the critical value. When b/a is smaller than
the critical value, buoyancy is insignificant in all except the
largest shells. For the SabraT model, we find that buoyancy is
insignificant in all except the largest shells for all the values of
δ studied. The results for δ = 0.5 and δ = 0.8 are shown in
Fig. 6.

One naturally expects different scaling behavior when
buoyancy is significant and when it is not. In this sense, it is
not puzzling that different scaling behavior was reported in the
various shell models proposed. Indeed we find BO scaling plus

Fig. 6. Comparison of |αg〈Re{unθ∗
n }〉| (circles) with ε (solid line) in each shell

for the SabraT model with δ = 0.5 in the top panel and δ = 0.8 in the bottom
panel.

corrections when buoyancy is significant and K41 scaling plus
correction when it is not. The two different scaling behavior can
be understood by studying the evolution equations of energy
and entropy. In the intermediate range where external forcing is
not acting and where energy and entropy dissipation rates are
both small, Eqs. (5) and (6) can be approximately written as:

Fu(kn) − Fu(kn+1) + αgRe{unθ∗
n } ≈ 0 (18)

Fθ (kn) − Fθ (kn+1) ≈ 0. (19)

From Eq. (19), Fθ (kn) is independent of kn in the intermediate
range, implying that there is an entropy cascade. From Eq. (18),
we see that αgRe{unθ∗

n } is comparable with Fu when buoyancy
is significant, and Fu(kn) − Fu(kn+1) ≈ 0 when buoyancy is
insignificant. Thus when buoyancy is insignificant, there is also
an energy cascade as in the usual inertia-driven turbulence.

In the case when buoyancy is significant, there is only the
cascade of entropy. As a result, one expects the statistical
properties to be controlled by the entropy cascade. Specifically,
one expects [16] the statistical properties of un and θn to be
determined solely by Fθ , αg, and kn :

|un| = φu(αg)2/5|Fθ (kn)|1/5k−3/5
n (20)

|θn| = φθ (αg)−1/5|Fθ (kn)|2/5k−1/5
n (21)

where φu and φθ are dimensionless random variables that are
independent of kn and statistically independent of Fθ (kn). On
the other hand, when buoyancy is insignificant, there is also the
energy cascade. Thus one expects the statistical properties of un
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and θn to be determined by Fu , Fθ and kn :

|un| = ψu |Fu(kn)|1/3k−1/3
n (22)

|θn| = ψθ |Fu(kn)|−1/6|Fθ (kn)|1/2k−1/3
n (23)

where ψu and ψθ are dimensionless random variables that are
independent of kn and statistically independent of Fu(kn) and
Fθ (kn). Hence we have

〈|un|p〉 ∼ 〈|Fθ (kn)|p/5〉k−3p/5
n (24)

〈|θn|p〉 ∼ 〈|Fθ (kn)|2p/5〉k−p/5
n (25)

when buoyancy is significant and

〈|un |p〉 ∼ 〈|Fu(kn)|p/3〉k−p/3
n (26)

〈|θn|p〉 ∼ 〈|Fu(kn) |−p/6 |Fθ (kn)|p/2〉k−p/3
n (27)

when it is not. Eqs. (24) and (25), and Eqs. (26) and (27)
thus respectively give BO and K41 scaling plus intermittency
corrections for the case when buoyancy is significant and
when it is not, just as what was found numerically. Moreover,
when buoyancy is significant, the intermittency corrections
are solely due to fluctuations in Fθ while in the case when
buoyancy is insignificant, the intermittency corrections are due
to fluctuations in both and Fu and Fθ . We have checked and
verified [16] Eqs. (24) and (25).

Our work shows that the mere presence of a coupling term
between velocity and temperature in the equations of motion
does not automatically imply that buoyancy is significant and
affects the statistical properties. This leads to the question: How
can one tell whether temperature is behaving as an active or
a passive scalar in models for turbulent thermal convection?
For shell models, one can use Eq. (17). If Eq. (17) is satisfied
in most shells then buoyancy is significant and temperature
is active otherwise temperature would behave as a passive
scalar. It would also be useful to have some other criterion
that involves directly the statistical features of temperature.
Eqs. (20) and (21) imply that when buoyancy is significant, the
conditional statistics of un and θn at fixed values of Fθ would
have simple BO scaling with no corrections [16]. On the other
hand, this is not true when buoyancy is insignificant; instead
Eqs. (22) and (23) indicate that the conditional statistics of un
and θn at fixed values of Fθ continue to deviate from simple
K41 scaling. Hence one can study the conditional statistics
of temperature at fixed values of the entropy transfer rate.
If these conditional statistics are described by simple scaling
then temperature is behaving as an active scalar. Otherwise if
the conditional statistics remain anomalous then temperature is
behaving as a passive scalar. To check this idea, we calculate the
the conditional temperature structure functions at fixed values
of entropy transfer rate and their scaling exponents ξ∗

p :

〈|θn |p |Fθ = x〉 ∼ k
−ξ∗

p
n (28)

for the SabraT model the Brandenburg model for both small and
large values of b/a. The results of ξ∗

p do not depend on x and
are shown in Fig. 7. It can be seen that for Brandenburg model

Fig. 7. The scaling exponents ξ∗
p of the conditional temperature structure

functions 〈|θn |p |Fθ = x〉 for the Brandenburg model with small b/a (squares)
and large b/a (circles), and the SabraT model with δ = 0.5 (triangles). The
error increases with p and the largest errors are shown. Two solid lines with
slopes 1/3 and 1/5 are shown.

with large b/a, ξ∗
p are indeed well described by the BO values

of p/5. Also, as expected, for both the Brandenburg model with
small b/a and the SabraT model, ξ∗

p’s continue to deviate from
the K41 values of p/3.

4. Conclusions

Various shell models have been proposed for turbulent
thermal convection. K41 scaling plus corrections has been
reported in most of these models while BO scaling plus
intermittency corrections is reported in the Brandenburg model
with suitable parameters. In this paper, we have shown that
buoyancy is not always significant and relevant to the statistical
properties in these shell models even though there is an explicit
coupling term with temperature in the equation of motion
for velocity. We have further clarified that BO scaling plus
corrections would be observed only in the shell models in which
buoyancy is significant. For shell models in which buoyancy
is insignificant, the statistical properties remain the same as
in the case in which the coupling term with temperature is
replaced by a large-scale random forcing. We have argued that
the statistics properties are controlled solely by the cascade
of entropy when buoyancy is significant but controlled by
both the cascades of energy and entropy when buoyancy is
not significant, and shown how this leads to the two different
scaling behavior in the two cases. We have further shown that
the intermittency corrections are solely attributed to fluctuations
of the entropy transfer rate when buoyancy is significant but are
caused by fluctuations of both the energy and entropy transfer
rate when buoyancy is insignificant. As a result, the conditional
temperature structure functions at fixed entropy transfer rate
would have simple scaling when buoyancy is significant but
remain anomalous when buoyancy is insignificant. We have
demonstrated how this feature can be used as a criterion to
distinguish whether temperature is acting as an active or a
passive scalar.
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Abstract

A phenomenological two-fluid model of the (time-reversible) spectrally-truncated 3D Euler equation is proposed. The thermalized small scales
are first shown to be quasi-normal. The effective viscosity and thermal diffusion are then determined, using EDQNM closure and Monte-Carlo
numerical computations. Finally, the model is validated by comparing its dynamics with that of the original truncated Euler equation.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the (inviscid and conservative)
truncated Euler equation admits absolute equilibrium solutions
with Gaussian statistics, equipartition of kinetic energy among
all Fourier modes and thus an energy spectrum E(k) ∼
k2 [1]. Recently, Cichowlas et al. [2,3] observed that the
Euler equation, with a very large (several hundreds) spectral
truncation wavenumber kmax, has long-lasting transients which
behave just as those of high Reynolds-number viscous flow;
in particular they found an approximately k−5/3 inertial range
followed by a dissipative range. How is such a behaviour
possible? It was found that the highest-k modes thermalize at
first, displaying a k2 spectrum. Progressively the thermalized
region extends to lower and lower wavenumbers, eventually
covering the whole range of available modes. At intermediate
times, when the thermalized regime only extends over the
highest wavenumbers, it acts as a thermostat that pumps out
the energy of larger-scale modes. Note that similar k−5/3/k2

spectra have already been obtained within the Leith model
of hydrodynamic turbulence which is a simple differential
closure [4], and earlier similar mixed cascade/thermodynamic
states (but with spectra different from k−5/3/k2) were discussed
in the wave turbulence literature (e.g. [5]).

∗ Corresponding author.
E-mail address: krstulov@lps.ens.fr (G. Krstulovic).

The purpose of the present work is to build a quantitative
two-fluid model for the relaxation of the 3D Euler equation. In
Section 2, after a brief recall of basic definitions, the statistics
of the thermalized small scales are studied during relaxation.
They are shown to be quasi-normal. Our new two-fluid model,
involving both an effective viscosity and a thermal diffusion, is
introduced in Section 3. The effective diffusion laws are then
determined, using an EDQNM closure prediction and direct
Monte-Carlo computations. The model is then validated by
comparing its predictions with the behaviour of the original
truncated Euler equation. Finally Section 4 is our conclusion.

2. Relaxation dynamics of truncated Euler equations

2.1. Basic definitions

The truncated Euler equation (1) are classically obtained [1]
by performing a Galerkin truncation (v̂(k) = 0 for supα |kα| >
kmax) on the Fourier transform v(x, t) = ∑

v̂(k, t)eik·x of
a spatially periodic velocity field obeying the (unit density)
three-dimensional incompressible Euler equations, ∂t v + (v ·
∇)v = −∇ p, ∇ · v = 0. This procedure yields the following
finite system of ordinary differentials equations for the complex
variables v̂(k) (k is a 3 D vector of relative integers (k1, k2, k3)
satisfying supα |kα| ≤ kmax)

∂t v̂α(k, t) = − i
2
Pαβγ (k)

∑

p
v̂β(p, t)v̂γ (k − p, t) (1)

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.008
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where Pαβγ = kβ Pαγ + kγ Pαβ with Pαβ = δαβ − kαkβ/k2

and the convolution in (1) is truncated to supα |kα| ≤ kmax,
supα |pα| ≤ kmax and supα |kα − pα| ≤ kmax.

This time-reversible system exactly conserves the kinetic
energy E = ∑

k E(k, t), where the energy spectrum E(k, t)
is defined by averaging v̂(k′, t) on spherical shells of width
∆k = 1,

E(k, t) = 1
2

∑

k−∆k/2<|k′|<k+∆k/2

|v̂(k′, t)|2. (2)

2.2. Small scales statistics

Perhaps the most striking result of Cichowlas et al. [2] was
the spontaneous generation of a (time dependent) minimum of
the spectrum E(k, t) at wavenumber kth(t) where the scaling
law E(k, t) = c(t)k2 starts. Thus, the energy dissipated from
large scales into the time dependent statistical equilibrium is
given by

Eth(t) =
∑

kth(t)<k

E(k, t). (3)

In this section we use the so-called Taylor–Green [6] initial
condition to (1): the single-mode Fourier transform of uTG =
sin x cos y cos z, vTG = −uTG(y, −x, z), wTG = 0.

In order to separate the dynamics of large-scale (k < kth)
and the statistics of small-scales (k > kth) we define the low-
and high-pass filtered fields

f <(r) =
∑

k

F(k) f̂keik·r (4)

f >(r) = 1 − f <(r) (5)

where f (r) is an arbitrary field and f̂k its Fourier transform; we
have chosen F(k) = 1

2 (1 + tanh[ |k|−kth
∆k ]), with ∆k = 1/2.

This filter allows us to define the large-scale velocity
field v< and the spatially dependent thermalized energy (or
heat) associated to quasi-equilibrium. Using the trace of the
Reynold’s tensor [7], Ri j = 1

2 (v>
i v>

j )<, we define the local
heat as

Q(r) = 1
2

[
(v>)2

]<
(r). (6)

By construction of the filters, (4) and (5) the heat spatial average
is equal to the dissipated energy (3) 〈Q(r)〉 = Eth. Fig. 1a
shows a 2D cut of the heat Q on the surface z = π

2 , where a
cold zone is seen to be present at the centre of the impermeable
box (x = [0, π], y = [0, π], z = [0, π]). An isosurface of
the hottest zones is displayed on Fig. 1b. It is apparent on both
figures that Q(r) is not spatially homogeneous.

2.3. Heat diffusion

The simplest quantities to study in order to quantify the
evolution of Q, are the spatial average Q(t) = 〈Q(r, t)〉 and
the root mean square variation ∆Q =

√
〈(Q2 − 〈Q〉2)〉. These

quantities are shown in Fig. 2, where that the mean heat is seen

Fig. 1. Cut at z = π
2 of Q (a) and the isosurface Q(r) = 0.8Qmax = 0.42 (b).

Fig. 2. Plots of Q(t) (a) and ∆Q(t)/Q(t) (b); solid lines are the results of the
two-fluid model (see Section 3).

to increases in time, due to the energy coming from the large
eddies, as was shown precedently in [2]. The relative fluctuation
∆Q/Q is seen to decrease from 0.9 to 0.2.

The next natural question is related to the statistical
distribution of the small eddies v>: are they approximately
Gaussian, like an absolute equilibrium? A histogram of v>

x is
shown in Fig. 3. As the heat is not homogeneous, we also
computed the histogram of the normalized field ṽ>

x = v>
x /

√
Q

which seems to better obey Gaussian statistics as can be seen on
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Fig. 3. Histogram of v>
x and ṽ>

x and normalized cumulant s4 and s6 (odd
cumulants vanish because of symmetries).

Fig. 3 and comparing the firsts normalized cumulant sn = cn√
cn

2
(cn is the cumulant of order n) in the table.

3. Two-fluid model

We now introduce our phenomenological two-fluid model
of the truncated Euler equation. One of the fluids describes
the large scale velocity field and the other represents
the thermalized high-wavenumber modes described by a
temperature field T = Q/c (c is the specific heat,
explicitly given by c = 8k3

max). This model is somewhat
analogous to Landau’s standard two-fluid model of liquid
helium at finite temperature T where there is a natural cut-
off wavenumber for thermal excitations: the classical-quantum
crossover wavenumber kmax given by h̄kmaxcS = kBT (cS is
the sound velocity and kB Boltzmann’s constant). In Landau’s
model kmax is temperature dependent and the specific heat c is
proportional to T 3. In constrast, kmax and the specific heat are
constant in our model that reads:

∂tv
<
i + v<

j ∂ jv
<
i = −∂i p̃ + ∂ jσ

′
i j (7)

∂iv
<
i = 0 (8)

∂t T + v<
j ∂ j T = DT + 1

2c

(
∂ jv

<
i + ∂iv

<
j

)
σ ′

i j (9)

where

σ ′
i j = F−1[νeff(k)(iki v̂

<
j + ik j v̂

<
i )] (10)

DT = F−1[−k2 Deff(k)F[T ]] (11)

and F[·] denotes the Fourier transform. σ ′
i j is a generalized

form of the standard viscous strain tensor [8]. The precise
form of the anomalous diffusion terms νeff and Deff will be
determined below, in Sections 3.1 and 3.2.

The advection terms in Eq. (7) are readily obtained from
the Reynolds equations for the filtered velocity by remarking
that the diagonal part of the Reynolds stress can, because
of incompressibility, be absorbed in the pressure. Eq. (10)
represents a simple model of the traceless part of the Reynolds
tensor [7]. In the same vein, the advection terms in Eq. (9)
are readily obtained together with higher-order moments (see
equation (1) of Reference [9]). The dissipation and source terms
in (9) are thus simple models of the higher-order moments.
It is easy to show that in the present model 〈 1

2 v<2 + cT 〉
is conserved, corresponding to the energy conservation in the
truncated Euler equation.

As the fluctuations ∆Q/Q are small (see above) we
will furthermore assume that νeff and Deff only depend on

〈Q〉 = Eth. Thus the evolution of the filtered velocity v< is
independent of the fluctuations ∆Q. As [Eth] = L2T −2, simple
dimensional analysis yields the following form for the function
νeff and Deff:

νeff =
√

Eth

kmax
f
(

k
kmax

,
k0

kmax

)
;

Deff =
√

Eth

kmax
Ψ

(
k

kmax
,

k0

kmax

) (12)

where k0 = 2π/Lp the smallest nonzero wavenumber (Lp is
the periodicity length, 2π in the present simulations).

3.1. EDQNM determination of viscosity

An analytical determination of function νeff is possible using
the eddy-damped quasi-Markovian theory (EDQNM) [10]. It
is known that this model well reproduces the dynamics of
truncated Euler Equation, including the k−5/3 and k2 scalings
and the relaxation to equilibrium [11].

The EDQNM closure furnishes an integro-differential
equation for the spectrum E(k, t):

∂ E(k, t)
∂t

= TN L(k, t) (13)

where the nonlinear transfer TN L is modeled as

TN L(k, t) =
∫ ∫

+
Θkpq(xy + z3)[k2 pE(p, t)E(q, t)

− p3 E(q, t)E(k, t)]dp dq
pq

. (14)

In (14) + is a strip in p, q space such that the three wavevectors
k, p, q form a triangle. x , y, z, are the cosine of the angles
opposite to k, p, q. Θkpq is a characteristic time defined as

Θkpq = 1 − exp(−(ηk + ηp + ηq)t)
ηk + ηp + ηq

(15)

and the eddy damped η is defined as

ηk = λ

√∫ k

0
s2 E(s, t)ds. (16)

Classically λ = 0.36 and the truncation is imposed omitting all
interactions involving waves numbers larger than kmax in (14).

A simple and important stationary solution of (13) is the
absolute equilibrium with equipartition of the kinetic energy
and corresponding spectrum E(k) ∼ k2.

To compute the EDQNM effective viscosity νeff we consider
an absolute equilibrium with a small perturbation added in
the mode of wavenumber kpert and study the relaxation to
equilibrium. The corresponding ansatz is E(p, t) = 3Eth

k3
max

p2 +
γ (t)δ(p − kpert) and we suppose Eth , γ , so that the total
energy is almost constant and equal to Eth.

Using the long time limit of (15) and expanding the EDQNM
transfer (14) to first order in γ yields for the delta containing
part, after a lengthy but straightforward computation:
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Fig. 4. Effective viscosity νeff (a) and thermal diffusivity Deff (b) determined by Monte Carlo computations performed at different values of Eth and kmax
(see text).

TN L(k, t) = −γ (t)δ(k − kpert)k2
√

Eth

kmax

√
30
λ

I
(

k
kmax

)
(17)

where I is given by the explicit integral

I (x) = √
x

×
∫ 2−x

x

1

∫ 1

−1

(p2 − 1)(1 − q2)(q2 + p2(1 + 2q2))

(p2 − q2)(2
5
2 + ((p − q)

5
2 + (p + q)

5
2 ))

dqdp.

Using (13) and (17) and the basic definition of the two-fluid
model (7)–(11), we obtain

νeff(k) =
√

Eth

kmax

√
30

2λ
I
(

k
kmax

)
. (18)

The function f (x = k
kmax

, 0) in (12) is thus given by

f (x, 0) =
√

30
2λ

I (x). (19)

In the limit x → 0, it is simple to show that f has a finite
value f (0, 0) = 7√

15λ
. Thus the EDQNM prediction in the

small k/kmax limit is

νeff =
√

Eth

kmax

7√
15λ

, (20)

with 7√
15λ

= 5.021 for the classic value of λ = 0.36. This
asymptotic value can also be obtained from the EDQNM eddy
viscosity expression calculated by Lesieur and Schertzer [12]
using an energy spectrum E(k) ∼ k2.

3.2. Monte-Carlo determination of viscosity and thermal
diffusion

In order to numerically determine the effective viscosity
νeff(k) of the two-fluid model, we use a general-periodic code
to study the relaxation of an absolute equilibrium perturbed
by adding a stationary solution of the Euler equation. We thus
consider the initial condition

u = cos kx sin ky + ueq (21)
v = − sin kx cos ky + veq (22)
w = weq (23)

where the (solenoidal and Gaussian) absolute equilibrium
velocity field satisfies 〈u2

eq + v2
eq + w2

eq〉 = 2Eth.
The resulting amplitude of the rotation in (21)–(23) is found,

after a short transient, to decay exponentially in time. The
function νeff(k) is then obtained by finding the halving time
τk , for which v̂α(k, t0 + τk) = v̂α(k, t0)/2, with t0 chosen
larger than the short transient time. The effective dissipation
thus reads

νeff(k) = log 2/(k2τk). (24)

The values of νeff(k)kmax/
√

Eth are shown in Fig. 4a for dif-
ferent values of Eth, k, kmax. A very good agreement with the
EDQNM prediction is observed. Note that there is not depen-
dence in the dimensionless parameter k0/kmax (see Eq. (12)).

An exponential fit of all data in Fig. 4a gives

νeff = 5.0723
√

Eth

kmax
e−3.97k/kmax . (25)

Note that the limit k/kmax → 0 is consistent with the EDQNM
prediction (20).

Another simple numerical experiment can be used to
characterize the thermal diffusion: the relaxation of a spatially-
modulated pseudo-equilibrium defined by
〈
u2 + v2 + w2

〉
= 2Eth + 2ε cos(kx) (26)

with ε < Eth.
An x-dependent temperature can be recovered by averaging

u2+v2+w2 over y and z. Numerical integration of the truncated
Euler equation with the initial condition (26) produces an
amplitude ε that decays exponentially, as in the case studied for
the determination of effective viscosity. The thermal diffusivity
Deff is determined in the same way as in Eq. (24) and the
corresponding data are shown in Fig. 4b. A power-law fit gives

Deff = 0.7723
√

Eth

kmax
(k/kmax)

−0.74. (27)

The negative exponent in (27) is characteristic of hypodiffusive
processes.

We can define an effective Prandtl number as the ratio
Peff(k) = νeff(k)/Deff(k). The Prandtl number is plotted in
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Fig. 5. Effective Prandtl number Peff = νeff/Deff. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. (a) Time decay of rotation (21) and (22) (upper curve) and temperature
modulation (26) (bottom curve). Solid line: truncated Euler equations
and dashed line: two-fluid model. (b) Time-evolution of energy spectra,
truncated Euler equation: solid lines and two-fluid model: dashed lines. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5, where the solid blue line is obtained using the EDQNM
prediction (20) and the fit (27) and the dashed red line is
obtained using the fits (25) and (27). Note that the Prandtl
vanishes in the the small k/kmax limit and verifies Peff < 1
for all wavenumbers.

3.3. Validation of the model

In this section, numerical integration of the the two-fluid
model equations (7)–(11) are performed using a pseudo-
spectral code. Time marching is done using second-order
leapfrog finite difference scheme and even and odd time-steps
are periodically recoupled by fourth-order Runge–Kutta. The
effective viscosity and diffusivity are updated at each time step
by resetting Eth = 〈Q〉. The obtained data is compared with
that directly produced from the truncated Euler equation.

The time-evolutions resulting from initial data (21) and (22)
(in red) and (26) (in blue), both normalized to one and with
the same value of Eth is displayed on Fig. 6a. Good agreement

with the two-fluid model is obtained in both cases and the
faster relaxation of the temperature modulation is related to the
smallness of Peff < 1.

We now compare, the evolution of non-trivial spectra of
the truncated Euler equation (1) and the two-fluid model. The
truncated Euler equation is integrated using the Taylor–Green
initial data. At t ∼ 8, when a clear scales separation is present,
the large-scale fields v< (see Eq. (4)) and the heat Q (Eq. (6))
are computed and used as initial data for the two-fluid model
(7)–(11). The subsequent evolution of the two-fluid model is
then compared with that of the truncated Euler equation.

Both spectra, plotted in Fig. 6b, are in good agreement. The
straights lines represents the thermalized zone E(k, t) = c(t)k2

in the spectrum of the truncated Euler equation, where c(t) is
determined by the condition 〈Q(t)〉 = ∑

k>kth
c(t)k2.

The value of Q(t) and ∆Q/Q are plotted in Fig. 2 (solids
lines); the evolution of the fluctuation of the temperature are
well reproduced too by the two-fluid model.

4. Conclusion

The thermalized small scales were found to follow a quasi-
normal distribution. The effective viscosity was determined,
using both EDQNM and Monte Carlo. (Hypo)diffusion of heat
was obtained and the effective Prandtl number found to vanish
at small k/kmax. The two-fluid model was found to be in
good quantitative agreement with the original truncated Euler
equations.
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Abstract

A simple initial condition for vorticity ω = [sin(y − z), sin(z − x), sin(x − y)], which has Clebsch potentials, has been identified to lead
to a flow evolution with a very weak energy transfer. This allows us to integrate the Euler equations in time longer than commonly expected, to
reach a stage at which the total enstrophy attains its peak for the corresponding Navier–Stokes flow. It thereby enables us to study the relationship
between the inviscid-limit and totally inviscid behaviours numerically. In spite of small energy dissipation rate, the Navier–Stokes flow shows a
power-law spectrum whose exponent is around −5/3 and −2. A similar behaviour is also observed for the Euler flow. In physical space, this flow
has groups of vorticity layers, which hesitate to roll up.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.27.Jv; 47.32.C-

Keywords: Regularity; Euler equations; Onsager conjecture; Numerical simulation

1. Introduction

The Euler equations for an incompressible flow written
down 250 years ago still remain a challenging subject, both
mathematically and physically. One of the central problems is
the regularity/singularity issue; whether Euler flows of finite
total kinetic energy under appropriate boundary conditions
develop spontaneous singularity or not. In other words,
the problem is to investigate whether the built-in depletion
mechanism is sufficiently effective to avoid singularity or not.

For mathematicians, the importance of the problem is self-
evident. However, for physicists or engineers the motivation
is less obvious. Perhaps the most well-known rationale for
studying possible singularity formation in Euler flows is its
relevance to the onset or the intermittency phenomena of
turbulence.
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Hounsfield Road, Sheffield S3 7RH, UK. Tel.: +44 114 222 3861; fax: +44
114 222 3739.
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This is highlighted in the expression for the dissipation rate
of total kinetic energy in Navier–Stokes flows:

ε = ν
〈
|ω|2

〉
→ const. %= 0

in the limit of vanishing viscosity ν → 0, [22] where the
brackets denote a spatial average.

This suggests that fully-developed turbulence may be
characterised by singularities, if any, of totally inviscid fluid
flows, thereby raising the interest of studying the relationship

ν ≡ 0 vs. ν → 0.

Closely related is the Onsager conjecture for ν = 0 [1].
Essentially, it tells us that a blowup in the Euler equations may
drop the total kinetic energy and recommends us to study them
to characterise fully-developed turbulence.

The outline of this paper will be as follows. We describe
our rationale in Section 2, and mathematical formulation in
Section 3. We then introduce a condition for geometrical
non-degeneracy in Section 4. Numerical results are presented
in Sections 5 and 6. Section 7 describes Kida–Pelz initial
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condition briefly, as another example of flows expressed with
Clebsch potentials. Section 8 is devoted to summary and
outlook. Finally, we review Clebsch’s paper briefly in the
Appendix A, because this is a conference devoted to historical
Euler’s legacy and because we will use Clebsch potentials.

2. Inviscid and inviscid-limit behaviours

In view of the results of past numerical simulations of
slightly viscous and inviscid flows, it is now apparent that there
are at least two time scales involved in the problem.

One time scale t∗ for the inviscid case (ν = 0) marks a
rapid growth in vorticity, beyond which numerical solutions
become under-resolved, possibly leading to a singularity. The
other one T∗ for the viscous case (ν > 0) is the time when
the total enstrophy is peaked, which is to be followed by the
development of the Kolmogorov spectrum.

For example, in the well-known two cases, these values are
roughly estimated as follows:

• Taylor–Green vortex [2] has t∗ ≈ 5 and T∗ ≈ 9,
• Kida–Pelz high-symmetric flow [3] has t∗ ≈ 2 and T∗ ≈ 4.

In these cases and in many others, the two time scales are
widely separate, that is, T∗ is larger than t∗ from the viewpoint
of numerical simulations. If they were about the same, we
would be able to investigate the inviscid-limit behaviour ν → 0
and compare it with the totally inviscid case ν = 0.

Even with decently high spatial resolutions, numerical
solutions soon get under-resolved after t∗. To match T∗ as
small as t∗ we would need to lower Reynolds number, resulting
out of the fully-developed stage. For this reason, unfortunately
we cannot investigate the relationship between inviscid and
inviscid-limit behaviours numerically. We are caught between
the devil and the deep blue sea.

Then how can we make progress in this difficult problem?
As a workaround we may think of going for geometrically the
simplest flows and characterise them as thoroughly as possible.

In this work we confine ourselves to a class of flows
endowed with Clebsch potentials. Out of these efforts, a
particular flow has been identified, in which the energy transfer
process is very mild and the relationship between inviscid and
inviscid-limit behaviours can be studied numerically. In this
simple flow with Clebsch potentials, we find t∗ ≈ T∗(≈8). We
do not know if Clebsch potentials play an essential role to have
flows with such a property.

3. Mathematical formulation

With standard notations, the incompressible Euler equations
have the following form

∂u
∂t

+ (u · ∇)u = −∇ p, ∇ · u = 0. (1)

The well-known criterion [4] for the regularity up to T reads
∫ T

0
max

x
|ω(x, t)|dt < ∞. (2)

Alternatively, regularity may be monitored by any advected
scalar f subject to the flow

∫ T

0
max

x
|∇ f (x, t)|2dt < ∞, (3)

which is due to [5].
The velocity field is said to have Clebsch potentials when it

has the following form

u = f ∇g − ∇φ, (4)

where f and g are scalar fields defined globally in the domain,
except for unphysical singular points. These scalars are called
Clebsch potentials, and φ is used for solenoidal projection. The
corresponding vorticity reads

ω = ∇ f × ∇g. (5)

It is not necessary, but sufficient to make f and g material. We
take D f

Dt = Dg
Dt = 0 for simplicity, where D/Dt denotes material

derivative. Plausibility of using Clebsch potentials is justified in
two steps. Kinematically, we recall a result from vector analysis
that

γ = f ∇g globally ⇔ γ · ∇ × γ ≡ 0. (6)

This is called Frobenius’s condition of integrability. We may
take γ as the ‘impulse’ variable, that is, the first term in the
expression for velocity γ = u + ∇φ.

Dynamically, we recall that the helicity density of the
impulse γ is conserved pointwise in time with the choice of
geometric gauge, that is,

D
Dt

γ · ∇ × γ = 0. (7)

Thus, if it vanishes everywhere initially, it will do so all the time
as long as smooth solutions persist.

4. Condition for geometrical non-degeneracy

In the above expression for vorticity, we may observe yet
another mechanism for nonlinearity depletion. It is most readily
seen by considering the minimum rates for possible blowup for
vorticity and scalar gradients:

max
x

|ω| = O
(

1
T − t

)
, (8)

and

max
x

|∇ f |, max
x

|∇g| = O
(

1√
T − t

)
(9)

the former of which is due to [4] and the latter to [5]. If we plug
these into the vorticity expression (5), the rates of blowup on
both sides balance, provided that ∇ f and ∇g are not parallel to
each other. In other words, if ∇ f tends to be colinear with ∇g
we would have a contradiction.
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Fig. 1. Time evolution of maximum vorticity.

5. Numerical results: Euler equations

To test whether the above mechanism is working, we
perform a series of numerical simulations. We have two initial
conditions in mind; a simple flow with Clebsch potentials
and Kida–Pelz high-symmetric flow. We will mainly consider
the first case and for the latter we only present a choice of
Clebsch potentials and comment on their apparent singularities
for comparison.

In practice, by a pseudo-spectral method we solve
simultaneously (1) together with

D f
Dt

= Dg
Dt

= 0. (10)

We check ω = ∇ f × ∇g pointwise in space for consistency.
The spatial resolution used is 2563 typically, with the 2/3-
dealiasation.

Now we start with the simple initial condition. We consider
the following choice of Clebsch potentials

f = sin x + sin y + sin z, g = cos x + cos y + cos z. (11)

It is easy to verify that the corresponding vorticity and velocity
become

ω = ∇ f × ∇g = [sin(y − z), sin(z − x), sin(x − y)], (12)

and

u =
[
−1

2
(cos(x − y) + cos(x − z) + 1) ,

−1
2

(cos(y − z) + cos(y − x) + 1) ,

−1
2

(cos(z − x) + cos(z − y) + 1)

]
. (13)

(Note that the constant terms − 1
2 are included in u just to make

u · ω ≡ 0. They play no role in dynamics.) First, we plot the
growth in maximum vorticity max |ω| against time in a semi-
linear plot Fig. 1. The straight line shows a clear exponential
growth in vorticity.

To check the above-mentioned depletion effect, we monitor

sin2 θ ≡ (∇ f × ∇g)2

|∇ f |2|∇g|2 ,

Fig. 2. Time evolution of 〈sin2 θ〉.

Fig. 3. Time evolution of sin2 θ at maximum point of vorticity.

where θ is the angle between the two scalar gradients ∇ f and
∇g.

In Fig. 2, we show time evolution of a spatial average
〈sin2 θ〉, which shows a decrease of the angle θ in general.
In Fig. 3 evolution of a local value sin2 θ evaluated at the
maximum point of vorticity is plotted in a log-linear fashion.
This shows the angle is shrinking roughly exponential in
time. (Some fluctuations are due to a number of different
local maxima with the same values.) As far as this initial
condition is concerned, the above-mentioned mechanism is
actually working to reduce nonlinear effects.

6. Navier–Stokes equations

We consider the Navier–Stokes flows

∂u
∂t

+ (u · ∇)u = −∇ p + ν/u, ∇ · u = 0 (14)

starting from the same initial condition. We study the time
evolution in terms of the enstrophy

Q(t) =
〈 |ω|2

2

〉

and the energy dissipation rate

ε(t) = ν
〈
|ω|2

〉
.
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Fig. 4. Time evolution of enstrophy; for ν = 0.5 × 10−3 (solid) and ν = 0
(dashed).

The values of kinematic viscosity are chosen as

ν = 5.0, 2.0, 1.0, 0.5 × 10−3.

In Fig. 4 we compare the time evolution of the enstrophy
for the inviscid case and the viscous case smallest ν = 0.5 ×
10−3. At around t = 3, their difference is noticeable and
this Navier–Stokes flow attains the maximum enstrophy around
t = 7.

We show in Fig. 5 the time evolution of the dissipation rate
for the four different values of ν. We show the maximum values
of ε(t) against ν in log–log manner Fig. 6. Similarly we show
the times of maximum ε(t) against ν in Fig. 7. By using least-
squares fitting, we find

T∗ = Bν−α, B ≈ 1.3, α ≈ 0.23,

and

εmax = Aνβ, A ≈ 0.23, β ≈ 0.37.

These suggest that

T∗ → ∞ and εmax → 0 as ν → 0.

(In Appendix B we compare it with the solution with Burgers’s
shear layer, which has an infinite amount of total energy.) They
are not consistent with what is expected in the phenomenology
of turbulence, where ε remains independent of ν in the limit.

In Fig. 8, we compare the energy spectrum E(k) for the
inviscid and viscous (with ν = 0.5 × 10−3) cases at t = 8.
The spectrum shows a short power-law range, whose exponent
is around −5/3 and −2. It should be noted that the inviscid
spectrum also exhibits a short power-law range, which is not
markedly different from the Kolmogorov spectrum. However,
we refrain from determining the slope in these cases because of
the limited range.

In Fig. 9, we show a similar plot at t = 10. By plotting
the spectrum, in a log-linear manner we have checked
that the inviscid flow has a short exponential fall-off, with
undulations presumably coming from interferences between
vortex structures [9] (see Fig. 11). If we computed an Euler
flow that long from general initial data, we would suffer
from truncation errors, associated with a turn-up of the higher

Fig. 5. Time evolution of energy dissipation rate for ν = 5.0, 2.0, 1.0, 0.5 ×
10−3 (solid, dashed, short-dashed and dotted).

Fig. 6. Viscosity dependence of the maxima of ε(t). The dashed lines shows a
least-squares fit, given in the text.

Fig. 7. Viscosity dependence of the times at which ε(t) is peaked. The dashed
lines shows a least-squares fit, given in the text.

wavenumber end of the spectrum. In this flow, we see no sign
of serious numerical inaccuracy at this stage. Actually, an equi-
partition part E(k) ∝ k2 begins to appear around t = 14, or
later.

There is a mathematical result which compares an Euler flow
with Navier–Stokes flows for a fixed initial condition [6]. If we
fix time on a time interval of the regular Euler evolution, the
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Fig. 8. Energy spectra at t = 8 for ν = 0.5 × 10−3 (solid) and ν = 0 (dotted).
The straight lines have a slope of −5/3 (solid) and that of −2 (dashed).

Fig. 9. Energy spectra at t = 10 for ν =; 0.5×10−3 (solid) and ν = 0 (dotted).
The straight lines have a slope of −5/3 (solid) and that of −2 (dashed).

Fig. 10. Energy spectra at t = 8 for ν = 5.0, 2.0, 1.0, 0.5 × 10−3, 0 (solid,
dashed, short-dashed, dotted and dash-dotted). The straight line has a slope of
−5/3.

difference between the Navier–Stokes and Euler flows can be
made as small as we wish, by passing ν to zero.

In Fig. 10 we show the energy spectrum for the Euler
case and the Navier–Stokes cases with four different values of
viscosity. This appears to be consistent with the comparison
theorem of [6], that is, for a fixed time t with a regular Euler

Fig. 11. Iso-surface of vorticity at t = 8 for ν = 0.5 × 10−3 with a threshold
|ω(x)|2 = 69.0, together with vortex lines starting from a plane x = π/2.

evolution

Eν(k) → E0(k) as ν → 0,

where Eν(k) denotes an energy spectrum for the case of
viscosity ν. However, this does not necessarily imply that
E0(k) ∝ k−n , even if Eν(k) ∝ k−n with finite ν, because
we are left in the very early stage of evolution t 1 T∗(ν)

when we let ν → 0 for a fixed t . So, let us assume that
E0(k) ∝ k−m for a fixed large t , then we expect its exponent
to be shallower than n, that is m (≤n), which is consistent with
Fig. 10. We may think of the possible choices, for example,
(n, m) ≈ (2, 2), (5/3, 5/3), (2, 5/3) but (n, m) ≈ (5/3, 2)

should be ruled out. Computations at higher resolutions and/or
a more sophisticated handling of data analyses (as in [9]) may
determine the exponents more convincingly.

It is of interest to study vortical structure in physical space.
By visualisations of iso-vorticity surfaces Fig. 11, it turned out
that some groups of vorticity layers are situated surrounding the
diagonal axis. Unlike usual flow configurations, these vortex
layers appear to be stable and get away from being rolled up
by Kelvin–Helmholtz instability. This explains at least partially
why this flow has a weak energy transfer.

We may summarise the features of this simple flow as
follows. It is possible to compute the Euler flow up to a time
when the enstrophy of the corresponding Navier–Stokes flow
reaches its maximum, that is, t∗ ≈ T∗.

For viscous cases ν > 0, we find:

• a power-law behaviour in E(k) after a maximum of ε(t),
• T∗ → ∞ as ν → 0,
• max ε(t) → 0 as ν → 0.

For the inviscid case ν = 0 we find:

• max |ω| shows an exponential growth,
• a power-law behaviour in E(k), is observed (to be checked

with higher resolution) [23].

If the flow is dominated by a single layer of vorticity, then we
would have E(k) ∝ k−2. It is necessary to perform simulations
at higher resolutions to determine the exponent more accurately.
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This may serve as an example of a long-lived Euler flow
sustaining a power-law spectrum.

7. Kida–Pelz high-symmetric flows

The initial velocity and vorticity of this flow for (0 ≤
x, y, z < π/2) is given by

u =




sin x(cos 3y sin z − cos y sin 3z)
sin y(cos 3z sin x − cos z sin 3x)

sin z(cos 3x sin y − cos x sin 3y)



 ,

and

ω =


−2 cos 3x sin x sin z + 3 cos x(sin 3y sin z + sin y sin 3z)
−2 cos 3y sin y sin x + 3 cos y(sin 3z sin x + sin z sin 3x)

−2 cos 3z sin z sin y + 3 cos z(sin 3x sin y + sin x sin 3y)



 .

It can be checked that u · ω ≡ 0, so Frobenius’s integrability
condition is satisfied. We may choose Clebsch potentials for
the flow in a closed form, for example, as

f = 2
(cos x)3/2(cos2 y − cos2 z)

(cos y cos x)1/2 ,

g = 2
(cos y)3/2(cos2 z − cos2 x)

(cos x cos y)1/2

(details of their derivation are omitted here).
These potentials have singularities at x = π/2 or

y = π/2. They are unphysical, but they cause difficulties
in numerical computations. We need a workaround against
apparent singularities in Clebsch potentials to study their
behaviour numerically.

We note that Clebsch potentials found for the Taylor–Green
vortex have also (milder) singularities [10]:

f =
√

2 cos x
√

| cos z|, g =
√

2 cos y
√

| cos z| sgn(cos z).

They are only in C0, that is, continuous but non-differentiable
on a line x = π/2.

Presence or absence of such apparent singularities is
irrelevant to the tame behaviour observed in the previous
section, because we may find flows with reasonable strong
energy transfer with smooth Clebsch potentials.

8. Summary and outlook

We have introduced yet another depletion mechanism,
that is, colinearity of ∇ f and ∇g which may lead to a
mild exponential growth in vorticity. We have identified
longevity of an inviscid flow with mild energy transfer, thereby
demonstrating the coexistence of smooth Euler evolution with a
power-law scaling for the slightly viscous case. Thus, as far as
this flow is concerned, the most important physical motivation
for suspecting singularity has been lost.

We conjecture that the Euler flow starting from the
initial condition (5) remains regular all time and that
the corresponding Navier–Stokes flows with small but
finite viscosity exhibit a power-law energy spectrum. Some

comments may be in order regarding the features of this flow.
(i) On the relationship between inviscid and inviscid-limit
behaviours: if the flow remains regular all time, the comparison
theorem [6] should hold any time. The result in Fig. 10. is
consistent with this. (ii) The depletion mechanism introduced
and discussed in Sections 4 and 5 leads to the tame behaviour.
The mechanism is valid for other flows with Clebsch potentials,
e.g. the Kida–Pelz vortex (not shown here). It might be useful
for characterising and analysing depletion in more details for
such flows.

Some of the questions which should be pursued are as
follows:

• To check whether inviscid and/or viscous solutions yield
E(k) ∝ k−n , or not (n ≈ 5/3 − 2).

• Are solutions which hesitate to roll up (with weak energy
transfer) sporadic ?

• What are the implications for more general flows with non-
vanishing ε(t) with stronger energy transfer?

This special flow is in a class of flows with Clebsch
potentials, which is a small subset of general incompressible
flows. We do not know if it is necessary for a flow to
be have Clebsch potentials to get stable vortices with weak
energy transfer. (We do know that it is not sufficient, because
Taylor–Green and Kida–Pelz vortices are counter-examples.)

This flow is quite special and does not represent general
features we expect for turbulence. But it is important to discern
how different it is from the rest of the general incompressible
flows. At least, the following two cases should be distinguished.

(A) All Euler flows remain regular for all time. The
difference between this example and more general flows is
only quantitative, in that generically vorticity growth in time
maybe double exponential, triple exponential, and so on. Global
regularity may trivialise Onsager’s approach, as we do not know
how the Euler equations can characterise developed turbulence.

(B) Some Euler flows remain regular for all time, but others
do not, that is, the latter flows go singular in finite time. The
difference is qualitative. Onsager conjecture may work literally.

For those people who believe in singularities in the Euler
flows, this might appear as an exceptional case of severe
depletion. Indeed, the flow we have described may be just one
example of the minority in the case (B). It is a rare case of
stable vorticity layers with non-trivial vorticity growth. Albeit
the evidence heavily depends on numerics, it should be kept
in mind that there is at least one flow with finite total energy,
which displays such a tame behaviour.
Note

After this numerical work has been completed, it was
pointed out to the author by M. Bustamante and E. Titi (private
communication) and by an anonymous referee that the flow
may be reduced to an essentially 2D system, known as 2.5D
flow in [19]. (Equivalently, a class of flows described in p.674
of [20].) On this basis the flow may be proved to remain regular
all time. Given that, it may be regarded as an example of 2.5D
flows which can be also described by Clebsch potentials. It
offers an opportunity to study geometric depletion mechanism,
such as the one briefly described here, in detail numerically and
theoretically.
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Appendix A. Clebsch’s papers

In 1850s Clebsch published at least two important
papers [11,12] in which he developed variational formulations
for fluid mechanics. A brief but nice account of these papers
may be found in [13]. Note that between these papers,
Helmholtz’s seminal paper [14] on vortex dynamics appeared
in the same Crelle journal.

In [11], a variational principle for stationary case was
established. He started off from n-dimensional Euler equations

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
+ · · · + un

∂u1

∂xn
= − ∂p

∂x1
, etc (A.1)

with the incompressibility condition

∂u1

∂x1
+ ∂u2

∂x2
+ · · · + ∂un

∂xn
= 0. (A.2)

He introduced a method of, what may be called generalised
stream functions (or, vector potentials). Consider n functions
a0(x1, . . . , xn), . . . , an−1(x1, . . . , xn) and form a Jacobian
determinant of the form

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂a0

∂x1

∂a0

∂x2
. . .

∂a0

∂xn
∂a1

∂x1

∂a1

∂x2
. . .

∂a1

∂xn
...

...
...

...
∂an−1

∂x1

∂an−1

∂x2
. . .

∂an−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A.3)

Expanding it along the first row, we find

R = ∆1
∂a0

∂x1
+ ∆2

∂a0

∂x2
+ · · · + ∆n

∂a0

∂xn
, (A.4)

where ∆i ’s are minors. By a theorem of Jacobi, we have

∂∆1

∂x1
+ ∂∆2

∂x2
+ · · · + ∂∆n

∂xn
= 0. (A.5)

On this basis we may identify each minor as a component of an
incompressible velocity field

∆i = ∆i (a1, a2, . . . , an−1) → ui . (A.6)

It should be noted that ∆ lies on a hyper-plane Π (a1, a2, . . . ,

an−1) = const. Using it, he recast the Euler equations as

∂∆1

∂t
+ A1

∂a1

∂x1
+ A2

∂a2

∂x1
+ · · · + An−1

∂an−1

∂x1

= − ∂

∂x1

(
p + |u|2

2

)
, (A.7)

where

A1 ≡ ∂Π
∂a1

, A2 ≡ ∂Π
∂a2

, . . . , An−1 ≡ ∂Π
∂an−1

. (A.8)

By restricting to a stationary case, he found

−
(

p + |u|2
2

)
= Π (a1, a2, . . . , an−1). (A.9)

For example, in the case n = 3 we have [24]

u = ∇a1 × ∇a2 = ∇ × (a1∇a2). (A.10)

In particular, if we take a1 = ψ(x1, x2), a2 = x3, it reduces to
the case in two dimensions,

d
dψ

(
p + |u|2

2

)
= −ω, ω = ω(ψ). (A.11)

In the second paper [12], a variational principle for non-
stationary case was treated. He started from (2n + 1)-
dimensional Euler equations [25]

∂u0

∂t
+ u0

∂u0

∂x0
+ u1

∂u0

∂x1
+ · · · + u2n

∂u0

∂x2n
= − ∂p

∂x0
,

etc. (A.12)

and

∂u0

∂x0
+ ∂u1

∂x1
+ · · · + ∂u2n

∂x2n
= 0 (A.13)

and introduced the following form [26]

uk = ∂φ0

∂xk
+ m1

∂φ1

∂xk
+ · · · + mn

∂φn

∂xk
. (A.14)

He then derived a famous transformation which bears his name

δΠ ≡ −δ

(
p + |u|2

2
+ ∂φ

∂t
+ m j

∂φ j

∂t

)
(A.15)

= Dm j

Dt
δφ j − Dφ j

Dt
δm j , (A.16)

from which a canonical form of equations are derived

Dm j

Dt
= δΠ

δφ j
,

Dφ j

Dt
= − δΠ

δm j
. (A.17)

See, for example, [15–18] for more about Clebsch potentials.

Appendix B. Burgers shear layer

An example with exponentially increasing vorticity is given
by a well-known Burgers layer for an inviscid fluid [21], whose
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velocity and vorticity read v = (u(y, t), −γ y, γ z), ω =
(0, 0, −∂yu), where γ (> 0) is a constant strain rate. Its vorticity
equation

∂ω

∂t
− γ y

∂ω

∂y
= γω

is reduced to

∂Ω
∂T

= 0

by Ω = e−γ tω, Y = eγ t y. Thus we have

ω(y, t) = eγ tω0(eγ t y).

It should be noted that this is not in L2 (that is, has infinite
energy) unlike the flow presented in this paper. It may be of
interest to recall that its volume averaged energy dissipation
scales as ε ∝ √

ν for a viscous fluid.
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mémoire de Clebsch, Ann. Fac. Sci. Univ. Toulouse 3 (1901) 253–279 (in
French).

[16] J. Serrin, Mathematical principles of classical fluid mechanics,
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Abstract

The incompressible Euler equations are obtained as a weak asymptotics of the Boltzmann equation in the fast relaxation limit (the Knudsen
number Kn goes to zero), when both the Mach number Ma (defined as the ratio between the bulk velocity and the speed of sound) and the inverse
Reynolds number Kn/Ma (which measures the viscosity of the fluid) go to zero.

The entropy method used here consists in deriving some stability inequality which allows us to compare the sequence of solutions of the scaled
Boltzmann equation to its expected limit (provided that it is sufficiently smooth). It thus leads to some strong convergence result.

One of the main points to be understood is how to deal with the corrections to the weak limit, i.e. the contributions converging weakly but not
strongly to 0 such as the initial layer or the acoustic waves.
c© 2007 Elsevier B.V. All rights reserved.
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The topic of this paper is to discuss the connections between
the various models describing the motion of fluids. Actually
there is a number of ways to describe that motion, depending
on the space and time scales we consider (see Fig. 1).

At the atomic level, the fluid is a large system of particles
interacting according to repulsive forces. We therefore have
a complex system of coupled ordinary differential equations,
for which essentially no qualitative behavior can be predicted.
However, in general, we are not interested in the exact positions
and velocities of all particles, so that a statistical approach is
suitable. This is precisely the point of view of kinetic theory.
Note however that it can be applied only for rarefied gases (in
the sense that the size of particles has to be small compared
to the mean free path). Now, if we consider typical length
scales which are large compared with the mean free path,
the collision process is dominating, and local thermodynamic
equilibrium is reached almost instantaneously everywhere. The
state of the fluid can therefore be described by macroscopic
variables such as the pressure, density, and bulk velocity, which
are governed by some hydrodynamic equations. Considering
still larger time and space scales, it should be possible to deal

∗ Tel.: +33 1 44 32 20 36.
E-mail address: Laure.Saint-Raymond@ens.fr.

again statistically with the nonlinearity, which should lead to
turbulence models.

A natural question is therefore to understand the connections
between the different levels of modeling, and to get a
unified theory of fluids, which is part of the sixth problem
proposed by Hilbert on the occasion of the International
Congress of Mathematicians held at Paris in 1900 [14]. In the
present paper, we will actually focus on the transition from
kinetic theory to hydrodynamics, and more precisely from the
Boltzmann equation to the incompressible Euler equations.
Let us just mention that the derivation of the Boltzmann
equation from Newtonian mechanics has been justified by
Lanford for short times [17], whereas to our knowledge there
is no such rigorous study for the transition from determinist
hydrodynamics to turbulence (see [16] for a formal derivation,
and [8] for an attempted mathematical approach). Let us also
mention the contributions in statistical physics which study
directly the transition between stochastic systems of particles
and hydrodynamics (see [20] for instance). Actually such
direct connections are compulsory to derive real constitutive
equations (other than the law of perfect gases).

1. The formal derivation

Our first objective is to explain the formal expansions
leading to the incompressible Euler limit. Note that it has

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.023

http://dx.doi.org/10.1016/j.physd.2007.11.023
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Fig. 1. Description of fluids.

been only recently observed ([1] for time-independent problems
and [2,6] for time-dependent problems) that, under convenient
scaling, incompressible equations could be directly derived
from the Boltzmann equation.

1.1. The Boltzmann equation

Our starting point is the non-dimensional Boltzmann
equation, which expresses some balance between the free
transport of particles (left-hand side) and the collision process
(right-hand side):

Ma∂t f + v · ∇x f = 1
Kn

Q( f, f ) (1)

where Ma denotes the Mach number (measuring the
compressibility of the fluid) and Kn is the Knudsen number,
defined as the ratio between the mean free path and the
observation length scale. The operator Q is localized in t and x ,
and describes elastic binary collisions. Its precise formulation is
rather complicated

Q( f, f )(v) =
∫

R3

∫

S2

(
f (v′) f (v′

1) − f (v) f (v1)
)

bdv1dω, (2)

v′ = v + (v − v1) · ωω, v′
1 = v1 − (v − v1) · ωω (3)

for some nonnegative function b ≡ b(v − v1, ω), called the
cross-section, giving the statistical repartition of pre-collisional
velocities (v′, v′

1) leading to (v, v1). This exact formulation
will not be useful in what follows of our presentation. What
is needed is the physics encoded in this mathematical operator.

As collisions are assumed to be elastic, Q has some
symmetry properties leading to the following identities
∫

Q( f, f )(v)dv =
∫

Q( f, f )vi dv

=
∫

Q( f, f )|v|2dv = 0. (4)

In particular, integrating the kinetic Eq. (1) against 1, v
and 1

2 |v|2, we recover the local conservations of mass,

momentum and energy, or in other words the first principle
of thermodynamics.

Using the same symmetries, we also obtain

D( f )
def= −

∫
Q( f, f ) ln f (v)dv ≥ 0 (5)

and thus the local decay of entropy (note that the mathematical
entropy is the opposite of the physical entropy!):

Ma∂t

∫
f ln f dv + ∇x ·

∫
f ln f (v)vdv ≤ 0. (6)

We therefore obtain a Lyapunov functional for the Boltzmann
equation, which expresses the irreversibility predicted by the
second principle of thermodynamics.

Collisions are responsible for that relaxation process. Each
elementary process loses some information on the precise
microscopic configuration that is realized, so that the global
effect of collisions is to increase the uncertainty. The asymptotic
distribution, which minimizes the entropy, and cancels the
entropy dissipation
∫

Q( f, f ) ln f (v)dv = 0 ⇔ ∀v ∈ R3, Q( f, f )(v) = 0,

is the Gaussian having the same mass R =
∫

f dv, momentum
RU =

∫
f vdv and energy 1

2 R(U 2 + 3Θ) = 1
2

∫
f |v|2dv. In

other words, the thermodynamic equilibrium obeys Maxwell’s
statistics.

1.2. The incompressible inviscid regime

In the fast relaxation limit, i.e. when the Knudsen number
Kn – defined as the ratio between the mean free path and the
typical length scale – tends to zero, we thus expect the gas to
be at local thermodynamic equilibrium. The distribution f is
therefore completely determined by the macroscopic quantities
R = R(t, x), U = U (t, x) and Θ = Θ(t, x).

Let us first recall that, at leading order with respect
to the Knudsen number Kn, the hydrodynamic equations,
obtained from the local conservation laws replacing f by the
corresponding local Maxwellian

MR,U,Θ ∼ R(t, x)

(2πΘ(t x, x))3/2 exp
(

−|v − U (t, x)|2
2Θ(t, x)

)
,

are, up to terms of order O(Kn),

Ma∂t R + ∇x · (RU ) = 0,

Ma∂t (RU ) + ∇x · (RU ⊗ U + RΘ I d) = 0,

Ma∂t

(
1
2

RU 2 + 3
2

RΘ
)

+ ∇x ·
(

1
2

RU 2U + 5
2

RΘU
)

= 0,

(7)

known as the compressible Euler system for perfect gases.
Of course such an asymptotics does not remain relevant

if the Mach number Ma also goes to zero in the regime to
be considered. The Mach number Ma – defined as the ratio
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between the bulk velocity of the fluid and the speed of sound –
measures indeed the compressibility of the fluid: if Ma → 0 the
first equation in (7) is nothing else than the incompressibility
constraint ∇ · (RU ) = 0. The equations of motion are then
obtained by a systematic multiscale expansion. Their precise
formulation depends further on another important feature of
the fluid, namely on its viscosity, which is measured by the
Reynolds number Re.

Note that, for perfect gases (i.e. for all gases which can be
described by Boltzmann’s equation), Von Karmann’s relation
states

Re = Ma
Kn

so that all features of the fluid are completely determined by the
two non-dimensional parameters Ma and Kn (see [1] for more
details).

1.3. Taking limits as ε → 0

In all what follows we are interested in the regimes leading
to the incompressible Euler equations. We will thus choose

Ma = ε → 0,

meaning in particular that U/
√

Θ = O(ε), and

Kn = εq with q > 1

in order that the Reynolds number Ma/Kn = ε1−q tends to
infinity.

We will further restrict our attention to the homogeneous
case, in the sense that the density R and temperature Θ will be
assumed to be fluctuations of order ε around their equilibrium
values, say without loss of generality around 1. Denoting by ρ,
u and θ the fluctuations of mass, momentum and temperature,
and plugging the expansions

R = 1 + ερ, U = εu, Θ = 1 + εθ,

in the previous hydrodynamic equation (7), we get at leading
order with respect to ε

∇ · u = 0,

∇(ρ + θ) = 0,
(8)

which are the macroscopic constraints (incompressibility and
Boussinesq relations), then at second order the equations of
motion

∂t u + (u · ∇x )u + ∇ p = 0,

∂tθ + ∇x · (θu) = 0.
(9)

where p is the pressure, defined as the Lagrange multiplier
associated with the incompressibility constraint ∇ · u = 0.

Dealing with the more general case when R and Θ have
variations of order 1 is not really more difficult from a formal
point of view. We actually get the following asymptotics

∇(RΘ) = 0,

∇ · u = 0,

and

∂t R + ∇x · (Ru) = 0,

∂t u + (u · ∇x )u + 1
R

∇ p = 0.

The point is that the asymptotic analysis would require to
control quantities of different sizes (namely R = O(1),Θ =
O(1) and U = O(ε)), and thus to introduce new mathematical
tools.

Obtaining full proofs valid in all physical configurations is
a major problem due in particular to our limited knowledge
concerning the solutions of the 3D Euler equations.

The main difficulty encountered when trying to justify
the previous asymptotic process is to determine the limits of
nonlinear terms. Indeed the weak compactness inherited from
the physical a priori bounds provides some weak convergence,
or in other words some convergence in average. In particular, it
is not sufficient to study nonlinear terms as shown for instance
by the following example

sin
(

t
ε

)
⇀ 0,

(
sin

(
t
ε

))2

= 1
2

(
1 − cos

(
2t
ε

))
⇀

1
2
.

From a physical point of view such a phenomenon can be
interpreted in terms of interferences. The question is to decide
whether or not high frequency waves bring some contribution
to low frequency modes.

In order to get a rigorous derivation of the incompressible
Euler equations, we will therefore use a stronger notion of
convergence.

2. The modulated entropy method

The main idea behind energy and entropy methods is to
compare – in some appropriate metrics – the distribution under
consideration (for instance the solution to the scaled Boltzmann
equation) and its formal asymptotics (here the Gaussian
M1+ερ,εu,1+εθ with ρ, u, θ satisfying the homogeneous
incompressible Euler equation (8) and (9). Note that such
a method requires to describe precisely the asymptotic
distribution since the remainder has to converge strongly to
zero.

The first step is to determine a suitable functional measuring
the stability of the original system. The convenient quantity
here is the scaled relative entropy

1
ε2 H( fε|M) = 1

ε2

∫∫ (
fε log

fε
M

− fε +M
)

dvdx,

where M denotes the centered reduced Gaussian M =
M1,0,1. By Boltzmann’s H theorem (6), the relative entropy is
indeed a Lyapunov functional for the Boltzmann equation (1).
Furthermore it controls the size of the fluctuation

1
ε2 H( fε|M) ≥ 2

∫∫ (√
fε −

√
M

ε

)2

dvdx . (10)



L. Saint-Raymond / Physica D 237 (2008) 2028–2036 2031

The idea of using the relative entropy for this type of
asymptotic study goes back to Yau [25] in the framework
of the Ginzburg–Landau equation, then to Bardos, Golse and
Levermore for the Boltzmann equation [3].

The second step is to obtain a precise approximate solution
fapp using some formal analysis. For hydrodynamic limits, the
main term of the approximation is given by some asymptotic
expansions due to Hilbert [15] in the inviscid case, and to
Chapman and Enskog [4] in the viscous case.

Correcting terms are either terms of higher order in the
expansion, or terms having rapid variations with respect to
time or space variables and thus having no contribution to the
mean flow. These fast variations can be oscillations which can
be recovered by filtering methods (introduced independently
by Schochet [24] and Grenier [11]), or localized phenomena
such as boundary and initial layers which require a multiscale
treatment (see [5] or [12] for instance).

These correctors depend of course on the scaling to
be considered. For instance, in the regime leading to the
incompressible Euler equations, and in a spatial domain Ω
without boundary, they come both from the acoustic waves (fast
oscillating) and from the relaxation layer (rapidly decaying).

The last step is to establish some stability inequality for the
modulated entropy

1
ε2 H( fε| fapp) = 1

ε2

∫∫ (
fε log

fε
fapp

− fε + fapp

)
dvdx .

which is the natural quantity to compare the distribution fε and
its formal asymptotics fapp in view of the first step above. The
expected convergence result arises then as a direct consequence
of that stability inequality provided that the family of initial data
converges in the appropriate sense.

Note that this last step contains all the mathematical
contribution in the proof of convergence. It uses technical
computations and estimates, which depend strongly on the
properties of the solutions to the scaled Boltzmann equation,
and thus require a deep understanding both of the transport and
collision processes.

3. Main results

At the present time the mathematical theory of the
Boltzmann equation is not really complete, insofar as there is
no global existence and uniqueness result for general initial data
with finite mass, energy and entropy. The main difficulty comes
from the fact that the nonlinearity is quadratic whereas the
functional space determined by the physical a priori estimates
is roughly speaking the Orlicz space L log L . In particular, for
such functions, the collision term does not even make sense.

We have therefore at our disposal either strong solutions
with higher regularity which require smoothness and smallness
assumptions on the initial data, or very weak solutions, called
renormalized solutions, which are not known to satisfy the
kinetic equation in the sense of distributions but verify a family
of formally equivalent equations obtained by some truncation
process. These renormalized solutions, built by DiPerna and
Lions [7], exist globally in time without restriction on the

size of the initial data but are not known to be unique, nor to
satisfy the local conservations of momentum and energy. Note
however that they coincide with the unique classical solution
whenever the latter does exist.

Let us then state our main convergence result first in the
setting of renormalized solutions, which is the most general
framework, then in the setting of classical solutions, for which
the asymptotics can be described more precisely. For the sake
of simplicity, we restrict our attention to spatial domains Ω
without boundary namely the whole space R3 or the three-
dimensional torus T3. In the regime we consider here, i.e. in the
regime leading to the incompressible Euler equations, we then
formally expect the approximate solutions to be decomposed as
the sum of

- a purely kinetic part (determined by the relaxation process
in the initial layer);

- a fast oscillating hydrodynamic part (governed by the
acoustic equations);

- a non-oscillating hydrodynamic part (obtained by formal
expansion) satisfying the incompressible Euler equations,
supplemented by some suitable equation for the temperature.

3.1. In the framework of renormalized solutions

We start by precising a little bit the notion of renormalized
solution:

Definition 1. A renormalized solution of the Boltzmann
equation (1) is a function f ∈ C(R+, L1

loc(Ω × R3)) which
satisfies in the sense of distributions

M (Ma∂t + v · ∇x )Γ
(

f
M

)
= 1

Kn
Γ ′

(
f
M

)
Q( f, f )

for any Γ ∈ C1(R+) such that |Γ ′(z)| ≤ C/
√

1 + z.

Let us then recall that the only requirement for renormalized
solutions to exist globally in time is for instance that the initial
relative entropy is finite (see [18]):

Proposition. Assume that the collision cross-section b satisfies
Grad’s cutoff assumption [10] (which holds for instance if
particles collide like hard spheres). Given any initial data f in

satisfying H( f in|M) < +∞, there exists a renormalized
solution f to the Boltzmann equation (1) with initial data f in,
satisfying further the entropy inequality

H( f |M)(t) + 1
MaKn

∫ t

0

∫

Ω
D( f )(s, x)dsdx ≤ H( f in|M).

Now if we consider some family of suitably scaled
renormalized solutions to the Boltzmann equation, we are
able to prove that it satisfies the expected asymptotics in the
incompressible Euler limit provided that initial data are well
prepared, i.e. in the case when the purely kinetic part, the fast
oscillating hydrodynamic part and the non-oscillating part of
both the density and temperature vanish asymptotically:
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Theorem 1. Let ( f in
ε ) be a family of nonnegative functions of

L1
loc(Ω × R3) satisfying the scaling condition

1
ε2 H( f in

ε |M) ≤ Cin, (11)

and such that

1
ε2 H( f in

ε |M1,εuin,1) → 0 as ε → 0, (12)

for some given divergence-free smooth vector field uin.
Let fε be a family of renormalized solutions to the scaled

Boltzmann equation

ε∂t fε + v · ∇x fε = 1
εq Q( fε, fε),

fε(0, x, v) = f in
ε (x, v),

(13)

where q > 1, meaning in particular that the ratio between the
Knudsen number and the Mach number goes to 0.

Then the family of fluctuations (gε) defined by fε =M(1 +
εgε) converges (entropically) to g = u ·v where u is the solution
to the incompressible Euler equations

∂t u + u · ∇x u + ∇x p = 0, ∇x · u = 0 on R+ × Ω ,

u(0, x) = uin(x) on Ω ,
(14)

as long as the latter is Lipschitz continuous.

Note that (12) is a very strong assumption on the family of
initial data, meaning that “well prepared” has to be understood
as follows:

gin
ε = uin · v + o(1)

in the sense of entropic convergence.
We thus require that the initial distribution has a velocity

profile close to the local thermodynamic equilibrium

ρin + uin · v + θ in |v|2 − 3
2

in order that there is no relaxation layer.
We further ask the asymptotic initial thermodynamic fields

to satisfy the incompressibility and Boussinesq constraints

∇ · uin = 0, ∇(ρin + θ in) = 0,

which ensures that there is no acoustic wave. We also
require that the initial temperature fluctuation (and thus mass
fluctuation) is negligible

ρin = θ in = 0.

We therefore expect the temperature fluctuation to remain
negligible.

We finally need some spatial regularity on the limiting bulk
velocity, more precisely we require some Lipschitz continuity.

We are thus able to consider very general initial data
(satisfying only the physical estimate (11)), but in the vicinity
of a small set of asymptotic distributions.

A natural question is then to know whether or not it is
possible to get rid of these restrictions on the asymptotic

distribution. In the sketch of proof we will give in Section 4,
we will see that the first two assumptions come from the poor
understanding of the Boltzmann equation, in particular from
the fact that renormalized solutions to the Boltzmann equation
are not known to satisfy the local conservation of energy (the
heat flux is not even defined), whereas the last assumption
concerning the regularity of the limiting distribution is inherent
to the modulated entropy method.

Considering solutions to the Boltzmann equation satisfying
rigorously the basic physical properties, we expect to control
the energy flux and extend the convergence result to take into
account acoustic waves. In order to also deal with the relaxation
layer, we further need to understand the dissipation mechanism,
which will be done by slight modifications of the method.

On the contrary, relaxing the regularity assumption requires
new ideas. The stability in energy and entropy methods
is indeed controlled by the Lipschitz norm of the limiting
field. In 3D, the incompressible Euler equations are not even
known to have weak solutions, so that we do not expect
to extend our convergence result for distributions with lower
regularity. In return, in 2D, the mathematical theory of the
incompressible Euler equations is much better understood and
singular solutions such as vortex patches are known to exist
globally in time. It should be then relevant to study the
hydrodynamic limit of the Boltzmann equation in this setting.
By analogy with the compressible Euler equations, we would
expect the spatial discontinuities to dissipate entropy, or in other
words to create layers where the distribution is far from local
thermodynamic equilibrium. The difficulty should be to split
the space–time domain according to these layers.

3.2. In the framework of classical solutions

The second result we will state here answers the previous
question in the case of smooth limiting fields. Considering a
stronger notion of solution for the Boltzmann equation (1), for
instance using the classical solutions built by Guo [13], we can
prove the convergence to the incompressible Euler equations
for general initial data.

We indeed recall that nonlinear energy methods allow us to
build global smooth solutions to the Boltzmann equation for
smooth small data (see [13]):

Proposition. Consider the collision cross-section b of hard
spheres. Given any initial data f in satisfying
∥∥∥∥(1 + |v|)1/2 Ds

x

(
f in −M√
M

)∥∥∥∥
L2(Ω×R3)

≤ δ (15)

for s ≥ 4 and δ sufficiently small, there exists a unique classical
solution f to the Boltzmann equation (1) with initial data f in

(such that the previous norm remains bounded for all time). In
particular it satisfies the local conservation laws as well as the
local entropy inequality.

Note that, for our asymptotic study, the smallness and
regularity assumption (15) is not really a restriction since it does
not provide any uniform bound on the sequence of fluctuations
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(gin
ε ). Actually we even do not need so much regularity. We will

only require that the solutions of the Boltzmann equation to be
considered satisfy the non-uniform nonlinear estimate

1
ε2

∫
M

(
fε −M
M

)2

dv ≤ C
ε2 a.e. on R+ × Ω

(to be compared to (10)). The previous proposition just ensures
that such solutions exist.

Theorem 2. Let ( f in
ε ) be a family of nonnegative functions of

L1
loc(Ω × R3) satisfying the scaling condition (11)

1
ε2 H( f in

ε |M) ≤ Cin.

Let fε be some family of solutions to the scaled Boltzmann
equation (13) with q > 1, satisfying further
∫
M

(
fε −M
M

)2

dv ≤ C a.e.on R+ × Ω . (16)

Then, up to the extraction of a subsequence, the family of
fluctuations (gε) defined by fε =M(1+εgε) converges weakly
to u · v + 1

2θ
(
|v|2 − 5

)
, where (u, θ) is the solution to the

incompressible Euler equations

∂t u + u · ∇x u + ∇x p = 0, ∇x · u = 0 on R+ × Ω ,

∂tθ + u · ∇xθ = 0 on R+ × Ω

u(0, x) = Puin(x), θ(0, x) = 1
5
(3θ in − 2ρin) on Ω ,

(17)

as long as the latter is Lipschitz continuous.
Furthermore the difference gε − g behaves asymptotically in

L1
loc(dtdx, L1(Mdv)) as

gosc

(
t
ε
, x, v

)
= (ρosc, uosc, θosc)

(
t
ε
, x

)

·
(

1, v,
1
2
(|v|2 − 3)

)

where (ρosc, uosc, θosc) is the fast oscillating part of the solution
of the acoustic system (21) stated in Section 5.

Note that the purely kinetic part does not appear in that
convergence statement since its contribution to the L1 norm
is negligible. The entropic convergence we will establish is
actually stronger.

4. Proof of Theorem 1

Theorem 1 has been established by the author [22], and
results from different contributions we will present briefly.

The incompressible Euler limit of the Boltzmann equation
has been first investigated by Golse in [9]. He proved the
entropic convergence of scaled renormalized solutions for well-
prepared data assuming further

(H1) the local conservation of momentum;
(H2) some uniform nonlinear a priori estimate on the

fluctuation gε giving both a control for large v, and some
equiintegrability with respect to x .

Assumption (H1) was removed by Lions and Masmoudi
in [19]; their argument uses the local momentum conservation
with matrix-valued defect measure satisfied by renormalized
solutions of the Boltzmann equation. That this defect measure
vanishes in the incompressible Euler limit follows from the
strong convergence result to be proved. For the sake of
simplicity we will not give the details of this argument below.

Assumption (H2) was removed by the author first in the
framework of the BGK equation [21], then in the case of
the original Boltzmann equation [22] using refined dissipation
estimates. The argument is based on loop estimates instead of
a priori estimates, and the conclusion follows from Gronwall’s
inequality.

4.1. The modulated entropy inequality

In order to establish the stability inequality leading to the
entropic convergence stated in Theorem 1, the starting point is
the derivation with respect to time of the modulated entropy.
For the sake of simplicity, we will omit here the defect measure
occurring both in the global entropy inequality and in the local
conservation of momentum.

A simple computation based on the entropy inequality and
on the local conservations of mass and momentum leads then
by integration by parts to

1
ε2 H( fε|M1,εu,1)(t) + 1

εq+3

∫ t

0

∫
D( fε)(s, x)dxds

≤ 1
ε2 H( f in

ε |M1,εuin,1)

+ 1
ε

∫ t

0

∫
A(u) ·

∫
(εu − v) fε(s, x, v)dvdxds

− 1
ε2

∫ t

0

∫
Du :

∫
(v − εu)⊗2 fε(s, x, v)dvdxds (18)

(note that we consider spatial domains without boundary),
where the acceleration operator A(u) is given by

A(u) = ∂t u + u · ∇x u.

Owing to the assumption on the initial data, the first term on
the right-hand side will converge to 0 as ε → 0.

The convergence of the second term will be given (up to
the extraction of a subsequence) by the weak compactness on
1
ε (

√
fε −

√
M) (see (10)) coming from the uniform entropy

bound.
The difficulty is thus to control the last term, referred to as

the flux term. Actually we are not able to obtain directly some
convergence. In such an inviscid regime, the entropy dissipation
does not control the transport term v · ∇x gε, and thus does not
provide any additional regularity on the bulk velocity. This lack
of strong compactness is also the reason why weak solutions to
the 3D incompressible Euler equations are not known to exist.

4.2. Control of the flux term

The method consists then in introducing a suitable
decomposition of the momentum flux, and estimating each term
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in that decomposition either by the modulated entropy, or by the
entropy dissipation, to get

− 1
2ε2

∫ t

0

∫∫
∇x u :

∫
(v − εu)⊗2 fε(s, x, v)dvdxds

≤ C
ε2

∫ t

0
‖Du‖L2∩L∞(Ω) H( fε|M1,εu,1)(s)ds + o(1). (19)

The main idea behind this result is that the local
thermodynamic equilibrium M fε is expected to give a good
approximation of the distribution fε in the fast relaxation limit,
at least if the moments remain bounded. Now, for Maxwellian
distributions, the flux term can be computed explicitly in terms
of the moments
∫

(v − εu)⊗2M fε dv

= (1 + ερε)

(
ε2(uε − u)⊗2 + 1 + εθε

3
I d

)

and estimated by the modulated entropy

1
2
(1 + ερε)|uε − u|2 ≤ 1

ε2 H( fε|M1,εu,1)

(the trace part of the matrix has no contribution since the test
velocity field is divergence-free.)

The first difficulty to apply this strategy is to obtain a control
on the relaxation to local Maxwellians. Indeed, in the case of
the Boltzmann equation, the entropy production is not known
to measure the distance between fε andM fε . We cannot give
here the details of the argument which is rather technical. Let
us just mention that the suitable decomposition looks like some
linearized Chapman–Enskog’s expansion:

gε = Π⊥gε +
(

ρε + uε · v + θε
|v|2 − 3

2

)
,

ρε =
∫
Mgεdv, uε =

∫
Mgεvdv,

θε =
∫
Mgε

|v|2 − 3
2

dv,

where Π⊥ denotes the orthogonal projection parallel to the
kernel of the linearized collision operator. (Note that, as gε is
not in L2, we need to introduce some renormalized fluctuation).
The first term is then controlled by the entropy dissipation
while the second one can easily be estimated in terms of the
modulated entropy.

A second difficulty to be addressed is related to cases where
moments are far from their asymptotic values (i.e. when they
become very large pointwise or when the macroscopic density
or temperature vanish). In that case, the flux term is estimated
directly by the modulated entropy, using both the Young and
Bienaymé–Chebyshev inequalities.

4.3. Convergence

Combining (18) and (19), we then conclude by Gronwall’s
lemma:
1
ε2 H( fε|M1,εu,1)(t)

≤ 1
ε2 H( f in

ε |M1,εuin,1) exp
(∫ t

0
‖Du‖L2∩L∞ds

)

+ 1
ε

∫ t

0

∫
A(u) ·

∫
(εu − v) fε(s, x, v)dvdx

× exp
(∫ t

s
‖Du‖L2∩L∞dσ

)
ds

+
∫ t

0
o(1) exp

(∫ t

s
‖Du‖L2∩L∞dσ

)
ds.

If u is Lipschitz continuous, the first term on the right-hand
side converges to 0 by the assumption (12) on the initial data.

The weak convergence on 1
ε ( fε −M) inherited from the

uniform entropy bound (11) ensures that there exists some ū
such that, up to the extraction of a subsequence,

1
ε

∫
(εu − v) fεdv ⇀ (u − ū).

Taking limits in the local conservation of mass, we then get the
incompressibility constraint ∇x · ū = 0. As u is the solution to
the incompressible Euler equations, we have A(u) = −∇x p.
Integrating by parts, we conclude that the second term also
converges to 0.

We thus get the entropic convergence for all t ≥ 0

1
ε2 H( fε|M1,εu,1)(t) → 0.

(For the details we refer to [22]).

5. Proof of Theorem 2

Theorem 2 requires some improvements in the relative
entropy method developed in [23]. The main idea is that, in
domains where the distribution is expected to present rapid
variations, the formal hydrodynamic approximation is not
relevant, and that correctors have to be added in order to obtain
the convenient asymptotics.

The point is indeed to obtain a refined description of the
asymptotics taking into account both the relaxation in the initial
layer and the acoustic waves.

5.1. Description of acoustic waves

Since acoustic waves only contribute to the hydrodynamic
part of the distribution, relaxing the constraints on the initial
thermodynamic fields does not require strong modifications of
the method.

Outside from the initial layer, the strategy consists then
in modulating the entropy by any fluctuation of Maxwellian,
meaning that we assume neither the incompressibility
constraint nor the Boussinesq constraint on the test functions.
We define the approximate solution fapp by

log fapp = −3
2

log(2π) + ε

(
ρ − 3

2
θ

)
− 1

2
e−εθ |v − εu|2.

We then expect the modulated entropy inequality to differ
from the usual one by some penalization arising in the
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acceleration operator. More precisely, (18) has to be replaced
by

1
ε2 H( fε| fapp)(t) + 1

εq+3

∫ t

0

∫∫
D( fε)dsdx

≤ 1
ε2 H( f in

ε | f in
app) + 1

ε2

∫ t

0

∫
∂t exp(ερ)dxds

+ 1
ε

∫ t

0

∫∫
fε

(
1, e−εθ (v − εu),

1
2

( |v − εu|2
eεθ

− 3
))

· Aε(ρ, u, θ)dvdxds

+ 1
ε2

∫ t

0

∫∫
fε

(
Dx u : Φε + e

1
2 εθ Dxθ · Ψε

)
dxdvds (20)

denoting by Aε(ρ, u, θ) the (five components) generalized
acceleration operator, and by Φε and Ψε the kinetic momentum
and energy fluxes — which are scaled translated variants of

Φ =
(

v⊗2 − 1
3
|v|2 I d

)
,

Ψ = 1
2
v

(
|v|2 − 5

)
.

Note that such an inequality is established only for solutions
to the Boltzmann equation satisfying the local conservations of
mass, momentum and energy.

The difficult point is to build some suitable approximate
solutions fapp, or in other words some family (ρapp, uapp, θapp)

of smooth thermodynamic fields satisfying approximately
Aε(ρapp, uapp, θapp) = 0, i.e. the acoustic system





∂tρ + u · ∇xρ + 1
ε
∇x · u

∂t u + u · ∇x u + θ∇x

(
ρ − 3

2
θ

)
+ 1

ε
∇x (ρ + θ)

∂tθ + u · ∇xθ + 2
3ε

∇x · u




= 0. (21)

Such a construction is done by a filtering method (see [24]
or [11] for instance).

Let us first rewrite the previous system (21) on (ρapp, uapp,

θapp)
def= Vapp in a more abstract way:

∂t V + 1
ε

LV + Q(V, V ) = 0

where Q describes the nonlinear part of the system, and L is
the linear penalization defined by

L : (ρ, u, θ) 5→
(

∇x · u, ∇x (ρ + θ),
2
3
∇x · u

)
.

The first step is to conjugate the system by the semi-group
generated by the linear penalization L

∂t

(
exp

(
t L
ε

)
V

)
+ exp

(
t L
ε

)
Q(V, V ) = 0,

or equivalently

∂t Ṽ + exp
(

t L
ε

)
Q

(
exp

(
− t L

ε

)
Ṽ , exp

(
− t L

ε

)
Ṽ

)
= 0.

The first-order approximation, i.e. the envelope equation, is
then obtained by taking limits in that filtered system:

∂t Ṽ0 + Q̃(Ṽ0, Ṽ0) = 0

where Q̃ is defined as some projection of Q on the resonant
modes of the linear penalization L .

Nevertheless, because of the high frequency oscillations,
we do not expect the error in the first-order approximation
to converge strongly to 0. We therefore have to add some
correctors (i.e. the second- and third-order approximations) in
order to establish the convenient convergence statement :
∥∥∥∥Vapp − exp

(
− t L

ε

)
(Ṽ0 + εṼ1 + ε2Ṽ2)

∥∥∥∥
L2

→ 0.

The conclusion of the proof follows from the same
arguments as in the previous case, i.e. from Gronwall’s lemma,
except that the control of the energy flux (which is a third
moment in v) requires some additional estimate, for instance
(16). (For the details we refer to [23]).

5.2. Description of the Knudsen layer

In the initial layer, the purely kinetic part of the fluctuation is
expected to be of order O(1) and to converge to 0 exponentially
in time. In order to take into account the relaxation process
in the relative entropy method, one thus has to construct a
refined approximation fapp, and then to introduce it in the
modulated entropy inequality (20). This requires in particular
to also modulate the entropy dissipation.

The modulated entropy inequality becomes indeed

1
ε2 H( fε| fapp)(t) + 1

εq+3

∫ t

0

∫∫
D( fε| fapp)dsdx (22)

≤ 1
ε2 H( f in

ε | f in
app)

− 1
ε

∫ t

0

∫∫
γε

(
∂t fapp − 1

εq+1 Q( fapp, fapp)

+ 1
ε
v · ∇x fapp

)
dvdxds

+ 1
4εq+1

∫ t

0

∫∫ ∫∫ (
f ′
app f ′

app1 − fapp fapp1

)

×
(
γεγε1 − γ ′

εγ
′
ε1

)
dvdv1dωdxds

denoting by γε the modulated fluctuation defined by fε =
fapp(1 + εγε) and by D( fε| fapp) the modulated entropy
dissipation. Note that the integrand defining the modulated
entropy dissipation is always nonnegative, which is crucial to
get some stability.

It remains then to build a suitable approximate solution
fapp. Let us recall that, in the initial layer, the dominating
process is expected to be the relaxation, so that the transport
can be neglected in first approximation. We thus solve the
homogeneous equation

∂t fapp = 1
εq+1 Q( fapp, fapp)
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using a fixed-point argument in some functional space with
exponential time decay.

Up to some spatial regularization of the initial data and
truncation of large velocities, we are then able to prove that
the second term on the right-hand side of (22) converge to 0,
provided that t = o(ε).

The conclusion is again based on some Gronwall’s type
argument. The point is to prove that the L2

x (L p′
( fappdv)) norm

of γε is controlled by the square root of the modulated entropy,
and to obtain a uniform bound on

χε(t) = 1
εq+1

∫ t

0
‖ f ′

app f ′
app1 − fapp fapp1‖L∞

x (L p
v,v1,ω)ds.

We then obtain, for any τε 6 ε,

1
ε2 H( fε| fapp)(τε) ≤ 1

ε2 H( f in
ε | f in

app) exp(χε(τε)) + o(1).

This concludes the proof inside the initial layer.
It remains then to put together both estimates (inside

and outside the initial layer) using the fact that the local
thermodynamic equilibrium is a good approximation in
entropic sense, provided that τε 7 εq+1.

(For the details we refer again to [23]).
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problèmes, Translated from the 1900 German original by M.L. Laugel and
revised by the author, Les Grands Classiques Gauthier-Villars, Editions
Jacques Gabay, Sceaux, 1990.

[15] D. Hilbert, Begründung der kinetischen Gastheorie, Math. Ann. 72 (1912)
562–577.

[16] E. Landauer, D.B. Spalding, Lectures in Mathematical Models of
Turbulence, Academic Press, London, 1972.

[17] O.E. Lanford, Time Evolution of Large Classical Systems, in: Lect. Notes
in Physics, vol. 38, Springer Verlag, 1975.

[18] P.-L. Lions, Conditions at infinity for Boltzmann’s equation, Comm.
Partial Differential Equations 19 (1994) 335–367.

[19] P.-L. Lions, N. Masmoudi, From Boltzmann equation to the
Navier–Stokes and Euler equation, Arch. Ration. Mech. Anal. 158
(2001) 173–193.

[20] J. Quastel, H.-T. Yau, Lattice gases, large deviations, and the
incompressible Navier–Stokes equations, Ann. of Math. 148 (1998)
51–108.

[21] L. Saint-Raymond, From the BGK model to the Navier–Stokes equations,
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Abstract

Turbulent suspensions of heavy particles in incompressible flows have gained much attention in recent years. A large amount of work focused
on the impact that the inertia and the dissipative dynamics of the particles have on their dynamic and statistical properties. Substantial progress
followed from the study of suspensions in model flows which, although much simpler, reproduce most of the important mechanisms observed
in real turbulence. This paper presents recent developments made on the relative motion of a pair of particles suspended in time-uncorrelated
and spatially self-similar Gaussian flows. This review is complemented by new results. By introducing a time-dependent Stokes number, it is
demonstrated that inertial particle relative dispersion recovers asymptotically Richardson’s diffusion associated to simple tracers. A perturbative
(homogeneization) technique is used in the small-Stokes-number asymptotics and leads to interpreting first-order corrections to tracer dynamics
in terms of an effective drift. This expansion implies that the correlation dimension deficit behaves linearly as a function of the Stokes number.
The validity and the accuracy of this prediction is confirmed by numerical simulations.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.27.-i; 47.51.+a; 47.55.-t

Keywords: Stochastic flows; Inertial particles; Kraichnan model; Lyapunov exponent

1. Introduction

The current understanding of passive turbulent transport
profited significantly from studies of the advection by random
fields. In particular, flows belonging to the so-called Kraichnan
ensemble – i. e. spatially self-similar Gaussian velocity fields
with no time correlation – which was first introduced in
the late 1960s by Kraichnan [1], led in the mid-1990s to a
first analytical description of anomalous scaling in turbulence
(see [2] for a review). More recently, much work is devoted
to a generalization of this passive advection to heavy particles
that, conversely to tracers, do not follow the flow exactly but
lag behind it due to their inertia. The particle dynamics is thus
dissipative even if the carrier flow is incompressible. This paper

∗ Corresponding author.
E-mail address: jeremie.bec@oca.eu (J. Bec).

provides an overview of several recent results on the dynamics
of very heavy particles suspended in random flows belonging to
the Kraichnan ensemble.

The recent shift of focus to the transport of heavy particles
is motivated by the fact that in many natural and industrial
flows finite-size and mass effects of the suspended particles
cannot be neglected. Important applications encompass rain
formation [3–5] and suspensions of biological organisms in the
ocean [6–8]. For practical purposes, the formation of particle
clusters due to inertia is of central importance as the presence
of such inhomogeneities significantly enhances interactions
between the suspended particles. However, detailed and reliable
predictions on collision or reaction rates, which are crucial to
many applications, are still missing.

Two mechanisms compete in the formation of clusters. First,
particles much denser than the fluid are ejected from the eddies
of the carrier flow and concentrate in the strain-dominated

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.022
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regions [9]. Second, the dissipative dynamics leads the particle
trajectories to converge onto a fractal, dynamically evolving
attractor [10,11]. In many studies, a carrier velocity field with
no time correlation – and thus no persistent structures – is used
to isolate the latter effect. As interactions between three or
more particles are usually subdominant, most of the interesting
features of monodisperse suspensions can be captured by
focusing on the relative motion of two particles separated by
R:

R̈ = − 1
τ

[
Ṙ − δu(R, t)

]
, (1)

where dots denote time derivatives and τ the particle response
time. The fluid velocity difference δu is a Gaussian vector field
with correlation
〈
δui (r, t) δu j (r′, t ′)

〉
= 2 b i j (r − r′) δ(t − t ′). (2)

In order to model turbulent flows, the tensorial structure of the
spatial correlation bi j (r) is chosen to ensure incompressibility,
isotropy and scale invariance, namely

bi j (r) = D1 r2h[(d − 1 + 2h) δi j − 2h rir j/r2], (3)

where h relates to the Hölder exponent of the fluid velocity field
and D1 measures the intensity of its fluctuations. In particular,
h = 1 corresponds to a spatially differentiable velocity field,
mimicking the dissipative range of a turbulent flow, while h < 1
models rough flows as in the inertial range of turbulence. In this
paper we mostly focus on space dimensions d = 1 and d = 2;
extensions to higher dimensions are just sketched.

The above depicted model flow has the advantage that
the particle dynamics is a Markov process. In particular,
Gaussianity and δ-correlation in time of the fluid velocity field
imply that the probability density p(r, v, t |r0, v0, t0) of finding
the particles at separation R(t) = r and with relative velocity
Ṙ(t) = v at time t , when R(t0) = r0 and Ṙ(t0) = v0 is a solution
of the Fokker–Planck equation

∂t p +
∑

i

(
∂ i

r − 1
τ

∂ i
v

) (
vi p

)
−

∑

i, j

bi j (r)
τ 2 ∂ i

v∂
j
v p = 0, (4)

with the initial condition p(r, v, t0) = δ(r − r0) δ(v − v0). To
maintain a statistical steady state, the Fokker–Planck equation
(4) as well as the stochastic differential equation (1) should
be supplemented by boundary conditions, here chosen to be
reflective at a given distance L .

For smooth flows (h = 1), the intensity of inertia is
generally measured by the Stokes number St, defined as the ratio
between the particle response time τ and the fluid characteristic
time scale. For St → 0, particles recover the incompressible
dynamics of tracers. In the opposite limit where St is very
large, inertia effects dominate and the dynamics approaches
that of free particles. In the above depicted model, the Stokes
number is defined by nondimensionalizing τ by the typical fluid
velocity gradient, i.e. St = D1τ . Note that by rescaling the
physical time by τ , it is straightforward to recognize that the
dynamics depends solely on St.

Similarly it can be checked that in rough flows (h < 1)
– with an additional rescaling of the distances by a factor
(D1τ)1/(2−2h) – the dynamics of a particle pair at a distance r
only depends on the local Stokes number St(r) = D1τ/r2(1−h).
This dimensionless quantity, first introduced in [12] and later
used in [13], is a generalization of the Stokes number to cases
in which the fluid turnover times depend on the observation
scale. At large scales, St(r) → 0 and inertia becomes
negligible. Particle dynamics thus approaches that of tracers.
At small scales, St(r) → ∞ and the particle and fluid motions
decorrelate, so that the inertial particles move ballistically.
In both the large and small Stokes number asymptotics,
particles distribute uniformly in space, while inhomogeneities
are expected at intermediate values of St(r).

The paper is organized as follows. In Section 2, an approach
originally proposed in [14] is used to reduce the dynamics
of the particle separation to a system of three stochastic
equations with additive noises. This formulation is useful
for both numerical and analytical purposes, particularly when
studying the statistical properties of particle pairs. In Section 3,
we introduce the correlation dimension to quantify clustering
as well as the approaching rate which measures collisions.
Numerical results for these quantities are reported. In Section 4
we introduce the notion of time-dependent Stokes number
which makes particularly transparent the interpretation of the
behaviour of the long-time separation between particles. We
show how Richardson dispersion, as for tracers, is recovered
in the long-time asymptotics. Section 5 briefly summarizes
some exact results that can be obtained for the one-dimensional
case. Sections 6 and 7 are dedicated to the small and large
Stokes number asymptotics, respectively. In particular, the
former presents an original perturbative approach which turned
out to predict, in agreement with numerical computations,
the behaviour of the correlation dimension that characterizes
particle clusters. Finally, Section 8 encompasses conclusions,
open questions and discusses the relevance of the considered
model for real suspensions in turbulent flows.

2. Reduced dynamics for the two-point motion

In this Section we focus on planar suspensions (d = 2).
Following the approach proposed in [14] and with the notation
R = |R|, the change of variables

σ1 = (L/R)1+hR · Ṙ/L2, (5)

σ2 = (L/R)1+h |R ∧ Ṙ|/L2, (6)

ρ = (R/L)1−h, (7)

is introduced to reduce the original system of 2d = 4 stochastic
equations to the following one of only three equations:

σ̇1 = −σ1/τ −
[
hσ 2

1 − σ 2
2

]
/ρ +

√
C η1, (8)

σ̇2 = −σ2/τ − (1 + h)σ1σ2/ρ +
√

(1 + 2h)C η2, (9)
ρ̇ = (1 − h) σ1, (10)

where C = 2D1/(τ L1−h)2 and ηi denote two independent
white noises. Reflective boundary conditions at R = L in
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Fig. 1. Sketch of the reduced dynamics (8)–(10) for h = 0.7. The dotted lines
represent the drift. The solid line depicts a random trajectory with St(L) = 1.
(a) full (σ1, σ2, ρ)-space, (b) projection on ρ = 0 plane, and (c) on the σ2 = 0
plane.

physical space imply reflection at ρ = 1. Note that σ1 and
σ2 are proportional to the longitudinal and to the transversal
relative velocities between the two particles. In the smooth case
(h = 1), we have ρ = 1 and Eqs. (8) and (9) decouple from
(10). The particle separation R then evolves as

Ṙ = σ1(t)R. (11)

Besides this simple evolution and the reduction of the
number of variables from 2d to only three, the change of
variables {R, Ṙ} )→ {ρ, σ1, σ2} has several other advantages.
For instance the noise, which is multiplicative in the original
dynamics (1), becomes additive in the reduced system (8)–(10).
However, this simplification is counterbalanced by the presence
of nonlinear drift terms. Note that in dimensions higher than
two, there is an additional term ∝ 1/σ2, which is due to the Itô
formula [15,16].

Fig. 1 sketches the deterministic drift and shows a typical
trajectory in the reduced space. This dynamics can be
qualitatively described as follows. The line σ1 = σ2 = 0 acts
as a stable fixed line for the drift. Hence a typical trajectory
spends a long time diffusing around it, until the noise realization
becomes strong enough to let the trajectory escape from the
vicinity of this line. Whenever this happens with a positive
longitudinal relative velocity (σ1 > 0), the trajectory is pulled
back to the stable line by the quadratic terms in the drift.
Conversely, if σ1 < 0 and hσ 2

1 + σ1ρ − σ 2
2 < 0, the drift

pushes the trajectory towards larger negative values of σ1. Then
the particles get closer to each other and ρ decreases, until
the quadratic terms in Eqs. (8) and (9) become dominant. The
trajectory then loops back in the (σ1, σ2)-plane, approaching
the stable line from its right. It is during these loops that the
interparticle distance R becomes substantially small. The loops
thus provide the main mechanisms for cluster formation.

2.1. Velocity statistics

Numerical simulations show that the probability density
function (pdf) of the longitudinal relative velocity σ1 displays

Fig. 2. Log–log plot of the pdf of σ1 for St(L) = 1 for five values of the fluid
Hölder exponent h. Power-law tails are always observed, p(σ ) ∝ |σ |−α . Inset:
exponent α versus h; the dashed line is the theoretical prediction α = 1 + 2/h.

algebraic tails at large positive and negative values (see Fig. 2).
As will become clear in the sequel, these power-law tails are a
signature of the above-mentioned large loops. Let us consider
the cumulative probability P<(σ) = Pr (σ1 < σ) for σ + −1.
This quantity can be estimated as the product of (i) the
probability to start a sufficiently large loop in the (σ1, σ2)-plane
that reaches values smaller than σ and (ii) the fraction of time
spent by the trajectory at σ1 < σ . Within a distance of the order
of unity from the line σ1 = σ2 = 0, the quadratic terms in the
drift are subdominant and can be disregarded. Then σ1 and σ2
can be approximated by two independent Ornstein–Uhlenbeck
processes. Conversely, at sufficiently large distances from that
line, only the quadratic terms in the drift contribute and the
noises are negligible.

Within this simplified dynamics, a loop is initiated at a
time t0 for which σ1(t0) < −1 and σ2(t0) + |σ1(t0)|.
Once these conditions are fulfilled, the trajectory performs a
loop in the (σ1, σ2)-plane and both |σ1(t)| and σ2(t) become
very large. The maximum distance from the stable line, which
gives an estimate of the loop radius, is reached when σ2 is of
the order of |σ1|. Let t∗ denote the time when this happens,
i.e. σ2(t∗)/|σ1(t∗)| = O(1). When neglecting the noise, this
condition leads to the following estimate for the loop radius:

|σ1(t∗)| ∝[ σ1(t0) + ρ(t0)/τ ] |τσ1(t0)|h (τσ2(t0))−h, (12)

see [13] for details. In order to reach velocity differences
such that σ1 < σ + −1, the radius of the loop has to
be larger than |σ |. From (12) this implies that σ2(t0) has to
be smaller than |σ |−1/h . In order to evaluate contribution (i),
we have to estimate the probability to have σ1(t0) ! −1
and σ2(t0) < |σ |−1/h from the dynamics in the vicinity of
the origin. Approximating the two velocity differences σ1 and
σ2 by independent Ornstein–Uhlenbeck processes close to the
line σ1 = σ2 = 0, the first condition gives an order-unity
contribution, while the second has a probability ∝ |σ |−1/h . For
estimating (ii), we neglect the noise in the dynamics far from the
stable line. The probability is then given by the fraction of time
spent at σ1 < σ which is proportional to σ2(t0) ∝ |σ |−1/h . Put
together, the two contributions yield P<(x) ∝ |σ |−2/h when
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σ + −1. Thus the negative tail of the pdf of σ1 behaves as
∝ |σ |−α , with α = 1 + 2/h.

During the large loops, the trajectories equally reach large
positive values of σ1 and of σ2. Again the fraction of time
spent at both σ1 and σ2 larger than σ , 1 can be estimated as
σ−1/h . Hence, the pdf of both longitudinal σ1 and transversal
σ2 velocity differences have algebraic left and right tails with
exponent α. Both tails are depicted in Fig. 2, where the inset
shows that the numerical measurements are in good agreement
with the predicted value of α. The relation between α and the
Hölder exponent h implies in particular that α = 3 in the
smooth case, while it increases with decreasing h. Moreover,
it follows straightforwardly from (8) to (10) that during the
loops ρ(t) ∝ ρ(t0)h when ρ(t0) + 1. Hence it becomes less
and less probable to reach smaller values of ρ as h decreases.
In other words, particle clustering should be very strong for
smooth flows and become weaker when the flow roughness is
increased. This prediction is confirmed by the numerical studies
presented in the next section.

Finally it should be pointed out that although the change of
variables (5)–(7) can be applied equally in three dimensions,
the above analysis does not carry over to higher dimensions.
First, as already pointed out, an additional drift term arises. This
Itô-term renders a straightforward derivation of an analytical
solution for the deterministic drift impossible. Second, for
higher dimensions the fixed point of the reduced dynamics is
located far from the origin, see [16]. Hence the approximations
made above for d = 2 are not applicable. Careful numerical
studies are needed to understand whether or not algebraic tails
are also present in higher dimensions.

3. Correlation dimension and approaching rate

Particle clustering is often quantified by the radial
distribution function g(r), which is defined as the ratio between
the number of particles inside a thin shell of radius r centred
on a given particle and the number which would be in this
shell if the particles were uniformly distributed. This quantity
enters models for the collision kernel [17]. Following [10,13,
16,18], we consider a different, but related way to characterize
particle clustering. Instead of the radial distribution function
we evaluate the correlation dimension D2 of the set formed
by the particles. This dimension is widely used in dissipative
dynamic system theory and in fractal geometry (see, e.g. [19,
20]). It is defined as the exponent of the power-law behaviour
at small scales of the probability P2(r) of finding two particles
at a distance R < r :

D2 = lim
r→0

d2(r), d2(r) = d ln P2(r)

d ln r
, (13)

where the logarithmic derivative d2(r) is called the local
correlation dimension. D2 relates to the radial distribution
function via ln g(r)/ ln r → D2 − d for r → 0. For uniformly
distributed particles, D2 = d , so that g(r) = O(1). On the
contrary, when particles cluster on a fractal set, D2 < d and
g(r) diverges for r → 0. This was also found numerically
in [17].

Depending on whether the carrier flow is spatially smooth
(h = 1) or rough (h < 1), D2 and d2(r) behave differently. In
the former case, random dynamic system theory [21] suggests
that within the 2 × d position-velocity phase space, particles
converge onto a multifractal set with correlation dimension
0 < D2 < 2d. Here D2 denotes the correlation dimension in
the full phase space. It is defined in complete analogy to D2
through the scaling behavior of the probability P2(r) to find
two particles at a distance less than r in phase space:

P2(r) ∼ rD2 for r → 0. (14)

The distance r is now computed by using the phase-space
Euclidean norm

√
|R|2 + |V/D1|2; V is normalized by the

typical fluid velocity gradient D1 for dimensional reasons.
The physical-space correlation dimension D2 is actually the
dimension of the projection of the set from the full phase space
onto the position space, and it is also expected to be fractal (see
Section 7 for details on the relation between D2 and D2). We
focus in this section on quantifying clustering in position space
and hence consider only D2 and d2(r).

Balkovsky et al. argued in [43] that particles do not form
fractal sets in nonsmooth flows because the correlation function
of the particle density field should be a stretched exponential.
Clustering and inhomogeneities are hence not quantified by
a fractal dimension but by the detailed scale dependence
of d2(r). However, as discussed in the Introduction, one
expects the statistical properties of two particles separated by
a distance r in a flow with Hölder exponent h to depend on
the local Stokes number St(r) = D1τ/r2(1−h) only, which
for smooth flows degenerates to a scale independent number,
St(r) = St = D1τ . In rough flows, at scales small enough,
particles move ballistically and distribute homogeneously as
the Lagrangian motion is too fast for the particles to follow
(St(r) → ∞ as r → 0) and hence D2 = d for all particle
response times τ . However, information on the inhomogeneities
of the particle distribution at larger scales can still be obtained
through the scale dependence of the local correlation dimension
d2(r) defined in (13).

The relevance of the local Stokes number and of the local
correlation dimension is confirmed by numerical experiments
of planar suspensions. Simulations were performed by directly
integrating the reduced system described in the previous
section. Fig. 3 shows d2(r) as a function of St(r) for various
values of h. The curves obtained with different values of the
response time τ collapse onto the same h-dependent master
curve once the scale dependency is reabsorbed by using St(r).
In the plot, only scales far from the boundaries were considered,
as otherwise the self-similarity of the fluid flow is broken. The
data for h = 1 estimate the limit of d2(r) as r → 0, and
so correspond to the value of the correlation dimension D2.
As anticipated in the previous section, Fig. 3 also shows that
clustering is weakening when the roughness of the fluid velocity
increases (i.e. when h decreases). In particular, minr {d2(r)}
gets closer to d, i.e. particles approach the uniform distribution
as h → 0. Finally notice that for St(r) → 0, i.e. at large
scales in rough flows, d2(r) → d as well. This is due to the
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Fig. 3. Local correlation dimension d2(r) versus the scale-dependent Stokes
number St(r) = D1τ/r2(1−h) for two-dimensional flows with different h.
Symbols denote different particle response times τ . For h = 1, D2 = d2(r →
0) is displayed and St(r) = St = D1τ .

fact that at these scales the Lagrangian motion becomes much
slower than the relaxation time of the particles. The particles
thus recover the tracer limit and distribute homogeneously.
As we will see in Section 6 the local dimension d2(r) tends
linearly to the space dimension d when St(r) → 0 with a factor
whose dependence on h and d can be obtained analytically by
perturbative methods.

The radial distribution function and hence the correlation
dimension give only partial information on the rate at which
particles collide. Indeed, in order to evaluate the collision rate,
one needs to know not only the probability that the particles are
close to each other, but also their typical velocity difference.
Here, following [18], we study the approaching rate κ(r)
defined as the flux of particles that are separated by a distance
less than r and approach each other, i.e.

κ(r) = 〈Ṙ · R/|R|Θ(−Ṙ · R/|R|)Θ(r − |R|)〉, (15)

where Θ denotes the Heaviside function and the average is
defined on the Lagrangian trajectories. As detailed in [18], κ(r)
is related to the binary collision rate in the framework of the
so-called ghost collision scheme [23]. Within this approach
collision events are counted while allowing particles to overlap
instead of scattering. At small separations, κ(r) behaves as a
power law. This algebraic behaviour allows defining a local
Hölder exponent γ (r) for the particle velocities

γ (r) = ln κ(r)

ln r
− d2(r). (16)

In the above definition the contribution from clustering,
accounted for by the local correlation dimension d2(r), is
removed. The local Hölder exponent γ (r), similarly to d2(r),
tends to a finite limit Γ as r → 0 which, for particles suspended
in a smooth flow (h = 1), depends nontrivially on the Stokes
number.

Fig. 4 shows numerical estimations of γ (r)/h as a function
of St(r) for various values of h. In the smooth case (h = 1),
the limit value Γ decreases from Γ = 1 for St = 0,

Fig. 4. Ratio between the local Hölder exponent γ (r) of the particle velocity
and that of the fluid h versus St(r). The symbols in each curve refer to different
values of the particle response time τ . As in Fig. 3, for h = 1, the small-scale
limiting value Γ is depicted.

which corresponds to a differentiable particle velocity field, to
Γ = 0 for St → ∞, which means that particles move with
uncorrelated velocities [16]. The fact that Γ < 1 is due to
the contribution of caustics appearing in the particle velocity
field [24,26,25,15,18] (see Section 5 for a discussion in d = 1).
Similarly, in nonsmooth flows γ (r) is asymptotically equal to
the fluid Hölder exponent h at large scales (St(r) → 0), and
approaches 0 at very small scales (St(r) → ∞). Therefore,
all the relevant information is entailed in the intermediate
behaviour of γ (r). The latter should only depend on the fluid
Hölder exponent and on the local Stokes number, as confirmed
by the collapse observed in Fig. 4. Note that the transition
from γ (r) = h to γ (r) = 0 shifts towards larger values of
the local Stokes number and broadens as h decreases. The fact
that γ (r) = h for r → ∞ implies that the particles should
asymptotically experience Richardson diffusion just as tracers
(see Section 4 for details). For comments on how the findings
reported in this section translate to realistic turbulent flows, we
refer the reader to Section 8.

4. Stretching rate and relative dispersion

This section is devoted to the study of the behaviour of the
distance R(t) between two particles at intermediate times t such
that R(0) + R(t) + L . For convenience, we drop the reflective
boundary condition at R = L and consider particles evolving
in an unbounded domain.

We first consider a differentiable fluid velocity field (h = 1).
In this case, the time evolution of the distance R(t) is given by
(11), so that

R(t) = R(0) exp
[∫ t

0
σ1(t ′) dt ′

]
(17)

and the particle separation can be measured by the stretching
rate µ(t) ≡ (1/t) ln[R(t)/R(0)]. It is assumed that the reduced
dynamics (8)–(10) is ergodic. There is currently no rigorous
proof of ergodicity. However, such an assumption relies on
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Fig. 5. Lyapunov exponent λ versus St: the circles are the numerical
measurements while the dashed line corresponds to Eq. (20). Inset: rate function
H associated to the large deviations of the stretching rate µ for three values of
St; the solid line corresponds to H for tracers for, whose analytic expression is
known (see, e.g. [2]).

numerical evidence and on the following phenomenological
argument. The deterministic loops described in Section 2 are
randomly initiated by the near-origin behaviour of the system,
providing a mechanism of rapid memory loss that might ensure
ergodicity. With this assumption, the time averages converge to
ensemble averages, so that

µ(t) = 1
t

∫ t

0
σ1(t ′) dt ′ → 〈σ1〉 as t → ∞. (18)

In other words, the distance between particles asymptotically
behaves as R(t) = R(0) exp(tλ), where λ = 〈σ1〉 is a
nonrandom quantity referred to as the Lyapunov exponent. A
positive Lyapunov exponent implies that the particle dynamics
is chaotic [19].

Fig. 5 shows numerical measurements of the Lyapunov
exponent λ. The exponent remains positive for all values of
the Stokes number. This means in particular that particles
suspended in incompressible flow cannot experience strong
clustering, which consists in the convergence of all trajectories
together to form point clusters. This contrasts with the
case of compressible flows where, for suitable values of St
and of the compressibility, negative Lyapunov exponents are
observed [24]. A first attempt to derive an analytical expression
for λ(St) was proposed by Piterbarg [14]. His approach is based
on studying the Laplace transform ϕ(p) of the distribution of
the complex random variable z = σ1 + iσ2, i.e. ϕ(p, t) =
〈exp(−pz(t))〉 which satisfies

∂tϕ = −(p/τ) ∂pϕ + p ∂2
pϕ − (2D1/τ)p2ϕ. (19)

If ϕ(p, t) reaches a steady state at large times, one can infer
an analytic expression for the asymptotic solution ϕ∞(p) by
requiring that the right-hand side of (19) vanishes. It is then
straightforward to deduce that the Lyapunov exponent satisfies
λ = − limp→0 R{∂pϕ∞}. This implies

λ = − D1

2St
R

{
1 + Ai′(x)√

x Ai(x)

}
,

x = (16 St)−2/3, (20)

where Ai and Ai′ designate the Airy function of the first kind
and its derivative respectively. This prediction is compared to
the numerical measurements in Fig. 5. As stressed in [25], there
is evidence that the moments ϕ(p, t) do not converge to a steady
state, but rather diverge at large times. This might explain
the discrepancies observed in Fig. 5. However, the numerical
precision is not high enough to test the presence of corrections
to the analytical expression (20).

At large but finite time t , the distance between the
two particles is measured by the stretching rate µ(t) =
(1/t) ln[R(t)/R(0)]. This quantity becomes more and more
sharply distributed around the Lyapunov exponent λ as t
increases. More precisely, it obeys a large deviation principle
and its pdf p(µ, t) takes the asymptotic form (see, e.g. [2])

1
t

ln p(µ, t) ∼ −H(µ), (21)

where H is a positive convex function attaining its minimum in
µ = λ, in particular H(λ) = 0. The rate function H measures
the large fluctuations of µ, which are important to quantify
particle clustering. Rate functions obtained from numerical
experiments are represented in Fig. 5 for various values of
the Stokes number. The function becomes less and less broad
when St increases, a phenomenon that can be quantified in
the limit St → ∞ as discussed in Section 7. Note that the
same qualitative behaviour is also observed for heavy particles
suspended in homogeneous isotropic flow [27].

We now turn to the case of particles suspended in
nondifferentiable flows (h < 1). As we dropped the boundary
condition, the initial interparticle distance R(0) is the only
relevant length scale. By using R(0) instead of L in the
change of variables (5)–(7), the problem of relative dispersion
is expressed solely in terms of the Hölder exponent h and of a
time-dependent Stokes number which can be defined in terms
of the local Stokes number as Stt = D1 τ/[R(t)]2(1−h). In
particular, the evolution of R(t) directly follows from its initial
value St0. From the evolution equation (10) for the reduced
separation ρ(t) = [R(t)/R(0)]1−h , we obtain

ρ(t) = 1 + (1 − h)

∫ t

0
σ1(t ′) dt ′, (22)

where ρ(∈ [0, ∞)) typically increases with time. The time-
dependent Stokes number Stt = D1τ/R2(1−h) = St0/ρ2, which
measures the effect of inertia when the particles are at a distance
R(t), decreases with time. Hence, conversely to the case of
differentiable carrier flow, σ1 is not a stationary process and
the integral in (22) does not tend to t〈σ1〉.

Hereafter, we confine the discussion to the case St0 ,
1 because it contains a richer physics than smaller St0. As
observed from Fig. 6, we can distinguish two regimes in the
time behavior of ρ(t). At first the particle separation evolves
ballistically, i.e. R(t) ∝ t , meaning that the time-dependent
Stokes number Stt decreases as t−2/(1−h) (see inset of Fig. 6)
and reaches order-unity values for t ≈ τ . During this phase, the
time growth of ρ is accelerated or slowed down and ultimately
reaches a diffusive behaviour ∝ t1/2. This corresponds to the
limit of tracers, which is approached when Stt + 1. At this
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Fig. 6. Time evolution of the average rescaled separation 〈(ρ(t) − ρ(0))〉 for
different initial Stokes numbers St0, and h = 0.4, 0.6, and 0.8 (from top
to bottom). Inset: long-time behaviour of the time-dependent Stokes number
Stt = D1τ/ρ2(t) for different St0 and the same three values of h (now from
bottom to the top). The segments on the left indicate the slopes −2/(1 − h)

corresponding to the regime of ballistic separation.

stage, the interparticle distance behaves as R(t) ∝ t1/2(1−h)

and, consequently, the Stt decreases as 1/t (see Fig. 6).
The convergence to tracer diffusion in the limit of large

distances R gives an original way to interpret Richardson’s law
for delta-correlated velocity fields in terms of the asymptotic
behaviour of the reduced variables (5)–(7). When ρ is large,
the quadratic terms in the drift of Eq. (8) can be neglected
and σ1 behaves as an Ornstein–Uhlenbeck process with
response time τ . However, when σ1 becomes of the order
of ρ/(hτ), the quadratic terms cease to be negligible and
they push the trajectory back to σ1 > 0. This process
happens on time scales that are of the order of unity and
thus much smaller than the time scales relevant for large-scale
dispersion. Hence the dynamics of σ1(t) can be approximated
as an Ornstein–Uhlenbeck process with reflective boundary
condition on σ1 = ρ/(hτ). This implies that ρ has a diffusive
behaviour. More specifically, numerical simulations (see Fig. 7)
show that the pdf of ρ behaves as

p(ρ, t) ∝ ρν t−(ν+1)/2 exp
[
−Aρ2/t

]
, (23)

where ν = (1 + h)/(1 − h) and A is a positive constant. At
large times and consequently large distances Stt → 0, the tracer
limit is fully recovered as confirmed by expressing the above
relation in terms of the physical distance R = ρ1/(1−h). Indeed
it becomes identical to the law that governs the separation of
tracers in a Kraichnan flow [28]. However, a direct derivation
of (23) in terms of the ρ and σ dynamics is still lacking.

5. Exact results in one dimension

A number of analytical results were derived for one-
dimensional flows [29–31]. Although such flows are always
compressible, their study helps improving the intuition for the
dynamics of inertial particles in higher-dimensional random
flows. In particular, several results on caustic formation hold
also in two-dimensional (incompressible) flows because the

Fig. 7. Pdf of the rescaled separation ρ(t) for various combinations of St0 and
large times t . The solid lines represent the limiting distribution given by (23)
with A = 1/4.

typical velocity fluctuations, which lead to caustic formation,
are effectively one-dimensional.

Here, we focus on one-dimensional smooth flows, for which
the equations analogous to (8)–(10) reduce to

σ̇ = −σ/τ − σ 2 +
√

C η(t), (24)

Ṙ = σ R, (25)

where σ = V/R and, as in (8)–(10), C = 2D1/τ
2. The

quadratic term in (24) implies that σ can escape to −∞
with a finite probability. These events are the one-dimensional
counterpart of the loops described in Section 2 and correspond
to the formation of caustics: particle trajectories intersect with
a finite relative velocity. Note that the equation for σ decouples
from the equation for R, so that it can be studied separately.
Stationary statistics of σ can be described by the pdf P(σ )
which obeys the one-dimensional Fokker–Planck equation
[
∂σ

(
σ/τ + σ 2

)
+ (C/2) ∂2

σ

]
P(σ ) = 0. (26)

This equation can be rewritten as ∂σ J (σ ) = 0, where J (σ ) =
(σ/τ + σ 2)P(σ ) + C P ′(σ )/2 is a probability flux in the
σ -space. Eq. (26) is supplied by the boundary conditions
J (+∞) = J (−∞), which are required to resolve escapes
to infinity and thus caustic formations. Indeed such events
correspond to particle crossings during which R → 0 and
V remains finite, so that σ = V/R changes sign. Hence, all
particles escaping to σ = +∞ reappear at σ = −∞. The
stationary solutions of Eq. (26) satisfying such a boundary
condition corresponds to a constant flux J and can be written as

P(σ ) = 2|J |
C

e−2 U (σ )/C
∫ σ

−∞
dσ ′e2 U (σ ′)/C , (27)

where U (σ ) = σ 3/3 + σ 2/2τ . Note that as in two dimensions,
P(σ ) has power-law tails. The argument presented in Section 2
can actually be straightforwardly applied with the difference
that there is no loop anymore but just escapes to infinity
occurring with a probability that is independent of σ . This leads
to P(σ ) ∝ |σ |−2 for |σ | →∞ (the exponent is actually −(1 +
1/h) in the general case of Hölder-continuous carrier flows).
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Using the constant-flux solution (27), one can derive the
Lyapunov exponent λ = 〈σ 〉. As shown in [30], its value
nontrivially depends on the Stokes number. For St = D1τ + 1,
it is negative and behaves like λ 4 −D1 while for St , 1
it becomes positive and its value is given by the asymptotic
expression λ 4 D1St−2/3

√
3 125/6Γ (5/6)/(24

√
π) > 0. There

exists a critical value of the Stokes number (≈0.827) for which
the Lyapunov exponent changes its sign. This phenomenon
of sign-changing has been dubbed path coalescence transition
by Wilkinson and Mehlig in [30]. It is closely related to the
aggregation-disorder transition discussed in [29]. The sign of
the Lyapunov exponent determines how the distance between
two initially close particles evolves with time. It turns out that
the answer depends on the particle size: small particles (with
small-enough Stokes numbers) tend to approach each other,
while large particles (with large Stokes numbers) get separated
by the flow.

Another important phenomenon which was extensively stud-
ied within the one-dimensional model is the formation of
caustics. The average rate of caustics formation is given
by the absolute value of the probability flux J . For large
values of the Stokes number it can be written as |J | 4
D1St−2/3Γ (5/6)125/6/(8π3/2), while for small Stokes it be-
comes exponentially small |J | ∼ D1(2πSt)−1 exp[−1/(6St)].
The formation of caustics is a stochastic process, whose prop-
erties can be described by the pdf of the caustic formation time
T . In [31] it is shown that for St + 1 this pdf can be esti-
mated as P(T ) ∝ exp[−1/(6St)] for τ + T + τ exp[1/(6St)]
and P(T ) ∝ exp

[
−w/(3CT 3)

]
, with w = Γ (1/4)8/96π2 (Γ

denoting the Gamma function here), for T + τ . The exponen-
tial factor exp[−1/(6St)] which characterizes the small rate of
caustic formations for St + 1 can be easily explained if we
formally consider Eq. (24) as a Langevin equation for a par-
ticle which is driven by the thermal noise η(t) and evolves in
the potential U (σ ). In this case, the rate of caustic formation
is given by the probability for the particle to tunnel through
the potential barrier in U (σ ). Such probability can be estimated
as exp[−1/(6St)]. For large Stokes numbers, the barrier dis-
appears and the rate of caustic formation is not exponentially
damped anymore.

6. Small Stokes number asymptotics

This section reports some asymptotic results related to the
limit of small particle inertia. The first part summarizes the
approach developed by Mehlig, Wilkinson, and collaborators
for differentiable flows (h = 1). In analogy to the WKB
approximation in quantum mechanics (see, e.g. [32]), the
authors construct perturbatively the steady solution to the
Fokker–Planck equation associated to the reduced system (8)
and (9). In the second part of this section original results
are reported where the particle dynamics is approximated as
the advection by a synthetic flow comprising an effective
compressible drift which accounts for leading-order corrections
due to particle inertia.

Mehlig and Wilkinson proposed in [24] (see also [33]) to
approach the limit of small Stokes numbers in terms of the

variables x1 = (τ/D1)
1/2σ1 and x2 = (τ/3D1)

1/2σ2. From
Eqs. (8) and (9), their time evolution follows to satisfy

ẋ1 = −x1 − ε
[
x2

1 − 3x2
2

]
+

√
2 η1(s), (28)

ẋ2 = −x2 − 2εx1x2 +
√

2 η2(s), (29)

where ε =
√

St, dots denote derivatives with respect to the
rescaled time s = t/τ and η1 and η2 are independent white
noises. The evolution equations (28) and (29) can be written
in vectorial form, namely ẋ = −x + εV(x) +

√
2 η, where

x = (x1, x2), η = (η1, η2) and V denotes the quadratic drift.
The steady-state probability density p(x) is a solution to the
stationary Fokker–Planck equation

∇2
x p + ∇x · (xp) = ε∇x · [V(x)p]. (30)

The next step consists in writing perturbatively the probability
density of x as p(x) = exp(−|x|2/4) (Q0 +εQ1 +ε2 Q2 +· · ·).
The functions Qk satisfy the recursion relation H0 Qk+1 =
H1 Qk , where

H0 = 1 + ∇2
x − |x|2/4, (31)

H1 = ∇x · V(x) + x · V(x)/2. (32)

The operator H0 is the Hamiltonian of an isotropic two-
dimensional quantum harmonic oscillator. This suggests
introducing creation and annihilation operators and to expand
the functions Qk in terms of the eigenstates of the harmonic
oscillator (see [24,33] for details).

This approach yields a perturbative expansion of the
Lyapunov exponent [24]

λ = D1〈x1〉/ε = 2D1
∑

k≥0

akε
2k = 2D1

∑

k≥0

akStk, (33)

where the coefficients ak satisfy the recurrence relation

ak+1 = 4(4 − 3k)ak − 2
k∑

/=0

a/ak−/, (34)

with a0 = 1. For large k, these coefficients behave as
ak ∼ (−12)kk!, so that the series (33) diverges no matter
how small the value of ε (and thus of St). Hence the sum
representation of λ makes sense as an approximation only if
truncated at an index k0 for which |akStk | attains its minimum.
For small values of St, k0 ∼ 1/(12St) and the error of the
asymptotic approximation is of the order of the smallest term,
namely ∼ |ak0Stk0 | ∼ exp[−1/(12St)]. This approach was
refined by Wilkinson et al. [33] adopting an approach based on
Padé–Borel summation, which was found to yield satisfactory
results.

The nonanalyticity of λ(St) at St = 0 is interpreted in [24] as
a drawback of the perturbative approach. Indeed the quadratic
terms in (28) and (29) are not negligible for all values of x1
and x2: When |x| becomes larger than ε−1 they are actually
dominant and the trajectory performs a loop in the x (or σ )
plane (see Section 2). When St = ε2 is small, the probability
to initiate such a loop is given by the tail of the distribution
governing scales |x| + ε−1, and is hence ∝ exp[−1/(6ε2)],
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which coincides with the one-dimensional result discussed in
previous section, confirming the relevance of d = 1 physics
to the formation of caustics in higher dimension. Taking into
account this correction due to caustics, i.e. the contribution of
events when the particles approach very close to each other
keeping a finite velocity difference, Mehlig and Wilkinson
proposed to write the Lyapunov exponent as

λ/D1 ∼ B St−1e−1/(6St) + 2
k0∑

k=0

akStk, (35)

where B is a positive constant. We finish this summary by
stressing that this approach equally applies to the case of
compressible carrier flows [24], and was extended to three
dimensions where it yields a prediction on the St-dependence
of the three largest Lyapunov exponents [33].

The above perturbative approach can be generalized to small
particles evolving in rough flows. For small (local) Stokes
numbers, the characteristic time scales of velocity evolution are
much smaller compared to the temporal scales associated to the
dynamics of the particle separation. Therefore, we can obtain
the effective equation for the evolution of particle separation
by averaging over the fast velocity difference variables. The
systematic mathematical strategy of such an averaging was
proposed in [34] in the context of stochastic climate models.
This strategy is closely related to the Nakajima–Zwanzig
technique which was developed to study similar problems
arising in damping theory [35,36]. Applications of this
technique to the elimination of fast variables in Fokker–Planck
equations are discussed in [37,38]. In this framework we
can derive an expansion for the Fokker–Planck type operator
entering into the equation for the slow-variable probability
distribution function. In our case, this leads to a closed equation
for the pdf of the particle separation R. This equation can be
used to determine the local correlation dimension d2(r) for
St(r) + 1. We present here only the general idea and the main
results; details of the calculations will be reported elsewhere.

To carry out the above-mentioned procedure the joint
position-velocity pdf p(r, v) is approximated by

p(r, v) 4 p(r)Pr(v) + p̃(r, v), (36)

where p̃(r, v) denotes subleading terms which are O(St); Pr(v)
is the stationary distribution associated to the fast velocity
variables and satisfies the Fokker–Planck equation

L̂0 Pr(v) ≡ −
[

1
τ

∂ i
vv

i + bi j (r)
τ 2 ∂ i

v∂
j
v

]
Pr(v) = 0, (37)

with the normalization condition
∫

dv Pr(v) = 1. Without loss
of generality, it is assumed that the subleading terms p̃(r, v) in
the approximation (36) do not contribute to the normalization
condition, so that

∫
dv p(r, v) = p(r). The effective equation

for p(r) can be derived by introducing the expansion p(r) =∑∞
k=0 Stk/2 pk(r). This expansion, which enters the definition

(36), is then substituted into (4) and all terms of the same order
in St are collected. Note that the operator L̂1 = ∂ i

rv
i entering

Eq. (4) is smaller than the other operators by a factor St1/2.

The chain of equations for pk(r) has a solvability condition that
results in the following effective equation for p(r):
(

M̂1 + M̂2 + · · ·
)

p(r) = 0, (38)

where the operators M̂k can be written as

M̂k p(r) =
∫

dv
(

L̂1 L̂−1
0

)k
L̂1 p(r) Pr(v). (39)

L̂−1
0 denotes here the inverse of L̂0, i.e. the Green function

obtained from (37) with the right-hand side replaced by
a δ-function. This operator is defined in such a way that∫

dv L̂−1
0 f (v) = 0 for any function f (v) satisfying

∫
dv f (v) =

0. One can check that the leading-order operator is M̂1 =
∂ i

r bi j (r)∂ j
r which, as expected, corresponds to turbulent

diffusion. Indeed the dynamics of tracers is recovered when
St → 0. The pdf p(r) which solves the equation M̂1 p(r) = 0 is
simply the uniform distribution. To measure particle clustering,
which can be estimated, for instance, by the local correlation
dimension d2(r) (see Section 3), we have to calculate the next
order operators. It can be easily checked that all operators M̂k
of even order k are zero. The first nonvanishing correction
to M̂1 is thus given by the third-order operator M̂3. When
interested in the stationary distribution only, the terms which
enter this operator and which are associated to transients can be
disregarded and we can write

M̂3 · = ∂ i
r [V i ·], with

V i = −1
2

(
∂k

r ∂ l
r bi j

) (
∂

j
r bkl

)
. (40)

The operator M̂3 can be interpreted as an effective drift in
r-space and, for the Kraichnan model, represented as V i =
−2(d2 − 1)(d − 2 + 4h)h2St2(r)r i . The functional form of
this drift implies that the first nonvanishing corrections to
the uniform distribution are proportional to St(r). Indeed, for
isotropic flows one can look for a solution p(r), which depends
only on the modulus r of its argument. In this case Eq. (38)
becomes an ordinary differential equation of Fokker–Planck
type. Looking for a nonflux solution we readily obtain the
desired p(r). In rough flows (h < 1), we have ln p(r) ∼
[(d + 1)(d − 2 + 2h)h2/(1 − h)] St(r) and the local correlation
dimension behaves as

d2(r) 4 d − 2d(d + 1)(d − 2 + 4h)h2

d − 2 + 2h
St(r). (41)

Note that the second term on the right-hand side of the above
expression disappears for h → 0, confirming once again the
finding of the previous sections about the decrease of clustering
going from smooth to rough flows. For differentiable carrier
flows (h = 1), the distribution has algebraic tails: ln p(r) ∼
−2(d + 1)(d + 2)St ln r , and hence the correlation dimension
behaves as

D2 = d − 2(d + 1)(d + 2) St + O(St2). (42)

The dimension deficit d − D2 is equal to 24St for two-
dimensional flows and to d −D2 = 40St for three-dimensional
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Fig. 8. Dimensional deficit 2−D2 versus St in d = 2 for smooth flows (h = 1).
Inset: same for d = 3. Points represent numerical results and the straight line
corresponds to the perturbative predictions given by (42) for d = 2 and 3
respectively.

ones. The latter result is in agreement with the dimension deficit
of the Lyapunov dimension reported by Wilkinson et al. in [33].

Testing with high accuracy the prediction obtained for rough
flows requires a large numerical investment that is beyond the
scope of the current work. It was, however, checked that there
is no detectable disagreement between (41) and the results re-
ported in Section 3. For smooth flows, the leading-order be-
haviour (42) obtained above for the dimension deficit is in very
good agreement with numerical simulations in two and three
dimensions, as can be seen from Fig. 8. To conclude this sec-
tion we notice that in time-correlated random smooth flows, as
well as in developed turbulence, the dimension deficit has been
shown to be ∝ St2 [5,11,39,40]. Therefore, including temporal
correlations seems to be crucial to reproduce the details of the
small-Stokes statistics of turbulent suspensions.

7. Large Stokes number asymptotics

Particles with huge inertia (St , 1) take an infinite time
to relax to the velocity of the carrier fluid. They become
therefore uncorrelated with the underlying flow and evolve
with ballistic dynamics, moving freely and maintaining, almost
unchanged, their initial velocities. This limit is particularly
appealing for deriving asymptotic theories [16]. In this section,
we focus on two aspects, namely the problem of the recovery
of homogeneous/uniform distribution for St , 1 and the
problem of the asymptotic scaling for the statistics of the
particle separation and of the velocity differences.

7.1. Saturation of the correlation dimension

Ballistic particles injected homogeneously and uniformly
remain so [41]. Hence for the correlation dimension associated
with their distribution (13) we haveD2 = d . This result follows
directly from the Fokker–Planck equation (4), which can be
seen as an advection-diffusion equation in phase space. The
effective flow is compressible because of the term −∂vv/τ but,
in the limit St → ∞, it becomes negligible and the equation

reduces to diffusion plus advection by an incompressible
flow. The resulting stationary pdf is thus uniform in phase
space and hence in its projection in position space. Moreover,
as particle velocities and fluid flow are uncorrelated and
consequently the particles are not correlated with each other,
the exponent Γ which characterizes the small-scale behaviour
of the approaching rate (see Section 3) vanishes. Thus D2 → d
and Γ → 0 for St → ∞.

This asymptotic regime can be achieved via two possible
scenarios: (a) asymptotic convergence of D2 to d, and (b)
saturation of D2 to d for Stokes numbers above a critical value
StĎ. In what follows, we provide evidence for (b), limiting the
discussion to two-dimensional smooth flows.

Let us first discuss a phenomenological argument in favor
of saturation. As already noted in Section 3, their dissipative
dynamics yields the phase-space trajectories of the particles
to converge onto a random, dynamically evolving attractor,
which is typically characterized by a multifractal measure [19,
20]. In our setting, this measure is the phase-space correlation
dimension defined in Eq. (14). Ballistic motion for St , 1
corresponds toD2 → 2d , therefore a critical Stokes number StĎ

exists such that D2(StĎ) = d. The particles’ spatial distribution
is obtained by projecting the (2 × d)-dimensional phase space
onto the d-dimensional physical space. It is tempting to apply a
rigorous result on the projection of random fractal sets [22,42]
stating that for almost all projections, the correlation dimension
of the projected set is related to that of the unprojected one via
the relation

D2 = min{d,D2}. (43)

Having D2(StĎ) = d with the above expression implies that
D2(St) = d for all St ≥ StĎ. Unfortunately, there is a priori no
reason for assuming some kind of isotropy in phase space which
justifies the validity of (43). We thus proceed numerically.

As Eq. (43) requires the isotropy of the set, we have tested
whether this applies to our case. The correlation dimension of
different two-dimensional projections was evaluated through
the computation of the probabilities Pα,β

2 (r) of having two
particles at a distance less than r using the norm ∆2

α,β =
δ2
α + δ2

β , with α, β = X, Y, VX/D1, VY /D1, and δα denoting
the coordinate-α separation between the two particles. Note
that α = X and β = Y corresponds to the spatial
correlation dimension discussed so far. Fig. 9 shows the
logarithmic derivatives (d ln Pα,β

2 (r))/(d ln r) for various α, β

and three different values St. All curves collapse within error-
bars, confirming that the projection is rather typical and thus
strengthening the argument in favour of saturation. However, as
can be seen in Fig. 9, the logarithmic derivatives on the different
projections are curved, indicating behaviours different from the
expected power law. It is therefore difficult to decide whether
or not the saturation occurs. As discussed in [44], one can
understand the curvature of the local slopes with the presence
of subdominant terms, e.g. with the superposition of two power
laws P2(r) 4 Ara + Brb. In our case, we can expect that

P2(r) = ArD2 + Brd , (44)
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Fig. 9. Logarithmic derivative (d ln Pα,β
2 (r))/(d ln r) for different projections

α, β for St = 0.5, St = 1 (shifted up by a factor 1), and St = 1.5 (shifted up by
a factor 2). A small mismatch in the scaling range can observed for large r (this
is unavoidable as positions and velocities involve different scales).

Fig. 10. Physical spaceD2, and phase-spaceD2 correlation dimensions versus
St as obtained by using (44) for fitting the exponents. Errors are of the order of
the size of the symbol. The arrow indicates the estimated location of StĎ.

where d and D2 are the only dimensions entering the
problem [16]. For D2 < d , the second power law can be
interpret also as the contribution of caustics [26,18]: With
nonzero probability, particles may be very close to each other
with quite different velocities, see Section 5. Once projected
onto physical space, caustics appear as spots of uncorrelated
particles, and hence, the correlation dimension is locally D2 =
d . The validity of (44) as well as of the projection formula (43)
was confirmed in Ref. [16].

Fig. 10 summarizes the results depicted above. In particular,
D2 clearly displays a crossover to values larger than d for
St > StĎ ≈ 0.6. D2, once properly estimated by using (43),
displays the saturation to d = 2 above StĎ, at which the large
Stokes asymptotics starts, at least for the particle distribution.

Let us comment briefly on the implication of saturation on
the behaviour of the approaching rate which, in the limit St →
∞, is characterized by the exponent Γ → 0. Similarly to D2,
deviations of Γ from its limiting value cannot be determined by
scaling arguments. Saturation of D2 would, however, affect Γ .
This is related to the dominant contribution of caustics which
might imply also the saturation of Γ to 0 for sufficiently large

Fig. 11. Pdf of the non-dimensional longitudinal velocity difference σ1 at large
values St (symbols are for different values) for various values of h.

Stokes numbers. Though numerical experiments confirm this
scenario [16], saturation cannot be studied with as much detail
as for D2. At present, there is no simple phenomenological
argument for the subleading terms as for D2.

7.2. Scaling arguments

The limit of large values of the Stokes number can be
approached by assuming τ → ∞ and keeping C =
2D1/(τ L1−h)2 constant. The dynamics (8) and (9) for the
relative velocity differences can then be approximated by

σ̇1 4 −
(

hσ 2
1 − σ 2

2

)
/ρ +

√
C η1, (45)

σ̇2 4 −(h + 1)σ1σ2/ρ +
√

(1 + 2h)C η2 . (46)

For a given exponent h, the limiting dynamics depends solely
on C while – after nondimensionalizing time and relative
velocities by τ – the general dynamics depends on St(L) only
(see the Introduction). This congruence, which was first used
in [45] for determining the large-St behavior of the Lyapunov
exponent, allows to derive scaling arguments of various other
quantities characterizing two-particle dynamics.

Let us detail this for the distribution of the longitudinal
velocity difference σ1. It is clear from the above considerations
that for fixed h and σ1 , (1/τ) the following relation holds:

τ p̃(τσ1; St) 4 p(σ1; C). (47)

Differentiating with respect to D1 and τ gives a necessary
condition for such a behaviour: p must satisfy

p + σ1∂σ1 p + 3C ∂C p = 0, (48)

which itself implies p(σ1; C) = C−1/3 f (C−1/3σ1), so that

p(σ1) 4 St−1/3τ f (St−1/3τσ1) for St , 1. (49)

As shown in Fig. 11 this asymptotic scaling behaviour
can be observed numerically. As a consequence of (49), for
differentiable carrier flows (h = 1) the Lyapunov exponent
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Fig. 12. Lyapunov exponent λ versus St. The dashed line is the asymptotic
prediction (50). Inset: rate function H(µ) for various large values of St.

λ = 〈σ1〉, which measures the asymptotic growth rate of the
interparticle distance (see Section 4), behaves as

λ 4 cD1St−2/3 for St , 1, (50)

where c is a parameter-independent positive constant. Note
that the original derivation [45] of this law applies also to
compressible carrier flows, so the constant c depends on the
compressibility of the fluid velocity field. It is shown in [16]
that this result also holds in three dimensions. Its confirmation
by numerical simulations is illustrated in Fig. 12.

The scaling argument described above can be carried
forward to the fluctuations of the stretching rate µ(t) =
(1/t) ln[R(t)/R(0)]. As we have seen in Section 4, for large
times the distribution of µ obeys the large deviation principle
(21). It can be shown (see [16] for details) that the associated
rate function H(µ) = limt→∞(1/t) ln p(µ, t) satisfies

H(µ) 4 D1St−2/3h(St2/3µ/D1) for St , 1. (51)

This scaling is confirmed numerically (inset of Fig. 12).
We finally comment on how the stretching rate fluctuations

change with St. Taylor expansion of H around its minimum
together with the scaling behaviour (51) shows that the standard
deviation of the stretching rate is of the order of St−1/3/

√
t .

For a given time t , the stretching rate µ distributes more
and more sharply around λ when St increases. This behaviour
was anticipated by the numerical measurements reported in
Section 4 and is observed in direct numerical simulations of
heavy particles in homogeneous isotropic flows [27].

8. Remarks and conclusions

Before concluding this paper the results discussed so far
are commented in the light of what is known about real
turbulent suspensions, which are relevant to most applications.
Let us start by recalling the main features of turbulent flows.
Turbulence is a multiscale phenomenon [46] which spans
length scales ranging from a large (energy injection) scale
L to the very small (dissipative) scale η, often called the

Kolmogorov scale. This hierarchy of length scales is associated
with a hierarchy of time scales: from the large-scale eddy
turnover time τL to the Kolmogorov time τη. Both ratios
L/η and τL/τη increase with the Reynolds number Re of the
turbulent flow. Therefore, in general settings, no separation of
time scales can be invoked to simplify the motion of suspended
particles. However, in two circumstances simplifications are
possible, namely:

(i) For particles with a response time τ much greater than τL ,
the fluid velocity seen by the particle can be approximated by a
random flow belonging to the Kraichnan ensemble, as discussed
in this paper. Then a Hölder exponent h = 1 or h < 1 is
chosen to study the dissipative or inertial scales of turbulence,
respectively.

(ii) For intermediate response times τη + τ + τL , at least
for single or two-particle motions, the fluid velocity seen by the
particles can be approximated by an anisotropic generalization
of the Kraichnan model [47].

In both asymptotics, the Kraichnan model and its generaliza-
tion allow for predictions on single- and two-particle properties,
many of them were discussed throughout this paper. In the fol-
lowing we discuss them in the context of turbulent suspensions.
We focus mostly on two-particle properties at dissipative and
inertial scales.

Dissipative range. At such small scales, particles form
(multi)fractal clusters, which can be quantitatively character-
ized by the St-dependence of the correlation dimension D2 or,
equivalently, of the dimensional deficit d − D2 (in turbulence
one can define St = τ/τη). Numerical studies [10,50] show
that the qualitative St-dependence of D2 is similar to that ob-
served in the Kraichnan model. Despite such similarities, it is
likely that in turbulence, ejection from vortical regions play, at
least for small St, an important role [50]. This can clearly not
be accounted for in Kraichnan flows, as δ-correlated flows have
no persistent structures. The absence of time correlations cer-
tainly affects also the scaling behaviour when St + 1 of the di-
mension deficit: while in turbulence [5,40] and time-correlated
stochastic flows [11,39] it is observed that d − D2 ∝ St2,
we have shown here that the behaviour is linear in St. These
discrepancies originate from the fact that white-in-time carrier
flows are valid approximations of turbulence only for St , 1.

Another question concerns the relative dispersion of a
particle pair. In the dissipative range, the velocity field is
smooth, so that particles separate exponentially with a rate
given by the largest Lyapunov exponent λ. If τ , τL the results
presented in previous sections should apply, i.e. λ ∝ St−2/3. For
τη + τ + τL , the anisotropic generalization of the Kraichnan
model predicts λ ∝ St−5/6 [47]. However, the measurements
of Lyapunov exponents made up to now (see e.g. [27]) do not
involve high-enough Stokes and Reynolds numbers to test the
validity of these predictions in turbulent flows

Inertial range. As shown in this paper, for rough Kraichnan-
type carrier flows, particles also form clusters which are,
however, not fractal as they were in the dissipative range. This
seems to be in qualitative agreement with the observations
made in the inertial range of turbulence: Inhomogeneities have
been found in 2d turbulence in the inverse cascade regime [48,
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49] as well as in 3d turbulence [50,51]. However, while in
the Kraichnan case the particle distribution depends on the
local Stokes number St(r) only, this does not seem to be the
case in turbulence, at least for St(r) + 1 as studied in [50]
(which in turbulence is defined by St(r) = τ/τr , τr being the
characteristic turbulent time scale associated to the scale r ).
In turbulent flows, for small values of St(r) a different rescaling
related to that of the acceleration (and hence pressure) field has
been found [50]. However such discrepancies do not question
the relevance of the Kraichnan model to turbulent flows as it
is expected to be a good approximation only for scales r such
that τr + τ , i.e. St(r) , 1. Experiments or direct numerical
simulations with high Re and St are thus needed to actually
test the validity of the dynamic scaling in terms of St(r) and
to reproduce an equivalent of Fig. 3 for turbulent flows. As far
as particle separation is concerned, we have seen in Section 4
that at very long times, and thus for separations r such that
τ + τr one should expect to observe Richardson dispersion.
For intermediate times at which the separation is such that τη +
τr + τ , it is predicted in [47] that an intermediate asymptotic
regime may emerge with the typical particle separation r
growing as t9, i.e. much faster than Richardson diffusion. On
the numerical and experimental side, we are not aware of any
results on the relative dispersion of two heavy particles in the
inertial range. Testing the above predictions can be probably
done only in experiments where Re can be very high.

In summary, this paper reviewed most of current understand-
ing of heavy particle suspensions in Kraichnan-like stochas-
tic flows. In particular, we examined in details two-particle
statistics both in smooth and rough velocity fields. Numerical
simulations, validated by analytics originally derived in this pa-
per, show that particle clustering is more efficient for smooth
than rough flows, and can be characterized in terms of the lo-
cal Stokes number. Detailed predictions can be done in the very
small and very large Stokes number asymptotics. In the former
we provided an analytical expression for the dimensional deficit
for any value of the fluid Hölder exponent. More specifically, it
is shown that the departure from a uniform distribution is linear
in the Stokes number, a result which is confirmed by numerics.
As for the evolution of the relative separation of particle pairs at
small separations, a well-verified asymptotic behaviour for the
Lyapunov exponent is discussed. At larger scales, by converting
the scale-dependent Stokes number into a time-dependent one,
we provided an original way to account for the recovering of
tracer-like Richardson diffusion. Finally, the relevance of these
results, together with other predictions obtained in recent years
from Kraichnan-like models of heavy particle suspensions, to
particles in turbulent flows has been discussed.

To conclude this work we suggest two different directions
for further investigations. First, most of the predictions
related to the large-Stokes asymptotics lack numerical or
experimental evidence in fluid flows with high Reynolds
numbers and particles with huge inertia. Second, it is now
definitely clear that an important challenge for the near future
is to understand whether or not some of the techniques
developed for suspensions in random time-uncorrelated flows
can be generalized/extended to time-correlated flows. For

instance, a quantitative understanding of the small-Stokes-
number asymptotics in models that are closer to turbulence
would be of great interest to many applications. A first step in
this direction has been recently attempted in [52].
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Abstract

Vortex modeling has a long history. Descartes (1644) used it as a model for the solar systems. J. J. Thomsom (1883) used it as a model for
the atom. We consider point-vortex systems, which can be regarded as “discrete” solutions of the Euler equation. Their dynamics is described
by a Hamiltonian system of equations. We are interested in polygonal configurations and how their stability depends upon various dynamical
variables. In the plane a polygon with seven vortices has been shown to be a special boundary case: polygons with N < 7 vortices are (linearly
and nonlinearly) stable while polygons with N > 7 vortices are unstable. Why should N = 7 be special? Celestial Mechanics helped us to
simplify a problem that has been studied for over a century, and to show that the case of Thomson’s Heptagon is actually a case of bifurcation
at infinity. This becomes particularly clear when considering the corresponding problem of a ring on a sphere with two polar vortices of variable
intensities ΓN and ΓS, at the North and South Pole, respectively.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.10.Df; 47.10.Fg
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1. Introduction

In 1883, when searching for a model for the atom, J.J.
Thomson came to study the linear stability of polygonal
configurations of N identical point-vortices in the plane. In
his analysis he reached the conclusion that a ring of six
or fewer vortices was stable, while for seven vortices he
erroneously concluded that the ring was slightly unstable [11].
Fifty years later, in 1931, Havelock [6] succeeded in solving
the ring linear analysis in full generality and showed that
Thomson’s Heptagon was neutrally stable. In 1999, Cabral
and Schmidt [4] performed a nonlinear stability analysis for
polygonal configurations with a central vortex (see Fig. 1(a)).
Recently, in 2003, Kurakin and Yudovich [9] also provided
a proof that the heptagon is nonlinearly stable. Then the
“biblical” question arises: why should N = 7 be anything
special? Why is seven the border-line between stability and
instability in the plane? What is happening for rings of vortices,

∗ Corresponding author. Tel.: +55 21 22878744; fax: +55 21 22901095.
E-mail address: lella@im.ufrj.br (S. Boatto).

say, on a sphere? In this article we show that the case of
Thomson’s Heptagon is actually a case of bifurcation at
infinity! People were looking at the problem in a reduced
parameter space — i.e. for a special value of an extra parameter
at infinity. This is particularly clear when considering the
problem of a ring of vortices on a sphere with two polar vortices
of variable intensities, ΓN and ΓS , at the North and South Pole,
respectively.

2. Equations of motion

Let us consider a non-rotating sphere of radius R. The
position of a point-vortex on the surface of the sphere is
specified by means of the usual spherical coordinates (φ, θ),
where θ ∈ [0, π] is the co-latitude and φ ∈ [0, 2π ] the
longitude. It has already been shown in the literature (see for
example [1,2,7,8]) that on a sphere the dynamics of N point
vortices of strengths Γ1, . . . ,ΓN is given by the Hamiltonian
system of equations

q̇α = − ∂ H
∂pα

, ṗα = ∂ H
∂qα

, α = 1, . . . , N , (1)

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.030
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Fig. 1. (a) In the plane and on a sphere, a configuration of a ring of identical
vortices with a central vortex of vorticity Γ . (b) A point on the sphere of
radius R can be localized by specifying its longitude ϕ and its co-latitude θ .
(c) Configuration of a ring and two polar vortices on a sphere.

where qα = φα and pα = Γα R2(cos θα − 1) are the canonical
variables associated to the αth vortex, and H is the autonomous
Hamiltonian

H(q1, . . . , qN , p1, . . . , pN ) = c
∑

α<β

ΓαΓβ ln(1 − dαβ), (2)

with c = −1/4π and dαβ =
(

1 + pα

R2Γα

) (
1 + pβ

R2Γα

)
+

√
pα

R2Γα

pβ

R2Γβ

(
2 + pα

R2Γα

) (
2 + pβ

R2Γβ

)
cos(qα − qβ).

3. A ring of identical vortices

Now let us focus our attention on the case of the unit sphere,
R = 1, and a vortex configuration consisting of one latitudinal
ring of N identical vortices, say of vorticity Γ1 = · · · = ΓN =
1, i.e.

qα(0) = 2π(α − 1)

N
, pα(0) = cos θo − 1 (3)

and two polar vortices of vorticity ΓN and ΓS, respectively, held
fixed at each pole, as shown in Fig. 1(c). The Hamiltonian of the
vortex system is H = Ho + HF P , where

HF P = cΓN

N∑

β=1

ln(−pβ) + cΓS

N∑

β=1

ln(2 + pβ)

is the part describing the interaction of the polar vortices with
each vortex in the ring, and Ho is as H in (2), the Hamiltonian
describing the interaction of the vortices of the ring. It has been
shown (see [3,10]) that the dynamics of such a configuration is
a rigid rotation – i.e. in relative equilibrium –

qα(t) = νt + qα(0), pα(t) = zo − 1, (4)

where zo = cos θo, ν = c
[

zo
ρ2

o
(N − 1) + ΓN

1−zo
− ΓS

1+zo

]
is the

rotational frequency deduced in [3] and ρo =
√

1 − z2
o. Now

the following question naturally arises:
How does the stability (linear and non linear) of such a

configuration depend upon N , zo, ΓN e ΓS ?
To tackle this question we begin by rewriting the system (1)

as
dX
dt

= J∇X H,

where X = (q1, . . . , qN , p1, . . . , pN ), J =
(

O −I
I O

)

and ∇X =
(

∂
∂q1

, . . . , ∂
∂qN

, ∂
∂p1

, . . . , ∂
∂pN

)
. It is clear that

exchanging the values of ΓN and ΓS is equivalent to exchanging
zo with −zo. Hence, it will be enough to discuss the behaviour
for fixed values of ΓS and let ΓN and zo vary. Then we do the
following (see for details Boatto and Simó [3]):

(i) Change of reference frame: we view the dynamics
in a frame co-rotating with the relative equilibrium
configuration. In the co-rotating reference system, the
Hamiltonian takes the form

H̃ = H + νM,

where M = N +∑N
α=1 pα is the momentum of the system

— associated with the invariance under translations of
the Hamiltonian H along the parallels of the sphere. The
relative equilibrium becomes an equilibrium, X∗, in the
new reference system, and standard techniques can be used
to study its stability.

The relevant equation to be studied is therefore

d∆X
dt

= JS ∆X (5)

where X = X∗ +∆X , and S is the Hessian of H̃ evaluated
at the equilibrium X∗. For linear stability we study the
eigenvalues of the matrix JS (spectral stability), while for
nonlinear stability we make use of Dirichlet’s Criterion,
i.e. we study the definiteness of the Hessian S [4,5]:

Theorem 3.1 (Dirichlet’s Criterion). Let X∗ be an
equilibrium of an autonomous system of ordinary
differential equations

dX
dt

= f (X), X ∈ Ω ⊂ R2N , (6)

that is, f (X∗) = 0. If there exists a positive (or negative)
definite integral Ψ of the system (6) in a neighbourhood of
the equilibrium X∗, then X∗ is stable.

Notice that in our case the system is Hamiltonian and the
Hamiltonian is time independent, then H̃ is a first integral.
Near the equilibrium X∗ (3), H̃ can be expanded as

H̃(X) = H̃(X∗) + ∇ H̃(X∗) · ∆X + 1
2
∆X S∆X + · · ·

(7)

where the linear term disappears due to the fact that
∇ H̃(X∗) = 0. Then we refer to the Hamiltonian as being
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(positive or negative) definite at X∗ if the quadratic form
∆XTS∆X is, i.e. if the Hessian S is. Notice that since the
Hessian S is a symmetric matrix then it is diagonalizable,
i.e. there exists an orthogonal matrix C such that CTSC =
D, where D = diag(λ1, . . . , λ2N ) is a diagonal matrix.
Furthermore the matrix C can be chosen to leave invariant
the symplectic form (equivalently J = CT JC). Then
by the canonical change of variables Y = CT X Eq. (5)
becomes
d∆Y

dt
= JD ∆Y, (8)

where Y = (q̃1, . . . , q̃N , p̃1, . . . , p̃N ) and (q̃ j , p̃ j ), j =
1, . . . , N , are pairs of conjugate variables. Eq. (8) can be
rewritten as
d2∆q̃ j

dt2 = −λ jλ j+N ∆q̃ j , j = 1, . . . , N .

Then we have linear stability if

Λ j = λ jλ j+N > 0 (9)

for all j = 1, . . . , N , with the exception of the zero
eigenvalues due to symmetries of H .

(ii) As deduced in [3] the Hessian S of H̃ has the structure

S =
(

Q O
O P

)
(10)

where the matrices Q and P are of the form

Q = c(−sI + A), P = c
1
ρ4

o
((t1 − t̃1)I − A), (11)

t1 = s − (N − 1)(1 + z2
o), t̃1 = ρ4

o(ΓNη2 + ΓSη̃2),

η = 1
1 − zo

, η̃ = 1
1 + zo

, s = N 2 − 1
6

,

and A is a symmetric circulant matrix with first row

a1 = 0, and a j = 1
1 − cos(2π( j − 1)/N )

= aN− j+2,

j = 1, . . . , N , and has minimum and maximum
eigenvalues

λAmin = − 1
24

[2N 2 + 1 + 3(−1)N ], λAmax = s. (12)

It follows that Q has a zero eigenvalue, to be denoted as
λQ1 and the other ones are positive (since c < 0).

(iii) As Q and P are linear combinations of I and A, they
diagonalize in the same basis as A. Let λQ j , λPj be the
respective eigenvalues. Hence, we can diagonalize JS and
its eigenvalues are

λJS j =
√

λQ j λPj , λJS j+N = −
√

λQ j λPj ,

j = 1, . . . , N . Then the single zero eigenvalue λQ1 of S
corresponds to a double two eigenvalue equal to zero of JS,
i.e. λJS1 = λJSN+1 = 0.

Then following the procedure described above (see [3] for
details) we consider a symplectic change of variables which
diagonalizes the Hessian. It is enough to use, both for the q
and the p variables, the eigenbasis of A.

As stated above the nonzero eigenvalues of Q are positive.
It follows from Eqs. (11) and (12) that

λP min = − c
ρ4

o

{
− 1

24
[2N 2 + 1 + 3(−1)N ] − N 2 − 1

6

+ (N − 1)(1 + z2
o) + ΓN(1 + zo)

2 + ΓS(1 − zo)
2
}

. (13)

Linear stability is assured when λP min > 0.

Then what about nonlinear stability?
It follows from the discussion above and from Dirichlet’s
Criterion, Theorem 3.1, that nonlinear stability is assured when
the minimum eigenvalue of P is positive [3], as well!

Theorem 3.2 (Spherical Case). The equilibrium X∗ (3) is
(linearly and nonlinearly) stable if

λP min > 0,

i.e. if

−(N − 2)2 − δ + 4(N − 1)z2
o + 4(1 + zo)

2ΓN

+ 4(1 − zo)
2ΓS > 0, (14)

where δ = 0 for N even, δ = 1 for N odd. It is linearly unstable
if the inequality in (14) is reversed.

Remarks. (1) From the above theorem we guarantee stability
if

ΓN >
(N − 2)2 + δ − 4(N − 1)z2

o − 4(1 − zo)
2ΓS

4(1 + zo)2

with δ defined as before.
(2) When ΓN > 0 and ΓS > 0, notice the stabilizing influence

of the polar vortices – i.e. of the factor 4(1 + zo)
2ΓN +

4ΓS(1 − zo)
2 in the equations of the theorem above.

(3) Concerning stability in the critical case λP min = 0, it is
necessary to carry out a computation of higher order terms
in the Normal Form of the Hamiltonian around the fixed
point, as done in [4] for the planar case, N = 7.

(4) Notice θ =
√

Kr where r is the geodesic distance from the
north pole and K = 1/

√
R is the curvature of the sphere.

Then fixing r , we recover the planar case (see Fig. 1) by
considering K → 0 (as fully discussed in [2]), obtaining

lim
K→0

pα = −r2
α

2
.

In a similar way we can recover the planar case by letting z0
tend to 1. The previous theorem reduces to the case already
studied by Cabral and Schmidt [4].

Corollary 3.3 (Planar Limit). The equilibrium X∗ =(
0, 2π

N , . . . , 2π(N−1)
N , − r2

o
2 , . . . ,− r2

o
2

)
is (linearly and nonlin-

early) stable if the vorticity strength of the center vortex verifies

ΓN >
(N − 2)2 + δ − 4(N − 1)

16
, (15)

where δ = 0 for N even, δ = 1 for N odd. It is linearly unstable
if the inequality is reversed.
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Fig. 2. ΓS = 0. Regions of stability and of linear instability for (a) N = 4, (b) N = 7 and (c) N = 4, 6, 7, 8.

Fig. 3. ΓS = 0. Stability region of a ring of N identical vortices with a vortex
of vorticity ΓN held fixed at the North Pole. Notice how the stability band
increases with ΓN. (a) for N = 4; (b) for N = 7.

A complete discussion about the planar limit is given in [2].
What is the relevance of having two polar vortices?
As shown in Figs. 2 and 3 when ΓS = 0, the stability

region for N < 7 is quite different from the one of the case
N ≥ 7. In the case N < 7 both polar cups exhibit a stability
region, and the region grows with the increasing of the value
of ΓN (see Fig. 2(a)–(c)) and Fig. 3(a)). More specifically, for
a given N < 7 there is a particular value of ΓN above which
the stability region is the whole sphere! The situation is quite
different for N ≥ 7. As ΓN increases the stability region around
the north polar cup increases (see Fig. 2(b)–(c)) and Fig. 3(b)),
but never reaches the south pole!

Now when ΓS *= 0 things are quite different! Let us illustrate
this with an example. Consider the case of a ring of eight
vortices, i.e. N = 8, and let us see how the presence of a
southern polar vortex could extend the assured stability region
— and equivalently reduce the linear instability region. In Fig. 4
the curves delimiting the stability region are given for different
values of the strength of the southern polar vortex, ΓS. In
particular, notice that if the value of ΓS is above the critical
one (i.e. ΓS > Γ ∗

S = 1/2) the stability region can extend to
the southern polar region for negative values of ΓN, as well.
Analogously, in the case of a ring of four vortices, i.e. N = 4,
if the southern polar vortex has a strength ΓS < Γ ∗

S = −1/2,

Fig. 4. For N = 8, different stability regions for different values of ΓS ≥ Γ̃∗
S .

Fig. 5. For N = 4, different stability regions for different values of ΓS ≥ Γ∗
S .

the assured stability region does not include a neighbourhood
of the south pole, see Fig. 5. As one last comment, we want to
point out that for fixed N and ΓS > Γ ∗

S , a turning point bounds
the values of ΓN for which there exists some range of stability
in the zo variable. The location of the turning point is given by

−16ΓNΓS + (ΓN + ΓS)(N 2 − 8N + 8 + δ)

+ (N − 1)((N − 2)2 + δ) = 0,

provided |ΓN −ΓS| < |N −1+ΓN +ΓS|, which is the required
condition to have then |zo| < 1. From the above relation we
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have at the turning point

ΓN = ΓS(N 2 − 8N + 8 + δ) + ((N − 1)((N − 2)2 + δ))

16ΓS − (N 2 − 8N + 8 + δ)
.

One checks, for instance, the values ΓN = 71/14,ΓN = 79/30
in Fig. 4 for N = 8 and ΓS = 4,ΓS = 8, respectively, and the
values ΓN = 1.5,ΓN = −0.1 for ΓS = 0,ΓS = 2, respectively,
in Fig. 5.

4. Conclusions

On a sphere, we investigated the linear and nonlinear
stability of a latitudinal polygonal ring of identical point-
vortices, in the presence of two fixed polar vortices. The
purpose of our study was to show the full symmetry of the
stability problem. In fact as already widely discussed in the
literature for over a century (see [4,6,9,11]), in the planar case
it would appear that a ring of seven vortices is a special case.
When considering a ring of vortices with a central vortex (as
in Fig. 1(a)) the stability behaviour is quite different for rings
with more or less than seven vortices. The Thomson Heptagon
appears as a mysterious boundary case! In this article we
showed that on the sphere – that can be thought as the plane plus
the point at infinity – when letting ΓS vary we are accordingly
setting new boundary values for N . In particular our study gives
the critical value of Γ ∗

S for all N , i.e.

Γ ∗
S = (N 2 − 8N + 8 − δ)/16,

where δ = 0 for N even, δ = 1 for N odd. To obtain this critical
value it is enough to replace > by = in (14) and let zo tend to
−1. To illustrate this more clearly in Fig. 4 we showed that

for Γ ∗
S = 1/2 the boundary value for N is 8. In other words,

N = 7 is a special boundary case only for Γ ∗
S = 0, and the

planar setting can be viewed as a case of bifurcation at infinity!
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Abstract

We analyse the Lagrangian geometry of a time-dependent flow in the neighbourhood of a coherent vortex which is assumed to be a member
of a vortex cluster collectively ruling the dynamics in the late stages of decaying two-dimensional turbulence. In order to gain insight into the
highly inhomogeneous transport of a passive tracer in such vortex-dominated flows, we consider an idealised kinematic model of a local flow
around a single coherent vortex in the cluster at distances much smaller than the distance to its nearest neighbour. We focus, in particular, on
flow configurations which lead to a vigorous stirring and a subsequent escape of a passive tracer from the neighbourhood of the vortex. Here, the
central vortex is approximated by a point vortex but the analytical arguments can be modified to cater for more realistic vorticity distributions. The
principal axes of an irrotational ambient strain, which represents the combined, leading-order influence of its neighbours, are assumed to rotate
with constant angular velocity and the strain-rate varies harmonically in time. The Lagrangian structure of the flow near the vortex is analysed
by utilising the Hamiltonian formalism and employing appropriate perturbation methods. It is shown that sufficiently near the vortex there exist
KAM-like tori which confine regions of purely chaotic tracer trajectories to the neighbourhood of the vortex. We emphasise, however, that there
can exist certain ‘open’ flow geometries which lead to eventual ‘leakage’ of the tracer from ‘sufficiently distant’ regions of vigorous stirring to the
outer flow. Such local flow configurations can be regarded as a prototype of the ‘mixers’ in decaying 2D turbulence.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Stirring; Inhomogeneous transport; Coherent vortex; Open flow geometry; Decaying two-dimensional turbulence; Hamiltonian perturbation methods

1. Introduction

The flow in the late stages of the decaying two-dimensional
turbulence is dominated by a relatively small number of
strong coherent vortices whose lifetimes are much longer
than the characteristic time scale of the nonlinear turbulent
interactions [13,3,5].The analysis of velocity distributions show
that these coherent structures destroy the self-similarity and
the dynamical homogeneity of the transport dynamics at
intermediate scales in the inertial range for active and passive
tracers [2]. Even though it is known, based on the (local) tracer-
gradient dynamics, that the passive tracer variance evolves from
large to small scales the most rapidly within the robust ‘elliptic’
cores of the coherent vortices, many aspects of this process, and
in particular differences between the passive and active case,
remain unclear [1]. For example, in the Eulerian framework,

E-mail address: m.branicki@bristol.ac.uk.

the usually close-to-axisymmetric vortex cores are known to
be robust to perturbations so that the vorticity filaments are
stripped only from their edges during close interactions [14].
If then the passive tracer is vigorously redistributed within the
vortex core, what mechanisms are responsible for allowing it
(or not) to escape to the outer flow?

Leaving the more intricate problem of active tracer dynamics
aside, we approach the issue of passive scalar transport in
the absence of diffusion (i.e. stirring) from the Lagrangian
point of view, which lends itself to a variety of techniques
from Dynamical Systems. This approach has been successfully
used in the past in fluid dynamical considerations [16]; some
of the most important results include the existence of KAM-
like invariants, representing kinematical barriers to transport in
time-periodic flows [10], robustness of Smale horseshoes [7]
generating regions of chaotic fluid–particle trajectories, or lobe
dynamics [19].

In the following sections, we study a simple kinematic
model of a flow dominated by a nearly conservative mutual

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.021
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advection of coherent vortices, and assume that except for
their brief and relatively infrequent interactions these structures
move like interacting point vortices. Such idealised models
were used successfully in the past in different contexts (see,
for example, [13]). Here, we are particularly interested in the
role each such a vortex plays in affecting the stirring (and
motions) over extended regions of space. In particular, based
on the robustness of hyperbolic sets, we establish the necessary
conditions for existence of unbounded trajectories in the model
flow, localised around the chosen vortex, leading to (locally)
open-flow configurations. Other models of local transport,
considering primarily stirring in bounded, chaotic regions in
flows derived from time-periodic generalisations of the Kida’s
solutions, were also studied [15,8]. Here, we also assume that
the flow field is periodic in time which, while simplifying the
analysis, reveals some interesting mechanisms for generation of
non-trivial geometric templates for transport due to the central
vortex. We note that, while introducing the time-dependence
in this fashion may seem somewhat artificial, it proved to be
very revealing in the past (see, for example, [4,18,20]). A
more realistic model, allowing for aperiodic time dependence
and a non-singular vorticity distribution, will be discussed in
a future publication. The more general treatment requires the
use of lobe dynamics and geometric analysis of time-dependent
invariant manifolds of the so-called Distinguished Hyperbolic
Trajectories (the DHTs are also present in the time-periodic
case but they are not necessary for the analysis) in the flow
which ‘spread the influence’ of the DHTs globally throughout
the flow (see, for example, [12] for a review).

2. Equations of the kinematic model

Consider an instantaneous flow, at a point (x, y) in Cartesian
coordinates, due to a cluster of N + 1 point vortices located at
(xi , yi ), i = 1, . . . , N + 1 and characterised by circulations Γi
respectively. Provided that (x, y) "= (xi , yi ), the corresponding
vector field can be written as

U (x, y) = − 1
2π

N+1∑

i=1

Γi · (y − yi )

(y − yi )
2 + (x − xi )

2 ,

V (x, y) = 1
2π

N+1∑

i=1

Γi · (x − xi )

(y − yi )
2 + (x − xi )

2 ,






(1)

where a positive circulation is assumed for a counter-clockwise
rotating vortex. The flow in a neighbourhood of, say, the (N +
1)-st vortex due to the remaining N vortices can be easily
derived by shifting the origin to the vortex (i.e. x = xN+1 + x̃ ,
y = yN+1 + ỹ) and summing (1) up to to the first i = N terms.

A useful linearisation around the chosen vortex can be
obtained by first transforming (1) to the polar coordinates
(i.e. x = " cos ϕ, y = " sin ϕ) and then using the multipole
expansion, which leads to the following representation of the
velocity field

U (", ϕ) = − 1
2π

N∑

i=1

Γi

δi

(
"

δi
sin ϕ − sin φi

)

×
∞∑

k=0

∞∑

l=0

(
"

δi

)k+l

Pl (cos(ϕ − φi )) Pk (cos(ϕ − φi )) , (2)

V (", ϕ) = 1
2π

N∑

i=1

Γi

δi

(
"

δi
cos ϕ − cos φi

)

×
∞∑

k=0

∞∑

l=0

(
"

δi

)k+l

Pl (cos(ϕ − φi )) Pk (cos(ϕ − φi )) ; (3)

here (xi , yi ) = (δi cos φi , δi sin φi ) and Pl denotes the
Legendre polynomial of the lth order. Denoting the distance
to the nearest neighbour by δmin = min{δi } "= 0, we can now
linearise the flow in the region "/δmin & 1 as follows:

U ∼
N∑

i=1

Γi sin φi

2πδi
+ " cos ϕ

N∑

i=1

Γi sin 2φi

2πδ2
i

−" sin ϕ
N∑

i=1

Γi cos 2φi

2πδ2
i

+O
(
"2/δ2

min

)
, (4)

V ∼ −
N∑

i=1

Γi cos φi

2πδi
− " cos ϕ

N∑

i=1

Γi cos 2φi

2πδ2
i

−" sin ϕ
N∑

i=1

Γi sin 2φi

2πδ2
i

+O
(
"2/δ2

min

)
. (5)

Clearly, the "0 terms in (4) and (5) correspond to a uniform
field driving the vortex core. The "1 terms represent the first
order approximation to the deformation field which can be
transformed back to the Cartesian coordinates in the form

[
U 1

V 1

]
=

[
α −β

−β −α

] [
x
y

]
,

α =
N∑

i=1

Γi sin 2φi/2πδ2
i ,

β =
N∑

i=1

Γi cos 2φi/2πδ2
i .

(6)

The flow given by (6) can be identified as an irrotational strain
with (orthogonal) principal axes rotated with respect to êx by
an angle θ = atan(β/α) and amplitude A = (α2 + β2)1/2.
Evolution of the vortex cluster implies that both the amplitude
and orientation of the ambient strain vary in time (since δi =
δi (t), φi = φi (t)). We model it simply by assuming that the
strain axes rotate with constant angular velocity λ, and that the
strain amplitude depends harmonically on time,

Ŝ sω,∆(t) = Ŝ∆ + cos(ωt)
∆ + 1

. (7)

We stress, however, that as long as the vortex model remains
axisymmetric and the strain is linear and time-periodic, similar
analysis to that discussed below can be carried out.

If we now choose as a unit of time T = 1/Ŝ and unit of
length L = (Γ/2π Ŝ)1/2, the local (non-dimensionalised) flow
around a point vortex in the frame of reference rotating with the
axes of the strain can be written as
[

ẋ
ẏ

]
= 1(

x2 + y2
)

[−y
x

]
+

[−sΩ ,∆ Λ
−Λ sΩ ,∆

] [
x
y

]
, (8)
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Fig. 1. Examples of Poincaré sections for advection by the flow (9) in the frame rotating with the strain axes for different values of the system parameters (Ω ,Λ,∆).
Note in particular the examples of ‘open’ flow configurations, which are characterised by the existence of a set of initial conditions (of non-zero measure) giving
rise to trajectories which evolve in the area of vigorous stirring for a finite time and then escape to the outer flow (see the insets marked with black squares). The
condition for existence of such configurations is given by (18).

where now Ω−1 = Ŝ/ω is the dimensionless frequency of
oscillations of the strain amplitude, and Λ = λ/Ŝ is the angular
velocity of the strain axes. Finally, the system (8) can be re-
written in polar coordinates as

"̇ = −sΩ ,∆ " cos 2ϕ,

ϕ̇ = sΩ ,∆ sin 2ϕ − Λ + 1/"2,

}
(9)

which will prove useful in analysis presented in Section 4.

3. Lagrangian vs. Eulerian viewpoints

It is instructive to analyse first the structure of the system
(9) in the steady case (i.e. sΩ ,∆ = const.) depending on the
system parameters. One can easily deduce that the fixed points
of (9) lie symmetrically with respect to the origin on one of the
diagonal lines inclined at ±45◦ to the strain axes. Because of
the inherent symmetry in the model, there is always an elliptic
fixed point at the centre, which is also the only stagnation point
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in the flow for Λ < −1. For −1 < Λ < 1 there are additionally
two hyperbolic fixed points located at

"
hyp
1,2 = (Λ + 1)−1/2, ϕ1 = −π/4, ϕ2 = 3π/4, (10)

and the system trajectories trace out the familiar cat’s eye
pattern (see Fig. 1 for Ω = 0) where the two heteroclinic
connections confine the recirculating flow to the neighbourhood
of the origin. For Λ > 1 two more elliptic fixed points are
present in the flow, and are located at

"ell
1,2 = (Λ − 1)−1/2, ϕ1 = π/4, ϕ2 = −3π/4. (11)

In this case, there are four distinct regions in the flow which all
contain bounded periodic trajectories (in the rotating frame of
reference). These regions are separated by invariant manifolds
of the hyperbolic fixed points which implies that tracer particles
located initially in different regions do not mix.

The above scenario can be dramatically altered when the
strain amplitude, sΩ ,∆, becomes time-dependent (i.e. when
Ω "= 0) so that the location of instantaneous stagnation points
of the vector field (9) (referred to hereafter as ISPs) changes
in time. It is important to recognise that the ISPs are frame-
dependent, Eulerian objects and that for Ω "= 0 their paths in
the extended phase space (spanned in this case by two space
coordinates and time) are no longer trajectories of the system
(9). One can easily deduce that the ISPs must lie on the same
diagonal lines as in the steady case but now their distance to the
origin is given by
{

"
hyp
1,2(t) = (Λ + sΩ ,∆(t))−1/2 if Λ > −sΩ ,∆,

"ell
1,2(t) = (Λ − sΩ ,∆(t))−1/2 if Λ > sΩ ,∆.

(12)

Apart from vector fields that vary slowly in time, the ‘Eulerian
snapshots’, given by the instantaneous streamline patterns, bear
little correspondence to the actual structure of trajectories in
the system’s phase space which, for time-periodic flows, can
be studied by means of the two-dimensional, area-preserving
Poincaré map.

A few examples of such a mapping, shown in Fig. 1
for a different system parameter values, give a flavour of
the complexity introduced into the trajectory structure by the
simple time-periodic strain variations. In a generic case, the
time-dependence introduces a wealth of chaotic regions which
are often separated (in two dimensions) by robust KAM-like
invariants. If all contours of these invariants are closed, the
spatial extent of the mixing by the vortex is limited. If, however,
such invariants do not exist at sufficiently large distances from
the origin or have an ‘open’ topology (see Fig. 2b), there can
exist a set of initial conditions of non-zero measure which
yields trajectories that reside in a region of vigorous stirring
near the vortex for a finite time and then escape to the outer
flow (see the insets in Fig. 1 marked by black squares).

It can be shown, using the Kruskal’s averaging method [9],
that when all trajectories of the time-dependent ambient strain
are periodic (for example ∆ = Λ = 0), there exist adiabatic
invariants in the nonlinear system (9) which prevent the tracer
from escaping from the neighbourhood of the vortex [6].

Fig. 2. Comparison between the numerically computed, nearly-integrable
structure of Lagrangian fluid trajectories of the flow (9) at times tn =
2πn/Ω (dots), and the contours of an approximate invariant (26) derived using
time-dependent Hamiltonian perturbation method (thick dashed lines). The
perturbation method is formally valid only near the vortex centre. The first
example (top) shows a flow with no unbounded trajectories. In the second
example, even the ‘open’ invariant structure at ρ ∼ O(1) is surprisingly well
approximated.

The problem of finding such an adiabatic invariant structure
becomes formidable in less degenerate cases and we defer
such analysis to a future publication. Instead, we note that
sufficiently far away from the origin, the flow due to the vortex
can be regarded as a perturbation to the base flow given by the
time-dependent ambient strain (the last term in (8)), which is
fully characterised by the fundamental solution matrix

Φ(t, t0) =
[

cosh σ̃ − (s̃/σ̃ ) sinh σ̃ −(λ̃/σ̃ ) sinh σ̃

(λ̃/σ̃ ) sinh σ̃ cosh σ̃ + (s̃/σ̃ ) sinh σ̃

]
,

(13)
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where

s̃ =
∫ t

t0
s(t ′)dt ′, λ̃ =

∫ t

t0
Λ(t ′)dt ′, σ̃ =

√
s̃2 − Λ̃2. (14)

Using (13), we can relatively easily check for the existence
of unbounded hyperbolic trajectories in the unperturbed
system (8). (Hyperbolic trajectories and their invariant
manifolds bear similarities to non-degenerate saddle fixed
points (and their manifolds) in the sense of how nearby
trajectories behave in the frame of reference moving with the
hyperbolic trajectory [21].) Due to the robustness of hyperbolic
structures (see [17] and references therein), we can deduce that
for any hyperbolic trajectory of (13) satisfying

‖Φ(t, t0)x0‖ + 1, ∀ t ∈ [t0, ∞), (15)

there exists a ‘perturbed’ analogue in the flow (9). Based on the
form of (13), we can easily see that in order for a trajectory of
the unperturbed linear flow to be unbounded and hyperbolic,
there must exist a time t∗ such that

R[σ ] "= 0, R[dσ/dt] > 0, ∀t > t∗, ∧ L1,2 "= 0, (16)

where the Lyapunov exponents, L1,2, are defined in the
standard way as the logarithms of the eigenvalues of

M = lim
(t−t0)→∞

(ΦT(t, t0)Φ(t, t0))1/2(t−t0). (17)

In the case of our model, the conditions (16) reduce to
{
∆2 − Λ2(∆ + 1)2 > 0 if Ω "= 0,

Λ2 < 1 if Ω = 0.
(18)

It should be noted, however, that the criterion (18), remains
rather formal in the sense that we do not specify explicitly
the set of initial conditions that satisfies (15); this becomes
particularly tricky for Ω → 0 when, due to the unbounded
oscillatory character of the unperturbed strain trajectories, even
distant trajectories may return close to the origin.

4. ‘Near-field’ structure

As seen from Poincaré sections shown in Fig. 1, the
structure of the system trajectories near the origin resembles
that of a nearly-integrable Hamiltonian system, and the KAM-
like invariants prevent the tracer trapped too close to the
vortex core from escaping. Consequently, even in the open
flow configurations discussed in the previous section only
trajectories starting sufficiently far away from the origin can
be stripped away from the vortex. In order to gain more insight
into the geometry of those impenetrable mixing barriers, we can
determine an approximate (integrable) phase-space structure
near the vortex by employing the Hamiltonian perturbation
theory, which we outline here only briefly (see [11] for more
details). We note that the system (9) can be re-written in the
Hamiltonian form, i.e.

J̇ = −∂ H/∂θ, θ̇ = ∂ H/∂ J, (19)

with the Hamiltonian written in the ‘perturbed’ form

H(J, θ, t) = H0(J ) + εH1(J, θ, t)

= −1
2

ln J + JΛ + ε JsΩ ,Λ sin 2θ, (20)

where J = "2/2, and θ = −ϕ. The first term in (20)
corresponds to the Hamiltonian of the point-vortex flow and
the remaining terms represent the Hamiltonian of the time-
dependent strain. We note that sufficiently near the origin,
i.e. J & 1, the ‘non-rotating’ part of the ambient strain can
be treated as a perturbation, which is non-uniform in space. We
emphasize this fact by introducing an ‘ordering’ parameter, ε,
which will be later set to unity. The perturbation H1 is periodic
in t , with period T = 2π/Ω and with period 2π in θ , and can
be expanded in the Fourier series as

H1 =
∑

lm

Ĥ1
lm(J )ei(lθ+mΩ t). (21)

It can be shown (see [11]) that for the perturbed, non-
autonomous, one-degree-of-freedom Hamiltonian system (20),
there exists a ‘nearby’ integrable Hamiltonian system given by

H̄( J̄ (J, θ)) = H0(J ) + ε〈H1〉θ,t , (22)

where 〈·〉θ,t denotes a ‘fast-variable’ average over the ‘fast’
manifold (torus in this case). The new invariant, J̄ (J, θ, t), is
obtained by seeking a near-identity generating function

S( J̄ , θ) = J̄θ + εS1( J̄ , θ, t) + O(ε2), (23)

which, when combined with (22), enables determination of S1
(up to O(ε)) in the form

S1 = i
∑

lm
l=m "=0

H1
lm(J )

lω(J ) + mΩ
ei(lθ+mΩ t), (24)

and subsequently yields the new invariant in the form

J̄ = J − ε
∂S1(J, θ, t)

∂θ
. (25)

In the particular case when the perturbing Hamiltonian, H1, is
given by the last term of (20), the new invariant (25) can be
written as

J̄ = J + ε J
∆ + 1

[
∆ sin(2θ)

ω(J )
+ sin(2θ + Ω t)

2ω(J ) + Ω
+ sin(2θ − Ω t)

2ω(J ) − Ω

]
,

(26)

where ω(J ) = ∂ H0/∂ J = −1/(2J ) + Λ, is the winding
frequency on the unperturbed torus. The approximation (26) is
obviously valid away from the resonances given by ω(J ) =
±Ω/2 and ω(J ) = 0.

We compare contours of (26) with results based on direct
integration of the system (9) in Fig. 2 again by computing the
Poincaré sections. The contours of the new invariant clearly
are a very good approximation to the integrable structure near
the origin. It is often the case that approximations obtained via
perturbation techniques are a surprisingly good approximation
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well beyond the range of their formal applicability. One can
observe a similar effect here: the integrable structure is often
reasonably well approximated even at distances " ∼ O(1)

although the chaotic separatrix layers are obviously missed
by the approximation. Note in particular the open contours of
the new invariant in Fig. 2b which allow trajectories in the
outermost nearly-chaotic band to eventually escape.

5. Conclusions

We studied the Lagrangian structure of a simple, time-
periodic model flow in an attempt to elucidate the mechanisms
responsible for stirring of a passive scalar around strong,
coherent vortices in advection-dominated flows. We showed,
using time-dependent Hamiltonian perturbation method, that
the chaotic regions located sufficiently near the centre of the
vortex are bounded by KAM-like invariants which serve as
barriers to mixing, trapping tracer particles originating near the
vortex. However, there exist flow configurations where, even
in the absence of close interactions with neighbouring vortices,
some tracer is stripped off the vortex after a transient period of
being vigorously stirred in its neighbourhood. This framework
can be easily extended to more realistic models of the vortex
core, as long as it remains axisymmetric and the ambient strain
is time-periodic. Further analysis is clearly needed in order to
investigate the consequences of aperiodic time dependence.
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Abstract

Some spectral properties of homogeneous magnetohydrodynamic (MHD) turbulence are reported. The incompressible fluid is electrically
conducting and subject to a uniform magnetic field of different intensities. The flow evolution is studied by solving directly in a periodic cubic
box the Navier–Stokes equations with the addition of the Lorentz term. This is modeled according to the quasi-static approximation, given the
low value of the magnetic Reynolds number. 2D spectra of the kinetic energy highlight the region of the Fourier space that is the most affected by
Joule dissipation, and how the anisotropy varies with respect to the direction of application of the magnetic field. Distributions of the nonlinear
transfer indicate that, at small scales, the flux of energy is both radial and angular. The degree of locality of the transfer in both directions is of
comparable degree, when the Lorentz force is large.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

While isotropic turbulence has been extensively studied in
the past, to date homogeneous anisotropic turbulence remains
far less explored. In practice, there are a number of ways in
which this condition can be realised. One is by imposing a rigid
rotation on a turbulent flow (e.g. [9]). A second example is
provided by the motion of a conductive fluid under the effect of
an imposed magnetic field B. If, in particular, the fluctuations
of the magnetic field induced by the fluid are small relative
to B (that is, the magnetic Reynolds number is very low), the
Lorentz force acting on the fluid becomes proportional to the
velocity — an approximation referred to as the quasi-static. In
this context, the flow of an incompressible fluid is described by
the Navier–Stokes equation with an additional term

∂t u + (u · ∇)u = − 1
ρ

∇ p + ν$u − σ B2
0

ρ
$−1∂33u (1)

∇ · u = 0, (2)

∗ Corresponding author. Tel.: +32 0 2 650 5777; fax: +32 0 2 650 5824.
E-mail address: paolo.burattini@ulb.ac.be (P. Burattini).

where u = (u1, u2, u3) is the velocity, ρ the fluid density,
p the hydrodynamic plus magnetic pressure, σ the electrical
conductivity, and B0 the intensity of the magnetic field
(assumed constant, uniform, and directed along the direction
x3). In (1), $−1 is the formal inverse of the Laplacian
operator, e.g. [13]. The flow that develops under these
conditions is encountered in very different contexts, such as
metal production and semiconductor crystal growth. Another
application concerns the cooling blankets of the future nuclear
fusion reactor ITER. In them, the lithium surrounding the
annular ring of plasma is subject to an intense confining
magnetic field. The ability to predict the laminar or turbulent
state of the lithium, as this flows in the blankets, has a crucial
importance in the design of the reactor.

As observed in previous work [1,7], because of the Lorentz
term turbulence becomes anisotropic and locally axisymmetric
(that is, locally invariant under rotation about a preferred
axis). This could be anticipated from the expression of the
Lorentz force, which is proportional to the gradient of u along
the direction of application of B, see (1). Recent numerical
results [16] showed that this anisotropy is rather uniform
throughout the scales. Further, the net effect of B0 is to increase
the dissipation of the velocity fluctuations. The experiment
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of Alemany et al. [1], who performed measurements in the
wake of a grid moving in a column of still mercury, indicated
that the power law decay of the turbulent kinetic energy was
accelerated, in the presence of the magnetic field. The recent
large-eddy simulations of Knaepen and Moin [8] confirmed this
behaviour. In addition, these authors visualised the tendency
towards two-dimensionality of the flow, for large values of
B0. The numerical study of Zikanov and Thess [18] also
addressed the effect of the magnetic field on the velocity,
with a view to clarifying the intermittent transition between
two- and three-dimensionality. That analysis has been later
extended to the inviscid case [15]. Ikeda and Kaneda [6] (IK
hereafter) considered in detail the velocity spectrum tensor
and derived scaling laws, after assuming that B only produced
small perturbations at large wavenumbers with respect to the
isotropic, nonmagnetic case. The theoretical prediction was
found in agreement with data obtained from direct numerical
simulations (DNS).

Comparatively, more results are available for full MHD
turbulence (that is, for large values of magnetic Reynolds
number). Matthaeus et al. [10] analysed 2D energy spectra
and found that the anisotropy was larger for the velocity
components perpendicular to the magnetic field. Carati et al. [4]
examined the nonlinear transfers between the magnetic and
velocity fields, by performing a DNS. They concluded that the
cross-interactions between B and u were nonlocal, contrary to
the direct inner interactions.

Despite the growing interest in the dynamic of liquid metals,
basic information is still unavailable regarding, for example,
detailed spectral distributions of the terms in the kinetic energy
equation and their scaling properties. This knowledge would
be invaluable in the modelling of unbounded MHD flows, and
perhaps for the bulk region (i.e., away from the walls) of
bounded flows. As an aside, notice that numerical simulations
have a crucial role in quasi-static MHD, since performing
experiments with liquid metals is both complex and dangerous.

2. Numerical method

Homogeneous MHD turbulence is simulated in a periodic
box with a pseudo-spectral DNS code. The Navier–Stokes
equation is combined with the Lorentz force, according to the
quasi-static approximation [7]. The nonlinear term is evaluated
in real space, after backward Fourier transforming the velocity
field; aliasing errors are removed using phase-shifting [14].
Time advancement is performed with a third-order, low-storage,
Runge–Kutta time integration scheme [17]. The computational
domain is cubic (with a side of 2π ), discretised by 2563

Fourier modes, and the maximum significant wavenumber is
kmax = 128. Forcing is applied at low wavenumber, in the range
1.5 ≤ k ≤ 3.1, so that a stationary state is achieved. This is
characterised by a Taylor-microscale Reynolds number Rλ =
u′

1λ/ν = 92 [u′
1 is the fluctuation rms of u1, λ = u1(15ν/ε)1/2

is the Taylor-microscale, ν = 0.006 is the kinematic viscosity],
when B0 = 0. After the magnetic field is applied, a transient
follows, before the statistical quantities settle on new values.

This state is described in the remainder. The intensity of the
magnetic effect is quantified by the interaction parameter

N = σ B2
0

ρ

L
u′

1
(3)

where L = (π/2u′2
1 )

∫ kmax
0 E(k)/kdk is the integral length scale

and E(k) is the 3D energy spectrum (see below). Three values
of N (=1, 3, 5) are considered, in addition to the nonmagnetic
case N = 0; in the following, results will be given mainly
for N = 1 and 3, for brevity. Note that the ratio L/u′

1 (the
eddy turn-over time, which here is estimated just before B0
is applied), depends only on the large scales. Therefore it
inevitably reflects the type of forcing used. This should be kept
in mind when comparing results in the literature.

3. Results

Some insight into the flow dynamics can be obtained from
the kinetic energy equation in spectral space

F(k) = T (k) − 2νk2 E(k) − σ B2
0

ρ
cos2(θ)E(k)

︸ ︷︷ ︸
DJ (k)

, (4)

where k is the wavenumber vector of magnitude k, F(k)

the forcing term, T (k) the nonlinear transfer, E(k) half the
trace of the velocity spectrum tensor Φi j (k) [2], and θ the
angle between k and B = B0e3. The turbulent kinetic energy
is dissipated because of the joint effect of viscous εν =
2ν

∫
k2 E(k)dk and Joule dissipation εJ =

∫
DJ (k)dk. The

latter is dominant over the former, in the present cases — the
ratio εJ /εν is 2.9 for N = 1, and becomes 7.0 and 8.3 for
N = 3 and 5, respectively. IK reported a ratio of 2.5, for N = 1.

3.1. Kinetic energy and dissipation spectra

As in isotropic turbulence, E(k) is first averaged over thin
spherical shells. The 3D spectra Es (henceforth, the subscript
s if for shell averaging) in Fig. 1 show that, at large N ,
Joule dissipation reduces drastically the turbulent energy at
small scales. The inset of the figure displays the distributions
compensated by k5/3, in order to highlight the possible presence
of the Kolmogorov inertial range. With the exception, perhaps,
of the nonmagnetic case, no plateau is discernible.

In order to retain the angular information linked to the
axisymmetry, the kinetic energy equation is averaged over thin
spherical rings whose centre lies on the e3 axis, see Fig. 2. Eq.
(4) is therefore rewritten as

Fr
(
k⊥, k‖

)
= Tr

(
k⊥, k‖

)
− 2νk2 Er

(
k⊥, k‖

)

− σ B2
0

ρ
cos2 (θ) Er

(
k⊥, k‖

)
, (5)

where the subscript r if for ring averaging, and k⊥ = k sin (θ),
k‖ = k cos (θ). In the following, 2D quantities, which are
function of

(
k⊥, k‖

)
, are plotted after dividing by sin (θ) (and

are thus denoted by an asterisk). In this manner, for the isotropic
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Fig. 1. Contours of the 3D spectra of E(k) normalised by the total energy
q2 = u′2

1 + u′2
2 + u′2

3 . · · ·, N = 0; ·−, N = 1; −−, N = 3; — N = 5.
Inset: compensated spectra (line styles are as in main figure body).

Fig. 2. Spherical ring averaging. (a) Cartesian and polar spherical coordinate
systems, with representation of one ring and direction of application of the
magnetic field. (b) Reduced coordinate system.

case, the distributions retain only the k-dependence (i.e. the iso-
contours are arcs). This is done to highlight any θ -dependence
due only to the anisotropy.

Distributions of the turbulent kinetic energy E∗
r are plotted

in Figs. 3–5. For N = 0, the contours are, to a close
approximation, arcs of a circle — i.e. there is no dependence
on θ . A comparison between the profiles for N = 0 and N = 1
and 5 indicates that Joule dissipation attenuates the energy in a
region close to the k‖ axis, while in the proximity of k⊥ the
contours still follow a circular profile. For the largest value
of N , the region where E∗

r is depleted approaches the shape
of a wedge [11]. Similar results, obtained by experiments, are
presented in [3].

More detailed information about the scaling of the velocity
spectra can be obtained, if, following the proposal of IK, the
two spectral quantities

Ea (k) =
k2 + k2

‖
k2 − k2

‖
Φ33 (k) − Φ11 (k) − Φ22 (k) (6)

Eb (k) =
k2
‖

k2 − k2
‖
Φ33 (k) + Φ11 (k) + Φ22 (k) (7)

are defined. According to IK, these quantities represent the
first-order deviations from the isotropic turbulence spectrum,
in the case where the interaction parameter is small (or, for
large values of N , at sufficiently high wavenumbers). Based
on a Kolmogorov scaling argument, IK advocate that (6) and

Fig. 3. Contours of log(E∗
r (k⊥, k‖)), N = 0 (hereafter, iso-contours of 2D

distributions are equally spaced).

Fig. 4. Contours of log(E∗
r (k⊥, k‖)), N = 1.

Fig. 5. Contours of log(E∗
r (k⊥, k‖)), N = 5.

(7) should follow a k−7/3 power law, when averaged over thin
shells. The present profiles of Eas (k) and Ebs (k), Fig. 6,
display this power law, for k < 20, in agreement with the
numerical data of IK. However, such support of the theoretical
analysis is somewhat surprising, if one recalls that the 3D
spectra do not show any convincing Kolmogorov scaling in the
same wavenumber range (even for N = 1, see Fig. 1). As seen
in Fig. 7, for larger values of N , the k−7/3 scaling is clearly
violated, which is commensurate with the fact that εJ is much
larger than εν . Therefore the effect of the Lorentz term cannot
any longer be considered as a mere perturbation.
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Fig. 6. Spectra Eas (k) , Ebs (k), N = 1.

Fig. 7. Spectra Eas (k) , Ebs (k), N = 5.

Fig. 8. Contours of log(D∗
Jr (k⊥, k‖)), N = 1.

The Joule dissipation spectrum D∗
Jr for N = 1 (Fig. 8)

reflects closely the contours of E∗
r (Fig. 4), at least at small

values of θ . However, when the angle approaches 90◦, the
magnetic dissipation vanishes, see (5).

3.2. Nonlinear transfer

Distributions of T ∗
r are shown in Figs. 9 and 10. At small

k, the transfer is negative and rather large in absolute value.
This region, where the effect of forcing is dominant, is excluded
from the plots. At large k, the contours for N = 0 are
independent of θ , as expected. For N = 3, the shape of the

Fig. 9. Contours of log(T ∗
r (k⊥, k‖)), N = 0. (To increase the dynamic range,

in this figure and the next, the hatched area is excluded from the plot.)

Fig. 10. Contours of log(T ∗
r (k⊥, k‖)), N = 3.

attenuation of the nonlinear transfer resembles that of energy
distribution. Therefore, T ∗

r has a gradient not only in the radial
but also in the angular direction.

The locality of the energy transfers can be assessed by
decomposing the convolution integral in the expression of the
nonlinear transfer (e.g. [12])

T (k) = kl Pjk (k) R

{
iû j (k)

∫
û∗

k (p) û∗
l (k − p) dp

}
. (8)

In (8), û j is the j-component of the velocity, the hat represents
the Fourier transform, R the real part, the asterisk complex
conjugate (here only), and Pjk (k) = δ jk − k j kk/k2 is the
projector tensor (with δ jk the Kronecker symbol). By dividing
in rings the domain of integration over p, one obtains detailed
functions T ∗

pr (p, ψ, k, θ), which are a measure of the transfer
between a first ring identified by the pair (p, ψ) and a second
ring localised at (k, θ). This procedure represents a direct
extension of that of Domaradzki and Rogallo [5] (see also [2]).
Profiles of T ∗

pr (p, ψ)p=k and T ∗
pr (p, ψ)ψ=θ for N = 3 and

at k = 30, θ = π/4 are shown in Fig. 11. (Other locations
in the same area display the same features.) These quantities
can be interpreted, by extension of the spherical case, as radial
and angular transfers. In the absence of the magnetic field,
there is only radial transfer, from small to large values of k
(not shown). As N increases, the gradient of the energy in the
angular direction yields a second transfer, from large to small
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Fig. 11. Detailed transfer T ∗
pr at k = 30, θ = π/4, N = 3.

values of the angle ψ . Note that the two detailed transfers have
comparable intensity and degree of locality in wavenumber
space.

4. Conclusions

Some properties of the turbulent flow developing in liquid
metals, subject to a uniform magnetic field, have been reported.
By analysing the terms of the kinetic energy equation obtained
from direct numerical simulations, it has been found that the
effect of Joule dissipation is localised in the vicinity of the
axis of application of the magnetic field. For unity value of
the interaction parameter N , a scaling law of the velocity
fluctuation spectra has been verified. However, for the range of
scales resolved by the present simulations, this scaling appears
ineffective at higher values of N . The nonlinear transfer has
been computed and was found to be a function of the angle with
respect to the magnetic field. Detailed energy transfers arise not
only between velocity fluctuations of different sizes but also of
different orientations. Both detailed transfers are rather local, in
wavenumber space.
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Abstract

On the basis of gauge principle in the field theory, a new variational formulation is presented for flows of an ideal fluid. The fluid is defined
thermodynamically by mass density and entropy density, and its flow fields are characterized by symmetries of translation and rotation. A structure
of rotation symmetry is equipped with a Lagrangian ΛA including vorticity, in addition to Lagrangians of translation symmetry. From the action
principle, Euler’s equation of motion is derived. In addition, the equations of continuity and entropy are derived from the variations. Equations of
conserved currents are deduced as the Noether theorem in the space of Lagrangian coordinate a. It is shown that, with the translation symmetry
alone, there is freedom in the transformation between the Lagrangian a-space and Eulerian x-space. The Lagrangian ΛA provides non-trivial
topology of vorticity field and yields a source term of the helicity. The vorticity equation is derived as an equation of the gauge field. The present
formulation provides a basis on which the transformation between the a space and the x space is determined uniquely.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Variational formulation; Gauge principle; Euler’s equation; Helicity; Chern–Simons term

1. Introduction

In the historical paper ‘General laws of the motion of
fluids’ [1], Leonhard Euler verified that his equation of motion
can describe rotational flows. The same theme is investigated
in this paper under a modern view. Fluid mechanics is
understood to be a field theory in Newtonian mechanics that
has Galilean symmetry. It is covariant under transformations
of the Galilei group. The gauge principle [19–21] requires
a physical system under investigation to have a symmetry,
i.e. a gauge invariance with respect to a certain group of
transformations. Following this principle, the gauge symmetry
of flow fields is studied in [2] and [3] with respect to both
translational and rotational transformations. The formulation
started from a Galilei-invariant Lagrangian of a system of point
masses which is known to have global gauge symmetries with

∗ Corresponding address: IDS, Higashi-yama 2-11-3, Meguro-ku, Tokyo
153-0043, Japan. Tel.: +81 3 3792 2904; fax: +81 3 3792 2859.

E-mail address: kambe@ruby.dti.ne.jp.
URL: http://www.purple.dti.ne.jp/kambe/.

1 Visiting Professor.

respect to both translation and rotation [4]. It was then extended
to flows of a fluid, a continuous material characterized with
mass density and entropy density. In addition to the global
symmetry, local gauge invariance of a Lagrangian is required
for such a continuous field. Symmetries imply conservation
laws. Equations of conserved currents are deduced as the
Noether theorem.

Thus, the convective derivative of fluid mechanics, i.e. the
Lagrange derivative, is identified as the covariant derivative,
which is a building block in the framework of gauge theory.
Based on this, appropriate Lagrangians are defined for motion
of an ideal fluid. Euler’s equation of motion is derived from the
action principle. In most traditional formulations, the continuity
equation and entropy equation are given as constraints for the
variations, while in this new formulation those equations were
derived from the action principle. In the previous study [5,6] of
rotational symmetry of the velocity field v(x), it is found that
the vorticity ω = ∇ × v is the gauge field associated with the
rotational symmetry of velocity.

A new structure of the rotational symmetry was given in [3]
by the following Lagrangian:

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
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ΛA = −
∫

M
〈LW A, ω〉 d3x,

where A is a vector potential and LW A = ∂t A + vk∂kA +
Ak∇vk . This is derived from a representation characteristic
of a topological term known in the gauge theory. This yields
a non-vanishing rotational component of the velocity field,
and provides a source term of helicity. This is closely related
to the Chern–Simons term, describing non-trivial topology
of vorticity field, i.e. mutual linking of vorticity lines. The
vorticity equation is derived as an equation for the gauge
field.

With regard to the variational formulation of fluid flows, the
papers [7] and [8] are among the earliest to have influenced
current formulations. Their variations are carried out in two
ways: i.e. a Lagrangian approach and an Eulerian approach. In
both approaches, the equation of continuity and the condition
of isentropy are added as constraint conditions on the variations
by means of Lagrange multipliers. The Lagrangian approach is
also taken by [9]. In this relativistic formulation those equation
are derived from the equations of current conservation. Several
action principles to describe relativistic fluid dynamics have
appeared in the past (see [9, Section 4.2] for a list of some of
them).

In the Lagrangian approach, the Euler–Lagrange equation
results in an equation equivalent to Euler’s equation of motion
in which the acceleration term is represented as the second
time derivative of position coordinates of the Lagrangian
representation. In this formulation, however, there is a certain
degree of freedom in the relation between the Lagrangian
particle coordinates and Eulerian space coordinates. Namely,
the relation between them is determined only up to an
unknown rotation. In the second approach referred to as the
Eulerian description, the action principle of an ideal fluid
results in potential flows with vanishing helicity, if the fluid is
homentropic [2]. However, as noted in the beginning, it should
be possible to have rotational flows even in such a homentropic
fluid. Gauge theory for fluid flows provides a crucial key to
resolve these issues. It was also shown in [2] that a general
solution in the translational symmetry alone is equivalent to the
classical Clebsch solution [10]. A new formulation on the basis
of the Clebsch parametrization is carried out in [11] and [12]
aiming at its extension to supersymmetric and non-Abelian
fluid mechanics.

It is interesting to note the gauge invariances known in
the theory of electromagnetism and fluid flows. There is an
invariance under a gauge transformation of electromagnetic
potentials consisting of a scalar potential φ and a vector
potential A. An analogous invariance is pointed out in [2] for
a gauge transformation of a velocity potential φ of irrotational
flows of an ideal fluid, where the velocity is represented
as v = ∇φ. It is shown in [7] (cited in [3]) that gauge
invariance is not restricted to the potential flows, but also there
is known to be an invariance in the rotational flow of Clebsch
representation.

2. Equations in a-space

2.1. Lagrangian

Let us consider a variational formulation with a Lagrangian
represented with the particle coordinate a = (a1, a2, a3) =
(a, b, c) (i.e. Lagrangian coordinates). Independent variables
are denoted with aµ where µ or a greek letter suffix take =
0, 1, 2, 3 with a0 the time variable written also as τ (= t) :
aµ = (τ, a1, a2, a3). Corresponding physical space coordinate
x = (x, y, z) (Eulerian coordinates) are written also as xµ =
(t, x1, x2, x3). The letter τ is used (instead of t) in combination
with the particle coordinates ak . Physical space position of
a particle a is expressed by Xk(aµ) = Xk(τ, a), or Xk =
(X, Y, Z). Its velocity is given by vk = ∂τ Xk , also written as
Xk

τ .
The Lagrangian coordinates (a, b, c) are defined such that

an infinitesimal three-element d3a = da db dc denotes a mass
element dm of an infinitesimal volume d3x = dx dy dz of the
x-space. The mass element dm should be invariant during the
motion:

∂τ (dm) ≡ ∂τ (d3a) = 0. (1)

The mass-density ρ is defined by the equation d3a = ρ d3x.
With using a Jacobian determinant J of the transformation
Xk = Xk(al) from a-space to X-space (k, l = 1, 2, 3), we
have

ρ = 1
J

, J = ∂(X1, X2, X3)

∂(a1, a2, a3)
= ∂(X, Y, Z)

∂(a, b, c)
. (2)

In an ideal fluid, there is no dissipation of kinetic energy
into heat, by definition. According to thermodynamics for the
entropy s (per unit mass) and temperature T , we have T δs = 0
if there is no heat production. Namely the entropy s does not
depend on τ . Then, the change of internal energy ε (per unit
mass) is related to the density change δρ alone by

δε = (δε)s = p
ρ2 δρ,

(
∂ε

∂ρ

)

s
= p

ρ2 , δh = 1
ρ

δp, (3)

where p is the fluid pressure, h = ε + p/ρ the enthalpy, and
( · )s denotes s being fixed. However, the entropy s may not
be uniform and may depend on a by initial conditions. Hence,
s = s(a), or equivalently,

∂τ s = 0. (4)

The total Lagrangian is defined by

ΛT =
∫

Ma

1
2

Xk
τ Xk

τ d3a −
∫

Ma

ε(ρ, s)d3a, (5)

[3], where Ma is a space of fluid under investigation, and
Xk

τ = Xk
0 = vk is the velocity. The internal energy ε(ρ, s)

of the second term depends on ρ (which in turn depends on
Xk

l = ∂ Xk/∂al by (2)) and the entropy s(a).
An action I is defined by the integral: I =

∫
ΛTdτ :

I =
∫

L(Xk
µ) d4a, d4a = dτ d3a, (6)
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L(Xk
µ) = 1

2
Xk

0 Xk
0 − ε(Xk

l , ak). (7)

2.2. Noether’s theorem

The Euler–Lagrange equation associated with the La-
grangian (7) is given by

∂

∂aµ

(
∂L
∂ Xk

µ

)

− ∂L
∂ Xk = ∂µ

(
∂L
∂ Xk

µ

)

− ∂L
∂ Xk = 0. (8)

Energy–momentum tensor T ν
µ is defined by

T ν
µ ≡ Xk

µ

(
∂L
∂ Xk

ν

)
− Lδν

µ, (9)

[7], where k = 1, 2, 3. As long as (8) is satisfied together with
an assumption of τ -independence of L (i.e. ∂τ L = 0), it can
be verified [3] that we have a conservation equation ∂νT ν

µ = 0
(where ∂µ = ∂/∂aµ). This is the Noether theorem [13,19].

For µ )= 0 (xµ = α), the conservation law ∂νT ν
µ = 0 reduces

to the momentum equations:

∂τ Vα + ∂α F = 0 (Vα ≡ Xα Xτ + YαYτ + Zα Zτ ), (10)

[7], where F = − 1
2 v2 + h. Two other equations are obtained

with α replaced by cyclic permutation of (a, b, c). Integrating
this with respect to τ between 0 and t , we find the Weber’s
transformation [14, Art.15]:

Vα(τ ) ≡ Xα Xτ + YαYτ + Zα Zτ = Vα(0) − ∂αχ, (11)

χ =
∫ t

0
F dτ =

∫ t

0

(
−1

2
v2 + h

)
dτ.

The Vα of (10) is a transformed velocity in the a-space
(Section 5.1). Its time evolution is given by (11) for a given
initial value of Vα(0, a) and h(0, a) at a = x.

With µ = 0, we have the energy equation:

∂τ H + ∂a

[
p
∂(X, Y, Z)

∂(τ, b, c)

]
+ ∂b

[
p
∂(X, Y, Z)

∂(a, τ, c)

]

+ ∂c

[
p
∂(X, Y, Z)

∂(a, b, τ )

]
= 0 (12)

where H = 1
2 v2 + ε. The Eq. (10) reduces to the equation for

the acceleration Aα(τ, a):

Aα ≡ Xα Xττ + YαYττ + Zα Zττ = − 1
ρ

∂α p, (13)

which is known as the Lagrangian form of the equation of
motion [14, Art.13]. This can be transformed to

Xττ = − 1
ρ

∂x p, ∂x p = ∂α

∂x
∂p
∂α

(14)

[3]. Since Xττ is the x-acceleration of the particle a, this is
the form equivalent to the x-component of Euler’s equation
of motion (25). The y and z components can be obtained
analogously.

2.3. Arbitrariness in the transformation

There is an arbitrariness in the transformation from the
a-space to the x-space with respect to Eq. (13). Its middle-
side expression is a form of scalar product of two vectors in
the x-space: the particle acceleration (Xττ , Yττ , Zττ ) and the
direction vector (Xα, Yα, Zα) of the α-axis in the a-space.

Putting it in a different way, Eq. (13) is invariant with respect
to orthogonal rotational transformations of a displacement
vector *X = (*X, *Y, *Z) of a particle in the x-space. In
fact, suppose that a vector *X satisfies Eq. (13). Then, another
vector *X = R *X obtained by an orthogonal transformation
R satisfies the same equation, since any orthogonal matrix
satisfies R RT = I (unit matrix) where RT denotes the
transposed matrix of R so that the vector *X is not uniquely
determined. The same freedom can be said to the velocity
Vα(τ, a) of (11) as well.

These imply that a certain machinery must be equipped in
order to fix this arbitrariness within the framework of rotational
symmetry. This will be considered later. Note that the density ρ

is not changed by the orthogonal transformation.

3. Equations in x-space

3.1. Action in Eulerian representation

The Eulerian description is represented by the independent
variables (t, x, y, z). Local gauge symmetries of fluid flows
are investigated in detail in [2,3]. The time derivative ∂τ is
equivalent to the convective derivative Dt :

∂τ = Dt , Dt ≡ ∂t + u∂x + v∂y + w∂z = ∂t + v · ∇. (15)

The operator Dt is verified to be gauge-invariant. The velocity
field v(x, t) is defined by the particle velocity:

v(x, t) = ∂τ X = Dt x. (16)

The acceleration field A(x, t) is also defined by

A(x, t) = ∂ 2
τ X = Dt v = (∂t + vk∂k)v. (17)

As noted previously, the mass d3a(a) and the entropy s = s(a)

satisfy (1) and (4). In view of these properties, we can define
the following two Lagrangians:

Lφ = −
∫

M
∂τφ d3a, Lψ = −

∫

M
s ∂τψ d3a, (18)

where φ(a, τ ) and ψ(a, τ ) are scalar fields associated with
mass and entropy, respectively. By adding Lφ and Lψ to ΛT
of (5), the total Lagrangian is given by

Λ∗
T = ΛT −

∫
∂τφ d3a −

∫
s ∂τψ d3a. (19)

The action is defined by I =
∫ τ2
τ1

Λ∗
Tdτ , where the integral

Iφ =
∫

dτ
∫

∂τφ d3a can be integrated with respect to τ and
expressed as

∫
[φ]d3a, where [φ] = φ|τ2 −φ|τ1 is the difference

of φ at the end times τ2 and τ1 and hence independent of
τ ∈ (τ1, τ2). Likewise, the last integral can be expressed as
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Iψ =
∫
[ψ]s d3a, because s is independent of τ . This means

that the gauge potentials φ and ψ do not appear in the equation
of motion obtained through variations of the action I for τ ∈
(τ1, τ2).

However, it soon becomes clear that these are nontrivial in
the expressions of the x-space, because they are rewritten as
Lφ = −

∫
M ρ Dtφ d3x, and Lψ = −

∫
M ρs Dtψ d3x by using

the relations d3a = ρ d3x and ∂τ = Dt .
In the x-space, the total Lagrangian can be written as Λ∗

T =∫
M L(v, ρ, s, φ, ψ) d3x, where

L ≡ 1
2
ρ vkvk − ρε(ρ, s) − ρDtφ − ρsDtψ (20)

[22]. This is proposed as a possible form of Lagrangian in
the x-space (but an additional term will be added later). The
action is defined by I =

∫
L(v, ρ, s, φ, ψ) d4x , where d4x =

dt d3x. However, the action principle results in the potential
flow represented by v = grad(φ + s0ψ) when the fluid has a
uniform entropy s0 (see [2]).

3.2. Outcomes of variations

We require invariance of the action I with respect
to variations. First, consider the following infinitesimal
transformation: x′(x, t) = x + ξ(x, t). The volume element d3x
is changed to d3x′ = (1 + ∂kξ

k)d3x, up to the first order terms.
Hence the variation of volume is given by *(d3x) = ∂kξ

k d3x,
while the variations of density, velocity and entropy are *ρ =
−ρ ∂kξ

k , *v = Dtξ , and *s = 0. Under these together with
(1) and (4) (with keeping φ and ψ fixed), the variation of I is
given by

*I =
∫

d4x
[
∂L
∂v

*v + ∂L
∂ρ

*ρ + ∂L
∂s

*s + L∂kξ
k
]

.

This is required to vanish for arbitrary variation of ξ k , which
results in the Euler–Lagrange equation:

∂

∂t

(
∂L
∂vk

)
+ ∂

∂xl

(
vl ∂L

∂vk

)
+ ∂

∂xk

(
L − ρ

∂L
∂ρ

)
= 0. (21)

Similarly, invariance of I with respect to arbitrary variations of
φ and ψ (denoted by *φ and *ψ) leads to

*φ : ∂tρ + ∇ · (ρv) = 0 (continuity equation), (22)

*ψ : ∂t (ρs) + ∇ · (ρsv) = 0. (23)

3.3. Noether’s theorem in Eulerian representation

Associated with (21), one can define the momentum density
mk and momentum–flux tensor Ml

k by

mk = ∂L
∂vk , Ml

k = vl ∂L
∂vk +

(
L − ρ

∂L
∂ρ

)
δl

k . (24)

From (7), we obtain mk = ρvk and Ml
k = ρvkv

l +
p δl

k , where vk = vk in the present Euclidean space. The
Eq. (21) can be written in the form of momentum conservation,
∂t (ρvk) + ∂l(ρvlvk) + ∂k p = 0 (∂k = ∂/∂xk). Using (22), this

equation can be reduced to the following Euler’s equation of
motion:

∂tv
k + (vl∂l)v

k = − 1
ρ

∂k p (= −∂k h). (25)

The Eq. (14) is equivalent to this equation.
The energy Eq. (12) can be transformed to the following

equation of energy conservation:

∂t

[
ρ

(
1
2
v2 + ε

)]
+ ∂k

[
ρvk

(
1
2
v2 + h

)]
= 0.

4. Rotation symmetry

A topological structure of vorticity field is now considered
with respect to the rotational symmetry. The related gauge
group is the rotation group SO(3). An infinitesimal rotation is
described by the Lie algebra so(3) of three dimensions, which
is non-Abelian.

From the study of the rotational gauge transformation [3],
it is found that the covariant derivative ∇t , velocity v and
acceleration A are represented as

∇t = ∂t + (v · ∇), (26)
v = ∇t x = (∂t + (v · ∇))x, (27)
A = ∇t v = ∂t v + (v · ∇) v (28)

∇t v = ∂t v + grad
(

1
2
v2

)
+ ω × v. (29)

It is verified that the last expression of ∇t v = ∂t v + ∇( 1
2v2) +

ω× v not only satisfies the rotational gauge-invariance, but also
expresses that ω is the gauge field of the rotational symmetry.
In addition, it satisfies the covariance requirement with respect
to Galilean transformation from one reference frame (t, x, v)
to another (t∗, x∗, v∗) moving with a uniform relative velocity
U, where t∗ = t , x∗ = x − Ut and v∗ = v − U. Namely, we
have the covariance ∇t v = (∇t v)∗.

5. Lagrangian associated with rotation symmetry

Associated with the rotation symmetry, an additional
Lagrangian is to be defined according to the gauge principle. It
is important to observe from Section 3.1 that, in the Lagrangian
(19), the integrands of the last two integrals are of the form
∂τ ( · ). The action is defined by I =

∫ ∫
[ΛT + ∂τ ( · )] dτd3a.

This property is regarded as the simplest representation of
topology in the gauge theory [16–19]. In the context of
rotational flows, it is known that the helicity (or Hopf
invariant, [15]) describes non-trivial topology of vorticity field,
i.e. mutual linking of vorticity lines. This is closely related with
the Chern–Simons term (without third-order term) in the gauge
theory. This term lives in one dimension lower than the original
four space–time (xµ) of the action I because a topological
term in the action is expressed in a form of total divergence
(∂µFµ) and characterizes topologically non-trivial structures of
the gauge field.

However, we learn here from the formulation of Section 3.1
and look for a τ -independent field directly.
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5.1. Lagrangian ΛA and helicity

The τ -independent field can be found immediately from
Eq. (10). Taking the curl of this equation with respect to the
coordinates (a, b, c), we obtain

∇a × ∂τ Va = ∂τ (∇a × Va) = 0, (30)

where ∇a = (∂a, ∂b, ∂c). Hence, one may write as ∇a × Va =
Ωa(a) [7].

The vector Va is a transformed form of the velocity v =
(Xτ , Yτ , Zτ ) = (u, v, w) into the a-space. This is seen on the
basis of a 1-form V 1 defined by

V 1 = Va da + Vb db + Vc dc (31)
= u dx + v dy + w dz (32)

where Va = uxa + vya + wza , xa = ∂ X/∂a, u = Xτ , etc. Its
differential dV 1 gives a 2-form Ω2 = dV 1:

Ω2 = Ωadb ∧ dc + Ωbdc ∧ da + Ωcda ∧ db

= ωx dy ∧ dz + ωydz ∧ dx + ωzdx ∧ dy, (33)

where (Ωa,Ωb,Ωc) = Ωa , and ∇ × v = (ωx , ωy, ωz) =
ω is the vorticity. Thus, it is seen that Ωa is the vorticity
transformed to the a-space. The Eq. (30) is transformed into
the τ -derivative of the 2-form Ω2, L∂τ Ω2 = 0 (understood as
the Lie derivative).

Next, let us introduce a gauge-potential vector Aa =
(Aa, Ab, Ac) in the a-space, and define its 1-form A1 by A1 =
Aa da + Ab db + Ac dc = Ax dx + Ay dy + Az dz. Thus, it is
proposed that a possible type of Lagrangian is

ΛA = −
∫

M
〈∂τ Aa,Ωa〉 d3a =

∫

M
〈A, EW [ω] 〉 d3x,

where EW [ω] ≡ ∂tω + (v · ∇)ω − (ω · ∇)v + (∇ · v)ω.
New results were deduced from this Lagrangian in [3]:

(i) the velocity v includes a new rotational term, (ii) the vorticity
equation is derived from the variation of A:

EW [ω] = ∂tω + (v · ∇)ω − (ω · ∇)v + (∇ · v)ω = 0,

and (iii) we have non-vanishing helicity H , where

H =
∫

V
ω · vd3x =

∫

V
ω · EW [curlA]

ρ
d3x.

5.2. Uniqueness of transformation

Transformation from the Lagrangian a space to Eulerian
x(a) space is determined locally by nine components of the
matrix ∂xk/∂al . However, in the previous solution considered
in Section 2.3, we had three relations (11) between v =
(Xτ , Yτ , Zτ ) and (Va, Vb, Vc), and another three relations
(13) between A = (Xττ , Yττ , Zττ ) and (Aa,Ab,Ac). The
remaining three conditions are given by Eq. (33) connecting
ω = (ωx , ωy, ωz) and Ωa(a) = (Ωa,Ωb,Ωc). For example,
Ωa is determined by

Ωa = ωx (∂b y ∂cz − ∂c y ∂bz) + ωy (∂bz ∂cx − ∂cz ∂bx)

+ ωz (∂bx ∂c y − ∂cx ∂b y). (34)

There are three vectors (velocity, acceleration and vorticity)
determined by evolution equations subject to initial conditions
in each space of x and a coordinates. Transformation relations
of the three vectors suffice to determine the nine matrix
elements ∂xk/∂al locally. Thus, the transformation between
the Lagrangian a space and Eulerian x(a) space is determined
uniquely [3].

6. Summary and discussion

Following the scenario of the gauge principle of field theory,
it is found that the variational principle of fluid motions can
be reformulated successfully in terms of covariant derivatives
and Lagrangians defined appropriately. The present variational
formulation is self-consistent and comprehensively describes
flows of an ideal fluid.

In the improved formulation taking account of the rotational
symmetry with additional equations of (33), the transformation
relations of the three vectors (velocity, acceleration and
vorticity) suffice to determine the nine matrix elements ∂xk/∂al

locally. Thus, the transformation between the Lagrangian a
space and Eulerian x(a) space is determined uniquely.
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Abstract

We describe first integrals of geostrophic equations, which are similar to the enstrophy invariants of the Euler equation for an ideal
incompressible fluid. We explain the geometry behind this similarity, give several equivalent definitions of the Poisson structure on the space
of smooth densities on a symplectic manifold, and show how it can be obtained via the Hamiltonian reduction from a symplectic structure on the
diffeomorphism group.
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1. Introduction

The Euler equation of an ideal incompressible m-
dimensional fluid has a peculiar set of invariants: in addition
to the energy conservation, the Euler equation has the helicity-
type invariant in any odd m, and an infinite number of
enstrophy-type invariants in any even m. Furthermore, these
invariants are Casimir functions, which implies that they are
invariants of the Euler equation for any choice of a Riemannian
metric on the manifold filled by the fluid.

In this paper we show how the same enstrophy-
type invariants appear in semi-geostrophic equations. These
invariants are related to the Poisson geometry of the
corresponding space of densities. Namely, for any Poisson
manifold M the space of densities on M is also Poisson. The
reason is that the space of functions on M forms a Lie algebra
with respect to the Poisson bracket, while densities are objects
dual to functions, so their space forms a dual Lie algebra.
Thus this dual space gets equipped with the linear Kirillov-
Kostant (or Lie-Poisson) structure, see [1,7,11]. We show that
this Poisson structure has several equivalent descriptions and
relate it to the symplectic geometry of the diffeomorphism

∗ Corresponding author. Tel.: +1 4163355047.
E-mail addresses: khesin@math.toronto.edu (B. Khesin),

plee@math.toronto.edu (P. Lee).

group of the manifold. In this paper we explore the role of
Casimirs and the corresponding group actions in the Poisson
geometry of these infinite-dimensional spaces.

Recall that Poisson manifolds are foliated by symplectic
leaves, and Casimir functions are functions constant on
symplectic leaves. Equivalently, Casimir functions are those
Hamiltonians which correspond to everywhere vanishing
Hamiltonian vector fields on a Poisson manifold. They are
constants of motion for any Hamiltonian flow on the manifold.
For instance, the hydrodynamic Euler equation on an odd-
dimensional manifold has a helicity-type Casimir, which
generalizes the 3-dimensional helicity integral

I (v) =
∫

M
(v, curl v)dµ.

For an even-dimensional manifold M (m = 2n) the Euler
equation has an infinite number of enstrophy-type invariants:

Ih(v) =
∫

M
h

(
(curl v)n

dµ

)
dµ,

where curl v is the vorticity 2-form for the velocity field v on
2n-dimensional manifold M and h is any function R → R,
see [9,10]. The latter integral turns out to be similar to Casimir
functions found on the space of densities on both even- and
odd-dimensional manifold, as we discuss below.

We should mention that the information on Casimir
functions is useful for the study of the stability of Hamiltonian
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flows, e.g. via the energy-Casimir method. Note that the
existence of an infinite number of Casimirs for a given
Hamiltonian system does not mean its complete integrability.
These invariants merely single out the symplectic leaf where
the dynamics takes place, but do not specify the dynamics along
this leaf, cf. [2].

Below we also describe explicitly two natural Hamiltonian
reductions leading to the Poisson structure on densities. A
Hamiltonian reduction is a two-step procedure for reducing the
dimension of a Hamiltonian system with symmetry: restriction
to a given level set of first integrals, and taking the quotient
along the symmetry group action. We prove that the Poisson
structure on densities can be obtained by the reduction from
the symplectic structure considered in [4]. More precisely,
let Map be the space of all maps from a manifold M
equipped with a volume form µ to a symplectic manifold N .
The symplectic structure on Map is given by averaging the
pullbacks of the one on N against the volume form µ, see [4]. In
Section 3 we describe what this general construction gives for
diffeomorphism groups of symplectic manifolds and densities
on them.

2. The Poisson structures on the density spaces and their
Casimirs

Let M be a compact Poisson manifold with a Poisson
bracket {, }, and let Dens be the set of smooth volume forms
on M with total integral 1. (The set Dens can be given
a smooth topology and regarded as an infinite-dimensional
smooth manifold, see [6]. It is also a dense subset in the L2-
Wasserstein space of Borel probability measures on M .) Any
smooth function f on M defines a linear functional on Dens
whose value at a point dν ∈ Dens is given by the formula

F f (dν) :=
∫

M
f dν.

(For a noncompact M , e.g. for M = Rn , we can consider
functions f with compact support.)

Definition 2.1. Let P = {F f : Dens → R | f ∈ C∞(M)} be
the set of linear functionals F f . Define the bracket on P by

{F f , Fg}Dens(dν) := F{ f,g}(dν) =
∫

M
{ f, g} dν.

Proposition 2.2 (See e.g. [7,11]).

1. The bracket {, }Dens defines a Poisson structure on the
density space Dens.

2. The symplectic leaves on Dens are orbits of the natural
action of the group of Hamiltonian diffeomorphisms on
densities on M.

As we discussed in Introduction, the Poisson structure on
the density space comes from the Poisson structure on the
underlying manifold, as the Poisson–Lie structure on the dual of
the Lie algebra of Hamiltonian functions on M . The statement
(2) is proved in [7] for a symplectic M , but the proof extends
verbatim to a general Poisson manifold M , provided that the

group of Hamiltonian diffeomorphisms is understood as that
generated by flows of Hamiltonian fields on M .

2.1. The symplectic case

First consider in more detail the case of a symplectic
manifold M of dimension 2n. Let ω be a symplectic structure
on M , which generates the Poisson bracket { , }. Note that in
this case the Liouville form ωn can be regarded as a natural
choice for a reference density dµ = ωn .

Proposition 2.3. The Poisson bracket {, }Dens admits infinitely
many functionally independent Casimirs. Namely, for any
function h : R → R, the functional on Dens defined by

Ch(dν) :=
∫

M
h

(
dν

ωn

)
ωn

is a Casimir, i.e. it is constant on symplectic leaves of this
bracket in the density space Dens.

Proof. Since the symplectic leaves of the Poisson structure
{, }Dens are orbits of the action of Hamiltonian flows on the
smooth Wasserstein space Dens, it suffices to check that the
functions Ch are invariant under this action. Now we have:

Ch(φ∗dν) =
∫

M
h

(
φ∗dν

ωn

)
ωn

=
∫

M
h

(
φ∗dν

φ∗ωn

)
φ∗ωn

= Ch(dν),

where the last identity follows from the change of variable
formula, and the second one follows from conservation of ω

under the Hamiltonian action: φ∗ω = ω. !

Geometrically, these Casimirs capture all moments of the
relative density dν with respect to the reference density dµ. The
ratio function θ = dν/dµ is preserved by any Hamiltonian flow,
and hence so are all its moments over the manifold M .

Remark 2.4. Similar Casimirs arise in the case of the Euler
equation

∂tv + v · ∇v = −∇ p

for a divergence-free vector field v on any even-dimensional
Riemannian manifold M with volume form dµ. Namely, one
considers the vorticity 2-form du for the 1-form u which is
related to the vector field v by means of the metric on M .
Then for any function h : R → R, the functional on vorticities
defined by

Ih(du) =
∫

M
h

(
(du)n

dµ

)
dµ

is a Casimir for the action of diffeomorphisms preserving the
“reference density” dµ, see [9,10] and introduction. These
Casimirs also measure relative density of the generalized
vorticity (du)n , which is frozen into the ideal fluid, with respect
to the volume form dµ.



2074 B. Khesin, P. Lee / Physica D 237 (2008) 2072–2077

Conjecturally, a complete set of Casimirs is encoded in the
(Morse) graph with measure, associated to the function θ on
M . Its vertices correspond to critical points of θ on M , and
the edges correspond to pairs of critical points which can be
connected via nonsingular levels, while dθ defines the measure
on the graph. This construction has been used for regular
vorticity function in the 2D Euler equation (cf. [2]), and is
applicable to symplectic leaves in the density space for any
dimension.

Example 2.5. Consider the following semi-geostrophic equa-
tion in (a domain of) R2:

∂tvg + v · ∇vg + Jv + ∇ f = 0,

where J is the 90◦-rotation operator on R2, v is a divergence-
free velocity field, vg is the geostrophic velocity field “defined
by” the relation ∇ f = Jvg for a potential f in the domain,
see [3]. (This system is obtained from the two-dimensional
Euler equation in the rotating frame, where we assume the
Coriolis force to be constant in the domain, and make the semi-
geostrophic approximation, see e.g. [8].)

Introduce the new potential f̃ (t, x) := |x |2/2 + f (t, x).
Consider the map φt (x) = ∇ f̃ (t, ϕt (x)), where ϕt is the flow of
the divergence-free vector field v(t, ·) solving the above semi-
geostrophic equation, and assume that φt is a diffeomorphism
for t in some interval. Then the family φt descends to the
following Hamiltonian system on the density space by tracing
how it pushes the reference density dµ. Namely, the form
dνt := (φt )∗dµ satisfies the Hamiltonian system on the space
Dens with respect to the Poisson structure {, }Dens and the
Hamiltonian HDens given by

HDens(dν) = −Wass2(dµ, dν)/2,

where Wass is the Wasserstein L2-distance on Dens.
The relative density dν/dµ discussed in Proposition 2.3

becomes

θ := φ∗dµ

dµ
= (∇ f̃ )∗dµ

dµ
= det(Hess f̃ ) = det(I + Hess f ),

where Hess f is the Hessian matrix of the function f . The
latter expression for θ is known as the potential vorticity in the
semi-geostrophic equation, and is known to be frozen into semi-
geostrophic flow, similar to the standard vorticity of an ideal
two-dimensional fluid, see [8].

Thus Proposition 2.3 is a generalization of the Casimir
property of the potential vorticity to higher dimensions and to
other Riemannian metrics. Its frozenness property is shown to
be related to the geometry of the underlying Poisson structure
{, }Dens on the density space, rather than to the the specific
Hamiltonian equation.

2.2. The Poisson case

Assume now that M is a Poisson manifold whose symplectic
leaves are of codimension ≥ 1, and λ : M → R is a
smooth nonconstant Casimir function on M . It turns out that
in this case symplectic leaves of the Poisson bracket {, }Dens
still have infinite codimension in Dens, similar to the case of a
symplectic M .

Proposition 2.6. The Poisson bracket {, }Dens admits infinitely
many functionally independent Casimirs. Namely, for any
function h : R → R, the functional

Ch,λ(dν) :=
∫

M
(h ◦ λ)dν

is a Casimir on the density space Dens.

Proof. We check that the functionals Ch,λ are invariant under
the Hamiltonian action:

Ch,λ(φ
∗dν) =

∫

M
(h ◦ λ)(x)φ∗dν(x)

=
∫

M
(h ◦ λ)(φ(x))φ∗dν(x)

= Ch,λ(dν),

where we used the Casimir property of λ on M : λ(φ(x)) =
λ(x) for a Hamiltonian diffeomorphism φ. !

Note that for symplectic leaves of codimension 1 on M ,
one can think of invariants Ch,λ as measuring the relative
volume for the volume form dλ ∧ ωn with respect to the
reference density dµ, where ω stands for symplectic structure
on the leaves in M . This, in turn, is similar to the helicity-type
invariants for the Euler equation on odd-dimensional manifolds,
with the important distinction, though, that for the density space
Dens one has not only one, but an infinite number of Casimirs
regardless of the dimension of the manifold M .

3. Symplectic structure on the diffeomorphism group of a
symplectic manifold

Let (M, ω) be a 2n-dimensional symplectic manifold and let
D be the space of all orientation preserving diffeomorphisms
of M . This is an infinite-dimensional Lie group with the Lie
algebra X of all smooth vector fields on the manifold M . The
tangent space to the group D at a point φ consists of right
translations of vector fields to φ: TφD = {X ◦ φ | X ∈ X}.
Fix the reference volume form dµ = ωn on M .

Definition 3.1. The diffeomorphism group D can be equipped
with the following natural symplectic form WD: given two
tangent vectors X ◦ φ and Y ◦ φ at φ ∈ D we set

WD(X ◦ φ, Y ◦ φ) :=
∫

M
ω(X ◦ φ(x), Y ◦ φ(x))dµ(x)

=
∫

M
ω(X, Y )(φ−1)∗dµ =

∫

M
ω(X, Y )φ∗dµ.

As before, let Dens be the (smooth Wasserstein) space of
all volume forms on the manifold M with total integral 1.
The tangent space to this infinite-dimensional manifold Dens
at a point dν consists of smooth 2n-forms on the manifold M
with zero integral. Denote the tangent bundle of the smooth
Wasserstein space by T Dens.

Consider the natural projection π : D → Dens of
diffeomorphisms into the volume forms on M , according to
how the diffeomorphisms move the reference density dµ:
π(φ) = φ∗ (dµ). This way the diffeomorphism group D can
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be regarded as the total space of the principal bundle over the
base Dens with the structure group Dµ of all diffeomorphisms
preserving the volume form dµ.

Theorem 3.2. The symplectic structure WD on the diffeomor-
phism groupD descends to the Poisson structure { , }Dens on the
Wasserstein space Dens.

Proof. The symplectic form WD is invariant under the
Dµ-action of volume-preserving diffeomorphisms and hence
under the map π it descends to a certain Poisson structure
on the density space Dens. We would like to show that
the corresponding quotient Poisson structure coincides with
{ , }Dens.

Let f : M → R be a function on the manifold M and
F f (dν) =

∫
M f dν the corresponding linear functional on

Dens. Consider the pullback F̄ f := π∗F f of this functional
F f to the diffeomorphism group D by the map π . Explicitly it
is given by

F̄ f (φ) =
∫

M
f dν =

∫

M
f φ∗(dµ) =

∫

M
( f ◦ φ)(dµ).

Let X f be the Hamiltonian vector field for the Hamiltonian
function f on the symplectic manifold (M, ω) and let XDf
be the Hamiltonian vector field of the pullback functional F̄ f

on (D, WD), the diffeomorphism group D equipped with the
symplectic structure WD.

Lemma 3.3. The Hamiltonian vector fields X f on (M, ω) and
XDf on (D, WD) are related in the following way:

XDf (φ) = X f ◦ φ.

Proof. By the definition of the Hamiltonian field X F̄ f
at a point

φ ∈ D,

WD(XDf (φ), Y ◦ φ) = 〈d F̄ f , Y ◦ φ〉
for any vector field Y ∈ X. On the other hand, by employing the
definition of the pullback and changing the variable, we rewrite
the latter expression as follows:
∫

M
〈d fφ(x), Y ◦ φ(x)〉 dµ(x) =

∫

M
〈d fx , Y (x)〉 φ∗(dµ)(x).

Now by the definition of the Hamiltonian field X f on M this is
equal to
∫

M
ω(X f (x), Y (x))φ∗(dµ)(x) =

∫

M
ω(X f ◦ φ, Y ◦ φ)(dµ),

which completes the proof of the lemma, due to arbitrariness of
the field Y . !

Returning to the proof of the theorem, we are going to
compute the Poisson bracket of the pullback functions F̄ f
and F̄g . By the definition, the value of the Poisson bracket
{, }D, which is dual to the symplectic structure WD on the
diffeomorphism group, for these two functions is

{F̄ f , F̄g}D(φ) = WD(X F̄ f
(φ), X F̄g

(φ)).

By using the lemma above and the change of variable, the right-
hand side above becomes
∫

M
ω(X f ◦ φ, Xg ◦ φ)dµ =

∫

M
ω(X f , Xg )φ∗(dµ)

=
∫

M
{ f, g} φ∗(dµ)

=
∫

M
{ f, g} dν,

as required. !

Remark 3.4. This symplectic structure WD on the diffeomor-
phism group can be viewed as a particular case of that consid-
ered in [4]. More generally, let S be a compact manifold with a
fixed volume form dσ , while (M, ω) is a symplectic manifold.
The space Map of all maps ρ : S → M (of some fixed ho-
motopy class) has a natural symplectic structure. Namely, the
tangent space toMap at a point ρ ∈Map is the space of sec-
tions of the bundle ρ∗(T M) over S and the symplectic structure
is

Ω f (v, w) :=
∫

M
ρ∗ω(v, w)dσ

for a pair of sections v, w of ρ∗(T M). The group of volume-
preserving diffeomorphisms of S defines a symplectic group
action onMap. Donaldson considers in [4] the corresponding
moment map and the Hamiltonian reduction of the spaceMap
under this group action. In our case, the two manifolds S and M
coincide, while the volume form dσ is the symplectic volume
form dµ = ωn . Then the diffeomorphism group D is an open
subset of Map with the symplectic structure described above,
and we consider the action of the subgroup Dµ of volume-
preserving diffeomorphisms on it.

Remark 3.5. The same Poisson structure on Dens was also
defined in [1] in slightly different terms, cf. [7]. For a
symplectic manifold (M, ω) we fix a Riemannian metric 〈, 〉
and an almost complex structure J compatible with the metric:
ω(u, v) = 〈u, Jv〉. Let f be a function on the manifold M and
∇ f its gradient with respect to the metric 〈, 〉. The Hamiltonian
field on M for the Hamiltonian f is X f = J∇ f .

Consider the distribution τ on the smooth Wasserstein space
defined at a point dν ∈ Dens by all possible infinitesimal shifts
of dν by Hamiltonian fields: τν := {L X f dν | f ∈ C∞(M)},
where L denotes the Lie derivative along a vector field on M .
Define a 2-form on the distribution τ by

ωτ (L X f dν, L Xg dν) =
∫

M
ω(∇ f, ∇g)dν.

In [1] it is shown that the distribution τν is integrable on the
smooth Wasserstein space, and this 2-form is a well-defined
symplectic structure on the integral leaves of this distribution.
One can see that these leaves are exactly the symplectic leaves
of the Poisson structure { , }Dens on the density space, while
the symplectic structure ωτ is dual to the Poisson structure
discussed above:
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ωτ (L X f dν, L Xg dν) =
∫

M
ω(X f , Xg)dν

= {F f , Fg}Dens(dν).

4. The two-dimensional case and geostrophic equations

4.1. The Noether theorem for an extra symmetry on the plane

Return to the two-dimensional M and consider the smooth
density space Dens for M = R2 with the standard symplectic
structure ω = dx1 ∧ dx2. This induces the Poisson structure
on Dens, as described above. There is the natural SO(2)-action
by rotations on densities: dν -→ ϕ∗(dν), where dν ∈ Dens is a
measure and ϕ ∈ SO(2).

Recall that for the standard measure ω, the semi-geostrophic
equation is the Hamiltonian equation on Dens with the
Hamiltonian function H(dν) = −Wass2(ω, dν)/2, where Wass
is the Wasserstein distance on densities.

Proposition 4.1. The functional K (dν) :=
∫
R2 |x |2 dν is a first

integral of the semi-geostrophic equation.

Proof. First we note that the SO(2)-action is Hamiltonian with
the Hamiltonian function given by the functional K (dν) on
Dens. Indeed, take the generator of the rotation group with
the Hamiltonian κ(x) = |x |2 on R2. Then the corresponding
action on densities in Dens is generated by the field with
Hamiltonian K (dν) :=

∫
R2 κ dν =

∫
R2 |x |2 dν, while the

corresponding action on diffeomorphisms in D is generated by
the Hamiltonian K̄ = π∗K , cf. Lemma 3.3.

Next, we see that the Wasserstein distance H(dν) from any
measure dν to the standard measure ω is SO(2)-invariant, since
so is ω. Thus the SO(2)-action is a symmetry of the function
H(dν) = −Wass2(ω, dν)/2, i.e. the Hamiltonians H and K
are in involution on the density space Dens with respect to the
Poisson structure {, }Dens. In particular, K (dν) is a conserved
quantity for the semi-geostrophic equation. !

This proposition naturally generalizes to any dimension: If
the Hamiltonian field with a Hamiltonian function κ generates
an isometry of M2n , and the reference density dµ = ωn is
invariant with respect to this isometry, then the Hamiltonian
field for H(dν) = −Wass2(dµ, dν)/2 on Dens has the first
integral K (dν) :=

∫
M κ dν.

4.2. More Hamiltonian reductions to the density space

Consider the case of a two-dimensional manifold M in more
detail. In this section we would like to compare the symplectic
geometry of the diffeomorphism group D(M) with that of the
cotangent bundle T ∗Dµ(M) of the group of area-preserving
diffeomorphisms of the surface M .

As we discussed above, the group D for an oriented surface
(or, for any symplectic manifold) M can be equipped with a
symplectic structure, which descends to the Poisson structure
on Dens under the projection π : D → Dens, or, more
precisely, under the Hamiltonian reduction with respect to the
Dµ-action. Note that the space Dens is a convex subset in the

space Ω2(M) of 2-forms on M : Dens = {dν ∈ Ω2(M) | dν >

0,
∫

M dν = 1}.
Now consider the groupDµ and its cotangent bundle T ∗Dµ.

Identify T ∗Dµ . Dµ × X∗
µ by means of right translations on

the group. Note that the Lie algebra Xµ consists of divergence-
free vector fields on the surface M . Such fields are described
locally by their Hamiltonian (or, stream) functions. First we
assume that M is a two-dimensional sphere S2, so that the fields
are globally Hamiltonian. Then the algebra Xµ can be viewed
as the Poisson algebra C∞

0 (M) of functions with zero mean
on M (with respect to the reference density dµ = ω). The
corresponding (smooth) dual space X∗

µ(M) = Ω2
0 (M) consists

of smooth 2-forms on M with zero total integral.
By shifting this dual space to the reference density dµ we

can regard the (smooth) density space Dens as a convex subset
in Ω2

0 (M):

Dens = {dµ + d ν̄ | dµ + d ν̄ > 0, d ν̄ ∈ Ω2
0 (M)}

⊂ dµ + Ω2
0 (M).

After this shift to the reference density dµ the diffeomorphism
group D . Dµ × Dens becomes a subset in the cotangent
bundle T ∗Dµ . Dµ × Ω2

0 .
Recall that the cotangent bundle T ∗Dµ has a natural

symplectic structure (denoted later by W T ∗
), which descends

to the Poisson–Lie structure on the dual Lie algebra X∗
µ .

Ω2
0 . The latter is exactly the Poisson structure { , }Dens upon

restriction to the density space Dens ⊂ Ω2
0 .

Conjecture 4.2. The natural symplectic structure W T ∗
on the

cotangent bundle T ∗Dµ coincides with the symplectic structure
WD on the diffeomorphism group D, understood as a subset of
T ∗Dµ via the identification described above.

In other words, not only coincide the Poisson structures on
the density space Dens understood by itself or as a part of the
dual X∗

µ, but presumably so do the corresponding symplectic
structures before the Hamiltonian reduction. We note that the
convex subset Dens of positive densities is preserved under the
diffeomorphism action on Ω2

0 , so the Poisson structure on Ω2
0

can indeed be restricted to this subset.
In the case of a general surface M , divergence-free

fields on M may have multivalued Hamiltonians: Xµ(M) =
C∞

0 (M) ⊕ H1(M). Respectively, the dual space X∗
µ(M) is

a finite-dimensional extension of Ω2
0 (M), since D∗

µ(M) .
Ω1(M)/dΩ0(M) . Ω2

0 (M) ⊕ H1(M). Now the density space
Dens(M) can be understood as a convex subset in a plane of
finite codimension in the dual space X∗

µ(M).
Note also that for a higher-dimensional symplectic M , there

is a natural map from the dual X∗
µ . Ω1(M)/dΩ0(M) .

Ω2
0 (M)⊕ H1(M) to the space Ω2n(M) of 2n-forms: ρ : [u] -→

(du)n , where [u] ∈ X∗
µ is a 1-form u modulo addition of an

exact 1-form on M . This map commutes with the natural Dµ-
action of volume-preserving diffeomorphisms on forms, which
explains the common origin of the Casimirs on the space Dens
of volume forms and on the dual space X∗

µ.
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Finally, we note that the Euler equation of an ideal fluid
on the two-dimensional M is the Hamiltonian equation on
Ω2

0 with respect to the Poisson–Lie structure { , }Dens whose
Hamiltonian function is the energy quadratic form on Ω2

0 .
It is interesting to compare this with (the projection of) the
semi-geostrophic equation, where the Hamiltonian function
is HDens(dν) = −Wass2(dµ, dν)/2, the square of the
Wasserstein distance on Dens ⊂ dµ + Ω2

0 . This shift of the
quadratic form to the reference density dµ is similar to the shift
observed in the infinite conductivity equation, and in the f -
plane and β-plane geostrophic equations, see [2,5,12].

Before the Hamiltonian reduction, the semi-geostrophic
equation is a Hamiltonian system on the diffeomorphism
group with respect to the symplectic structure WD and
the Hamiltonian function HD evaluating how far our
diffeomorphism is from being area-preserving:

HD(φ) = 1
2

dist2(φ,Dµ),

where dist is the distance in the “flat” L2-type metric on the
diffeomorphism group D from φ ∈ D to the subgroup Dµ of
diffeomorphisms preserving the standard area form ω = dµ

on R2, see [3]. This Hamiltonian is invariant under the action
of the group Dµ of area-preserving diffeomorphisms, and so it
descends to the above semi-geostrophic Hamiltonian system on
the density space Dens.

Acknowledgments

We are grateful to W. Gangbo, D. Goldman, and R. McCann
for useful discussions. We are also indebted to the organizers

of the conference “Euler Equations: 250 years on” in Aussois
and the workshop “Optimal Transportation, and Applications
to Geophysics and Geometry” in Edinburgh for a stimulating
working atmosphere and hospitality. This research was partially
supported by an NSERC research grant.

References

[1] L. Ambrosio, W. Gangbo, Hamiltonian ODE’s in the Wasserstein space of
probability measures, Comm. Pure Appl. Math. LXI (2008) 0018–0053.

[2] V. Arnold, B. Khesin, Topological Methods in Hydrodynamics,
in: Applied Math. Series, vol. 125, Springer-Verlag, 1998, pp. 374+xv.

[3] Y. Brenier, A geometric presentation of the semi-geostrophic equations,
Preprint 1996, pp. 11.

[4] S.K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math. 3
(1) (1999) 1–16.

[5] D.D. Holm, V. Zeitlin, Hamilton’s principle for quasigeostrophic motion,
Phys. Fluids 10 (4) (1998) 800–806.

[6] A. Kriegl, P. Michor, The Convenient Setting of Global Analysis,
Mathematical Surveys and Monographs, vol. 53, American Mathematical
Society, Providence, RI, 1997.

[7] J. Lott, Some geometric calculations on Wasserstein space, Comm. Math.
Phys. 277 (2008) 423–437.

[8] R. McCann, A. Oberman, Exact semi-geostrophic flows in an elliptical
ocean basin, Nonlinearity 17 (2004) 1891–1922.

[9] V. Ovsienko, B. Khesin, Yu. Chekanov, Integrals of the Euler equations
in multidimensional hydrodynamics and superconductivity, Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 172 (1989) 105–113.
English transl. in J. Soviet Math. 59 (5) (1992), 1096–1101.
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Abstract

This paper deals with complicated behavior in the N = 8n vortex problem on a sphere, which is reduced to three-degree-of-freedom
Hamiltonian systems. In the reduced Hamiltonians, the polygonal ring configuration of the point vortices becomes a saddle-center equilibrium
which has two hyperbolic and four center directions in some parameter regions. Near the saddle center, there exists a normally hyperbolic, locally
invariant manifold including a Cantor set of whiskered tori. For N = 8 we numerically compute the stable and unstable manifolds of the locally
invariant manifold with the assistance of the center manifold technique, and show that they intersect transversely and complicated dynamics may
occur. Direct numerical simulations are also given to demonstrate our numerical analysis.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Point vortex; Flows on sphere; Chaos; Saddle centers

1. Introduction

We consider the motion of N point vortices with the unit
strength on a sphere. Their equations of motion are derived
from the two-dimensional incompressible Euler equations on
the sphere by assuming that the vorticity is concentrated at
discrete points (Θm,Ψm), m = 1, . . . , N , in the spherical
coordinates. They can be written in a Hamiltonian system with
N degrees of freedom [15]:

q̇m = ∂ H
∂pm

, ṗm = − ∂ H
∂qm

, (1)

where (qm, pm) = (Ψm, cos Θm) are the symplectic variables.
The Hamiltonian H is given by

H = − Γn

4π

N∑

m=1

log(1 − cos Θm) − Γs

4π

N∑

m=1

log(1 + cos Θm)

− 1
4π

N∑

m=1

N∑

m< j

log(1 − cos γmj ), (2)

∗ Corresponding author. Fax: +81 11 727 3705.
E-mail address: sakajo@math.sci.hokudai.ac.jp (T. Sakajo).

in which γmj denotes the central angle between the mth and
j th point vortices such that cos γmj = cos Θm cos Θ j −
sin Θm sin Θ j cos(Ψm − Ψ j ). The parameters Γn and Γs
represent the strengths of the point vortices fixed at the north
and the south poles of the sphere, which are introduced
to take into account the local contribution of rotation of
the sphere locally. The N -vortex problem on the sphere has
been extensively studied when N is small. For instance, the
integrable 3-vortex problem and an integrable 4-vortex problem
were discussed in detail [11,19,23]. See [1,15] for further
references on this topic.

Now, we focus on the evolution of the polygonal ring
configuration, called the N -ring, where the point vortices
are equally spaced along a line of latitude when N is not
small. The configuration is of significance since such coherent
vortex structure is often observed in numerical simulations on
planetary flows [17,20]. The N -ring, Θm = θ0 and Ψm =
2πm/N , is a relative equilibrium of (1) rotating with a constant
speed in the longitudinal direction. Such relative configurations
with special symmetries were investigated in a systematic
way [12] and its stability has been investigated very well [3,
4,21]. Here we are interested in how the N -ring evolves when
it becomes unstable. In general, it is difficult to describe the

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.001
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evolution of many point vortices since the degree of freedom
of the system is quite large. However, the Hamiltonian system
(1) can often be reduced to a lower-dimensional system in a
systematic way [22].

For N = 5n, 6n with n ∈ N, using the reduction method,
we obtain a two-degree-of-freedom Hamiltonian system that
has a saddle-center equilibrium with two hyperbolic and two
center directions for some regions of Γn = Γs. Near the saddle
center there is a one-parameter family of periodic orbits by the
Lyapunov center theorem [13], and their stable and unstable
manifolds may intersect transversely so that horseshoe-type
chaotic dynamics occurs. We applied a global perturbation
technique [27] for N = 6 and used a numerical technique [30]
for N = 5, 6 to detect such transverse intersections [24].
These treatments can also be performed for the general cases
of N = 5n, 6n.

In the present paper, as a sequel to the previous work [24],
we study complicated dynamics of the N = 8n vortex
problem when the N -ring is a saddle center. We first reduce
(1) to a three-degree-of-freedom Hamiltonian system. Near the
saddle center, instead of a one-parameter family of periodic
orbits, there is a normally hyperbolic, locally invariant manifold
including a Cantor set of whiskered tori, and its stable and
unstable manifolds may also intersect, so that complicated
dynamics can occur [29] (see also Section II). An analytical
technique similar to that of [27] was also developed to treat
this situation in [29] but is not applicable in our case. So
we use the numerical technique of [30] with assistance of the
center manifold technique [8] to show numerically that such
intersection really occurs.

This paper is organized as follows: In Section 2, we apply
the reduction method of [22] to (1) for N = 8n and discuss
complicated dynamics resulting from intersection between the
stable and unstable manifolds of the locally invariant manifold.
In Section 3, we introduce some symplectic transformations
to make the problem amenable to our analysis. In Section 4
we describe the center manifold calculation and numerical
technique to compute the stable and unstable manifolds of
the locally invariant manifold. In Section 5 we perform the
numerical analysis for N = 8 and give direct numerical
simulations that support our analytical results relying on
numerics. We conclude with a summary and comments in
Section 6.

2. Invariant dynamical systems in the N = 8n vortex
problem

Linear stability analysis of the N -ring [21] gives the explicit
representation of the eigenvalues. Let λ±

m , m = 0, . . . , N ,
denote the eigenvalues for the N -ring equilibrium. Suppose that
N is even and set N = 2M . Since λ±

0 = 0 and λ±
m = λ±

N−m , we
see that λ±

M are simple and λ±
m are double for m = 1, . . . , M−1.

Since
(
λ±

i

)2
<

(
λ±

j

)2
for 1 ≤ i < j ≤ M , we have

(
λ±

k

)2
< 0 <

(
λ±

k+1

)2 for some k so that λ±
m are neutrally

stable for m ≤ k and λ+
m (resp. λ−

m) is unstable (resp. stable) for
m > k.

We define two transformations for the configuration
(Θ1, . . . ,ΘN ,Ψ1, . . . ,ΨN ) ∈ PN = [0, π]N × (R/2πZ)N .
The first transformation rotates the point vortices by the degree
2πp/N , which is denoted by σp : (Θ1, . . . ,ΘN ,Ψ1, . . . ,ΨN )

'→ (Θ ′
1, . . . ,Θ

′
N ,Ψ ′

1, . . . ,Ψ
′
N ), where Θ ′

m = ΘN−p+m , Ψ ′
m =

ΨN−p+m + 2πp/N for m = 1, . . . , p and Θ ′
m = Θm−p, Ψ ′

m =
Ψm−p + 2πp/N for m = p + 1, . . . , N . The second one is
the pole reversal transformation that reverses the north and the
south poles around the x-axis; For N = 2M , it is given by πe :
(Θ1, . . . ,ΘN ,Ψ1, . . . ,ΨN ) '→ (Θ ′′

1 , . . . ,Θ ′′
N ,Ψ ′′

1 , . . . ,Ψ ′′
N ),

where Θ ′′
1 = π − Θ1, Ψ ′′

1 = Ψ1, Θ ′′
m = π − ΘN−m+2 and

Ψ ′′
m = 2π + 2Ψ1 − ΨN−m+2 for m *= 1.
Let φ±

m , m = 1, . . . , M − 1, be the linear independent
eigenvectors to λ±

m , which were also given explicitly in [21].
Then we have the following result [22].

Proposition 1. Let N = 2M = pq(p, q ∈ N) and let Γn = Γs.
If σpπeX(0) = X(0) for X ∈ PN , then σpπeX(t) = X(t) for
t ≥ 0. Furthermore, the set of

X = Xe +
∑

k

(
b+

k φ+
kq + b−

k φ−
kq

)
, b±

k ∈ R, (3)

is invariant with respect to σpπe, where Xe represents the N-
ring at the equator.

Note that the dimension of the vector space (3) is [(M −
1)/q] since the number of eigenvectors φ±

m is M − 1, where [r ]
denotes the maximum integer that is less than or equals to r .
Henceforth we set Γn = Γs = Γ .

Applying Proposition 1 to the case of N = 8n, i.e. p = 8,
q = n and M = 4n, we obtain a reduced Hamiltonian
system with three degrees of freedom in which λ±

n , λ±
2n and

λ±
3n are eigenvalues for an equilibrium corresponding the N -

ring. Moreover, for a certain region of Γ , we have
(
λ±

n
)2

<
(
λ±

2n

)2
< 0 <

(
λ±

3n

)2 so that the equilibrium becomes a saddle
center since λ±

3n are real with λ−
3n < 0 < λ+

3n while λ±
n and λ±

2n
are purely imaginary.

In this situation, we can apply a slight modification
of discussions given in [29]. The saddle center has a
four-dimensional center manifold, which we regard as a
normally hyperbolic, locally invariant manifold M having
five-dimensional stable and unstable manifolds W s,u(M ).
Here “normal hyperbolicity” means that the expansion and
contraction rates of the flow normal to M dominate those
tangent to M . We also say that M is “locally invariant” if
any trajectory starting in M remains in M or escapes M
through its boundary ∂M . See, e.g., [26] for the details of these
concepts. Using the normal form of Graff [7] and applying the
KAM theorem [14] (see also [18]), we can show that there
exists a Cantor set of invariant tori near the saddle center.
Each invariant torus T is whiskered and has three-dimensional
stable and unstable manifolds W s(T ) and W u(T ), which are
contained by W s(M ) and W u(M ), respectively.

Suppose that W s(M ) and W u(M ) intersect transversely.
Then for any K > 2, there may be a transition chain of K
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whiskered tori, T j , j = 1, . . . , K , on M near the saddle center,
such that W u(T j ) intersects W s(T j+1) for j = 1, . . . , K − 1.
It follows that there exist trajectories starting near T1, passing
near T j , j = 2, . . . , K − 1, in turn and arriving near TK :
“diffusion motions” occur. Moreover, there may be a pair of
distinct heteroclinic cycles, {T0, T

j
1 , . . . ,T j

K j
, T0} with K j ≥

1, j = 1, 2 among the transition chains. So we can find
trajectories which start in a neighborhood of T0 and return
there repeatedly after they pass near T 1

1 , . . . ,T 1
K1

or near
T 2

1 , . . . ,T 2
K2

. These trajectories can be assigned the symbols
‘1’ or ‘2’ depending whether they pass near T 1

1 , . . . ,T 1
K1

or
near T 2

1 , . . . ,T 2
K2

. Thus, they can be characterized by the
Bernoulli shift and hence chaotic dynamics occurs. This also
implies that chaotic drift of trajectories occurs in the center
directions of the saddle center. See [29] for more details.

Thus, the transverse intersection between W s(M ) and
W u(M ) indicates complicated dynamics. We especially note
that the complicated motions are not confined to a small
neighborhood of the saddle center. In the following, we focus
on a special case of N = 8 and numerically show the
occurrence of such intersection in the reduced system since
the analytical technique of [29] is not applicable. Before that,
as in [24], we modify the reduced system by symplectic
transformations so that it becomes amenable to our analysis,
in the next section.

3. Symplectic transformations for N = 8

Since σ8 is the identity map for N = 8 so that σ8πe = πe, we
reduce the system (1) via Proposition 1 to a πe-invariant three-
degree-of-freedom Hamiltonian system whose phase space (3)
is represented by

X = Xe +
3∑

k=1

(b+
k φ+

k + b−
k φ−

k ), b±
1,2,3 ∈ R. (4)

As in [24], introducing the generating function

W (Pm, qm) = P1q1 +
8∑

m=2

Pm(qm − qm−1), (5)

we define a symplectic transformation (qm, pm) '→ (Qm, Pm).
It follows directly from the definition of πe that πe-invariant
orbits satisfy

q1 = 0, q5 = π, qm + q10−m = 2π,

p1 = p5 = 0, pm + p10−m = 0
(6)

for m = 2, 3, 4. Since in the symplectic transformation
generated by (5)

q2 = 2π − Q3 − Q4 − Q5, q3 = 2π − Q4 − Q5,

q4 = 2π − Q5, p2 = −P3, p3 = P3 − P4,

p4 = P4 − P5,

(7)

the reduced Hamiltonian system is represented by (Qm, Pm)

with m = 3, 4, 5 and the 8-ring becomes Qm = π/4 and
Pm = 0.

We further introduce the symplectic transformation

Q3 = 1
4
(π + (1 +

√
2)x1 + 2y1 + (1 −

√
2)y2),

Q4 = 1
4
(π − (1 +

√
2)x1 + 2y1 − (1 −

√
2)y2),

Q5 = 1
4
(π + x1 − 2y1 + y2),

P3 = x2 + y3 + y4,

P4 = (1 −
√

2)x2 + y3 + (1 +
√

2)y4,

P5 = (2 −
√

2)x2 + (2 +
√

2)y4,

(8)

so that the 8-ring becomes the origin O and the eigenspaces
for the saddle and center eigenvalues correspond to the x-
plane and y-hyperplane, respectively. Thus, we finally obtain
the Hamiltonian system

ẋ = J1Dx H(x, y), ẏ = J2Dy H(x, y), (9)

where Jm is the 2m × 2m symplectic matrix,

Jm =
(

0 idm
−idm 0

)

with idm the m × m identity matrix. The expression of H(x, y)
is easily obtained by substituting (7) and (8) into (2) under the
constraints (6), but it is too lengthy to present in the paper.

Let us assume that 5/2 ≤ Γ ≤ 4. Then the 8-ring
corresponds to a saddle-center equilibrium in (9) since (λ±

1 )2 <

(λ±
2 )2 < 0 < (λ±

3 )2. Moreover, there exists an unstable
direction associated with λ+

4 > 0 and normal to the invariant
space (4). However, we expect that solutions of the full system
(1) starting near the invariant space must repeatedly return near
it by the Poincaré recurrence theorem [2] and hence some of
them exhibit chaotic motions.

4. Numerical computation of W s,u(M )

Now we describe our approach for numerical computation
of W s,u(M ) in (9) when M is in a small neighborhood of O .
Other methods for such computation are also available [10,25],
but ours is simpler and easier to perform since neither Fourier
series nor normal form calculations are necessary.

We begin with a standard asymptotic expansion method [8]
to compute the center manifold of the saddle center at the origin
approximately up to O(|y|3) as

M = {(x, y) ∈ R2 × R4 | x = h(y)}, (10)

where h(y) = (h1(y), h2(y))T with

h1(y) = b(1)
1100 y1 y2 + b(1)

0011 y3 y4 + b(1)
0300 y3

2 + b(1)
2100 y2

1 y2

+ b(1)
0120 y2 y2

3 + b(1)
0102 y2 y2

4 + b(1)
1011 y1 y3 y4,

h2(y) = b(2)
1001 y1 y4 + b(2)

0110 y2 y3 + b(2)
0003 y3

4 + b(2)
2001 y2

1 y4

+ b(2)
0201 y2

2 y4 + b(2)
0021 y2

3 y4 + b(2)
1110 y1 y2 y3. (11)

(see Appendix for the coefficients in (11)). Thus, we can
approximate (9) near the origin as

ξ̇ = J1D2
x H4(h(y), y)ξ , ẏ = J2Dy H4(h(y), y), (12)
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where H4(x, y) is the fourth-order polynomial approximation
of the Hamiltonian H(x, y) and ξ = x − h(y).

Using the numerical technique of [30] with assistance of
the approximation (12), we compute the unstable manifold
W u(M ) as follows. We first numerically solve (12) on a time-
interval [−T, 0] to obtain a small trajectory ȳ(t) on M near the
origin O and its one-dimensional unstable subspace Eu ⊂ R2

for ȳ(t) at t = 0 such that ξ(t) → 0 as t → −∞ if ξ(0) ∈ Eu.
Let eu be a unit vector spanning Eu, which is approximated as

eu ≈ ξ(0)/|ξ(0)|, ξ(T̄ ) = ξ0 (13)

if T̄ is large and (ξ0, 0) is the unstable eigenvector of O in
(9), as shown in [30]. We compute a trajectory (xu(t), yu(t)) on
W u(M ) by solving (9) under the boundary conditions

xu(0) − h(yu(0)) = εueu, yu(0) = ȳ(0),

(xu(Tu), yu(Tu)) = (xu
0, yu

0), (14)

where εu 0 1 and Tu are positive constants, and (xu
0, yu

0) ∈
R2 × R4 represents an approximate point on W u(M ).
Thus, numerical continuation of the solutions (ξ(t), ȳ(t))
and (xu(t), yu(t)) for the boundary value problem (9), (12)
and (14) gives W u(M ). Similarly, we compute W s(M ) by
continuing a solution (ξ(t), ȳ(t)) of (12) on [0, T̄ ] and a
solution (xs(t), ys(t)) of (9) satisfying the boundary conditions

xs(0) − h(ys(0)) = εses, ys(0) = ȳ(0),

(xs(−Ts), ys(−Ts)) = (xs
0, ys

0), (15)

where es ∈ R2 is a unit vector spanning the one-dimensional
stable subspace E s ⊂ R2 for ȳ(t) at t = 0 such that ξ(t) → 0
as t → ∞ if ξ(0) ∈ E s, where εs 0 1 and Ts are positive
constants, and (xs

0, ys
0) ∈ R2 × R4 represents an approximate

point on W s(M ). Note that as in (13), es is approximated as

es ≈ ξ(0)/|ξ(0)|, ξ(−T̄ ) = ξ0 (16)

if T̄ is large and (ξ0, 0) is the stable eigenvector of O in (9).
To carry out the above computations of continuation, we

use the computer tool “AUTO97” [6]. As the starting ones for
the continuation, we take solutions of the linearized system for
(12) at the origin (with T̄ and Ts,u small), as in [24]. In the
continuation T̄ , Ts,u, xs,u

0 , ys,u
0 or ȳ(±T̄ ) are chosen as the free

parameters.

5. Numerical results

Using the method of Section 4, we compute the stable and
unstable manifolds W s,u(M ) in the reduced three-degree-of-
freedom Hamiltonian system (9) for N = 8. Fig. 1 shows
an example of the numerical results for Γ = 3 and ∆H =
H − H(0, 0) = 5×10−3. We see that these manifolds intersect
transversely so that complicated dynamics may occur in (9), as
described in Section 2.

To demonstrate the occurrence of such complicated
dynamics, we carry out direct numerical simulations using
an approach similar to that of [24] and a computer software
named “Dynamics” [16] with an adoption of a code named
“DOP853” [9]. The code is based on the explicit Runge–Kutta

Fig. 1. Intersection of the unstable and stable manifolds W s,u(M ) with the
section {x1 = y2 = y4 = 0} or {y2 = y3 = y4 = 0} for Γ = 3 on
the energy level ∆H = 5 × 10−3: (a) Their projections onto the (y1, y3)-
plane; (b) onto the x-plane. The solid and broken lines represent the stable and
unstable manifolds, respectively. In plate (b), ‘•’ represents the saddle center at
the origin.

Fig. 2. Approximately computed orbits of the Poincaré map on the locally
invariant manifold M . The fourth-order approximate and exact Hamiltonian
are used in plates (a) and (b), respectively.

method of order 8 by Dormand and Prince [5], a fifth-order
error estimator with third-order correction is utilized and a
dense output of order 7 is included. A small tolerance of 10−8

is chosen in the computations so that the numerical results are
very accurate although the method is not symplectic. Below we
set Γ = 3 and ∆H = 5 × 10−3 as in Fig. 1, and often use the
Poincaré map for the section {y4 = 0, ẏ4 > 0}.

Fig. 2 shows approximately computed orbits of the Poincaré
map on M . Here the fourth-order approximate and exact
Hamiltonian are used in Fig. 2(a) and (b), respectively, while
the third-order approximation is used for M in both figures.
We see that both results are almost the same and that all the
computed orbits construct invariant tori. This also implies that
our approximations made for computation of W s,u(M ) are
appropriate.

Fig. 3 shows a numerically computed orbit of the Poincaré
map starting at (x, y) = (0.001, 0, 0.0861491, 0, 0.1, 0). Its
projection onto the x-plane is plotted with 20 000 points in
Fig. 3(a), and its projection onto the (y1, y3)-plane when it
enters a neighborhood of M , {|x − h(y)| < 0.01}, is plotted
with 60 points in Fig. 3(b), where different symbols are used for
every 20 visits. Note that the points of Fig. 3(a) are confined to
some region since the energy level set is bounded. We observe
that the orbit does not only exhibit a chaotic motion but also
randomly drifts in the center directions of the saddle center,
as described in Section 2. A numerical observation of such
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Fig. 3. Orbit of the Poincaré map: (a) Its projections onto the x-plane; (b)
onto the (y1, y3)-plane when it enters a neighborhood of M . In plate (b), ‘+’
represents for 1st–20th visits, ‘•’ for 21st–40th, and ‘1’ for 41st–60th.

Fig. 4. Chaotic motion of the eight point vortices in the πe invariant system,
which corresponds to the orbit in Fig. 3.

Fig. 5. Chaotic motion of the eight point vortices in the full system (1).

behavior in a three-degree-of-freedom Hamiltonian system was
reported in [28] earlier.

Fig. 4 shows a chaotic motion of the eight point vortices
on the sphere, which is obtained by a solution of the reduced
system (9) and corresponds to the orbits in Fig. 3. For
comparison, we show a chaotic motion of the full system (1)
without the πe-symmetry in Fig. 5. Although the invariant space
(4) is unstable, we see that the chaotic trajectory in the full
system evolves like that in the reduced system, as predicted
by the Poincaré recurrence theorem [2] (see Section 3 and also
Section 7 of [24]).

6. Conclusions

In this paper we have revealed that complicated dynamics
exists in the N = 8n vortex problem on a sphere. Our numerical
analysis with assistance of the center manifold technique
showed that the stable and unstable manifolds of a locally
invariant manifold including a Cantor set of whiskered tori near
the saddle-center N -ring equilibrium intersect transversely in
the reduced Hamiltonian system. We gave numerical simulation

results to demonstrate that complicated behavior resulting from
such intersection occurs in the Euler flow as well as in the
reduced system. Thus, our dynamical systems approach sheds
light on the new interesting feature of the important fluid
problem, as in [24]. Finally, we remark that our treatment is
also valid for N = 7n as well as N = 8n although the necessary
center manifold calculations are tedious, and that the numerical
technique is applicable to a large class of Hamiltonian systems
with saddle centers.
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Appendix. Coefficients of (11)

Let

β1 = 16Γ 2 − 54Γ − 45,

β2 = 128Γ 4 − 1232Γ 3 + 1140Γ 2 + 6300Γ + 3375,

β3 = 256Γ 4 − 2304Γ 3 + 7740Γ 2 − 8100Γ − 10125,

β4 = 8(2Γ − 15)β3.

The second-order coefficients are given by

b(1)
1100 = −4Γ 2 + 60Γ − 279

4β1
,

b(1)
0011 = −2(4Γ 3 − 60Γ 2 + 171Γ + 45)

β1
,

b(2)
1001 = 5(4Γ 2 − 36Γ + 9)

4β1
, b(2)

0110 = 5(4Γ 2 − 24Γ + 99)

16β1
;

and the third-order coefficients are given by

b(1)
0300 = − 1

1536β2
(176Γ 4 − 26684Γ 3 + 88560Γ 2

− 145215Γ + 788400),

b(1)
2100 = 1

β4
(328Γ 5 − 12528Γ 4 + 98154Γ 3

− 254880Γ 2 − 151875Γ + 1245375),

b(1)
0120 = − 1

β4
(432Γ 6 − 2376Γ 5 − 28588Γ 4 + 431550Γ 3

− 2477700Γ 2 + 6773625Γ − 7948125),

b(1)
0102 = 1

16β2
(80Γ 5 − 356Γ 4 + 11976Γ 3 − 81633Γ 2

+ 111150Γ + 83700),

b(1)
1011 = 1

β3
(136Γ 5 − 1464Γ 4 + 8658Γ 3 − 21942Γ 2

+ 36855Γ − 46575),

b(2)
0003 = 5

16β2
(16Γ 5 + 44Γ 4 + 2840Γ 3 − 12813Γ 2

− 10350Γ + 2700),
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b(2)
2001 = − 1

β4
(1304Γ 5 − 8736Γ 4 + 8190Γ 3 + 143100Γ 2

− 658125Γ + 151875),

b(2)
0201 = 15(16Γ 4 + 1228Γ 3 − 7216Γ 2 + 18915Γ − 18000)

512β2
,

b(2)
0021 = 1

β4
(656Γ 6 − 20664Γ 5 + 185100Γ 4 − 757710Γ 3

+ 1479600Γ 2 − 1387125Γ + 1366875),

b(2)
1110 = 1384Γ 4 − 8568Γ 3 − 342Γ 2 + 196830Γ − 431325

32β3
.

References

[1] H. Aref, P.K. Newton, M.A. Stremler, T. Tokieda, D.L. Vainchtein, Vortex
crystals, in: E. van der Giessen, H. Aref (Eds.), Advances in Applied
Mechanics, vol. 39, 2003, pp. 2–81.

[2] V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd. ed.,
Springer, New York, 1989.

[3] S. Boatto, H.E. Cabral, Nonlinear stability of a latitudinal ring of point-
vortices on a nonrotating sphere, SIAM J. Appl. Math. 64 (2003) 216–230.

[4] H.E. Cabral, K.R. Meyer, D.S. Schmidt, Stability and bifurcation of the
N + 1 vortex problem on sphere, Regul. Chaotic Dyn. 8 (2003) 259–282.

[5] J.R. Dormand, P.J. Prince, Practical Runge–Kutta processes, SIAM J. Sci.
Stat. Comput. 10 (1989) 977–989.

[6] E. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov,
B. Sandstede, X. Wang, AUTO97: Continuation and Bifurcation Software
for Ordinary Differential Equations (with HomCont), 1997. Available by
anonymous ftp from ftp.cs.concordia.ca, directory pub/doedel/auto.

[7] S.M. Graff, On the conservation of hyperbolic invariant tori for
Hamiltonian systems, J. Differential Equations 15 (1974) 1–69.

[8] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields, Springer, New York, 1983.

[9] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential equation
(I), 2nd ed., Springer, Berlin, 1993.

[10] A. Jorba, Numerical computation of the normal behaviour of invariant
curves of n-dimensional maps, Nonlinearity 14 (2001) 943–976.

[11] R. Kidambi, P.K. Newton, Motion of three point vortices on a sphere,
Physica D 116 (1998) 95–134.

[12] C.C. Lim, J. Montaldi, M. Roberts, Relative equilibria of point vortices on
the sphere, Physica D 148 (2001) 97–135.

[13] K.R. Meyer, G.R. Hall, Introduction to Hamiltonian Dynamical Systems
and the N -Body Problem, Springer, New York, 1992.

[14] J. Moser, Stable and Random Motions in Dynamical Systems, Princeton
Univ. Press, 1973.

[15] P.K. Newton, The N -vortex problem, Analytical techniques, Springer,
New York, 2001.

[16] H.E. Nusse, J.A. Yorke, Dynamics: Numerical Explorations, 2nd ed.,
Springer, New York, 1997.

[17] L.M. Polvani, D.G. Dritschel, Wave and vortex dynamics on the surface
of a sphere, J. Fluid Mech. 255 (1993) 35–64.
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Abstract

We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the
experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique.
The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained
from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same
response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation time scale of the
dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles,
not taken into account in the present numerical simulations.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.27.Jv; 47.27.Gs; 02.50.-r
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1. Introduction

Understanding the transport of inertial particles with finite
density, such as sediments, neutrally buoyant particles or
bubbles in turbulent flows of water is of practical interest for
both industrial engineering or environmental problems. In a
turbulent flow, the mismatch in density between the particles
and the fluid causes light particles to be trapped in high
vortical regions while heavy particles are ejected form vortex
cores and concentrate in high strain regions [1]. As particles
with different buoyancy tend to concentrate in different
regions of the flow, they are expected to exhibit different
dynamic behaviours. In recent years, significant progress
has been made in the limit of infinitely heavy, pointwise
particles [2,3], and numerical simulations have received

∗ Corresponding author. Tel.: +33 472728472; fax: +33 472728080.
E-mail address: romain.volk@ens-lyon.fr (R. Volk).

experimental support [4,5]. In case of infinitely light particles
(bubbles): the result of the numerical simulations on particle
distributions and on fluid velocity spectra [6–8] agree in various
aspects with experimental findings [9–12] although direct
comparison between experiments and numerical simulations
for the acceleration PDF and correlation of the particles has not
been investigated in the past.

Indeed, in spite of the growing resolution of Direct
Numerical Simulations (DNS) of the Navier-Stokes equations
at high Reynolds numbers, it remains a challenge to resolve
the motion of realistic inertial particles: some degree of
modelization is necessary. The equation of motion of finite
size, finite density particles moving in a turbulent flow, is not
precisely known, and a comparison with experimental data can
help in refining the models and extending their range of validity.

Several experimental techniques have been developed for
measuring the velocity of particles along their trajectories.
The optical tracking method developed in the Cornell group

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.016
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has revealed that fluid particles experience extremely intense
accelerations [13], while individual particles have been tracked
for time durations of the order of the flow integral time
scale using an acoustic technique [14]. Because of the very
fast decrease of the acoustic scattering cross-section with the
scatterer’s size, this method is limited to particles with diameter
of the order of the wavelength, i.e. inertial range sizes [15,
23]. The principle of the acoustic technique is completely
analogous to laser Doppler velocimetry (LDV), provided that
expanded light beams are used (an arrangement we call E-LDV
hereafter). The advantage of E-LDV, compared to acoustics,
is that the much smaller wavelength of light allows a better
resolution in space and also the use of smaller tracer particles.
The principle of the measurement technique is reported in [16],
where its performance has been compared and validated against
silicon-strip tracking [13,17] of neutrally buoyant Lagrangian
tracers. We focus here on the dynamics of inertial particles i.e.
particles whose density differ from that of the fluid. We report
the first comparison between experimental measurements of
acceleration of particles having a relative density in the range
10−3 (air bubbles) to 1.4 (PMMA) in the same highly turbulent
flow, and numerical results obtained by tracking pointwise
particles with finite density in a direct numerical simulation of
isotropic homogeneous turbulence [18,19].

Numerical simulations are performed by means of standard
pseudo-spectral methods, where particular care has been
used in keeping a good resolution at the dissipative scales.
The numerical code for integrating the evolution of the
Eulerian field and the Lagrangian tracing of particles is the
same as described in [7,8,25]. A thorough validation of the
numerical approach, included the Lagrangian evolution of
the tracers has recently been performed against experimental
measurements [26]. The numerical integration of tracers has,
with respect to experiments, the clear advantage of a uniform,
well controlled geometry and very large statistics; on the
opposite, the resolution can be limited to small Reynolds
numbers. For what concerns the treatment of realistic particles,
i.e. particles with a density mismatch and a “finite” size, the best
modelization to use is not clear and one of the main goals of this
manuscript is indeed to compare state-of-the-art Lagrangian
data against numerical results from a current modelization.

2. Experimental setup and results

The Laser Doppler technique is based on the same principle
as the ultrasound Doppler method which has good tracking
performance of individual Lagrangian tracers [14,23]. In order
to access dissipative scales, and in particular for acceleration
measurements, we adapt the technique from ultrasound to laser
light: the gain is of a factor 1000 in wavelength so that one
expects to detect micron-sized particles. For a Lagrangian
measurement, one has to be able to follow the particle motion to
get information about its dynamics in time. For this, wide Laser
beams are needed to illuminate the particle on a significant
fraction of its path. The optical setup is an extension of the
well known laser Doppler velocimetry technique; Fig. 1. A
Laser beam is split into two beams; each is then expanded by

Fig. 1. Experimental setup. (Top left): schematics of the von Kármán flow
in water – side view. (Top right): principle of the Laser-Doppler Velocimetry
using wide beams (ELDV) – top view of the experiment. PM: location of the
photmultipler which detects scattering light modulation as a particle crosses the
interference pattern created at the intersection of the laser beams.

a telescope so that their diameter is about 5 mm. Then the
two beams intersect in the flow where they create an array
of interference fringes. As a particle crosses the fringes, the
scattered light is modulated at a frequency directly proportional
to the component of the velocity perpendicular to the fringes. It
yields a measurement of one component of the particle velocity.
In practice, we use a CW YAG laser of wave length 532 nm with
1.2 W maximum output power. In order to get the sign of the
velocity we use acousto-optic modulators (AOM) to shift the
frequency of the beams so that the fringes are actually travelling
at a constant speed. The angle of the two beams is tuned to
impose a 60 microns inter-fringe so that the frequency shift
between the beams (100 kHz) corresponds to 6 m/s. As the
beams are not focused, the inter-fringe remains constant across
the measurement volume whose size is about 5×5×10 mm3. It
is imaged on a photomultiplier whose output is recorded using
a National Instrument PXI-NI5621 digitizer at rate 1 MHz.

The flow is of the Von Kármán kind as in several previous
experiments using acoustics [14] or optical techniques [13].
Water fills a cylindrical container of internal diameter 15 cm,
length 20 cm. It is driven by two disks of diameter 10 cm, fitted
with blades in order to increase steering. The rotation rate is
fixed at values up to 10 Hz. For the measurements reported
here, the Taylor-based Reynolds number reaches up to 850 at
a maximum dissipation rate ε equal to 25 W/kg. We study
three types of particles: neutrally buoyant polystyrene particles
with size 31 microns and density 1.06, PMMA particles with
size 43 microns and density 1.4 and air bubbles with a size of
about 150 microns. The mean size of the bubbles, measured
optically by imaging the measurement volume on a CCD, is
imposed by the balance between the interfacial surface tension
σ and the turbulent fluctuations of pressure. This fragmentation
process is known to lead to a well defined and stationary size
distribution [20] with a typical diameter D ∝ (σ/ρ f )

3/5ε−2/5,
ρ f being the density of the fluid.

The signal processing step is crucial as both time and
frequency – (i.e. velocity) – resolutions rely on its performance.
Frequency demodulation is achieved using the same algorithm
as in the acoustic Doppler technique. It is a approximated
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Table 1
(top) Parameters of the particles in the von Kármán flow at Rλ = 850 (η = (ν3/ε)1/4 = 17 µm and τη = √

ν/ε = 0.26 10−3 s)

Experiment

Particle Radius a β = 3ρ f
ρ f +2ρp

St = τp
τη

a0 a0/a0,T

Tracers 15.5 µm 0.96 0.24 6.4 ± 1 1
Neutral 125 µm 0.96 16 2.2 ± 1 0.34
Heavy 20.5 µm 0.79 0.58 4.3 ± 1 0.67
Bubble 75 µm 2.99 1.85 26 ± 5 4.06

Numerics

Particle Radius a β = 3ρ f
ρ f +2ρp

St = τp
τη

a0 a0/a0,T

Tracers – 1 0.31 2.85 ± 0.07 1
Neutral – 1 4.1 2.94 ± 0.07 1.03
Heavy – 0.75 1.03 2.63 ± 0.12 0.92
Bubble – 3 1.64 25.9 ± 0.46 9.08

ρp and ρ f are the densities of the particles and fluid, and τp = a2/(3βν) is the stokes response time of the particles. The Taylor-based turbulent Reynolds

number is computed as Rλ =
√

15u4
rms/εν measuring the one-component root-mean-square velocity, urms, with the E-LDV system and ε by monitoring the power

consumption of the motors. The nondimensional constant a0 is derived from the Heisenberg–Yaglom relationship. The last column compares the value for the
inertial particle to the one obtained for the Lagrangian tracer (which is denoted by the subscript T ). (bottom) Same as above: parameters of the particles tracked in
the DNS of homogeneous isotropic turbulence at Rλ = 180. Out of the numerically analysed 64 parameter combinations (β, St), we have picked those which were
close to the experimental values for (β, St).

maximum likelihood method coupled with a Kalman filter [21]:
a parametric estimator assumes that the signal is made
of a modulated complex exponential and Gaussian noise.
The amplitude of the recorded signal and the modulation
frequencies are assumed to be slowly evolving compared to the
duration of the time window used to estimate the instantaneous
frequency. Here the time window is about 30 µs long and
sets the time resolution of the algorithm. Outputs of the
algorithm are the instantaneous frequency, the amplitude of
the modulation and a confidence estimate which is used to
eliminate unreliable detections. Afterwards, the acceleration
of the particle is computed by differentiation of the velocity
output. Note that measurements are performed only when
a particle moves within the (limited) measurement volume
so that after processing, the data consists in a collection of
sequences with variable lengths. For all the measurements, the
acceleration variance is computed using the same procedure
as in [17]: it is obtained for several widths of the smoothing
kernel used in the differentiation of the velocity signal and then
interpolated to zero filter width.

For small neutrally buoyant particles, i.e. Lagrangian tracers,
our data is in excellent agreement with the high-speed imaging
measurements performed by the Cornell group [13,16,17].
When the variance of the acceleration is normalized by the
Heisenberg–Yaglom scaling: 〈a2〉 = a0ε

3/2ν−1/2 (ε being the
energy dissipation rate per unit mass and ν = 1.3 ·10−6 m2 s−1

the kinematic viscosity of the fluid), both experiments yields the
same values for the nondimensional constant a0 (a0 = 6.4±1 at
Rλ = 850 for the E-LDV compared to 6.2 ± 0.4 for the Cornell
data at Rλ = 690).

We have applied our technique to compare the dynamics of
Lagrangian tracers to the one of heavier or lighter particles
(see Table 1 for numbers). We first compute the velocity
root-mean-square value urms for the three cases: the values
are {1.1, 1.2, 1.0} ± 0.1 m.s−1 at Rλ = 850 for the tracers,

heavy (PMMA spheres), and light particles (bubbles). Within
error bars, the large scale dynamics seems to be unaffected
by changes in the particle inertia. The acceleration distribution
and autocorrelation in the three cases are shown respectively
in Fig. 2 (top) and Fig. 3 (top). The acceleration PDFs
are quite similar for moderate acceleration values (below
about 10 arms), as also observed in low Reynolds number
numerical simulations [22]. However, the probability of very
large accelerations seems to be reduced in the case of inertial
particles as compared to Lagrangian tracers. The normalized
acceleration variance a0 varies very significantly: it is reduced
to 4.3 ± 1 for heavier particles while it is increased to 26 ± 5
for bubbles. The correlation functions also show significant
changes with inertia: the characteristic time of decay is longer
for heavy particles and shorter for bubbles compared to tracers.
We measure τcorr/τη = {0.5, 0.9, 0.25} respectively for
tracers, heavy and light particles, with the correlation time
defined as the half-width at mid-amplitude of the correlation
function. We thus observe important changes in the dynamics,
even if the distribution of acceleration weakly changes with
inertia.

Note that in our setup the Kolmogorov length is about
η = 17 µm at Rλ = 850, so that the bubble size is about
10 η and therefore may not be considered as a point particle.
Thus, one may wonder if the bubble dynamics is not altered
by spatial filtering as recently demonstrated for particles with
diameters in the inertia range [23]. To check, we have compared
the dynamics of large neutrally buoyant particles with diameter
250 µm to the one of Lagrangian tracers. The results is shown
in Fig. 2 together with the other particles: the effect of the
particle size on the PDF is found to be weak as the curve nicely
superimposes with the ones for inertial particles. However, the
size effect is clear when comparing either the coefficient a0
(reduced to 2.2), or the autocorrelation functions. One observes
that the correlation time of the large particles is twice that
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Fig. 2. Probability distribution function of accelerations, normalized to the
variance of the data sets. (top) Data from experiment at Rλ = 850. (middle)
DNS of homogeneous isotropic turbulence at Rλ = 180. (bottom) Comparison
of experimental measurements and DNS results.

for the tracers. We conclude that the bubbles size may have a
leading effect on the acceleration variance, and that the value
of a0 reported here probably underestimates the one that would
be measured for smaller bubbles (with diameters closer to the
Kolmogorov scale).

3. Comparison with numerical simulations

We compare the experimental data with the results from a
direct numerical simulation [18,19] where a passive suspension

Fig. 3. Autocorrelation coefficients of the accelerations: (top) Data from
experiments at Rλ = 850. (bottom) Data from DNS of homogeneous isotropic
turbulence at Rλ = 180 For the (β, St) values we refer to Table 1.

of pointwise particles with finite density are tracked in
a homogeneous isotropic turbulent flow. The dynamics of
the particles is computed in the most simplified form of
the equation of motion, i.e. assuming that the particles are
spherical, nondeformable, smaller than the Kolmogorov length
scale of the flow, and that their Reynolds number is small [24].
When we retain only the Stokes drag force and the added mass
effect, the equation of motion then reads

dvp

dt
= β

Du
Dt

+ 1
τp

(
u − vp

)
, (1)

where vp = ẋ(t) is the particle velocity, u(x(t), t) the velocity
of the fluid at the location of the particle described by the
Navier–Stokes equation, while β = 3ρ f /(ρ f + 2ρp) accounts
for the added mass effect and and τp = a2/(3βν) is the
Stokes response time for a particle of radius a. When made
dimensionless by the Kolmogorov dissipative scales (τη, η, uη)
Eq. (1) reads

a ≡ dvp

dt
= β

Du
Dt

+ 1
St

(
u − vp

)
, (2)

with the particle acceleration a now expressed in the
Heisenberg–Yaglom units. Thus, at a given Reynolds number,
the particles dynamics only depends on the values of the two
dimensionless parameters β and St = τp/τη This is generally
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different from the case of infinite inertia of the particles
(β = 0) and finite response time τp, which has been formerly
addressed in several numerical and theoretical studies [2], and
for which instead only the Stokes number St matters. It is also
different from the pure bubble case (β = 3) for which the
particle indeed has no inertia but only added mass [6–8]. We
performed numerical simulation at Reλ = 180 (grid resolution
5123), in which many particles, characterized by different pairs,
(β, St) (specifically 64 different sets of O(105) particles) were
numerically integrated by means of Eq. (1). Particles do not
have feedback on the flow field.

In order to compare the numerical results with the
experimental data, three types of particles (tracers, heavy and
bubbles) with different inertia and Stokes number have been
studied. The values for both β and St have been chosen close
to the ones of the particles used for the E-LDV (see Table 1).
The evolution of the normalized acceleration variance shows
the same trend in experiments and numerics: a0 is reduced
from the tracer value 2.85 to 2.63 for heavier particles and
increased to 26 for bubbles (Table 1). This seems to be a
robust trend in the DNS. To emphasize this, in Fig. 4 we
show the behaviour of

√
a0, i.e. the root-mean-square value of

the particle acceleration normalized by the Heisenberg–Yaglom
scaling, in a wide range of the (β, St) parameter space from a
less turbulent DNS (Reλ = 75) which has a very large number
of (β, St) pairs. Results from the Reλ = 180, not shown
here, are qualitatively similar. Note again that no significant
Reynolds number dependence of the probability distribution
was found in Ref. [16].

The acceleration distribution behavior and its comparison
with the experiment is reported in Fig. 2. In the numerics
we observe that the probability of very large accelerations is
reduced for the heavier particles as compared with tracers,
while it is increased for the bubbles. This feature,seems not to
be present in the experimental results. Furthermore, we notice
that for the three types of particles, the acceleration PDFs,
rescaled by the rms acceleration, is close to the experiments.
Experimental ones have always longer tails, reflecting the
more intermittent nature of the turbulent flow, which has a
larger Reynolds number (Reλ,EXP = 850 vs. Reλ,DNS =
180). We also observe a qualitative agreement for the changes
in the acceleration autocorrelation functions when changing
inertia, Fig. 3. One measures τcorr/τη = {0.95, 1.35, 0.25}
respectively for tracers, heavy and light particles. Just as
observed for the experiments, the dynamics is faster for the
bubbles while heavier particles decorrelate slower than fluid
tracers. The Reλ difference is more pronounced here than in the
PDFs (see Ref. [16]) and prevent a more detailed comparison.

4. Discussion

While solving a simplified version for the equation of
motion, the numerics reproduce qualitatively the effect of
the particles’ inertia on their dynamics. In particular, the
dependence of the acceleration autocorrelation on the particle
inertia is nicely reproduced, see Fig. 3. However, also some
discrepancies become visible, though not yet completely

Fig. 4. Behaviour of the normalized root-mean-square acceleration
√

a0 =
(〈a2〉ε−3/2ν1/2)1/2 as a function of both St and β for a Reλ = 75 DNS. Iso-
contour for √a0,T (red) and the line √a0,T ·β+const . (green) are also reported.
Note that a0 does not depend on St for neutral (β = 1) particles. While
it is always reduced/enhanced for heavy/light particles. For large particles
(St * 4.1) we find

√
a0 * β

√a0,T . (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

conclusive, as a better resolution and statistics of both the
experiments and the numerics would be important for firmer
conclusions. Nevertheless, in this section we shall have a closer
look at the differences and propose some explanations.

First of all, there is only qualitative agreement on the ratio
a0,H /a0,T . It is larger for the experiment than for the numerics.
Moreover, the tails of the numerical PDF of the bubble
acceleration seem to be enhanced as compared to those for
tracer acceleration. Vice versa, the tails of the numerical PDF
of the particle acceleration seem to be reduced as compared to
those for tracer acceleration.

What is the origin of the difference between the experiments
and the numerics? First of all the Taylor–Reynolds numbers are
different, but Ref. [16] suggests an at most weak dependence of
the acceleration PDFs on the Reynolds number; a finding that
is supported by a comparison of our numerical simulations at
Reλ = 185 and Reλ = 75.

Next, in the numerical simulations we disregarded the lift
and the gravitational force. While this presumably has little
effect on heavy particles and tracer, it does modify the dynamics
of the bubbles. In Refs. [7,8] we had shown by comparison of
numerical simulations for point bubbles with and without lift,
that without lift the bubble accumulation inside the vortices is
more pronounced, i.e. bubbles without lift are more exposed to
the small-scale fluctuations, which clearly will contribute to the
pronounced tails of the numerically found acceleration PDF, see
Fig. 3, bottom.

Next, also the two-way coupling of the particles (i.e., the
back-reaction of the particles on the flow due to their buoyancy
difference) has been neglected in the simulations of this paper.
As e.g. shown in Refs. [7,8] for bubbles and in Ref. [27] for
particles, it has an effect on the turbulent energy spectrum
and thus also on the acceleration statistics. However, as in the
present experiments the particle and bubble concentrations are
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very low, the two-way coupling effect on the spectra should
hardly be detectable.

The final difference between numerics and experiments we
will discuss here – and presumably the most relevant one – is
the finite size of the particles in the experiments as compared
to the numerics which is based on effective forces on a point
particle. Although the heavy particles are not large as compared
to η, this clearly holds for the bubbles and the 250 µm diameter
neutral particles. Indeed, Fig. 3 shows how the finite size of
these particles smears out the acceleration autocorrelation, as
compared to the tracer case. Also the ratio a0,N /a0,T for large
neutral particles is only 0.34, which demonstrates that the
size of large particles has a large effect on their acceleration
variance. This type of spatial filtering, which also lowers the
PDF of large neutral particles in the experiment, is not related
to a temporal filtering of the particle based on its response time.
This is clearly visible in Fig. 2 (middle) where one can see
that two neutral particles (β = 1) with different response times
(different St or τp) have the same acceleration PDF, with same
a0, and same autocorrelation function. Thus this size effect,
which is not taken into account in the point-particle-based
numerical simulations, presumably is responsible for both the
relatively small value of a0,B/a0,T measured for bubbles, and
the change in the shape of the PDF.

To conclude, we have reported acceleration measurements
of inertial particles using extended Laser Doppler velocimetry
and have compared the experimental data to DNS simulations
of the motion of pointwise particles with finite density. We
have observed a qualitative agreement between experiments
and numerics in the shape of the PDF and of the autocorrelation
function. We have given arguments for the small discrepancies.
An experimental study of the motion of bubbles with smaller
sizes is needed for a better comparison with the numerical
simulations. Also numerical simulations keeping into account
the finite size of particles would presumably improve the
agreement between experiments and numerical data and
detailed comparisons as the one presented in this paper help
to reveal the limitations of point-particle models. Obviously,
going beyond point-particles is extremely challenging in
numerical simulations. A first step in this direction has
e.g. been taken by Prosperetti and coworkers with their Physalis
method [28] which presently is extended towards turbulent
flows [29].
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Abstract

We present a numerical investigation of two-dimensional decaying turbulence in the Lagrangian framework. Focusing on single particle
statistics, we investigate Lagrangian trajectories in a freely evolving turbulent velocity field. The dynamical evolution of the tracer particles is
strongly dominated by the emergence and evolution of coherent structures. For a statistical analysis we focus on the Lagrangian acceleration as
a central quantity. For more geometrical aspects we investigate the curvature along the trajectories. We find strong signatures for the self-similar
universal behavior.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Beyond its importance for geophysical and astrophysical
applications two-dimensional turbulence often serves as a
paradigm of a complex, self-organizing system. Despite its
spatio-temporal complexity freely decaying two-dimensional
turbulence exhibits a stunning degree of coherence. The
dynamical evolution of the turbulent vorticity field is dominated
by the emergence, coalescence and nonlinear interaction of
circular and spiral-like vortices (see e.g. [1] and the references
therein).

During the decay process these coherent structures tend to
organize in a self-similar way [2–5], for example the temporal
evolution of their density, the mean absolute value of the
circulation and the mean vortex radius follow power-laws [4],
indicating that the decay process might display some degree of
universality.

The Lagrangian frame of reference offers a natural access
to the description of turbulent flows. However, results on
the Lagrangian description of two-dimensional turbulence are
sparse. Hence we are led to study the evolution of tracer
particles in the two-dimensional decaying system. We find,

∗ Corresponding author. Tel.: +49 251 8334914.
E-mail address: mwilczek@uni-muenster.de (M. Wilczek).

as expected, that their evolution is strongly dominated by the
coherent vortices.

Regarding a statistical analysis we focus on the acceleration
as well as on the curvature along the trajectories. We find strong
evidence for a self-similar temporal evolution of some of the
quantities.

The system under consideration is governed by the nonlinear
effects of vortex interaction and merging as well as by viscous
forces. Thus please note that our results cannot be referred to
in the framework of the universal decay theory proposed by
Carnevale et al. [4,5] as we operate in a different parameter
range, where the viscosity cannot be neglected.

The remainder of this article is structured as follows.
After summarizing the details on numerical issues and
simulation parameters we procede to a qualitative discussion
of trajectories. We then present the statistical results of the
Lagrangian acceleration and curvature.

2. Numerics and simulation details

We solve the two-dimensional vorticity equation

∂ω

∂t
(x, t) + (u(x, t) · ∇)ω(x, t) = ν∆ω(x, t) (1)

by means of a standard pseudospectral code on a 10242 grid
with periodic boundary conditions. Table 1 sums up the major
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Table 1
Major simulation parameters. Number of grid points N 2, box length L ,
viscosity ν, initial Reynolds number Rei = 2π urms

ν , timestep dt , total
simulation time T , number of tracer particles per realization Ntra and total
number of realizations Nre

N 2 L ν Rei dt T Ntra Nre

10242 2π 0.0004 12 500 0.0005 25 16 384 40

simulation parameters. We suppress the aliasing errors by a
spherical mode truncation according to Orszag’s famous two-
thirds rule. To obtain reliable statistical results we immerse
approximately 16 000 tracer particles into the flow and follow
them throughout the decay process. The Eulerian fields are
interpolated by a bicubic scheme. The acceleration is explicitly
calculated each timestep by evaluating the right-hand side of the
Navier–Stokes equation. The resulting field is then interpolated
at the particle positions.

In order to increase the statistical quality we additionally
perform an ensemble average over forty independent realiza-
tions of the flow (about 19 gigabytes of Lagrangian tracer data,
O(1600) hours of cpu time). The initial conditions are obtained
from a forced turbulence simulation that has reached statistical
equilibrium in the following manner. A master field from such a
forced simulation is taken and forty copies are made. For each
copy a forced simulation with a duration of about five large
eddy turnover times is performed with a differently initialized
random number generator for the forcing (see [6] for details
on the forcing). We thereby gain forty statistically independent
initial conditions for the subsequent decaying turbulence runs.
We would like to stress that by the large amount of ensemble
realizations we achieve an extraordinarily high statistical qual-
ity. One additional run with doubled total simulation time was
performed for checking and visualization purposes. For a more
detailed description of the numerical issues see Reference [6].

The initial conditions exhibit a clear inertial range according
to Kolmogorov’s predictions in the inverse energy cascade
regime as depicted in Fig. 1 (here, no ensemble average was
performed). The time-resolved energy spectrum reveals that the
initial inertial range scaling is quickly destroyed as the high
modes get damped out. Simultaneously energy is transported
into the low modes by nonlinear mode interaction of the
inverse energy cascade. Due to our broadband k−5/3 initial
condition from the forced turbulence simulations the temporal
evolution of our energy spectrum deviates from the classically
expected Batchelor–Kraichnan scaling. However, the choice of
the present initial condition is physically sound as the relaxation
from the stationary state in the inverse cascade regime to
thermodynamical equilibrium is in the focus of our studies. In
physical space the temporal evolution of the energy spectrum
is mirrored by the decay of small-scaled structures and the
emergence of bigger coherent vortices as depicted in Fig. 2.

3. Trajectories

Turning now to a Lagrangian description of the turbulent
field, Fig. 3 shows some sample trajectories. As characteristic

Fig. 1. Temporal evolution of the energy spectrum for t ∈ [0, 16]. High modes
get damped out while the energy contained in the low modes increases. The
k−5/3 slope indicates the slope of the initial condition.

Fig. 2. Vorticity field for t = 0.3 and t = 4. The number of vortices decreases
due to vortex coalescence and destruction.

Fig. 3. Typical particle paths in decaying turbulence. The spiraling motion
indicates vortex trapping events. The numbers denote the initial position of the
three particles.

for a turbulent chaotic system two initially neighboring
trajectories ((1) and (2)) separate quickly as they get caught
into the velocity field of different vortices. The spiraling
motion of the particles indicates that vortex trapping is generic
for particles in two-dimensional decaying turbulence. As the
vortices merge into bigger structures the radius of the spiral
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Fig. 4. Time-resolved trajectory in decaying turbulence. Vortex trapping
results in an oscillating behavior of the components of position, velocity and
acceleration.

motion increases on average over time. We postpone a more
quantitative discussion of this point to the following section.

While the chaotic advection can significantly increase the
pair separation also the opposite takes places. For example
trajectory (1) and trajectory (3) subsequently enter the velocity
fields of the same vortex leading to a sticking effect; As these
two particles are mainly influenced by the velocity field of a
single emerging vortex, they stay close for a comparably long
time although they started from far separated places in the
turbulent field.

Fig. 4 shows the time-resolved trajectory (1). After the
initial emergence of medium-scaled vortices from the rather
rough and unstructured initial vorticity all the components
of space, velocity and acceleration show the signatures of
vortex trapping by their oscillating behavior. The strength and
also the frequency of the oscillations decrease throughout the
decay process as the coherent structures increase in size and
the velocity field gets smoother and damped because of the
viscous effects. All these observations show that Lagrangian
particle dynamics is strongly dominated by the motion in single
coherent structures. Please note that the oscillatory behavior
shows up clearly in the time-interval [10 : 30] when large-
scale structures already have emerged. However, from Fig. 3
it is evident that a spiraling motion of the tracer particles is
generic from the very beginning of the decay process.

4. Statistical results

After this rather qualitative discussion let us now turn to
the central statistical observable of this work. The Lagrangian
acceleration of a particle initially located at y is defined by

a(t, y) = Ẍ(t, y) = [−∇ p(x, t) + ν∆u(x, t)]x=X(t,y) . (2)

For a more detailed dynamical description this acceleration
can be decomposed into an acceleration parallel to the current
velocity and an acceleration perpendicular to the current
velocity. With u‖ = u/|u| and u⊥ = (−uy, ux )/|u| the
decomposition reads

a(t, y) = a‖(t, y)u‖(t, y) + a⊥(t, y)u⊥(t, y), (3)

Fig. 5. Time-resolved acceleration pdf. The upper figure shows the acceleration
pdf’s for different times vertically shifted. The lower figure shows the same
pdf’s normalized by their standard deviation resulting in a collapse of the
curves. Time-windows over which averaging is performed are indicated.

thereby defining

a‖ = a · u‖ and a⊥ = a · u⊥. (4)

Let us start with the time-resolved pdf f (axy) of a single
component of the acceleration, which is depicted in Fig. 5.
Owing to the statistical isotropy of the flow we improve
our statistics by averaging over both spatial directions
(which is indicated by the subscript xy). The time-resolved
acceleration pdf’s clearly exhibit large deviations from a
Gaussian distribution as expected from the intermittent nature
of turbulent acceleration (intermittent in the sense of classical
dynamical systems theory). They exhibit almost exponential
tails. However, when normalized by their standard deviation
all of the curves collapse over the selected time interval
thereby indicating a universal temporal evolution of the pdf.
This view is supported by Fig. 6 which shows the time-
resolved moments of the acceleration pdf. By inspection of
this figure the scaling regime roughly can be estimated as
the time interval for t ∈ [0.1, 10]. Note that this choice
is rather conservative. The size of this time interval will
surely depend on physical parameters like viscosity or initial
Reynolds number. Additionally statistical issues might matter;
as the turbulence decays the number of vortices rapidly drops.
Consequently there are fewer and fewer coherent structures
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Fig. 6. Time-resolved moments of the acceleration pdf. The moments clearly
show power-law behavior. The inset shows a comparison with power-law
functions. The algebraic exponents are displayed.

contributing to the overall statistics resulting in a decreasing
statistical quality.

Fig. 6 also shows a comparison with power-law functions
〈an

xy〉 ∼ tζn with the exponents ζn . The numerical values
roughly suggest ζ2n ∼ nζ2 for the selected moments as
necessarily required for a self-similar evolution of the pdf’s. We
do not claim these exponents to be universal for all turbulent
flows as they should depend on the Reynolds number, the type
of numerical viscosity applied in the simulation and on the
exact initial condition. For a detailed investigation of the impact
of different initial conditions on the decay process see [7]. The
detection of this scaling range in the moments of the Lagrangian
acceleration pdf is one of the main results in the present work.

We now proceed to a discussion of the parallel and
perpendicular component of the acceleration. Fig. 7 shows a
comparison of the pdf’s of the acceleration components axy ,
a‖ and a⊥ for a single time-window. One can see that the
perpendicular component is slightly more intermittent than
the xy-averaged component. However, the parallel component
clearly exhibits less fat tails than the other two components.
This difference remains when the pdf’s are rescaled to
their standard deviation (not depicted) indicating that the
three components have a fundamentally differing functional
form. These observations presented for a single time interval
hold throughout the whole scaling interval. The physical
interpretation of these results is quite straightforward. The fact
that the perpendicular component of the acceleration exhibits
a larger flatness than the parallel one shows that the spiraling
motion in the vortices is a major contributor to the intermittent
nature of the turbulent acceleration. Hence this can be regarded
as statistical evidence for the dynamical importance of vortices
regarding Lagrangian dynamics.

We checked that also the pdf’s of the components a‖ and
a⊥ collapse over the selected interval when normalized by their
standard deviation (not depicted) and hence also the moments
show a power-law behavior. This is exemplified in Fig. 8, where
the second, fourth and sixth moment of the corresponding pdf’s
are shown. This inspection reveals that the moments show
nearly identical temporal scaling behavior, i.e. 〈an

xy〉 = cxytζn ,

Fig. 7. Pdf’s of the acceleration components axy , a‖ and a⊥ for the time-
window 4–6. In comparison with axy the perpendicular component exhibits
more pronounced tails while the parallel component shows less pronounced
tails.

Fig. 8. Temporal scaling for the second, fourth and sixth moments of the pdf’s
of the acceleration components axy , a‖ and a⊥. While the scaling exponents
seem to be almost identical the moments differ by a multiplicative factor.

〈an
‖ 〉 = c‖tζn and 〈an

⊥〉 = c⊥tζn with identical ζn , but differ
by their prefactors cxy , c‖ and c⊥. That means the differing
functional form can be traced back to a differing weighting
for each moment. The emerging picture is quite interesting:
while the functional form of each of these pdf’s seems to be
determined by an initial weighting factor for each moment, their
temporal behavior is universal.

To close this section let us turn to more geometrical
properties of the trajectories. We investigate the curvature of
the trajectories defined by

κ(t, y) = |a⊥(t, y)|
u2(t, y)

. (5)

Fig. 9 shows the mean curvature, averaged over all trajectories.
Although this quantity is extremely fluctuating, that is because
of the 1/u2 dependence, the average trend of a decreasing
curvature is clearly visible. As the curvature is proportional
to the inverse of the spiral radius, the emergence of bigger
and bigger coherent structures therefore on average leads to
increasing spiral radii of the trajectories. This is the statistical
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Fig. 9. Log–log plot of the mean curvature as a function of time. The increasing
spiral radii of the trajectories result in a decaying curvature.

Fig. 10. Log–log plot of the time-resolved curvature pdf. The pdf’s show an
algebraic decay with an exponent close to −2.25.

approval for the qualitative discussion of the trajectories in
the preceding section. The time-resolved pdf of the curvature
contains even more information and is shown in Fig. 10. The
time-resolved pdf’s are fairly similar to each other. However,
the probability for a high curvature (a small spiral radius)
decreases over time, as expected for coalescing and growing
vortices. Interestingly, all of the pdf’s show an extraordinarily
clear algebraic decay with an exponent close to −2.25.

5. Summary

To sum up, we presented a detailed investigation of two-
dimensional decaying turbulence in the Lagrangian frame of
reference. Our results reveal that the Lagrangian dynamics in

this system is strongly influenced by long periods in which the
tracer particles are mainly influenced by the velocity field of
single coherent structures. The spiraling motion of the particles
is a consequence.

We focused on the Lagrangian acceleration as a central
statistical quantity finding that the turbulent fields tend to
organize in a self-similar way. Hence we are able to identify
a time interval where a self-similar scaling of the acceleration
pdf’s and corresponding moments holds. A decomposition of
the acceleration into components parallel and perpendicular
to the velocity reveals that the non-Gaussian nature of the
acceleration is partly due to the centripetal accelerations
caused by the coherent structures. Closely connected to the
acceleration is the curvature of the trajectory, adding a more
geometrical point of view. We found the mean curvature
decaying algebraically in time, consistent with the qualitative
picture drawn in the first sections. The time-resolved pdf’s of
the curvature show a clear power-law behavior.

Our investigation gives evidence that the two-dimensional
decaying Lagrangian turbulence is dominated by self-similar
scaling laws, even when viscosity is not negligible.
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Abstract

We report experimental results on the motion of tracer and non-tracer particles in intense turbulent water flows between counter-rotating disks
measured by three-dimensional Lagrangian particle tracking. The sizes of the non-tracer particles were in the range of η < dp " L , where η

is the Kolmogorov length scale and L is the integral scale. We propose a modified Stokes number that takes into account the effects from finite
particle size and inertia. We compare results from tracers and from two types of particles (heavy+small, approx. neutrally bouyant+large) for
which the conventional Stokes numbers differ by a factor of ≈8% and the modified Stokes numbers by ≈60%. The conventional Stokes numbers
of the particles investigated were in the range of 0.7 and 1.5, while the modified Stokes numbers were smaller between 0.1 to 0.3. We observed
that the tails of the measured acceleration PDFs were slightly narrower compared to tracer particles with the heavier+smaller particles showing a
larger effect. The measured Lagrangian acceleration correlations of the large particles were approximately the same as that of the tracer particles.
This suggests that trajectories of large particles are not biased towards the low-vorticity, high-straining region as was observed previously in the
case of small, very heavy particles. These findings are also supported by the measurements of the local slopes of the fourth order Lagrangian
structure functions.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.27.Gs; 47.27.Jv; 47.80.Fg

Keywords: Lagrangian particle tracking; Turbulence experiment; Non-tracer particles

1. Introduction

The effect of inertia on the motion of particles in a fluid flow
is characterized by the Stokes number St ≡ τp/τ f , where τp is
the time scale for the particle to react to the flow and τ f is the
time scale of the fluid flow. For small particles in turbulence, if
the particle size dp is smaller than the Kolmogorov length-scale
η, the Stokes number based on the particle viscous relaxation
time τv and the Kolmogorov time-scale τη is usually used. It
can be written as StK ≡ τv/τη = (1/18)(ρp/ρ f )(dp/η)2,

∗ Corresponding author at: Max Planck Institute for Dynamics and Self-
Organization, D-37077 Göttingen, Germany.

E-mail addresses: haitao.xu@ds.mpg.de (H. Xu),
eberhard.bodenschatz@ds.mpg.de (E. Bodenschatz).

where ρp is the material density of the particles and ρ f is the
density of the fluid. Small and neutrally buoyant particles with
StK " 1 follow the fluid flow faithfully and are often used
as tracers in particle image velocimetry and particle tracking
experiments [1]. Small and heavy particles with StK ≈ 1 are
known to be ejected out of the high-vorticity regions and to
be accumulated in the straining regions. This phenomenon is
known as preferential concentration [2–7]. It has been much
investigated recently as it is closely related to the formation of
rain from minute water droplets in clouds [8,9]. The motions
of particles with densities similar to that of the fluid, but
sizes larger than the Kolmogorov length scale have not seen
the same rigorous studies as the dynamics of small particles.
Therefore, it is fair to say that the dynamics of large particles
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Table 1
Parameters of the experiments

Rλ u′(m/s) ε(m2/s3) L (mm) η (µm) τη (ms) N f (frames/τη) meas. vol. (η3) ∆x(µm/pix)

370 0.16 0.072 57 61 3.7 75 160 × 160 × 160 40
460 0.25 0.28 56 43 1.9 69 240 × 240 × 240 40

u′ is the root-mean-square velocity. ε is the turbulent energy dissipation rate per unit mass. L ≡ u′3/ε is the integral length scale. η ≡ (ν3/ε)1/4 and τη ≡ (ν/ε)1/2

are the Kolmogorov length and time scales, respectively, where ν is the kinematic viscosity of the fluid. N f is the frame rate of the cameras, in frames per τη .
The measurement volume is nearly a cube in the center of the tank, and its lateral size is given in the units of the Kolmogorov length scale η. ∆x is the spatial
discretization of the recording system. The spatial uncertainty of the position measurements is roughly 0.1∆x .

in turbulent flows still needs to be understood. This problem is
not only of academic interest,but also of practical importance
in nature and technology. In biological systems, such as the
zooplankton in ocean, the size of the “particles” are often larger
than the Kolmogorov scale at typical conditions [10]. In storms
the debris carried by the wind is also often larger than the
Kolmogorov scale of the turbulence. In many measurements of
turbulent flows, especially at high Reynolds numbers, it is often
unavoidable to use particles with dp > η as tracers [11–13].

Very recently, there have been measurements of the
accelerations of large particles in turbulence using the acoustic
doppler technique [14,15]. The findings were in agreement
with earlier measurements using an optical particle tracking
technique [12]. In a paper in the same volume of these
proceedings, recent measurements employing the extended
laser doppler technique are compared with results from
numerical simulations [16]. There, it is concluded that even the
most advanced state-of-the-art numerical simulations may not
capture, in an accurate and efficient way, the size effect of the
“large” particles in turbulence. Therefore, detailed information
can currently only be obtained from experiments.

Here, we present three-dimensional Lagrangian particle
tracking measurements of the motion of larger-than-η particles
in intense turbulent flows with Taylor micro-scale Reynolds
numbers in the range 370 ≤ Rλ ≤ 460 and compare the results
with those from tracer particles. We report the effect of parti-
cle size on the acceleration probability density functions (PDF)
and the Lagrangian acceleration correlations. The measured La-
grangian acceleration correlations of the large particles were
found to be close to that of the tracer particles. This suggests
that the particle trajectories of large particles are not biased to-
wards the low-vorticity, high-straining region as was observed
previously in numerical simulations in the case of small, very
heavy particles [6,7]. These findings are also supported by the
measurements of the local slopes of the fourth order Lagrangian
structure functions. We also found that large particles are not
uniformly distributed in our turbulence, with the clustering pos-
sibly caused by stagnation points of the flow. However, at this
time, the detailed mechanisms are unclear. Further experiments
in flows with different generating mechanisms are needed to
improve the understanding of this clustering phenomenon.

2. Experiment

We carried out three-dimensional Lagrangian Particle Track-
ing experiments in a von Kármán water flow between counter

rotating disks. The relevant parameters of the flow and the ex-
periments are shown in Table 1. All measurements were done
in an apparatus similar to that described earlier in Ref. [12].
The main differences were that the propellers were larger in
size (40 mm in diameter) and the AC driving motors were
more powerful (7.5 kW each). The particles were illuminated
by high-power Nd:YAG lasers, and three cameras at different
viewing angles were used to record the motion of the tracer
particles in the center of the apparatus. The measurement vol-
ume was approximately a cube of size ∼ (10 mm)3. Phantom
v7.2 cameras from Vision Research Inc. were used, which were
capable of recording at 37,000 frames per second at a resolution
of 256 × 256 pixels. We first processed the images and tracked
the particles in three-dimensional space using a predictive al-
gorithm to obtain the Lagrangian trajectories [17]. The image
intensities of particles often fluctuate due to many unfavorable
factors in the recording system, including the fluctuations in
laser intensity, the uneven sensitivity of the physical pixels in
the camera sensor array, and the electronic and thermal noise.
In the data analysis, when the image intensity of a particle was
below a chosen threshold, the tracking algorithm lost that par-
ticle and treated later particle tracks as a new trajectory. Con-
sequently, the raw trajectories contained many short segments
that in fact belonged to the same trajectory. Since the velocities
of these broken trajectory segments are correlated, the continu-
ation of both velocity and position can be used to connect these
segments. We report here the results from longer trajectories ob-
tained from applying a modified predictive tracking algorithm
that is able to connect particle tracks across missing segments in
the six-dimensional coordinate/velocities space [18]. To obtain
the velocities and accelerations, the measured particle positions
were first smoothed with a Gaussian filter and subsequently dif-
ferentiated, as described in Ref. [19].

We used three types of particles in the experiments. The
first type were approximately neutrally buoyant, polystyrene
particles with a mean diameter of 26 µm, which behave
as passive tracers in our flows. The second type were also
polystyrene particles, but with a mean diameter of 220 µm,
much larger than the Kolmogorov length scale of the flow. The
third type of particles were glass spheres with a diameter of
138 µm and a density of 2.5 times that of water. The parameters
of these particles are summarized in Table 2. The conventional
Stokes number StK is defined as

StK ≡ τv

τη
= 1

18

(
ρp

ρ f

) (
dp

η

)2

, (1)
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Table 2
Parameters of the particles used in the experiments

Rλ dp (µm) ρp (g/cm3) 〈a2〉1/2 (m/s2) τv (ms) StK τd (ms) Std Rep τp (ms) Stp

370 26 ± 4 1.06 8.9 ± 0.9 0.04 0.01
– 220 ± 27 1.06 8.7 ± 1.7 2.85 0.76 8.8 0.33 35 1.0 0.11
– 138 ± 13 2.5 9.0 ± 1.8 2.65 0.70 6.4 0.41 22 1.1 0.18
460 26 ± 4 1.06 31 ± 3 0.04 0.02
– 220 ± 27 1.06 30 ± 6 2.85 1.5 5.6 0.51 55 0.8 0.15
– 138 ± 13 2.5 33 ± 6 2.65 1.4 4.1 0.65 35 0.9 0.23

dp and ρp are the diameter and the material density of the particles. τv ≡ (1/18)(ρp/ρ f )(d2
p/ν) is the viscous relaxation time. StK ≡ τv/τη is the Stokes number

based on the Kolmogorov time scale. τd ≡ (d2
p/ε)1/3 is the turbulence dynamic time at the scale of the particle diameter. Std ≡ τv/τd is the Stokes number based

on the turbulence dynamic time scale. Rep ≡ dpu′/ν is the particle Reynolds number based on the local turbulence velocity at the scale of the particle diameter.
τp ≡ τv/C f is the particle relaxation time scale taking into account the finite inertia of the particles, C f = CD Re/24 is the increase of drag due to the finite
Reynolds number effect and CD is the usual drag coefficient. Stp ≡ τp/τd is the Stokes number that characterizes the response of large particles in turbulent flows.

where the viscous relaxation time of the particle is

τv ≡ 1
18

(
ρp

ρ f

) d2
p

ν
. (2)

In the definition of the traditional Stokes number, it is assumed
that the dynamics of a particle in a turbulent flow is described by
a flow time scale – the Kolmogorov time scale τη and a particle
response time scale – the viscous relaxation time τv . These
choices of time scales are appropriate for particles with sizes
smaller than the Kolmogorov length scale η. For particles with
sizes larger than the Kolmogorov length scale, the relevant flow
time scale is not the Kolmogorov time scale, but the turbulent
dynamic time at the scale of the particle size, i.e.

τd ≡
(

d2
p

ε

)1/3

. (3)

Using this time scale, we can define another Stokes number as1

Std ≡ τv

τd
= 1

18

(
ρp

ρ f

) (
dp

η

)4/3

, (4)

which is notably smaller than StK given by Eq. (1) for particles
with size larger than η.

A further complication to the definition of Stokes number is
that the use of the viscous relaxation time as the particle time
scale implies that the particle Reynolds number is vanishingly
small, which is not true for particles with sizes larger than η
and hence the finite Reynolds number correction is needed.
Following [28], we define the particle Reynolds number based
on the fluctuation velocity of the turbulent flow,

Rep ≡ u′dp

ν
. (5)

The drag force on particles with small, but finite Reynolds
numbers are characterized by the drag coefficient as [20]

CD = 24
Rep

(
1 + 0.1315Ren

p

)
, (6)

1 After the completion of the current work, the authors received the preprint
of Ref. [10], in which a modified Stokes number as in Eq. (4) was also
independently proposed.

where the exponent n also depends on Rep:

n = 0.82 − 0.05 log10 Rep. (7)

The characteristic time scale for particles with finite Reynolds
numbers are related to the viscous time scale as

τp = τv
24

RepCD
= τv

1 + 0.1315Ren
p
. (8)

We note that this particle response time can be formally
derived by considering a particle, initially at rest, being carried
by a uniform flow. The relevance of τp for particles in a
turbulent flow is, on the other hand, an open question, as we
will discuss later.

In the limit of Rep → 0, the drag coefficient given by
Eq. (6) recovers the Stokes drag law CD = 24/Rep and the
particle time scale τp is the same as τv .

With these choices for the relevant time scales, we define a
modified Stokes number as

Stp ≡ τp

τd
= 1

18

(
ρp

ρ f

)
(dp/η)4/3

1 + 0.1315Ren
p
. (9)

3. Result

First, we examine the effect of the size on particle accel-
eration. The measured PDFs of the normalized acceleration
a+ ≡ a/〈a2〉1/2 are plotted in Fig. 1. Due to technical rea-
sons, for the large particles the total number of samples were
much less than that for the tracer particles. In order to make an
accurate comparison of the PDFs, we restrict our attention only
to events with probability larger than 10−5 and normalize the
PDFs for the particles accordingly. The normalized PDFs of the
large particles are close to the ones of the tracer particles. This is
in agreement with previous particle tracking measurements [12,
19] and more recent doppler measurements [14,15]. However,
the following difference can be observed: At both Reynolds
numbers, the tails of the acceleration PDFs of the large parti-
cles are suppressed slightly compared to that of the tracer parti-
cles. This is consistent with our earlier measurements [12]. The
effect of suppression increases at larger Reynolds numbers, or
equivalently, at larger Stokes numbers. It might be argued that
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Fig. 1. PDF of the normalized acceleration a+ ≡ a/〈a2〉1/2. (a) In the
Rλ = 370 experiment; (b) In the Rλ = 460 experiment. The dashed lines
are from the previous measurements using silicon-strip detectors in a similar
apparatus at Rλ = 690 [19]. The solid lines, the circles, and the triangles are
the results from the tracer particles, the large polystyrene particles, and the glass
particles, respectively.

the modified Stokes number Stp is more appropriate in char-
acterizing the effect of the large particles: The glass particles,
which have a larger Stp than the larger polystyrene particles,
show a stronger effect on acceleration, but the conventional
Stokes numbers StK for the glass particles are smaller than
the polystyrene particles at both Reynolds numbers. Of course,
these arguments are based on small differences between the
PDFs. Since the differences in both the traditional Stokes num-
ber StK or the corrected Stokes number Stp are very small, the
relevance of StK might not be completely ruled out. Further ex-
periments with a systematic study using different particles and
various flow conditions are required to answer this question.

On the other hand, the effect of the large particles on acceler-
ation is smaller compared to the heavy, but small, point-like par-
ticles. Recent numerical simulations [7] and experiments [21]
showed that for the heavy, point-like particles, the effect is very
pronounced even at StK ≈ 0.1, which is smaller than most
of the Stp in the current experiment. In addition, we note that
the measured acceleration variances in the current experiments
are nearly the same for three different types of particles at the
same Reynolds number, in agreement with previous measure-
ments reported in Ref. [12], where the decrease in acceleration
variance is notable only for particles with size dp/η > 7. The
recent measurements by Qureshi et al. [14] seem to suggest that
the decrease in acceleration occurs at dp/η > 10. This is also

Fig. 2. Local slopes of the 4-th order Lagrangian velocity structure functions
measured with different particles in the Rλ = 370 experiment. The dash-
dotted, dashed, and solid lines are the results with the tracer particles, the large
polystyrene particles, and the glass particles, respectively. The error bars are
estimated from the scattering of measurements in three different directions.

in contrast to the observations of large reduction of accelera-
tion variance with heavy particles [7]. There, it was shown in
numerical simulations that at small Stokes numbers, the main
effect on acceleration is due to the preferential concentration of
particles in the straining region. Therefore, the differences be-
tween heavy particles and large particles suggest that the large
particles are not centrifuged out of the high-vorticity regions as
it is the case for the heavy particles [7]. The effect on acceler-
ation is then mainly due to the filtering of violent, fast events
due to the finite response time of these particles.

This can also be tested by the local slopes of the higher
order Lagrangian velocity structure functions DL

n (τ ) ≡ 〈[u(t +
τ) − u(t)]n〉, measured using the Extended Self-Similarity
(ESS) ansatz. It is known that these are very sensitive to
Stokes number [22]: the ESS local slope for the tracer particles
displays the so-called “bottleneck” at time lags of a few τη,
which is mainly due to the high-acceleration events, while
the “bottleneck” is significantly suppressed in the ESS local
slope for point-like, inertial particles, even when the Stokes
number (Stk for the point-like particles used in simulations)
is as small as 0.16. Fig. 2 shows the ESS local slopes of the
fourth-order Lagrangian structure functions measured from our
experiments using the different particles. The large particles
suppress the magnitudes of the “bottleneck” in the ESS local
slopes, similar to the effect of the point-particles observed
in numerical simulations [22]. Moreover, the suppressed
“bottleneck” regions were shifted towards larger time-lags. As
shown in a recent work [23], over-filtering the velocities of
tracer particles produces this combination of suppression and
shift. The effects on the ESS local slope mainly come from
the “filtering” by the large sizes of these particles, rather than
from the effect of selecting preferential flow regions. This is
in agreement with the observed effects on acceleration PDFs
discussed above and acceleration correlations described below.
In addition, the effect of the glass particles are more pronounced
compared to the larger, but lighter polystyrene particles, which
again supports the choice of using Stp over StK .
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Fig. 3. Lagrangian correlation of acceleration measured with different particles
in the Rλ = 460 experiment. The dash-dotted, dashed, and solid lines are the
results with the tracer particles, the large polystyrene particles, and the glass
particles, respectively.

Another quantity that we measured is the Lagrangian
acceleration correlation, which is known to have a characteristic
time scale of approximately 2.2τη [24,25] in a wide range of
Reynolds numbers. In all our experiments, the particle time
scale τp is always smaller than the Kolmogorov time scale
τη. Therefore, the effect of the particles on the Lagrangian
acceleration correlation is expected to be small. As shown
in Fig. 3, the measured acceleration correlations of the large
particles are almost indistinguishable, within experimental
uncertainty, from that of tracer particles, except at very small
time lags, where the finite particle response time would result
in higher correlations of Lagrangian acceleration.

In an effort to determine whether the particles are uniformly
distributed in space, we also measured the radial distribution
functions [6]. We observed an increase of the radial distribution
functions for the two types of large particles at separations
smaller than 15 ∼ 20η. The volume fractions of the particles
used in our flow were very small (less than 10−4 in all
cases). This increase of the radial distribution function can not
be explained by the excluded volume effect alone as in the
packing of hard spheres [26]. Judging from the acceleration
PDFs, there is no strong evidence that the large particles are
preferentially distributed in the low-vorticity, high-strain rate
regions as in the case of point-like, heavy particles [7]. The
precise mechanism of this increase of the radial distribution
function is currently not known and will be an interesting
problem for further studies. A possible candidate is the
hydrodynamical interactions between particles. We note that
the particle Reynolds numbers are much larger than unity.
In a steady flow, there will be wakes forming behind the
particles [27] at these Reynolds numbers.

Another possible reason for the increase of the radial
distribution of the large particles are the stagnation points in
the turbulent flow. We find evidence that the large particles
are found more likely in the center of the apparatus, where
a statistical stagnation point resides, while the small, tracer
particles distribute uniformly in the volume measured. More
detailed investigations are currently being carried out.

4. Conclusion

We measured the accelerations and Lagrangian velocities of
particles with sizes larger than the Kolmogorov length scales in
intense turbulent flows. We propose a modified Stokes number
to characterize the effect of particle size and inertia. The
modified Stokes number includes a correction due to particle
Reynolds number. The measured acceleration PDFs of the large
particles deviate slightly from that of tracer particles, with
the tails being weakly suppressed. The measured Lagrangian
acceleration correlations of the larger particles are close to that
of the tracer particles, which indicates that the large particles
were sampling the same flow region as the tracer particles
did. The effect of particle size may thus be attributed to the
filtering of the turbulence at the scale of the particles, which
are captured by the modified Stokes number. These findings
are also supported by the measurement of the ESS local slopes
of the fourth-order Lagrangian velocity structure functions.
We also observed that the large particles were not distributed
uniformly in out flows. Although the experiments suggest that
the stagnation points of the turbulence cause this effect, the
precise mechanism of this inhomogeneity remains an open
problem for further studies.
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Abstract

The use of Euler equations in Geophysics and Astrophysics is reviewed. Recent developments and new applications are emphasized. Examples
are buoyancy columns in rotating fluids, possible preference for axisymmetric inertial convection at low Prandtl numbers, resonance properties of
precessing spheroidal fluid filled cavities, and the possible absence of turbulence in rotating shear flows in the limit of high Reynolds numbers.
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1. Introduction

Euler equations as well as their dissipative equivalent, the
Navier–Stokes equations, have been applied to a large variety
of problems in geophysics and astrophysics and through their
use an impressive progress in the understanding of dynamical
processes occurring in nature has been achieved. One of the
not yet fully understood aspects of these applications is the
close similarity between dynamical phenomena observed in
the atmosphere and oceans and their pendants in laboratory
experiments. This is surprising since the latter usually exhibit
laminar flows, while their natural equivalents are fully
turbulent. We shall return to this point at the end of this paper.

Fluid dynamics in geophysics and astrophysics is governed
by actions of Coriolis and buoyancy forces. Euler equations for
incompressible fluids seem to have even more applications in a
rotating system than in a non-rotating system. This is caused
by the property that in rotating fluids viscous dissipation is
confined to thin layers attached to the solid boundaries, called
Ekman layers, or to shear layers parallel to the axis of rotation,
called Stewartson layers. The description of fluid flows can thus
be simplified considerably in that the Euler equations govern
the dynamics in the bulk of the fluid, while modifications

∗ Tel.: +49 0921 55 3329; fax: +49 0921 55 5820.
E-mail address: busse@uni-bayreuth.de.

caused by viscous friction can be treated as perturbations. We
refer to Greenspan’s [1] book for details on the various ways
in which problems can be solved through expansions in powers
of the Ekman number E . This parameter is defined with the
kinematic viscosity ν of the fluid, the angular velocity Ω of
rotation, and a typical length scale h of the system in the
direction of the axis of rotation, E = ν/Ωh2. E is usually rather
small, say of the order 10−3 or less, in laboratory experiments
with rotating fluids.

A second property of rotating systems that facilitates
the description of dynamical processes on the basis of
dissipationless equations is the possible balance between
Coriolis and buoyancy forces. In contrast to non-rotating
systems where simple equilibria can only be obtained when the
hydrostatic balance, ∇ρ × ∇Φ = 0, is satisfied, a much wider
variety of equilibria can be attained in rotating fluids in the form
of the thermal wind balance,

2Ω · ∇v = ∇ρ × ∇Φ. (1)

Here v is the velocity field, ρ denotes the density distribution
of the fluid and Φ is the potential of the force acting on it.
Some examples for relationship (1) will be mentioned in the
following.

Since the applications of Euler equations in geophysics and
astrophysics go back nearly as far as their first publication in
1757, it is impossible to review all of them in a short article.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.024
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Fig. 1. Sketches for the dynamics of Rossby waves.

The use of Euler equations flourished in the 19th century when
water waves were studied and the theory of the action of
tides and of precession on rotating fluids was developed. A
good access to these and other applications can be found in
Lamb’s [2] “Hydrodynamics”. Modern books on geophysical
and astrophysical fluid dynamics are those of (in alphabetical
order) Cushman-Roisin [3], Ghil and Childress [4], Gill [5],
McWilliams [6], Pedlosky [7], and Tassoul [8]. Most of these
books deal with problems in shallow fluid layers such as those
posed by the dynamics of oceans and of the atmosphere.

In the present paper we shall focus the attention on more
general configurations which are applicable to the dynamics
of the deep interiors of planets and stars. Some recent
developments will be reviewed which are not yet well known
and indeed are yet unpublished in parts. Magnetohydrodynamic
applications will not be considered in this paper. For these we
refer to the recent volume [9] and the book by Rüdiger and
Hollerbach [10].

2. Thermal Rossby waves

The basic theorem of rotating fluid dynamics is the
Proudman–Taylor theorem which states that steady small
amplitude motions of a barotropic rotating fluid do not vary in
the direction of the axis of rotation when viscous effects can
be neglected. “Small amplitude” means in this connection that
the vorticity of the motion is negligible in comparison to the
rotation rate of the system. The Proudman–Taylor condition is
a consequence of the complete balance between Coriolis force
and pressure gradient. This balance is also called geostrophic
balance since it holds in good approximation for the large scale
motions in the Earth’s atmosphere.

Two-dimensional fluid motions cannot often be accommo-
dated in physical reality and motions are thus forced to be-
come time dependent. In the simplest cases the motions assume
the form of propagating Rossby waves. As indicated in Fig. 1,
Rossby waves can be understood on the basis of the conserva-
tion of angular momentum. When a column of fluid (aligned
with the axis of rotation) moves into a shallower place it be-
comes compressed and, because of the conservation of mass, its
moment of inertia increases. To conserve angular momentum its
rotation relative to an inertial system must decrease. Relative to

the rotating system it thus acquires anticyclonic vorticity. The
opposite process happens when the column moves into a deeper
place where it gets stretched in the direction of the axis of rota-
tion and acquires cyclonic vorticity.

In the annular fluid layer of Fig. 1 the depth decreases with
increasing distance from the axis. A sinusoidal displacement
of the initially static fluid columns leads to a flow structure in
the form of vortices which tend to move the columns to new
positions as indicated by the dashed line in the lower plot of
the figure, i.e. the initial sinusoidal displacement propagates
as a wave in the prograde direction. A retrograde propagation
relative to the sense of rotation will be obtained when the depth
of the annular layer increases with distance from the axis.

A dispersion relation for Rossby waves can be derived when
the linearized Euler equations relative to a system rotating with
the constant angular velocity Ω are considered,

∂

∂t
v + 2 Ω × v = −∇π, (2a)

∇ · v = 0. (2b)

Assuming the small-gap limit of the annulus configuration we
introduce a cartesian system of coordinates with the x-, y-
and z-coordinates in the radial, azimuthal and axial directions,
respectively. The velocity field can then be written in the form

v = ∇ψ(x, y) × k exp{iωt} + · · · , (3)

where k is the unit vector in the z-direction and the dots
indicate higher-order contributions since the deviation from the
Proudman–Taylor condition are assumed to be small. By taking
the z-component of the curl of Eq. (2a) we obtain

−iω'2ψ − 2Ωk · ∇vz = 0 (4)

where the two-dimensional Laplacian '2 ≡ ∂2

∂x2 + ∂2

∂y2 has
been introduced. After averaging Eq. (4) over the height h of
the annulus and using the boundary conditions,

vz ± η
∂

∂y
ψ = 0 at z = ±h/2, (5)

we find

−iω'2ψ + 4Ωη

h
∂

∂y
ψ = 0. (6)

The small parameter η is the tangent of the angle χ between
the top boundary and the equatorial plane of the annulus. For
simplicity the latter has been assumed as a plane of symmetry
of the configuration as is also indicated in Fig. 2. The analysis
of asymmetric configurations proceeds analogously since only
the variation of the height in the direction of the axis of rotation
matters.

A solution of Eq. (6) is easily obtained,

ψ(x, y) = cos(πx/d) exp{iαy}

corresponding to ω = − 4Ωηα

h(α2 + (π/d)2)
, (7)
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Fig. 2. Geometrical configuration of the rotating annulus.

which satisfies the boundary condition that the normal
component of the velocity field vanishes at the side walls,
x = ±d/2, of the annulus.

Thermal Rossby waves are generated as growing distur-
bances when a temperature difference, T2 − T1, and a gravity
force are applied in the x-direction such that a basic state with
an unstable density stratification is obtained. The geometrical
configuration is sketched in Fig. 2. In the experimental realiza-
tion of the problem [11] the centrifugal force Ω2r0 is used as
gravity and the temperature gradient must point outward in or-
der to create the unstable density stratification. For geophysical
applications one may think of the opposite directions for grav-
ity and temperature gradient, but the mathematical problem is
the same in both cases.

It is convenient to use a dimensionless description through
the introduction of d as length scale, d2/ν as time scale, and
(T2 − T1)/P as temperature scale where the Prandtl number
P is defined as the ratio between kinematic viscosity ν and
thermal diffusivity κ . The dimensionless equations for the
streamfunction ψ and for the deviation Θ of the temperature
from its static distribution assume the form

−iω'2ψ + η∗ ∂

∂y
ψ = R

∂

∂y
Θ, (8a)

iωPΘ + ∂

∂y
ψ = 0, (8b)

where the Rayleigh number R and the dimensionless rotation
parameter η∗ are defined by

R = γ (T2 − T1)Ω2r0d3

νκ
, η∗ = 4Ωηd3

νh
. (9)

Here γ denotes the coefficient of thermal expansion. In keeping
with the philosophy of the Euler equations we have neglected
the thermal diffusion term in the linearized heat equation (8b).
Since the laboratory version of the problem has been chosen
the higher temperature T2 is assumed at the outer wall of the

Fig. 3. Move in the complex ω-plane of the eigenvalues ω1 and ω2 with
increasing R from their position at R = 0.

annulus. The solution for ψ of Eq. (8) has the same form as
that of Eq. (6) while the expressions for Θ and ω are given by

Θ = −αψ

ωP
exp{iωt} = − cos(πx/d)

α

ωP
exp{iαy + iωt} (10)

corresponding to

ω1,2 = − η∗α
2(α2 + π2)

±
√

(αη∗)2

4(π2 + α2)2 − Rα2

P(π2 + α2)
. (11)

In the limit 0 ≤ R ( η∗2 P/(π2 + α2) we recover the angular
frequency of Rossby waves and in addition find the dispersion
relation for a slow mode,

ω1 = − η∗α
(α2 + π2)

, ω2 = − Rα

Pη∗ . (12)

In the case of the slow mode described by ω2 the part of
the Coriolis force that is not balanced by the pressure gradient
is balanced by the buoyancy column Θ . As R increases the
frequencies ω1 and ω2 move along the negative real axis in
the complex ω-plane as indicated in Fig. 3. When R exceeds
η∗2 P/4(π2 + α2), ω1 acquires a negative imaginary part
indicating a growing instability, called the thermal Rossby
wave, while ω2 corresponds to a decaying mode.

When dissipative terms are added in Eq. (8) all modes will
decay except, possibly, the thermal Rossby wave. The critical
value Rc of the Rayleigh number for the onset of the latter
cannot be determined from Eq. (8) since it would correspond to
an infinite α. When viscous friction and thermal diffusion are
taken into account [12,13] the onset of thermal Rossby waves
in the presence of stress-free walls is described by

Rc = η
4
3
P (3 + π2η

− 2
3

P + · · ·), αc = η
1
3
P (1 + · · ·),

ωc = −
√

2η
2
3
P (1 + · · ·)/P with ηP ≡ η∗ P√

2(1 + P)
. (13)

This result describes in good approximation the onset of con-
vection not only in rotating annuli, but in rotating fluid spheres
as well [12] since only the azimuthal length scale described by
α is important and the boundaries in the radial (i.e. perpendicu-
lar to the axis) direction do not enter the expressions in first ap-
proximation. For a more detailed discussion of the relationship
between the analytical result (13) and numerical solutions for
convection in rotating spheres see the recent review [14] where
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also the relevance of the convection flows for the generation of
planetary magnetic fields is discussed.

Here we want to return to the slow mode with its nearly
stagnant buoyancy column. While it is damped in the simple
annulus model, it becomes physically relevant when more
than one source of buoyancy is admitted. In the Earth’s core
chemical buoyancy is released in the form of light elements
in the neighborhood of the growing solid inner core and joins
the thermal buoyancy in driving convection in the liquid outer
core. This situation can be modeled in the rotating annulus
configuration when a compositional gradient, (C2 − C1)/d,
is added to the thermal gradient. A compositional Rayleigh
number, CR , can be defined in analogy to the definition (9) of R
by replacing γ (T2−T1) by γC (C2−C1). The diffusion equation
for the light elements is identical to the heat equation except
that the Laplace operator is multiplied by the factor 1/L where
L is the Lewis number. The latter denotes the ratio between
thermal and compositional diffusivities and is assumed to be
very large. In the limit |CR |α

Pη∗ ( 1 the angular frequency of the
slow mode and the corresponding value of the Rayleigh number
R are given by [15],

ω = −αCR

Pη∗ , Rc ≈ (π2 + α2)3

α2 − Pω2(π2 + α2)

α2 . (14)

Since the last term can be neglected in the comparison with
the preceding term, we recover the critical Rayleigh number
for the onset of Rayleigh–Bénard convection in the absence of
rotation! The buoyancy provided by the compositional gradient
just serves to counteract the yet unbalanced portion of the
Coriolis force. Note that this balance works independently of
the sign of CR . Please also note that the factor CR/P is missing
in the second term on the right-hand side in Eq. (13b) of [15].

3. Inertial waves and inertial convection

Inertial oscillations and waves represent an important class
of solutions of the Euler equations in a rotating system.
Axisymmetric solutions in containers that are symmetric with
respect to the axis of rotation assume the form of standing
oscillations, while non-axisymmetric solutions propagate in the
form of waves. In contrast to Rossby waves which can be
regarded as the quasi geostrophic subset of inertial waves and
which propagate only in a single azimuthal direction, non-
axisymmetric inertial waves may propagate in both azimuthal
directions, albeit with different speeds. For an introduction to
the theory of inertial waves we refer to Greenspan’s [1] book.
Among more recent results we like to mention the simplified
representations of inertial waves in rotating spheres [16] and
spheroids [17]. The theory of inertial oscillations is not only
valid for incompressible fluids, but holds for barotropic fluids as
well [18] and thus can be applied to the Sun and other stars. An
unambiguous observational evidence for stellar inertial waves
has not yet been obtained, however.

Slight modifications of inertial waves through the introduc-
tion of buoyancy and dissipative effects can lead to instabili-
ties just as in the case of thermal Rossby waves. This property
has been used by Zhang [19] and by Busse and Simitev [20]

to obtain analytical solutions describing the onset of non-
axisymmetric thermal convection in rotating spheres heated
from within in the presence of a stress-free outer boundary. The
corresponding problem with a no-slip outer boundary has been
treated by Zhang [21]. We briefly study this problem here and
describe some new results for axisymmetric inertial convection.

We consider a homogeneously heated, self-gravitating fluid
sphere rotating with the constant angular velocity Ω about
an axis fixed in space. A static state thus exists with the
temperature distribution TS = T0 − βr2

0r2/2 and the gravity
field given by g = −γgr0r where r is the position vector
with respect to the center of the sphere and r is its length
measured in fractions of the radius r0 of the sphere. In addition
to the length r0, the time r2

0/ν and the temperature ν2/γgγ r4
0

are used as scales for the dimensionless description of the
problem. The density is assumed to be constant except in
the gravity term where its temperature dependence given by
γ ≡ −(d./dT )/. = const. is taken into account. The basic
equations of motion and the heat equation for the deviation Θ
from the static temperature distribution are thus given by

∂t v + τk × v + ∇π = Θr + ∇2v, (15a)

∇ · v = 0, (15b)

0 = Rr · v + ∇2Θ − P∂tΘ, (15c)

where the Rayleigh number R, the Coriolis parameter τ and the
Prandtl number P are defined by

R = γ γgβr6
0

νκ
, τ = 2Ωr2

0
ν

, P = ν

κ
. (16)

We have neglected the nonlinear terms v · ∇v and v · ∇Θ in Eq.
(15) since we restrict the attention to the problem of the onset
of convection in the form of small disturbances. In the limit of
high τ the right-hand sides of Eq. (15) can be neglected and
the equation for inertial waves is obtained. For the description
of inertial wave solutions v0 we use the general representation
in terms of poloidal and toroidal components for the solenoidal
field v0,

v0 = ∇ × (∇( f exp{imφ + iωt}) × r)
+ ∇(g exp{imφ + iωt}) × r, (17)

where a spherical system of coordinates r, θ, φ has been
introduced and f, g are functions of r and θ . By multiplying
the (curl)2 and the curl of the inertial wave equation by r we
obtain two equations for f and g,

[iωL2 − imτ ]∇2 f − τQg = 0, (18a)

[iωL2 − imτ ]g + τQ f = 0, (18b)

where the operators L2 and Q are defined by

L2 ≡ (sin θ)−1∂θ (sin θ∂θ ) − m2, (19a)

Q ≡ r cos θ∇2 − (L2 + r∂r )(cos θ∂r − r−1 sin θ∂θ ). (19b)

The only boundary condition to be satisfied by solutions of Eq.
(18) is f = 0 at r = 1.
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In the axisymmetric case m = 0 simple solutions of Eq. (18)
can be found such as

f = P1(r − r3), g = 2ir2τ P2/3ω with ω = ± τ√
5
, (20a)

f = P2(r2 − r4),

g = iτ
(

P3
4
5

r3 − 3P1

(
r − 7

5
r3

)) /
ω

with ω = ±τ

√
3
7
, (20b)

f = P1

(
r − 14

5
r3 + 9

5
r5

)
+ P3(r3 − r5)

(
1
5

− ω2

τ 2

)
7
3
,

g = i
(

P2

(
28
3

r2 − 12r4
)

ω

τ
+ P4r4

(
2τ

5ω
− 2ω

τ

))

with ω = ±τ

√
1
3

±
√

4
63

, (20c)

where the functions Pn = Pn(cos θ) are the Legendre
polynomials. A typical property of inertial modes with m =
0 is that solutions always exist with both signs of ω such
that they can be realized in the form of standing oscillations.
This property contrasts with that of non-axisymmetric modes
which always propagate in either the prograde or the retrograde
direction, but with different speeds.

In order to solve the full Eq. (15) by the perturbation
approach we first obtain an expression for Θ . Restricting
attention to the limit Pτ ( 1, but allowing for either a fixed
temperature, Θ = 0 at r = 1 (case A), or a thermally insulating
boundary, ∂Θ/∂r = 0 at r = 1 (case B), we obtain

Θ = Pl(cos θ) exp{iωt}hl(r), (21)

with

hl(r) = l(l + 1)R
(

rl+4

(l + 5)(l + 4) − (l + 1)l

− rl+2

(l + 3)(l + 2) − (l + 1)l
− crl

)
, (22)

where the coefficient c is given by

c =






1
(l + 5)(l + 4) − (l + 1)l

− 1
(l + 3)(l + 2) − (l + 1)l

,

(l + 4)/ l
(l + 5)(l + 4) − (l + 1)l

− (l + 2)/ l
(l + 3)(l + 2) − (l + 1)l

,

(23)

in the cases A and B, respectively. The expressions (22) and
(23) apply only for l = 1 and l = 2, i.e. for solutions (20a)
and (20b). For solution (20c) and all other axisymmetric inertial
oscillations more complex expressions must be expected.

When the perturbation expansion v = v0 + v1 + · · · is
inserted into Eq. (15a) it must be taken into account that the
perturbation v1 consists of two parts, v1 = vi + vb where vi
denotes the perturbation of the interior flow, while vb is the
Ekman boundary flow which is required because v0 does not
satisfy the viscous boundary condition. Assuming a stress-free
boundary we require

r · ∇(r × (v0 + vb)/r2) = 0 at r = 1. (24)

The solvability condition for the equation for v1 is obtained by
multiplying it with v∗

0 and averaging it over the fluid sphere,

0 = 〈Θr · v∗
0〉 +〈 v∗

0 · ∇2(v0 + vb)〉, (25)

where the brackets 〈· · ·〉 indicate the average over the fluid
sphere and the ∗ indicates the complex conjugate. We have
also anticipated that there is no perturbation contribution to
the frequency since all terms in Eq. (25) are real. In the
evaluation of the integrals in Eq. (25) the remarkable result that
〈v∗

0 · ∇2v0〉 = 0 holds for all inertial oscillations in rotating
spheroidal cavities [17] can be used. Otherwise the evaluation
proceeds as in Section 2 of [20] and yields in the case of
solution (20a) the analytical expression

R = 44 · (7 · 5 · 3)2

173 ∓ 99
≈ 4169.4 ± 2386.0, (26)

where the upper sign applies in the case A and the lower sign
in case B. For solution (20b) higher values of R are found
in both cases and the same must be expected for all other
axisymmetric solutions. Since the values (26) are only slightly
larger than those obtained in [20] for non-axisymmetric inertial
convection with m = 1 in the cases A and B, respectively,
a close competition of the latter mode and convection in the
form of the inertial oscillation (20a) must be expected at the
onset of convection for sufficiently small values of Pτ . Indeed,
numerical computations indicate that for intervals around Pτ =
20 and Pτ = 5 in the cases A and B, respectively, the
axisymmetric mode sets in at a lower value of the Rayleigh
number than all non-axisymmetric ones.

The axisymmetric convection described by the inertial wave
(20a) corresponds to a flow along the axis of rotation from south
to north in one phase of the cycle with a return flow along the
surface which owing to the Coriolis force yields a retrograde
(prograde) zonal flow in the northern (southern) hemisphere.
The Coriolis force acting on this zonal flow in turn causes a
reversal of the meridional circulation with the flow along the
axis directed from north to south in the second half of the cycle.
It will be of interest to find out whether such oscillations are
realized in rotating stars.

4. Solutions of nonlinear Euler equations

4.1. Baroclinic rotating stars

Ever since von Zeipel [22] formulated his famous
theorem that a hydrostatic equilibrium in rotating stars is
not possible, the state of motion in axisymmetric rotating
stars has been of considerable concern to astrophysicists.
Vogt [23], Eddington [24], and later Sweet [25] assumed
that low amplitude meridional circulations are realized, but
it soon became apparent that those motions break down
through the advection of angular momentum [26,8,27]. An
alternative resolution of von Zeipel’s paradox has been
proposed by Schwarzschild [28], Roxburgh [29], and others
who demonstrated that for a particular differential rotation
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which depends only on the distance from the center the
basic equations of stellar structure could be satisfied without
meridional circulations. It seems unlikely, however, that such
a special differential rotation could be attained from arbitrary
initial angular momentum distributions. Here we want to draw
attention to more general solutions of the Euler equations
that can accommodate angular momentum distributions with
arbitrary dependences on the distance from the axis.

To demonstrate the essential points we consider an idealized
star with most of its mass concentrated in the core and its energy
flux F dependent only on the temperature distribution such that

Φ = −g0r2
0/r and F = f (T )∇T (27)

can be assumed where r0 is the radius of the star and g0 is its
surface gravity. In the absence of motion in an inertial system
the hydrostatic equilibrium,

T = T (0)(r), p = p(0)(r), ρ = ρ(0)(r), (28)

is possible. In particular, it can be assumed that the boundary
condition T = ρ = 0 for p = 0 is satisfied. Since we assume
an ideal gas, p/ρ = RgT where Rg is the gas constant, solution
(28) satisfies the relationship

1
RgT (0)

∇Φ = − 1
p(0)

∇ p(0) = p(0)∇ 1
p(0)

. (29)

We anticipate that in the presence of a motion of the form
v = ω(r, θ)k × r with θ = arccos(r · k/r), where k denotes
a constant unit vector, the thermodynamic variables can be
written in the form

T = T (0)(r), p = p(0) + p(1),

ρ = (p(0) + p(1))/RgT (0),
(30)

where p(1) is not necessarily small in comparison to p(0). The
nonlinear equation of motion now assumes the form

ρω2(k × r) × k = ∇ p(1) + p(1)

RgT (0)
∇Φ

= p(0)∇ p(1)

p(0)
= p(0)∇ p(1) + p(0)

p(0)
, (31)

from which

ω2(k × r) × k/RgT (0) = ∇ ln
p(1) + p(0)

p(0)
, (32)

follows. Necessary and sufficient for a solution p(1) of Eq. (31)
is thus

ω2 = G(r sin θ)RgT (0)(r), (33)

where the arbitrary function G is sufficient to accommodate
all axisymmetric angular momentum distributions [27]. In
the special case of a constant function G a purely r -
dependent angular velocity ω is obtained as proposed by
Schwarzschild [28] and Roxburgh [29].

In Fig. 4 a sketch for an example of the solution (33) is
shown. Typically, the ellipticity of the isopycnals exceeds that
of the isobars which in turn exceeds that of the isotherms.

Fig. 4. Simple model of a rotating baroclinic star. Surfaces of constant
temperature (solid lines), of constant pressure (dashed lines) and constant
density (dash-dotted lines) are shown.

Fig. 5. Geometrical configuration of the precessing spheroidal cavity.

4.2. Flow in a precessing spheroidal cavity

The flow in a precessing spheroidal cavity is of considerable
geophysical interest since it applies to the liquid core of
the Earth. The solar–lunar precession of the Earth’s axis of
rotation about the normal of the ecliptic plane with a period of
25 700 years is a result of the torques exerted by Sun and Moon
on the equatorial bulge of the Earth. The ellipsoidal flattening
of the Earth’s figure caused by the centrifugal potential is
about 1/300. Owing to its higher density the ellipticity of the
iron core is lower than that of the Earth’s mantle. Hence the
precessional torques exerted on the latter by Sun and Moon are
larger than those acting on the core. There is thus an unbalanced
precessional torque exerted by the mantle on the core. This
situation can be modeled by a fluid filled spheroidal cavity
rotating about its figure axis in a system that is rotating about a
different axis as indicated in Fig. 5.



F.H. Busse / Physica D 237 (2008) 2101–2110 2107

The Euler equations relative to the frame of reference
precessing with the angular velocity Ω (mantle frame) are given
by

∂t v + v · ∇v + 2Ω × v + ∇π = 0, (34a)

∇ · v = 0. (34b)

The normal component of the velocity must vanish at the
boundary of the spheroidal cavity,

v · (r + ζk r · k) = 0 at |r|2 + ζ |k · r|2 = 1, (35)

where we have introduced the equatorial radius a of the cavity
as length scale and where the parameter ζ is related to the
ellipticity η = (a − c)/a through ζ = η(2 − η)/(1 − η)2.
The unit vector k indicates the figure axis of the cavity.

Sloudsky [30] and later independently Poincaré [31] derived
a steady solution with constant vorticity for the problem (34)
and (35),

v = ω × r + ∇Ψ with (36a)

ω = k · ω

(
k + k × (Ω × k)

2 + ζ

ζk · ω + 2k · Ω(1 + ζ )

)
, (36b)

Ψ = ζk · r (Ω × k) · r k · ω

ζk · ω + 2k · Ω(1 + ζ )
. (36c)

There are two difficulties with this solution which occur also in
other applications of the Euler equations:

• The vorticity component in the direction of k remains
undetermined.

• The assumption of a constant vorticity vector in the interior
may not be correct, even in the limit of vanishing viscosity.

The first of these difficulties can be resolved when the
viscous Ekman layer is added to the solution (36). According
to the analysis of Busse [32] the expression (36b) becomes

ω = ω2

(

k + k

× Ω2.62
√

Eω + (Ω × k)(ηω2 + k · Ω + 0.259
√

E/ω)

(2.62
√

Eω)2 + (ηω2 + k · Ω + 0.259
√

E/ω)2

)

(37)

where E = ν/(a2ωc) is the Ekman number. In addition to the
length scale a we are using 1/ωc as time scale where ωc is the
angular velocity of the cavity. It has also been assumed that E ,
η, and |Ω | are small quantities. Expression (37) agrees with
the corresponding expression derived earlier by Stewartson and
Roberts [33], but is correct in the order ε2 ≡ 1 − ω2 instead
of only in the order ε. In the limit E → 0 and for small η

and |Ω | expression (37) agrees with expression (36b) with the
implication ω2 = k · ω.

The assumption of a constant vorticity vector in the
limit of vanishing viscosity has been established by the
Prandtl–Batchelor theorem [34] in the case of a steady two-
dimensional vortex, but this theorem cannot be extended to
three-dimensional configurations in rotating systems even if
the flow is essentially two-dimensional. In general tangential
discontinuities and even divergences must be expected since

Fig. 6. Differential rotation in a precessing nearly spherical cavity as a function
of the distance from the axis. Results of the asymptotic analysis [32] (solid
lines) and from a numerical simulation for E = 10−6 [36] (dashed line) are
compared with the experimental measurement of Malkus [35] (dash-dotted
line). The dotted line indicates the cylindrical surface intersecting the boundary
at the critical latitudes.

they are admitted by the Euler equations. An example is the
deviation from the Sloudsky–Poincaré solution (36) caused by
the presence of the no-slip boundary as has been demonstrated
by Busse [32]. In this latter paper it is shown that the flow
of finite amplitude in the Ekman boundary layer causes a
cylindrical shear layer in the interior of the precessing cavity
at the distance

√
3/2 from the axis determined by ω in the case

of the sphere with the radius 1. This singularity is caused by the
fact that the thickness of the Ekman boundary layer diverges
like

√
E/|k · r − ω| at the critical latitudes given by k · r = ω.

In the case of a precessing sphere with |k − ω| ( 1 these
latitudes are located at ±30◦. A theoretical profile in the limit
E → 0 together with a profile measured in the experiment
of Malkus [35] and a profile obtained by Noir et al. [36] in a
numerical simulation with E = 10−6 are shown in Fig. 6. A
visualization of the shear layer in the case of an oblate spheroid
can be seen in Fig. 7. To achieve a closer correspondence
between the asymptotic profile and the other curves shown
in Fig. 6 higher-order terms in the description of the Ekman
layer near its divergence need to be taken into account in the
asymptotic analysis.

The divergence of the Ekman layer at the critical latitudes
also causes the excitation of inertial waves [37] which in turn
spawn oscillatory internal shear layers which are oblique with
respect to the rotation axis of the fluid [38,39]; see also [40,
41]. With increasing amplitude of precession nonlinear effects
of these shear layers give rise to interior differential rotations
that are much more complex than that exhibited in Fig. 7; see,
for example, the experimental photographs of [42].

Of special interest is the possibility of a resonance in
expression (37) when Ω ·k is negative such that the denominator
can approach zero in the limit E → 0. Such a resonance
represents the excitation of the inertial spin-over mode. But this
inertial mode depends on the rotation vector of the fluid, not on
the prescribed rotation of the container. Owing to the implicit
nature of expression (37) for ω there does not exist a simple
linear resonance. Instead a complex nonlinear relationship in
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Fig. 7. Cylindrical shear layer in the precessing spherical cavity of the
experiment of [43]. The shear becomes visible through the alignment of tiny flat
particles. This photograph has been provided by the authors of [37]. A modified
version of the figure has been published in [37].
c© 2001, by the American Geophysical Union.

the dependence of ω admitting multiple solutions exist in the
neighborhood of Ω · k ≈ −η as has been shown by Noir
et al. [43]. These authors have investigated the resonance also
experimentally and have found that expression (37) describes
the measurements quite well even when the perturbation
parameter ε approaches the order unity as shown in Figs. 7
and 9 of [43]. This is much beyond the range of small ε for
which expression (37) had been derived originally. For a related
discussion with respect to the experiments of Malkus [35]
see [44].

5. The possible absence of turbulence in some shear flows
for Re → ∞

One of the most discussed problems in astrophysical
fluid dynamics is the problem of turbulence in accretion
disks. In the outer parts of the latter, where the electrical
conductivity is too low for the Lorentz force to play a significant
role, hydrodynamically generated turbulence is expected to
be responsible for an efficient outward transport of angular
momentum. This problem has focused the attention on the
onset of turbulence in flows between two coaxial cylinders with
radii r1 and r2 with r1 < r2 and associated constant angular
velocities Ω1 and Ω2 with Ω1 > Ω2 > 0. According to
Rayleigh’s criterion the basic solution Ω(r) depending solely
on the distance r from the axis is unstable with respect to
axisymmetric disturbances when the condition

d(r2Ω)

dr
< 0 (38)

is satisfied. In the small-gap limit this criterion can be written
in the form

τ < Re (39)

where the definitions

Re = (Ω1 − Ω2)d(r2 + r1)

2ν
, τ = (Ω1 + Ω2)d2

ν
(40)

have been introduced with the gap width d = r2 − r1. Criterion
(39) can be stated in a simple way: When shear vorticity and
global vorticity have opposite signs, the former must exceed
the latter in magnitude for instability.

Linear analysis of the stability with respect to infinitesimal
disturbances confirms criterions (38) and (39) for instability
at least for large values of Re. For lower values viscosity
contributes a stabilizing influence such that the criterion for
onset of infinitesimal disturbances in the small-gap limit
becomes

Re >
Re2

E
4τ

+ τ (41)

where RE is the energy stability limit for plane Couette
flow [45,46], RE = 2

√
1708. Here the value 1708 refers

to the well known critical value of the Rayleigh number for
the onset of Rayleigh–Bénard convection in a horizontal fluid
layer heated from below with no-slip boundaries. Experimental
observations and numerical simulations based on the nonlinear
Navier–Stokes equations agree with criterion (41) for the onset
of instability – even if disturbances of finite amplitude are
admitted – unless τ becomes small in comparison to RE [47–
49]. This does not exclude, however, the possibility of the
existence of yet unrealized turbulent states of flow when
the right-hand side of criterion (41) exceeds Re while τ is
sufficiently large, say τ ! RE/2 is satisfied. A recent paper
on bounds for the momentum transport in rotating systems
considers this question [50].

It is a common notion among fluid dynamicists that all
shear flows become turbulent provided the Reynolds number
is sufficiently large and disturbances of finite amplitude are
admitted. The absence of any turbulent flow under stationary
conditions in the regime

−RE ≤ Re ≤ Re2
E

4τ
+ τ (42)

as proposed in [50] contradicts this notion since Re can become
arbitrarily large provided that τ becomes even larger. The
proof for this proposal is incomplete, however, and is actually
restricted to the neighborhood of τ = ReE/2 at which point the
right-hand side of inequality (42) becomes equal to ReE . If the
proposal is correct, however, as is suggested by the presently
available experimental and numerical evidence, then angular
velocity distributions Ω(r) with dΩ/dr ≤ 0 satisfying

d(r2Ω)

dr
≥ 0 (43)

are absolutely stable. Since the Keplerian velocity field
in accretion disks is governed by the balance between
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Fig. 8. Bimodal pattern in a cloud street (top, as seen from an airplane) and
shadowgraph image of bimodal convection in a laboratory experiment (bottom,
dark areas indicate rising hotter liquid, while bright areas indicate descending
colder liquid; for further details see [56]).

gravitational attraction and the centripetal force, Ω2r " 1/r2, it
satisfies (43) and accretion disks cannot be turbulent under the
idealized conditions considered here. In terms of the small-gap
limit, Re ≈ d2ν−1r |dΩ/dr | ≈ Ω3d2/2ν ≈ 3τ/4 grows only
in proportion to 3τ/4 asymptotically and thus cannot give rise
to turbulence according to criterion (42).

Of course, hydrodynamic turbulence in accretion disks
could be generated through additional effects such as a stable
density stratification in the direction normal to the disk.
Theoretical analyses [51–53] confirmed by recent experimental
work [54] support this idea in that they demonstrate that in a
Taylor–Couette system an axisymmetric density gradient in the
direction of gravity exerts a destabilizing influence on the onset
of instability such that Rayleigh’s criterion (38) is violated.

6. Bimodal convection in geophysics

In order to illustrate the close similarity between laboratory
flows and corresponding observed geophysical phenomena we
choose the case of bimodal convection since it is not as well
known as other examples such as von Karman vortex streets in
the wake of some oceanic islands, Kelvin–Helmholtz waves in
the atmosphere, or cloud patterns corresponding to convection
rolls and hexagonal cells. Bimodal convection originates from

an instability of convection rolls and is driven by the buoyancy
stored in the thermal boundary layers associated with a
convecting fluid layer [55]. It has been studied experimentally
by Busse & Whitehead [56] and its finite amplitude properties
have been analyzed numerically by Frick et al. [57]. A
laboratory shadowgraph image is shown in Fig. 8 together with
an observed example of bimodal structures in a cloud street.
Another observational example can be found in the recent
review [58]. This agreement between a laboratory convection
pattern and an atmospheric phenomenon is remarkable in
that bimodal convection is generated through a secondary
bifurcation in contrast to the other examples mentioned above
which correspond to primary bifurcations.

Since bimodal convection is usually observed only in fluids
with a Prandtl number P in excess of the order 10, it may be
surprising to observe this phenomenon in the atmosphere as air
is characterized by a Prandtl number of only 0.7. It must be
kept in mind, however, that the condensation of water vapor not
only acts as a convenient indicator of upward motions, but also
influences the thermodynamics of the convecting layer. The
latent heat liberated through the condensation of water droplets
causes an increase in the specific heat of the fluid which in turn
lowers the effective thermal diffusivity. Since P is defined as
the ratio of kinematic viscosity to thermal diffusivity it assumes
a high value for convection in the presence of clouds.

Another case of bimodal convection may be found in the
Earth’s mantle. Convection cells involving the whole mantle
are believed to be responsible for plate tectonics, i.e. for the
motion of crustal plates in the outermost region of the “solid”
Earth. Secondary motions beneath the plates appear to occur
in many places as has been pointed out by Richter [59] and
others. As in the case of laboratory bimodal convection (see
Fig. 8) the smaller secondary convection rolls are always
oriented at right angles to the larger primary convection rolls.
In this way the stabilizing effect of the shear of the primary
convection rolls on the secondary rolls is minimized. In the
case of the Earth’s mantle additional influences on convection
arise, of course, from the presence of the olivine–spinel and the
spinel–perovskite phase transitions at the depths of 400 km and
660 km, respectively.

7. Concluding remarks

In this review we have pointed out a few solutions of the
Euler equations which have been of recent interest in the field
of geophysical and astrophysical fluid dynamics. These simple
solutions can be realized in laboratory experiments and also be
applied to large scale fluid dynamical phenomena in geophysics
and astrophysics. The fact that the latter systems are usually in a
turbulent state of motion does not seem to affect the usefulness
of the laminar solutions. Since the interaction of the large scale
components of the velocity and buoyancy fields occurs rather
independently of the influence of the small scale motions, the
latter can roughly be taken into account as diffusive effects.
From this point of view it is not surprising that the employment
of eddy diffusivities has been quite successful in describing the
effects of turbulence in geophysical and astrophysical systems.
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(1910) 321–356.

[32] F.H. Busse, Steady fluid flow in a precessing spheroidal shell, J. Fluid
Mech. 33 (1968) 739–751.

[33] K. Stewartson, P.H. Roberts, On the motion of a liquid in a spheroidal
cavity of a precessing rigid body, J. Fluid Mech. 17 (1963) 1–20.

[34] G.K. Batchelor, Steady laminar flow with closed streamlines at large
Reynolds numbers, J. Fluid Mech. 1 (1956) 177–190.

[35] W.V.R. Malkus, Precession of the Earth as the cause of geomagnetism,
Science 160 (1968) 259–264.

[36] J. Noir, D. Jault, P. Cardin, Numerical study of the motions within a slowly
precessing sphere at low Ekman number, J. Fluid Mech. 437 (2001)
283–299.

[37] J. Noir, D. Brito, K. Aldridge, P. Cardin, Experimental evidence of inertial
waves in a precessing spheroidal cavity, Geophys. Res. Lett. 28 (2001)
3785–3788.

[38] R.R. Kerswell, On the internal shear layers spawned by the critical
regions in oscillatory Ekman boundary layers, J. Fluid Mech. 289 (1995)
311–325.

[39] R. Hollerbach, R.R. Kerswell, Oscillatory internal shear layers in rotating
and precessing flows, J. Fluid Mech. 289 (1995) 327–339.

[40] A. Tilgner, Driven inertial oscillations in spherical shells, Phys. Rev. E 59
(1999) 1789–1794.

[41] M. Rieutord, B. Georgeot, L. Valdettaro, Inertial waves in a rotating
spherical shell: Attractors and asymptotic spectrum, J. Fluid Mech. 435
(2001) 103–144.

[42] J. Vanyo, P. Wilde, P. Cardin, P. Olson, Experiments on precessing flows
in the Earth’s liquid core, Geophys. J. Int. 121 (1995) 136–142.

[43] J. Noir, P. Cardin, D. Jault, J.-P. Masson, Experimental evidence of non-
linear resonance effects between retrograde precession and the tilt-over
mode within a spheroid, Geophys. J. Int. 154 (2003) 407–416.

[44] S. Lorenzani, A. Tilgner, Inertial instabilities of fluid flow in precessing
spheroidal shells, J. Fluid Mech. 492 (2003) 363–379.
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Abstract

The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and
(ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we review
recent theoretical advances in studying the wind-driven circulation of the oceans. In doing so, we concentrate on the large-scale, wind-driven flow
of the mid-latitude oceans, which is dominated by the presence of a larger, anticyclonic and a smaller, cyclonic gyre. The two gyres share the
eastward extension of western boundary currents, such as the Gulf Stream or Kuroshio, and are induced by the shear in the winds that cross
the respective ocean basins. The boundary currents and eastward jets carry substantial amounts of heat and momentum, and thus contribute in a
crucial way to Earth’s climate, and to changes therein.

Changes in this double-gyre circulation occur from year to year and decade to decade. We study this low-frequency variability of the wind-
driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions
and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as
global, homoclinic ones.

The natural climate variability induced by the low-frequency variability of the ocean circulation is but one of the causes of uncertainties in
climate projections. The range of these uncertainties has barely decreased, or even increased, over the last three decades. Another major cause
of such uncertainties could reside in the structural instability – in the classical, topological sense – of the equations governing climate dynamics,
including but not restricted to those of atmospheric and ocean dynamics.

We propose a novel approach to understand, and possibly reduce, these uncertainties, based on the concepts and methods of random dynamical
systems theory. The idea is to compare the climate simulations of distinct general circulation models (GCMs) used in climate projections, by
applying stochastic-conjugacy methods and thus perform a stochastic classification of GCM families. This approach is particularly appropriate
given recent interest in stochastic parametrization of subgrid-scale processes in GCMs.

As a very first step in this direction, we study the behavior of the Arnol’d family of circle maps in the presence of noise. The maps’ fine-grained
resonant landscape is smoothed by the noise, thus permitting their coarse-grained classification.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Climate change; Physical oceanography; Dynamical systems; Bifurcations; Structural stochastic stability; Arnol’d tongues

1. Introduction

Charney et al. [1] were the first to attempt a consensus
estimate of the equilibrium sensitivity of climate to changes
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in atmospheric CO2 concentrations. The result was the
now famous range for an increase of 1.5–4.5 K in global
near-surface air temperatures, given a doubling of CO2
concentration.

As the relatively new science of climate dynamics evolved
through the 1980s and 1990s, it became quite clear – from
observational data, both instrumental and paleoclimatic, as
well as model studies – that Earth’s climate never was and is
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unlikely to ever be in equilibrium. The three successive IPCC
reports (1991 [2], 1996, and 2001 [3]) concentrated therefore,
in addition to estimates of equilibrium sensitivity, on estimates
of climate change over the 21st century, based on several
scenarios of CO2 increase over this time interval, and using up
to 18 general circulation models (GCMs) in the fourth IPCC
Assessment Report (AR4) [4].

The GCM results of temperature increase over the coming
100 years have stubbornly resisted any narrowing of the range
of estimates, with results for Ts in 2100 as low as 1.4 K or as
high as 5.8 K, according to the Third Assessment Report. The
hope in the research leading up to the AR4 was that a set of
suitably defined “better GCMs” would exhibit a narrower range
of year-2100 estimates, but this does not seem to have been the
case.

The difficulty in narrowing the range of estimates for
either equilibrium sensitivity of climate or for end-of-the-
century temperatures is clearly connected to the complexity
of the climate system, the multiplicity and nonlinearity of
the processes and feedbacks it contains, and the obstacles
to a faithful representation of these processes and feedbacks
in GCMs. The practice of the science and engineering of
GCMs over several decades has amply demonstrated that any
addition or change in the model’s “parametrizations” – i.e., of
the representation of subgrid-scale processes in terms of the
model’s explicit, large-scale variables – may result in noticeable
changes in the model solutions’ behavior.

As an illustration, Fig. 1 shows the sensitivity of an at-
mospheric GCM, which does not include a dynamical ocean,
to changes in its model parameters. Several thousand simu-
lations were performed as part of the “climateprediction.net”
experiment [6], using perturbations in several parameters of
the Hadley Centre’s HadAM3 model [7], coupled to a passive,
mixed-layer ocean model. The lower panel of Fig. 1 clearly il-
lustrates a wide range of responses to CO2 doubling, from about
−1 K to about 8 K [8].

The last IPCC report [4] has investigated climate change as
a result of various scenarios of CO2 increase for a set of 18
distinct GCMs. The best estimate of the temperature increase
at the end of the 21st century from AR4 is about 4.0 ◦C for
the worst scenario of greenhouse-gas increase, namely A1F1,
this scenario envisages, roughly speaking, a future world with
a very rapid economic growth. The likely range of end-of-
century increase in global temperatures is of 2.4–6.4 ◦C in this
case, and comparably large ranges of uncertainties obtain for
all the other scenarios as well [4]. The consequences of these
scientific uncertainties for the ethical quandaries arising in the
socio-economic and political decision-making process involved
in adaptation to and mitigation of climate changes are discussed
in [5].

An essential contributor to this range of uncertainty is
natural climate variability [9] of the coupled ocean-atmosphere
system. As mentioned already in [10], most GCM simulations
do not exhibit the observed interdecadal variability of the
oceans’ buoyancy-driven, thermohaline circulation [11]. This
circulation corresponds to a slow, pole-to-pole motion of the
oceans’ main water masses, also referred to as the overturning

Fig. 1. Frequency distributions of global mean, annual mean, near-surface
temperature (Tg) for (a) 2017 GCM simulations, and doubled CO2; and for
(b) a subset of 414 stable simulations, without substantial climate drift.
c© 2005, (from [8], reprinted by permission from Macmillan Publishers Ltd:

Nature, Stainforth et al., 433, 403–406, copyright 2005).

circulation. Cold and denser waters sink in the subpolar North
Atlantic and lighter waters rise over much wider areas of the
lower and southern latitudes.

Another striking example of low-frequency, interannual-
and-interdecadal variability is provided by the near-surface,
wind-driven ocean circulation [11,12]. Key features of this
circulation are described at length in Section 2. The influence
of strong thermal fronts – like the Gulf Stream in the North
Atlantic or the Kuroshio in the North Pacific – on the mid-
latitude atmosphere above is severely underestimated. Typical
spatial resolutions in the century-scale GCM simulations of [2–
4,6–8] are of the order of 100 km at best, whereas resolutions
of 20 km and less would be needed to really capture the strong
mid-latitude ocean-atmosphere coupling just above the oceanic
fronts [13,14].

An important additional source of uncertainty comes from
the difficulty to correctly parametrize global and regional
effects of clouds and their highly complex small-scale physics.
This difficulty is particularly critical in the tropics, where large-
scale features such as the El-Niño/Southern Oscillation and the
Madden–Julian oscillation are strongly coupled with convective
phenomena [15–17].

The purpose of this paper is twofold. First, we describe
in Section 2 the most recent theoretical results regarding the
internal variability of the mid-latitude wind-driven circulation,
viewed as a problem in nonlinear fluid mechanics. These results
rely to a large extent on the deterministic theory of dynamical
systems [18,19]. Second, we address in Section 3 the more
general issue of uncertainties in climate change projections.
Here we rely on concepts and methods from random dynamical
systems theory [20] to help understand and possibly reduce
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Fig. 2. A map of the main oceanic currents: warm currents in red and cold ones
in blue, from http://www.physicalgeography.net..

these uncertainties. Much of the material in the latter section
is new; it is supplemented by rigorous mathematical definitions
and results in Appendices A and B. A summary and an outlook
on future work follow in Section 4.

2. Natural variability of the wind-driven ocean circulation

2.1. Observations

To a first approximation, the main near-surface currents
in the oceans are driven by the mean effect of the winds.
The trade winds near the equator blow mainly from east
to west and are called also the tropical easterlies. In mid-
latitudes, the dominant winds are the prevailing westerlies, and
towards the poles the winds are easterly again. Three of the
strongest near-surface, mid-and-high-latitude currents are the
Antarctic Circumpolar Current, the Gulf Stream in the North
Atlantic, and the Kuroshio Extension off Japan. The Antarctic
Circumpolar Current, sometimes called the Westwind Drift,
circles eastward around Antarctica; see Fig. 2.

The Gulf Stream is an oceanic jet with a strong influence on
the climate of eastern North America and of western Europe.
Actually, the Gulf Stream is part of a larger, gyre-like current
system, which includes the North Atlantic Drift, the Canary
Current and the North Equatorial Current. It is also coupled
with the pole-to-pole overturning circulation. From Mexico’s
Yucatan Peninsula, the Gulf Stream flows north through the
Florida Straits and along the East Coast of the United States.
Near Cape Hatteras, it detaches from the coast and begins to
drift off into the North Atlantic towards the Grand Banks near
Newfoundland.

The Coriolis force is responsible for the so-called
Ekman transport, which deflects water masses orthogonally
to the near-surface wind direction and to the right [21–
23]. In the North Atlantic, this Ekman transport creates a
divergence and a convergence of near-surface water masses,
respectively, resulting in the formation of two oceanic gyres:
a smaller, cyclonic one in subpolar latitudes, the other larger
and anticyclonic in the subtropics. This type of double-
gyre circulation characterizes all mid-latitude ocean basins,
including the South Atlantic, as well as the North and South
Pacific.

The double-gyre circulation is intensified as the currents
approach the East Coast of North America due to the β-effect.

Fig. 3. A satellite image of the sea surface temperature (SST) over
the northwestern North Atlantic (US National Oceanic and Atmospheric
Administration), together with a sketch of the associated double-gyre
circulation (white arrows). An idealized view of the amount of potential
vorticity injected into the ocean circulation by the trade winds, westerlies and
polar easterlies is shown to the right.

This effect arises primarily from the variation of the Coriolis
force with latitude, while the oceans’ bottom topography also
contributes to it. The former, planetary β-effect is of crucial
importance in geophysical flows and induces free Rossby waves
propagating westward [21–23].

The currents along the western shores of the North
Atlantic and of the other mid-latitude ocean basins exhibit
boundary-layer characteristics and are commonly called
western boundary currents (WBCs). The northward-flowing
Gulf Stream and the southward-flowing Labrador Current
extension meet near Cape Hatteras and yield a strong eastward
jet. The formation of this jet and of the intense recirculation
vortices near the western boundary, to either side of the jet, is
mostly driven by internal, nonlinear effects.

Fig. 3 illustrates how these large-scale wind-driven oceanic
flows self-organize, as well as the resulting eastward jet.
Different spatial and time scales contribute to this self-
organization, mesoscales eddies playing the role of the
synoptic-scale systems in the atmosphere. Warm and cold rings
last for several months up to a year and have a size of about
100 km; two cold rings are clearly visible in Fig. 3. Meanders
involve larger spatial scales, up to 1000 km, and are associated
with interannual variability. The characteristic scale of the jet
and gyres is of several thousand kilometers and they exhibit
their own intrinsic dynamics on time scales of several years to
possibly several decades.

A striking feature of the wind-driven circulation is the
existence of two well-known North-Atlantic oscillations, with
a period of about 7 and 14 years, respectively. Data analysis
of various climatic variables, such as sea surface temperature
(SST) over the North Atlantic or sea level pressure (SLP) over
western Europe [24–26] and local surface air temperatures in
Central England [27], as well as of proxy records, such as tree
rings in Britain, travertine concretions in southeastern France
[28], and Nile floods over the last millennium or so [29], all
exhibit strikingly robust oscillatory behavior with a 7-yr period

http://www.physicalgeography.net
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and, to a lesser extent, with a 14-yr period. Variations in the
path and intensity of the Gulf Stream are most likely to exert
a major influence on the climate in this part of the world [30].
This is why theoretical studies of the low-frequency variability
of the double-gyre circulation are important.

Given the complexity of the processes involved, climate
studies have been most successful when using not just a single
model but a full hierarchy of models, from the simplest “toy”
models to the most detailed GCMs [17]. In the following, we
describe one of the simplest models of the hierarchy used in
studying this problem.

2.2. A simple model of the double-gyre circulation

The simplest model that includes many of the mechanisms
described above is governed by the barotropic quasi-
geostrophic (QG) equations. The term geostrophic refers to
the fact that large-scale rotating flows tend to run parallel
to, rather than perpendicular to constant-pressure contours; in
the oceans, these contours are associated with the deviation
from rest of the surfaces of equal water mass, due to Ekman
pumping. Geostrophic balance implies in particular that the
flow is divergence-free. The term barotropic, as opposed to
baroclinic, has a slightly different meaning in geophysical fluid
dynamics than in engineering fluid mechanics: it means that
the model describes a single fluid layer of constant density and
therefore the solutions do not depend on depth [21–23].

We consider an idealized, rectangular basin geometry and
simplified forcing that mimics the distribution of vorticity
contribution by the winds, as sketched to the right of Fig. 3. In
our idealized model, the amounts of subpolar and subtropical
vorticity injected into the basin are equal and the rectangular
domain Ω = (0, Lx ) × (0, L y) is symmetric about the axis
of zero wind stress curl. The barotropic two-dimensional (2-D)
QG equations in this idealized setting are:

qt + J (ψ, q) − ν∆2ψ + µ∆ψ = −τ sin
2πy
L y

,

q = ∆ψ − λ−2
R ψ + βy.

(1)

Here q and ψ are the potential vorticity and streamfunction,
respectively, and the Jacobian J corresponds to the advection
of potential vorticity by the flow, J (ψ, q) = ψx qy − ψyqx =
u · ∇q , where u = (−ψy, ψx ), x points east and y points
north. The physical parameters are the strength of the planetary
vorticity gradient β, the Rossby radius of deformation λ−2

R , the
eddy-viscosity coefficient ν, the bottom friction coefficient µ,
and the wind-stress intensity τ . We use here free-slip boundary
conditions ψ = ∆2ψ = 0; the qualitative results described
below do not depend on the particular choice of homogeneous
boundary conditions.

We consider (1) as an infinite-dimensional dynamical system
and study its bifurcation sets as the parameters change. Two key
parameters are the wind stress intensity τ and the eddy viscosity
ν. An important property of (1) is its mirror symmetry in the
y = L y/2 axis. This symmetry can be expressed as invariance
with respect to the discrete Z2 group S:

S [ψ(x, y)] = −ψ(x, L y − y); (2)

any solution of (1) is thus accompanied by its mirror-conjugated
solution. Hence, in generic terms, the prevailing bifurcations
are of either the symmetry-breaking or the saddle-node or the
Hopf type.

2.3. Bifurcations in the double-gyre problem

The historical development of a comprehensive nonlinear
theory of the double-gyre circulation is interesting on its own,
having seen substantial progress in the last 15 years. One can
distinguish four main steps.

2.3.1. Symmetry-breaking bifurcations
The first step was to realize that the first generic bifurcation

of this QG model was a genuine pitchfork bifurcation that
breaks the system’s symmetry as the nonlinearity becomes large
enough [31–33]. The situation is shown in Fig. 4. When the
forcing is weak or the dissipation is large, there is only one
steady solution, which is antisymmetric with respect to the
mid-axis of the basin. This solution exhibits two large gyres,
along with their typical, β-induced WBCs. Away from the
western boundary, such a near-linear solution (not shown) is
dominated by Sverdrup balance between wind stress curl and
the meridional mass transport [21,34].

As the wind stress increases, the near-linear Sverdrup
solution develops an eastward jet along the mid-axis, which
penetrates farther into the domain. This more intense, and hence
more nonlinear solution is still antisymmetric about the mid-
axis, but loses its stability for some critical value of the wind-
stress intensity (indicated by “Pitchfork” in Fig. 4).

A pair of mirror-symmetric solutions emerges and is
characterized by a rather different vorticity distribution; the
streamfunction fields associated with the two stable steady-state
branches are plotted to the upper-left and right of Fig. 4. In
particular, the jet in such a solution exhibits a large meander,
reminiscent of the one seen in Fig. 3 just downstream of Cape
Hatteras; note that the colors in Fig. 4 have been chosen to
facilitate the comparison with Fig. 3. These asymmetric flows
are characterized by one gyre being stronger in intensity than
the other and therefore the jet is deflected either to the southeast
or to the northeast.

2.3.2. Gyre modes
The next step was taken in part concurrently with [31,32] and

in part shortly after [35–37] the first one. It involved the study of
time-periodic instabilities through Hopf bifurcation from either
an antisymmetric or an asymmetric steady flow. Some of these
studies concentrated on the wind-driven circulation formulated
for the stand-alone, single gyre [37,38]. The idea was to develop
a full generic picture of the time-dependent behavior of the
solutions in more turbulent regimes, by classifying the various
instabilities in a comprehensive way. However, it quickly
appeared that one kind of asymmetric instabilities, called
gyre modes [32,35], was prevalent across the full hierarchy
of models of the double-gyre circulation; furthermore, these
instabilities trigger the lowest nonzero frequency present in
these models.
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Fig. 4. Generic bifurcation diagram for the barotropic QG model of the double-
gyre problem: the asymmetry of the solution is plotted versus the intensity of
the wind stress τ . The streamfunction field is plotted for a steady-state solution
associated with each of the three branches; positive values in red and negative
ones in blue (after [46]).

These modes always appear after the first pitchfork
bifurcation, and it took several years to really understand their
genesis: gyre modes arise as two eigenvalues merge — one
is associated with a symmetric eigenfunction and responsible
for the pitchfork bifurcation, the other is associated with an
antisymmetric eigenfunction [39]; this merging is marked by
M in Fig. 4.

Such a phenomenon is not a bifurcation stricto sensu: one
has topological C0 equivalence before and after the eigenvalue
merging, but not from the C1 point of view. We recall
here that functions are Ck if they and their inverses are k
times continuously differentiable. Still, this phenomenon is
quite common in small-dimensional dynamical systems with
symmetry, as exemplified by the unfolding of codimension-2
bifurcations of Bogdanov-Takens type [19]. In particular, the
fact that gyre modes trigger the lowest-frequency of the model
is due to the frequency of these modes growing quadratically
from zero until nonlinear saturation. Of course, these modes, in
turn, become unstable shortly after the merging, through a Hopf
bifurcation, indicated by “Hopf” in Fig. 4.

2.3.3. Global bifurcations
The importance of these gyre modes was further confirmed

recently through an even more puzzling discovery. Several

authors realized, independently of each other, that the low-
frequency dynamics of their respective double-gyre models
was driven by intense relaxation oscillations of the jet [40–
46]. These relaxation oscillations, already described in [32,
35], were now attributed to homoclinic bifurcations, with a
global character in phase space [19,22]. In effect, the QG model
reviewed here undergoes a genuine homoclinic bifurcation (see
Fig. 4), which is generic across the full hierarchy of double-gyre
models. Moreover, this global bifurcation is associated with
chaotic behavior of the flow due to the Shilnikov phenomenon
[43,46], which induces horseshoes in phase space.

The connection between such homoclinic bifurcations and
gyre modes was not immediately obvious, but Simonnet
et al. [46] emphasized that the two were part of a single, global
dynamical phenomenon. The homoclinic bifurcation indeed
results from the unfolding of the gyre modes’ limit cycles.
This familiar dynamical scenario is again well illustrated by the
unfolding of a codimension-2 Bogdanov-Takens bifurcation,
where the homoclinic orbits emerge naturally. We deal, once
more, with the lowest-frequency modes, since homoclinic
orbits have an infinite period. Due to the genericity of this
phenomenon, it was natural to hypothesize that the gyre-mode
mechanism, in this broader, global-bifurcation context, gave
rise to the observed 7-yr and 14-yr North-Atlantic oscillations.
Although this hypothesis may appear a little farfetched, in view
of the simplicity of the double-gyre models analyzed in detail
so far, it poses an interesting question.

2.3.4. Quantization and open questions
The chaotic dynamics observed in the QG models after

the homoclinic bifurcation is eventually destroyed as the
nonlinearity and the resolution both increase. As one expects
the real oceans to be in a far more turbulent regime than those
studied so far, some authors proposed different mechanisms for
low-frequency variability in fully turbulent flow regimes [47,
48]. It turns out, though, that – just as gyre modes could be
reconciled with homoclinic-driven dynamics, – the latter can
also be reconciled with eddy-driven dynamics, via the so-called
quantization of the low-frequency dynamics [49].

Primeau [50] showed that, in large basins comparable
in size with the North Atlantic, there is not only one but
a set of successive pitchfork bifurcations. One supercritical
pitchfork bifurcation, associated with the destabilization of
antisymmetric flows, is followed generically by a subcritical
one, associated this time with a stabilization of antisymmetric
flows (modulo high-frequency instabilities) [49]. As a matter
of fact, this phenomenon appears to be a consequence of the
spectral behavior of the 2-D Euler equations [51], and hence of
the closely related barotropic QG model in bounded domains.

Remarkably, this scenario repeats itself as the nonlinearity
increases, but now higher wavenumbers are involved in
physical space. Simonnet [49] showed that this was also
the case for gyre modes and the corresponding dynamics
induced by global bifurcations: the low-frequency dynamics
is quantized as the jet stream extends further eastward into
the basin, due to the increased forcing and nonlinearity.
Fig. 5 illustrates this situation: two families of regimes can



2116 M. Ghil et al. / Physica D 237 (2008) 2111–2126

Fig. 5. Two-parameter plane, with the wind-stress intensity τ vs. the eddy-
viscosity coefficient ν: the curves indicate the locations of supercritical and
subcritical pitchfork bifurcations. Each band is associated with a different
wavenumber and timescale (from [49]).

be identified, the colored bands correspond to (supercritical)
regimes driven by the gyre modes, the others to (subcritical)
regimes driven by the eddies. Note that this scenario is also
robust to perturbing the problem’s symmetry.

The successive-bifurcation theory appears therewith to be
fairly complete for barotropic, single-layer models of the
double-gyre circulation. This theory also provides a self-
consistent, plausible explanation for the climatically important
7-year and 14-year oscillations of the oceanic circulation and
the related atmospheric phenomena in and around the North-
Atlantic basin [11,12,24–29,45,46]. The dominant 7- and 14-
year modes of this theory also survive perturbation by seasonal-
cycle changes in the intensity and meridional position of the
westerly winds [52].

In baroclinic models, with two or more active layers of
different density, baroclinic instabilities [11,14,21–23,30,38,
45,47,48] surely play a fundamental role, as they do in the
observed dynamics of the oceans. However, it is not known
to what extent baroclinic instabilities can destroy gyre-mode
dynamics. The difficulty lies in a deeper understanding of
the so-called rectification process [53], which arises from the
nonzero mean effect of the baroclinic component of the flow.

Roughly speaking, rectification drives the dynamics far
away from any steady states. In this situation, dynamical
systems theory cannot be used as an explanation of complex,
observed behavior resulting from successive bifurcations
that are rooted in a simple steady state. Other tools from
statistical mechanics and nonequilibrium thermodynamics
should, therefore, be considered [54–57]. Combining these
tools with those of the successive-bifurcation approach may
eventually lead to a more general and complete physical
characterization of gyre modes in realistic models.

3. Climate-change projections and random dynamical
systems (RDSs)

As discussed in Section 1, the climate system’s natural
variability and the difficulties in parametrizing subgrid-scale

processes are not the only causes for the uncertainties in
projecting future climate evolution. In this section, we address
more generally these uncertainties and present a novel approach
for treating them. To do so, we start with some simple ideas
about deterministic vs. stochastic modeling.

3.1. Background and motivation

Many physical phenomena can be modeled by deterministic
evolution equations. Dynamical systems theory is essentially
a geometric approach for studying the asymptotic, long-term
properties of solutions to such equations in phase space.
Pioneered by Poincaré [58], this theory took great strides
over the last fifty years. To apply the theory in a reliable
manner to a set of complex physical phenomena, one needs
a criterion to evaluate the robustness of a given model within
a class of dynamical systems. Such a criterion should help us
deal with the inescapable uncertainties in model formulation,
whether due to incomplete knowledge of the governing laws or
inaccuracies in determining model parameters.

In this context, Andronov and Pontryagin [59] took a major
step toward classifying dynamical systems, by introducing the
concept of structural stability. Structural stability means that
a small, continuous perturbation of a given system preserves
its dynamics up to a homeomorphism, i.e., up to a one-to-
one continuous change of variables that transforms the phase
portrait of our system into that of the nearby system; thus fixed
points go into fixed points, limit cycles into limit cycles, etc.
Closely related is the notion of hyperbolicity introduced by
Smale [60]. A system is hyperbolic if, (very) loosely speaking,
its limit set can be continuously decomposed into invariant
sets that are either contracting or expanding; see [61] for more
rigorous definitions.

A very simple example is the phase portrait in the
neighborhood of a fixed point of saddle type. In this case,
the Hartman-Grobman theorem states that the dynamics in this
neighborhood is structurally stable. The converse statement,
i.e. whether structural stability implies hyperbolicity, is still
an open question; the equivalence between structural stability
and hyperbolicity has only been shown in the C1 case, under
certain technical conditions [62–65]. Bifurcation theory is well
grounded in the setting of hyperbolic dynamics. Problems with
hyperbolicity and bifurcations arise, however, when one deals
with more complicated limit sets.

Hyperbolicity was introduced initially to help pursue the
“dynamicist’s dream” of finding, in the abstract space of all
possible dynamical systems, an open and dense set consisting
of structurally stable ones. Being open and dense, roughly
speaking, means that any possible dynamical system can be
approximated by systems taken from this set, while systems in
its complement are negligible in a suitable sense.

Smale conjectured that hyperbolic systems form an open
and dense set in the space of all C1 dynamical systems. If this
conjecture were true then hyperbolicity would be typical of all
dynamics. Unfortunately, though, this conjecture is only true
for one-dimensional dynamics and flows on disks and surfaces
[66]. Smale [67] himself found several counterexamples to
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his conjecture. Newhouse [68] was able to generate open
sets of nonhyperbolic diffeomorphisms using homoclinic
tangencies. For the physicist, it is even more striking that
the famous Lorenz attractor [69] is structurally unstable.
Families of Lorenz attractors, classified by topological type,
are not even countable [70,71]. In each of these examples,
we observe chaotic behavior in a nonhyperbolic situation,
i.e. nonhyperbolic chaos.

Nonhyperbolic chaos appears, therefore, to be a severe
obstacle to any “easy” classification of dynamic behavior. As
mentioned by Palis [65], Kolmogorov already suggested at
the end of the sixties that “the global study of dynamical
systems could not go very far without the use of new
additional mathematical tools, like probabilistic ones”. Once
more, Kolmogorov showed prophetic insight, and nowadays the
concept of stochastic stability is an important tool in the study
of genericity and robustness for dynamical systems. To replace
the failed program of classifying dynamical systems based on
structural stability and hyperbolicity, Palis [65] formulated the
following global conjecture: systems having only finitely many
attractors (i.e. periodic or chaotic sinks) – such that (i) the
union of their basins has full Lebesgue measure; and (ii) each is
stochastically stable in their basins of attraction – are dense in
the Cr , r ≥ 1 topology. A system is stochastically stable if its
Sinai–Ruelle–Bowen (SRB) measure [72] is stable with respect
to stochastic perturbations, and the SRB measure is given by
limn→∞ 1

n
∑

i δzi , with zi being the successive iterates of the
dynamics. This measure is obtained intuitively by allowing the
entire phase space to flow onto the attractor [73].

Stochastic stability is fundamentally based on ergodic
theory. We would like to consider a more geometric approach,
which can provide a coarser, more robust classification of
GCMs and their climate-change projections. In this section,
we propose such an approach, based on concepts from the
rapidly growing field of random dynamical systems (RDSs),
as developed by Arnold [20] and his “Bremen group”, among
others. RDS theory describes the behavior of dynamical
systems subject to external stochastic forcing; its tools have
been developed to help study the geometric properties of
stochastic differential equations (SDEs). In some sense, RDS
theory is the stochastic counterpart of the geometric theory of
ordinary differential equations (ODEs). This approach provides
a rigorous mathematical framework for a stochastic form of
robustness, while the more traditional, topological concepts do
not seem to be appropriate.

3.2. RDSs, random attractors, and robust classification

Stochastic parametrizations for GCMs aim at compensating
for our lack of detailed knowledge on small spatial scales
in the best way possible [74–79]. The underlying assumption
is that the associated time scales are also much shorter than
the scales of interest and, therefore, the lag correlation of the
phenomena being parametrized is negligibly small. Stochastic
parametrizations thus essentially transform a deterministic
autonomous system into a nonautonomous one, subject to
random forcing.

Explicit time dependence in a dynamical system immedi-
ately raises a technical difficulty. Indeed, the classical notion
of attractor is not always relevant, since any object in phase
space is “moving” with time and the natural concept of for-
ward asymptotics is meaningless. One needs therefore another
notion of attractor. In the deterministic nonautonomous frame-
work, the appropriate notion is that of a pullback attractor [80],
which we present below. The closely related notion of random
attractor in the stochastic framework is also explained briefly
below, with further details given in Appendix A.

3.2.1. Framework and objectives
Before defining the notion of pullback attractor, let us recall

some basic facts about nonautonomous dynamical systems.
Consider the ODE

ẋ = f (t, x) (3)

on a vector space X ; this space could even be infinite-
dimensional, if we were dealing with partial or functional
differential equations, as is often the case in fluid-flow and
climate problems. Rigorously speaking, we cannot associate a
dynamical system acting on X with a nonautonomous ODE;
nevertheless, in the case of unique solvability of the initial-
value problem, we can introduce a two-parameter family of
operators {S(t, s)}t≥s acting on X , with s and t real, such that
S(t, s)x(s) = x(t) for t ≥ s, where x(t) is the solution of the
Cauchy problem with initial data x(s). This family of operators
satisfies S(s, s) = IdX and S(t, τ ) ◦ S(τ, s) = S(t, s) for
all t ≥ τ ≥ s, and all real s. This family of operators is
called a “process” by Sell [81]. It extends the classical notion of
the resolvent of a nonautonomous linear ODE to the nonlinear
setting.

We can now define the pullback attractor as simply the
family of invariant sets {A(t)} that satisfy for every real t and
all x0 in X :

lim
s→−∞

dist (S(t, s)x0,A(t)) = 0. (4)

“Pullback” attraction does not involve running time backwards;
it corresponds instead to the idea of measurements being
performed at present time t in an experiment that was started
at some time s < t in the past: the experiment has been
running for long enough, and we are thus looking now at an
“attracting state”. Note that there exists several ways of defining
a pullback attractor — the one retained here is a local one
(cf. [80] and references therein); see [82] for further information
on nonautonomous dynamical systems in general.

In the stochastic context, noise forcing is modeled by a
stationary stochastic process. If the deterministic dynamical
system of interest is coupled to this stochastic process in
a reasonable way – to be expressed below by the “cocycle
property” – then random pullback attractors may appear. These
pullback attractors will exist for almost each sample path of
the driving stochastic process, so that the same probability
distribution governs both sample paths and their corresponding
pullback attractors. A more detailed explanation is given in
Appendix A.
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Roughly speaking, this concept of random attractor
provides a geometric framework for the description of
asymptotic regimes in the context of stochastic dynamics. To
compare different stochastic systems in terms of their random
attractors that evolve in time, it would be nice to be able
to identify the common underlying geometric structures via
a random change of variables. This identification is achieved
through the concept of stochastic equivalence that is developed
in Appendix A, and it is central in obtaining a coarser and more
robust classification than in the purely deterministic context.

Returning now to our main objective, suppose for instance
that one is presented with results from two distinct GCMs,
say two probability distributions functions (PDFs) of the
temperature or precipitation in a given area. These two PDFs
are generated, typically, by an ensemble of each GCM’s
simulations, as described in the introduction, and they are
likely to differ in their spatial pattern. To ascertain the physical
significance of this discrepancy, one needs to know how each
GCM result varies as either a parametrization or a parameter
value are changed.

In order to consider the difficult question of why GCM
responses to CO2 doubling might differ, one idea is to
investigate the structure of the space of all GCMs. We mean
therewith the space of all deterministic GCMs, when their
stochastic parametrizations are switched off. We know, by
now, from experience with GCM results over several decades
– including the four IPCC assessment reports [2–4] and the
climateprediction.net exercise [6–8] – that there is enormous
scatter in this space; see also [84,85]. Our question, therefore,
is: can we achieve a more robust classification of GCMs when
stochastic parametrizations are used and for a given level of the
noise?

As mentioned in Section 3.1, such a classification is
not feasible by restricting ourself to deterministic systems
and topological concepts. As one switches on stochastic
parametrizations [74–79], the situation might change, and
hopefully improve, dramatically: as the noise level becomes
large enough, the models’ deterministic behavior may be
completely destroyed, and all the results could cluster into one
huge, diffuse clump. We would like, therefore, to investigate
how a classification based on stochastic equivalence evolves as
the level of the noise or the stochastic parametrizations change.
As the noise tends to zero, do we recover the “granularity”
of the set of all deterministic dynamical systems? This idea
is schematically represented in Fig. 6: for a given level of the
noise, we expect the space of all GCMs to be decomposed into
a possibly finite number of classes. Within one of these classes,
all the GCMs are topologically equivalent in the stochastic
sense defined above; see Eq. (A.2).

Serious difficulties might arise in this program, due to
the presence of nonhyperbolic chaos in climate models.
Several studies have pointed out that the characteristics of
nonhyperbolic chaos in the presence of noise may depend on
its intensity and statistics [86–89].

Such issues, however, go well beyond the setting of this
paper and are left for further investigation. Much more
modestly, we will study here whether, in certain very simple

Fig. 6. A conjectural view of stochastic classification for GCMs, using the
concept of random attractors. Each point in red represents a GCM in which
stochastic parametrizations are switched off, while each gray area represents a
cluster of stochastically equivalent GCMs for a given level of the noise.

cases, the conjectural view of Fig. 6 might be relevant for some
dynamical systems that are “metaphors” of climate dynamics.
The following subsection is dedicated to the study of such a
metaphorical object, namely the Arnol’d circle map.

3.2.2. The stochastically perturbed circle map
To go beyond our pictorial view of stochastic classification

for GCMs in Fig. 6, we study now the effect of noise on a family
of diffeomorphisms of the circle. This toy model exhibits two
features of interest for our purpose. The first one is that the
two-parameter family {Fτ,ε} defined by Eq. (5) below exhibits
an infinite number of topological classes [18]. The second
feature of interest is the frequency-locking behavior observed
in many field of physics in general [90–92] and in some El-
Niño/Southern-Oscillation (ENSO) models in particular [93–
99]. Studying noise effects on these two features has, therefore,
physical and mathematical, as well as climatological relevance.

Many physical and biological systems exhibit interference
effects due to competing periodicities. One such effect is
mode locking, which is due to nonlinear interaction between
an “internal” frequency ωi of the system and an “external”
frequency ωe. In the ENSO case, the external periodicity is the
seasonal cycle. A simple model for systems with two competing
periodicities is the well-known Arnol’d family of circle maps

xn+1 = Fτ,ε(xn) := xn + τ − ε sin(2πxn) mod 1, (5)

where basically τ := ωi/ωe and ε parameterizes the magnitude
of nonlinear effects; the map (5) is often called the standard
circle map [18].

These maps also represent frequency locking near a
bifurcation of Neimark-Sacker type (e.g. [100], p. 434); here
the parameter τ is typically interpreted as the novel (internal)
frequency involved in the bifurcation and ε corresponds to the
nonlinearity near the bifurcation.

Such nonlinear coupling between two oscillators gives rise
to a characteristic pattern, in the plane of ε vs. τ , called Arnol’d
tongues. We computed this pattern numerically for the family
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Fig. 7. Arnol’d tongues for the family of diffeomorphisms of the circle; units
for τ and ε are 5 × 10−4 and 10−4 respectively. Devil’s staircase in the cross-
section to the right.

of Eq. (5), together with a cross-section at a fixed value of
ε; see Fig. 7. This cross-section exhibits the so-called Devil’s
staircase, with “steps” on which the rotation number [58]
is constant within each Arnol’d tongue; the rotation number
measures the average rotation per iterate of (5).

For ε = 0, two types of phenomena occur: either τ is
rational and in this case the dynamics is periodic with period
q , where τ = p/q, or τ is irrational and the iterates {xn} fill
the whole circle densely. As ε increases, an Arnol’d tongue of
increasing width grows out of each τ = p/q on the abscissa
ε = 0. It follows that, in this very simple case, such an Arnol’d
tongue corresponds to hyperbolic dynamics that is robust to
perturbations, as verified by linearizing the map at the periodic
point; the rotation number is then rational and equal to p/q .

The set of all these tongues is dense within the whole circle
map family, while the Lebesgue measure of this set, at given
ε, tends to zero as ε goes to zero. On the contrary, if a point
in the (τ, ε)-plane does not belong to an Arnol’d tongue, the
rotation number for those parameter values is irrational and the
dynamics is nonhyperbolic; the latter fact follows, for instance,
from a theorem of Denjoy [101] showing that such dynamics is
smoothly equivalent to an irrational rotation. The probability to
observe nonhyperbolic dynamics tends therewith to unity as ε

goes to zero. One has, therefore, a countably infinite number
of distinct topological classes, namely the Arnol’d tongues
p/q , and an uncoutably infinite number of maps with irrational
rotation numbers.

What happens when noise is added in Eq. (5)? We consider
here the case of additive forcing by a noise process obtained
via sampling at each iterate n a random variable with uniform
density and intensity σ . Experiments with colored, rather than
white noise and multiplicative, rather than additive noise led to
the same qualitative results. The results for additive white noise
are shown in Fig. 8 for three different levels of noise intensity
σ .

As expected, only the largest tongues survive the presence of
the noise; in particular, there is only a finite number of surviving
tongues, shown in red in Fig. 8. Within such a surviving
tongue, the random attractor A(ω) is a random periodic cycle
of period q (not shown). In the blue region outside the Arnol’d
tongues, the random attractor is a fixed but random point

A(ω) = {a(ω)}: if one starts a numerical simulation for a fixed
realization of the noise ω, all initial data x converge to the same
fixed point a, say.

We illustrate this remarkable property in Fig. 9 in the case
of a random fixed point, for given ε and τ . The Lyapunov
exponent for the three distinct trajectories shown in the figure is
strictly negative and the trajectories are exponentially attracted
to the single random fixed point a(ω), the realization of the
driving system θ(ω) being the same for all the trajectories; see
Appendices A and B. Kaijser [102] provided rigorous results
on this type of synchronization phenomenon, but in a totally
different conceptual setting. Interestingly, as the noise intensity
increases, the Lyapunov exponent becomes more negative, so
that the synchronization occurs even more rapidly, given a fixed
realization ω.

This clustering behavior of trajectories with different initial
data is in fact well known for flows on the circle [103]. In
our example, this phenomenon in phase space is related to
a smoothing of the Devil’s staircase in parameter space, the
latter cannot be solely explained by the former. Indeed, we
show in Appendix B that for different irrational numbers and
a sufficiently high noise level, the corresponding stochastic
dynamics are stochastically equivalent, an equivalence that
results in the smoothing of certain steps of the Devil’s staircase.

As shown in the lower panel of Fig. 8, there is also a direct
relationship between the random dynamics and the support of
the PDF on the circle. For a given noise level, this support can
either be the union of a finite number of disjoint intervals (red
and blue curves) or it can fill the whole circle (black curve).
The random attractor is, accordingly, either a random periodic
orbit, with the disjoint intervals being visited in succession, or
a random fixed point; this PDF behavior characterizes the level
of the noise needed to destroy a given tongue.

An exact definition of random fixed point and random
periodic orbit is given in Appendix B, where we provide a
rigorous justification of the numerical results in Figs. 7–9.
This theoretical analysis helps clarify the interaction between
noise and nonlinear dynamics in the context of the GCM
classification problem we are interested in.

4. Concluding remarks

We recall that Section 2 dealt with the natural, interannual
and interdecadal variability of the ocean’s wind-driven circula-
tion. The oceans’ internal variability is an important source of
uncertainty in past-climate reconstructions and future-climate
projections [9–12]. In Section 3 and Appendices A and B, we
dealt more generally with the problem of structural instability
as a possible cause for the stubborn tendency of the range of un-
certainties in climate change projections to increase, rather than
diminish over the last three decades [1–4]; see again Fig. 1. We
summarize here the main results of the two sections in succes-
sion, and outline several open problems.

The wind-driven double-gyre circulation dominates the
near-surface flow in the oceans’ mid-latitude basins. Particular
attention was paid to the North Atlantic and North Pacific,
traversed by the best-known oceanic jets, namely the Gulf
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Fig. 8. Arnol’d tongues in the presence of additive noise with different noise amplitudes σ . Upper panels: Arnol’d tongues for σ = 0.05, 0.10 and 0.15; lower
panel: PDF for ε = 0.9 and the three σ -values in the upper panels: σ = 0.05 (red curve), σ = 0.10 (blue curve), and σ = 0.15 (black curve).

Fig. 9. Synchronization by additive noise: three distinct trajectories (in blue,
red and black) of xn+1 = Fτ,ε;ω(xn), with Fτ,ε;ω given by (B.1); the three
trajectories start from three initial points on the circle, but are driven by the
same realization ω of the noise, and thus converge to the same random fixed
point a(ω), which is moving with time. The parameters are ε = 0.5, τ = 0.283
and σ = 0.3, and the corresponding Lyapunov exponent is λ * −0.0104.

Stream and the Kuroshio Extension (see Fig. 2). The wind-
driven circulation exhibits very rich internal dynamics and
multiscale behavior associated with turbulent mesoscales (see
Fig. 3). Aside from the intrinsic interest of this problem
in physical oceanography, these major oceanic currents help
regulate the climate of the adjacent continents, while their low-
frequency variability affects past, present and future global
climate.

Thanks in part to the systematic use of dynamical systems
theory, a comprehensive understanding of simple, barotropic,
quasi-geostrophic (QG) models of the double-gyre circulation

has been achieved over the last two decades, and was
reviewed in Section 2 here. In particular, the importance of
symmetry-breaking and homoclinic bifurcations (see Fig. 4)
in explaining the observed low-frequency variability has been
validated across a wide hierarchy of models, including models
with much more comprehensive physical formulation, more
realistic geometry, and greater resolution in the horizontal
and vertical [11,12]. This successive-bifurcation theory also
provides a self-consistent explanation for the climatically
important 7-year and 14-year oscillations of the oceanic
circulation and the related atmospheric phenomena in and
around the North-Atlantic basin [11,12,24–29,45,46].

The next challenge in physical oceanography is to reconcile
the points of view of dynamical systems theory and statistical
mechanics in describing the interaction between the largest
scales of motion and geostrophic mesoscale turbulence, which
is fully captured in baroclinic QG models. We emphasize that
the complexity of these models of the double-gyre circulation
is intermediate between high-end GCMs and simple “toy”
models; these models offer, therefore, an ideal laboratory to
test our ideas. In particular, stochastic parametrizations of the
rectification process, absent in barotropic QG models, could be
studied using some of the concepts and tools from RDS theory
presented here. Note that the RDS approach has already been
used in the context of stochastic partial differential equations,
in particular for showing the existence of random attractors,
as well as stable, unstable and inertial manifolds. Thus RDS
concepts and tools are not restricted to finite-dimensional
systems [104–106].

In Section 3, we have addressed the range-of-uncertainty
problem for IPCC-class GCM simulations (see Fig. 1)
by considering them as stochastically perturbed dynamical
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systems. This approach is consonant with recent interest
for stochastic parametrizations in the high-end modeling-
and-simulation community [74–79]. Rigorous mathematical
results from the dynamical systems literature suggest that –
in the absence of stochastic ingredients – GCMs as well as
simpler models, found on the lower rungs of the modeling
hierarchy [17], are bound to differ from each other in their
results.

This sensitivity follows from the fact that, among
deterministic dynamical systems, those that are hyperbolic are
essentially the only ones that are also structurally stable, at
least in the C1 case [62–65]. Thus, because hyperbolic systems
are not dense in the set of smooth deterministic ones [67],
we are led to conclude that the topological, structural-stability
approach does not guarantee deterministic-model robustness, in
spite of its many valuable contributions so far. Related issues
for GCM modeling were emphasized recently by Mitchell [83],
Held [84] and McWilliams [85].

We have gone one step further and considered model
robustness in the presence of stochastic terms; such terms could
represent either parametrizations of unresolved processes in
GCMs or stochastic components of natural or anthropogenic
forcing, such as volcanic eruptions or fluctuations in
greenhouse gas or aerosol emissions. Despite the obvious gap
between idealized models and high-end simulations, we have
brought to bear random dynamical systems (RDS) theory [20]
on the former.

In this framework, we have considered a robustness criterion
that could replace structural stability, through the concept of
stochastic conjugacy (see Figs. A.1 and A.2). We have shown,
for a stochastically perturbed Arnol’d family of circle maps,
that noise can enhance model robustness. More precisely,
this circle map family exhibits structurally stable, as well
as structurally unstable behavior. When noise is added, the
entire family exhibits stochastic structural stability, based
on the stochastic-conjugacy concept, even in those regions
of parameter space where deterministic structural instability
occurs for vanishing noise (see Figs. 7 and 8).

Clearly the hope that noise can smooth the very highly
structured pattern of distinct behavior types for climate models,
across the full hierarchy, has to be tempered by a number of
caveats. First, serious questions remain at the fundamental,
mathematical level about the behavior of nonhyperbolic chaotic
attractors in the presence of noise [86–88]. Likewise, the case
of driving by nonergodic noise is being actively studied [107–
109].

Second, the presence of certain manifestations of a
Devil’s staircase has been documented across the full
hierarchy of ENSO models [17,93–99], as well as in
certain observations [17,99]. Interestingly, both GCMs and
observations only exhibit a few, broad steps of the staircase,
such as 4 : 1 = 4 yr, 4 : 2 = 2 yr, and 4 : 3 ∼= 16 months.
Does this result actually support the idea that nature and its
detailed models always provide sufficient noise to achieve
considerable smoothing of the much finer structure apparent
in simpler models? Be that as it may, we need a much better
understanding of how different types of noise – additive and

multiplicative, white and colored – act across even a partial
hierarchy of models, say from the simplest ones, like those
studied in Section 3, to the intermediate ones considered in
Section 2.

Third, one needs to connect more closely the nature of
a stochastic parametrization and its effects on the model’s
behavior in phase-parameter space. As shown in Appendix B,
not all types of noise are equal with respect to these effects. We
are thus left with a rich, and hopefully fruitful, set of questions,
which we expect to pursue in future work.
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Appendix A. RDSs and random attractors

We present here briefly the mathematical concepts and tools
of random dynamical systems, random attractors and stochastic
equivalence. We shall use the concept of pullback attractor
introduced in Section 3.2.1 to define the closely related notion
of a random attractor, but need first to define an RDS. We denote
by T the set Z, for maps, or R, for flows. Let (X,B) be a
measurable phase space, and (Ω ,F, P, (θ(t))t∈T) be a metric
dynamical system i.e. a flow in the probability space (Ω ,F, P),
such that (t, ω) -→ θ(t)ω is measurable and θ(t) : Ω → Ω is
measure preserving, i.e. θ(t)P = P.

Let ϕ : T×Ω×X → X , (t, ω, x) -→ ϕ(t, ω)x , be a mapping
with the two following properties:

(R1) : ϕ(0, ω) = IdX , and
(R2) (the cocycle property): For all s, t ∈ T and all ω ∈ Ω ,

ϕ(t + s, ω) = ϕ(t, θ(s)ω) ◦ ϕ(s, ω).

If ϕ is measurable, it is called a measurable RDS over θ . If,
in addition, X is a topological space (respectively a Banach
space), and ϕ satisfies (t, ω) -→ ϕ(t, ω)x continuous (resp. Ck ,
1 ≤ k ≤ ∞) for all (t, ω) ∈ T×Ω , then ϕ is called a continuous
(resp. Ck) RDS over the flow θ . If so, then

(ω, x) -→ Θ(t)(x, ω) := (θ(t)ω, ϕ(t, ω)x), (A.1)

is a (measurable) flow on Ω × X , and is called the skew-product
of θ and ϕ. In the sequel, we shall use the terms “RDS” or
“cocycle” synonymously.

The choice of the so-called driving system θ is a crucial step
in this set-up; it is mostly dictated by the fact that the coupling
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Fig. A.1. Random dynamical systems (RDS) viewed as a flow on the bundle
X × Ω = “dynamical space” × “probability space”. For a given state x and
realization ω, the RDS ϕ is such that Θ(t)(x, ω) = (θ(t)ω, ϕ(t, ω)x) is a flow
on the bundle.

Fig. A.2. Schematic diagram of a random attractor A(ω), where ω ∈ Ω is a
fixed realization of the noise. To be attracting, for every set B of X in a family
Bof such sets, one must have limt→+∞ dist(B(θ(−t)ω),A(ω)) = 0 with
B(θ(−t)ω) := ϕ(t, θ(−t)ω)B; to be invariant, one must have ϕ(t, ω)A(ω) =
A(θ(t)ω). This definition depends strongly on B; see [112] for more details.

between the stationary driving and the deterministic dynamics
should respect the time invariance of the former, as illustrated
in Fig. A.1. The driving system θ also plays an important role
in establishing stochastic conjugacy [110] and hence the kind
of classification we aim at.

The concept of random attractor is a natural and
straightforward extension of the definition of pullback attractor
(4), in which Sell’s [81] process is replaced by a cocycle, cf.
Fig. A.1, and the attractor A now depends on the realization
ω of the noise, so that we have a family of random attractors
A(ω), cf. Fig. A.2. Roughly speaking, for a fixed realization
of the noise, one “rewinds” the noise back to t → −∞ and
lets the experiment evolve (forward in time) towards a possibly
attracting set A(ω); the driving system θ enables one to do this
rewinding without changing the statistics, cf. Figs. A.1 and A.2.

Other notions of attractor can be defined in the stochastic
context, in particular based on the original SDE; see [111] or
[112] for a discussion on this topic. The present definition,
though, will serve us well.

Having defined RDSs and random attractors, we now
introduce the notion of stochastic equivalence or conjugacy, in
order to rigourously compare two RDSs; it is defined as follows:

two cocycles ϕ1(ω, t) and ϕ2(ω, t) are conjugated if and only
if there exists a random homeomorphism h ∈ Homeo(X) and
an invariant set such that h(ω)(0) = 0 and

ϕ1(ω, t) = h(θ(t)ω)−1 ◦ ϕ2(ω, t) ◦ h(ω). (A.2)

Stochastic equivalence extends classic topological conjugacy to
the bundle space X × Ω , stating that there exists a one-to-one,
stochastic change of variables that continuously transforms the
phase portrait of one sample system in X into that of any other
such system.

Appendix B. Coarse-graining of the circle map family

We provide here a rigorous justification of the numerical re-
sults obtained in Section 3.2.2 on the topological classification
of the family of Arnol’d circle maps in the presence of noise.
Consider the following random family of diffeomorphisms:

Fτ,ε;ω(x) := x + τ + σω − ε sin(2πx) mod 1, (B.1)

for x ∈ S1, ε a real parameter in (0, 1), and ω a
random parameter distributed in the compact interval I =
[−1/2, 1/2] with fixed distribution ν and noise intensity σ .
We denote by Fτ,ε the corresponding deterministic family of
diffeomorphisms when the noise is switched off, σ = 0.

In the RDS framework, we need to specify the metric
dynamical system modeling the noise. We choose here the
interval σ I as the base for the probability space Ω and define
the flow θ simply as mapping the point ω into its successor in
a sequence of realizations of the noise. One could also use an
irrational rotation on Ω for instance; in either case, ergodicity
is ensured.

For the sake of simplicity, we omit for the moment the
dependence on τ and ε. In discrete time, with T = Z, we define
a map φ : T × Ω × S1 → S1, (n, ω, x) -→ φ(n, ω)x , such that

φ(n, ω) :=






Fθn−1ω ◦ · · · ◦ Fω, n ≥ 1,

IdS1 , n = 0,

F−1
θnω ◦ · · · ◦ F−1

θ−1ω
, n ≤ −1.

(B.2)

One can prove easily that this φ satisfies the cocycle property
and is in fact a C∞ RDS on S1 over θ .

The pair of mappings Θ := (θ, φ) is the corresponding
skew-product (A.1), and it defines a flow on Ω × S1 by the
relation:

(ω, x) -→ Θ(n)(ω, x) := (θnω, φ(n, ω)x). (B.3)

A stationary measure m on S1 under the random diffeomor-
phism Fτ,ε;ω yields a Θ-invariant measure µ := m × ν, i.e.
Θnµ = µ; explicitly,
∫

Ω×S1
f (ω, x)µ(dω, dx)

=
∫

Ω×S1
f (θnω, φ(n, ω)x)µ(dω, dx) (B.4)

for all n ∈ T and f ∈ L1(Ω × S1, µ).
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Let us recall the following important proposition [113]
concerning the stationary measures obtained from the random
family {Fτ,ε;ω}.

Theorem 1. The random circle diffeomorphism Fτ,ε;ω has a
unique stationary measure mτ,ε . The support of mτ,ε consists
either of q mutually disjoint intervals or of the entire circle S1.
The density function φτ,ε is in C∞(S1) and depends C∞ on
τ . The invariant measure µ is ergodic. If the support of m is
connected, then it is mixing and so is µ.

Mixing for m means that, for any bounded function f :
S1 → R, and for an arbitrary initial point x0 ∈ S1,
E f (φ(n, ω)x0) tends to

∫
S1 f (x)m(dx) as n → +∞; see [114]

for more on random attractors and mixing.
For deterministic diffeomorphisms of the circle, the rotation

number measures the average rotation per iterate of Fτ,ε . In the
presence of noise, one can still define a rotation number for
Fτ,ε;ω, namely

ρτ,ε;ω(x) = lim
k→∞

F̃k
τ,ε;ω(x) − x

k
, (B.5)

where F̃ denotes the lift of a map F , acting on S1 modulo 1,
to a map acting on R. For fixed τ and ε, we can then show that
ρτ,ε;ω exists for ν-almost all ω and is a constant; this constant
ρτ ;ω is independent of x and ω [113]. Furthermore, τ → ρτ,ε is
C∞ for each ε, which is not true in the deterministic case with
σ = 0; see again [113].

Theorem 1 has a natural geometric counterpart in terms
of random attractors, as confirmed through our numerical
study; see again Fig. 8. More precisely, we introduce also
the following definitions of random fixed point and random
periodic orbit; these definitions differ somewhat from those
given in [113].

Definition 1. A random fixed point is a measurable map a :
Ω → S1 for which

φ(1, ω)a(ω) = a(θ(ω)), (B.6)

for ν-almost all ω ∈ Ω , i.e. such that Ω×a(Ω) is an invariant set
for the flow given by the skew-product Θ . A random periodic
orbit of period q is likewise an invariant set with cardinality q
in fibers S1 × {ω} for ν-almost all ω.

With these definitions, the following results of [113] still
hold.

Theorem 2. For a random diffeomorphism Fτ,ε;ω of the circle
S1, with a stationary measure m supported on a union E of q
disjoint intervals, the corresponding skew-product Θ restricted
to E has precisely one attracting random periodic orbit and one
repelling random periodic orbit.

Attraction in the preceding theorem means that limn→∞
|Fn

ω(x)−Fn
ω(a(ω))| = 0, for a set of initial data (x, ω) ∈ S1×Ω

with positive λ × ν-measure, in the case of a random attracting
fixed point; here λ is Lebesgue measure on S1 and the extension
to a random periodic orbit is obvious.

Using these two theorems and rigorous results on random
point attractors [112], we can show that (i) if the support of the
stationary measure is the whole circle (black curve in Fig. 8),
then there exists one random fixed point which is pullback
attracting; and (ii) if the support consists of q disjoint intervals,
then the random attractor is a random periodic orbit of period q
(red and blue curves).

Having explained how the connectedness of the PDF support
at different noise levels is related to the nature of the random
attractor, we now turn to an explanation of the “disappearance”
of the smaller steps in the Devil’s staircase, as the noise level
increases. To do so, we consider the Lyapunov spectrum of an
RDS, which still relies on the Oseledets [115] multiplicative
ergodic theorem (MET).

To state an MET for RDS on manifolds, we differentiate
φ(n, ω) at x ∈ S1, and obtain the linear map

T φ(n, ω, x) : Tx M → Tφ(n,ω)x M, (B.7)

where T φ is a continuous linear cocycle on the tangent bundle
T M of the manifold M over the skew-product flow Θ . If the
flow φ possesses an ergodic invariant measure µ such that
the required integrability condition for applying the MET is
verified with respect to µ, then the MET holds for φ over
M [116].

Because of Theorem 1 here, we can apply the MET to
our problem and conclude that a unique Lyapunov exponent
exists for the linearization of each diffeomorphism belonging to
our family of random diffeomorphisms, and that this exponent
is independent of the realization of the noise. We show next
how to use the Lyapunov spectrum in studying the stochastic
equivalence classes of a given RDS family, along with its
driving system θ . This last aspect of the classification problem
is outlined for linear hyperbolic cocycles.

Cong [117] has shown that, even in the linear context,
the main difference with respect to the deterministic case is
that the classification depends strongly on the properties of θ ,
which is directly linked to the system noise and its modeling.
For instance, if θ is an irrational rotation on S1, one can
construct infinitely many classes of hyperbolic cocycles that
are not pairwise topologically equivalent, by playing essentially
with the orientations of the cocyles, i.e. reversing between
clockwise and anticlockwise rotation on S1. As we shall see,
such difficulties can be avoided in the case of noisy Arnol’d
tongues, especially for additive noise. Related issues still form
an active research area in RDS theory; see [116] for a brief
survey.

A key ingredient for the linear classification is the notion of
coboundary, which we recall herewith.

Definition 2. A measurable set K ⊂ Ω is called a coboundary
if there exists a set H ∈ F such that K = H0θ H , where
H0θ H denotes the symmetric difference of H and θ H .

Let A and B be two linear random maps on Rd , and denote
by deg A(ω) and deg B(ω) the degrees of the maps A(ω) and
B(ω) with respect to a chosen random orientation. These de-
grees are just the sign of the determinant of the corresponding
random matrices, and equal −1 or 1; see [110,117] for details.
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Consider the two linear hyperbolic cocycles ΦA and ΦB , asso-
ciated with the maps A and B, and the following subset of Ω :

CAB = {ω ∈ Ω | deg A(ω) · deg B(ω) = −1}; (B.8)

CAB is just the set of all ω ∈ Ω for which the degrees of the
two linear maps A(ω) and B(ω) differ.

The main theorem for the classification of our diffeomor-
phisms of S1 follows [117].

Theorem 3. Two one-dimensional linear hyperbolic cocycles
ΦA and ΦB are conjugate if and only if the following conditions
hold:

(i) sign λA = sign λB, and
(ii) the associated set CAB is a coboundary.

Here λA and λB indicate the Lyapunov exponents of ΦA and
ΦB , respectively.

Before applying this result, let us explain heuristically how
a Devil’s staircase step that corresponds to a rational rotation
number can be “destroyed” by a sufficiently intense noise.
Consider the period-1 locked state in the deterministic setting.
At the beginning of this step, a pair of fixed points is created,
one stable and the other unstable. As the bifurcation parameter
is increased, these two points move away from each other, until
they are π radians apart. Increasing the parameter further causes
the fixed points to continue moving along, until they finally
meet again and are annihilated in a saddle-node bifurcation,
thus signaling the end of the locking interval.

When noise is added, we have to distinguish between a
“strongly locked” regime, where the stable and unstable fixed
points are nearly π radians apart, and a “weakly locked”
regime, where these two fixed points are close to each other.
In both regimes, the relaxation time in the vicinity of the
stable point represents an important time scale of the problem.
In the strongly locked regime, this is the only time scale of
interest. In the weakly locked regime, though, the process of
escaping across the unstable fixed point is non-negligible and
the associated escape time becomes the second time scale of
interest. From these heuristic considerations it follows that the
distinction between strong and weak locking depends on the
strength of the external noise.

If we consider period-T locked states, with T ≥ 2, the same
kind of reasoning can be applied to the stable and unstable
T -cycle. We conclude therefore, for a fixed ε > 0, that the
narrower Devil’s staircase steps are the least robust, while the
wider ones are the most robust.

The fact that a locked case becomes unlocked when noise
is growing implies in particular that the rotation number
ρτ,ε becomes irrational for a sufficiently high noise level.
According to Theorem 2.1 of [102], the Lyapunov exponent
is strictly negative in this case almost surely. Moreover,
by reinterpreting other results of Kaijser [102] in our RDS
framework, we can show that the random attractor is in fact
a random fixed point; this, in turn, allows us to conclude that
the corresponding linearized cocycle at this random fixed point
is hyperbolic. Next, by using the Hartman-Grobman theorem
for RDSs [118–120], we can conjugate the nonlinear cocycle

with its linearization; in fact, Theorem 3.1 of [119] says that
this conjugacy is global.

Consider now two linearized cocycles ΦA and ΦB , at one
and the same or at two distinct random fixed points of the family
of random diffeomorphisms, for the same noise intensity, and
denote by A(ω) and B(ω) the random linear parts of the
cocycles ΦA and ΦB respectively; it follows from our model
of noisy circle maps that CAB is empty. Indeed, the noise
being additive, the random orientation is preserved for different
parameter values. But θ is assumed to be ergodic, and so we
have that Ω0θΩ is empty and, therefore, CAB is a coboundary.
Therewith, Theorem 3 can be applied to obtain the desired
result for the problem considered here: with an appropriate
amount of noise, two deterministic diffeomorphisms that are
not topologically equivalent can fall into the same topological
stochastic class! The numerical results of Section 3.2 are
entirely in agreement with this assertion.

Note that the set CAB could differ from a coboundary, if the
noise occurred additively in the phase of the nonlinear term,
for instance. Here we see the importance of noise modeling
in obtaining the conjectural view of Fig. 6 for a family of
dynamical systems in general.

It follows, in particular, that the exact nature of the stochastic
parametrizations in a family of GCMs does matter. It’s not
enough to follow the trend by devising and implementing such
parametrizations: one should test that a given parametrization,
once found to be suitable in other respects, does improve the
proximity, in an appropriate sense, between climate simulations
within the family of GCMs for which it has been been
developed.
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Abstract

A stochastic model of wave groups is presented to explain the occurrence of exceptionally large waves, usually referred to as rogue waves. The
model leads to the description of the non-Gaussian statistics of large waves in oceanic turbulence and to a new asymptotic distribution of their
crest heights in a form that generalizes the Tayfun model. The new model explains the unusually large crests observed in flume experiments of
narrow-band waves. However, comparisons with realistic oceanic measurements gathered in the North Sea during an intense storm indicate that
the generalized model agrees with the original Tayfun distribution.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Rogue waves are extreme events with potentially devastating
effects on offshore structures and ships. A rogue wave observed
at the Draupner platform in the North Sea during a storm in
January, 1995 provides evidence that such waves can occur
in the open ocean. Theoretical models offer various physical
mechanisms that can produce such focusing of wave energy in
a small area of the ocean. When nonlinearities are negligible,
ocean waves are usually modeled as Gaussian seas, as a linear
superimposition of a large number of elementary waves with
amplitudes related to a given spectrum and random phases.
In this case, large waves occur due to the dynamics of a
large stochastic wave group evolving linearly in accordance
with both the Slepian model [1] and the theory of quasi-
determinism of Boccotti [2]. Moreover, crests and troughs
are both Rayleigh-distributed. If second-order nonlinearities
are dominant, then the sea surface displays sharper narrower
crests and shallower more rounded troughs. As a result,
the skewness of surface elevations is positive [3], and wave
crests are distributed according to the Tayfun model [4–7]. If,
however, elementary waves also exchange energy nonlinearly

∗ Tel.: +1 902 966 6785.
E-mail address: francesco.fedele@gtsav.gatech.edu.

via third-order four-wave resonances, narrow-band wave trains
can undergo intense modulational instability enhancing the
occurrence of larger waves [5,8] and, as a result, the distribution
of crest heights can deviate from the Tayfun model. This is
confirmed by both the wave-flume experiments in [6] and the
numerical simulations of the Dysthe equation [7], a special
case of the Zakharov equation [9] governing the dynamics of
weakly nonlinear water waves. The unusually large wave crests
observed in both the latter experiments and simulations are
explained reasonably well by a Gram–Charlier approximation
of the crest distribution recently proposed in [5]. This model
stems from the general Hermite series expansion of random
variables [3], and it relates to the physics of ocean waves only
through various statistics such as the skewness and kurtosis
of surface displacements. Could such type of Gram–Charlier
models for crests proceed directly from the basic equations
governing the ocean dynamics without assuming a priori
that the associated statistical structure is in the form of a
Gram–Charlier expansion in Hermite polynomials ? This paper
will explore this query by formulating a new stochastic model
of wave groups, describing the non-Gaussian statistics of
large waves under conditions referred to as oceanic or wave
turbulence (WT). The latter state defines the chaotic behavior
of a sea of weakly nonlinear-coupled dispersive wave trains
evolving in accordance with the Zakharov equation [9]. An

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.022
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initial Gaussian field is weakly modulated as nonlinearities
develop in time, leading to intermittency in the turbulent signal
due to the formation of sparse but intense coherent structures.
Large wave crests observed during these localized events may
explain the occurrence of rogue waves in open ocean. By
exploiting the weak nature of the nonlinear interactions of
O(µ2), with µ defined as a small parameter for wave steepness,
large crests are identified as those waves riding on top of large
groups. In fact, for time scales much larger than the typical
wave period TL , but much less than the nonlinear time scale
TN L ∼ O(µ−2), waves traveling in groups evolve mainly due
to the faster non-resonant second-order interactions while the
slower third-order resonant interactions modify and intensify
their amplitudes. Thus, the initial deviations from Gaussianity
observed in the statistical structure of large waves are revealed
before turbulence becomes strong and thus the WT theory
breaks down.

Herein, the WT theory is briefly reviewed first. Then,
some salient features of the concept of stochastic wave groups
relevant to WT are discussed, leading to a generalization of the
Tayfun model for the statistical distribution of crest heights over
large waves. Finally, comparisons with the lab data, numerical
simulations and wave measurements collected in the North Sea
are presented.

2. Oceanic turbulence

Consider weakly nonlinear random waves propagating in
water of uniform depth d in accordance with the Zakharov
equation for WT [9]. Define x = (x, y) as the horizontal
position vector on a plane coincident with the water mean level,
t the time, k as the horizontal wave-number vector, and ω is
the angular frequency related to k via gk tanh kd = ω2, with
k = |k|. Drawing upon [11], the sea surface displacement ζ

from the mean sea level is given, correct to O(µ2), by

ζ = ζ1 + ζ2, (1)

where the component ζ1, that accounts for four-wave resonant
interactions, is given by

ζ1 =
∫

b1(t)ei(θ1−Ω1t)dk1 + c.c. (2)

with θ1 = k1·x−ω1t and b1(t) = b(k1, t) a complex amplitude
whose perturbation expansion in small µ is given, correct to
O(µ2), by [11]

b1(t) = B1(1 + iµ2Ω1t) − 2µ2g [G(t; B) − G(0; B)] , (3)

where

Ω1 = 2ω1

∫
W 12

12 |A2|2 dk2

is the renormalization frequency arising from the nonlinear
frequency shift due to self-interactions, and

G(t; B) =
∫

W 12
34

√
ω1

ω2ω3ω4
B̄2 B3 B4δ

12
34

exp
(
−iω12

34t
)

ω12
34

dk234,

is a function of the initial amplitudes B1 = B(k1) at t = 0, W 12
34

is the four-wave interaction kernel, ω12
34 = ω1 + ω2 − ω3 − ω4,

δ12
34 = δ (k1 + k2 − k3 − k4), and B̄ is the complex conjugate

of B. The correction ζ2 due to non-resonant interactions is given
by

ζ2 =
∫

b1b2

[
A+

12ei(θ1+θ2) + A−
12ei(θ1−θ2)

]
dk12 + c.c. (4)

where A+
12 = A±(k1, k2) are interaction coefficients [10].

Clearly 〈ζ 〉 = 0 and the variance
〈
ζ 2〉 = σ 2, where 〈·〉 stands

for expected value.

3. Large crests in Gaussian seas

Neglect both resonant and non-resonant interactions so
that ζ1 is Gaussian. Further, assume that a large wave crest
of amplitude h is recorded at x = x0 and t = t0.
Boccotti [2] shows that as h/σ → ∞, with probability
approaching 1, the large crest occurs when a well-defined wave
group ζc passes through x0. The surface displacement of ζc
around x = x0 + X and t = t0 + T is asymptotically described
by the following conditional process

ζc = {ζ1(X, T )|ζ1(0, 0) = h} = ζdet +Rζ , (5)

as the sum of a deterministic part ζdet previously derived in
[1,2], and given by

ζdet = 〈ζ1(X, T )|ζ1(0, 0) = h〉 = h
Ψ
σ 2 ,

and a random residual Rζ that can be explicitly expressed as
(see [12] and also Appendix for details)

Rζ (X, T ) = ∆
σ 2

−ψ∗ Ψ(X, T ) + Ψ(X, T − T ∗)
1 − ψ∗2 + O(h−1),

where ∆ is a random variable of O(h0), and Ψ is the
space–time covariance of ζ1 given by

Ψ(X, T ) =
∫

S1 cos(k1·X − ω1T )dk1,

with S(k1) = the wave-spectral density with bandwidth ν,
and ψ∗ ≡ ψ(T ∗)/ψ(0) with T ∗ being the abscissa of the
first local minimum of the time covariance ψ(T ) = Ψ(0, T ).
Since h and ∆ are random variables, ζc identifies a stochastic
wave group which evolves linearly through a wave background
represented by the residual Rζ . The largest crest occurs as
waves, growing from the tail of the group, reach its apex [2].
The dimensionless variables ξ = h/σ and ∆̃ = ∆/σ
are stochastically independent, as ξ → ∞. Moreover, ξ is
Rayleigh-distributed and ∆̃ is Gaussian with zero mean and
variance 1 − ψ∗2. In the following, it will be useful to express
ζc in the form

ζc =
∫

B̃1eiθ1 dk1 + c.c. (6)

where

B̃1 =
(

h − ∆
−ψ∗ + eiω1T ∗

1 − ψ∗2

)
S1

2σ 2 e−i(k1·x0−ω1t0), (7)
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with S1 = S(k1). Hereafter, the concept of stochastic wave
groups is exploited to explain the occurrence of large waves
and the associated crest statistics in WT.

4. Large crests in oceanic turbulence

Consider the nonlinear surface ζ . Because of both the fast
non-resonant and slow resonant interactions, crest statistics
deviate from being Gaussian. Such deviations can be quantified
by drawing upon [13,14]. So, assuming that a large crest of
amplitude hnl is recorded at x = x0 and t = t0, ζ surrounding
that crest locally around x = x0 + X and t = t0 + T is given by
the nonlinear conditional process

ζnc = {ζ(X, T )|ζ(0, 0) = hnl} . (8)

If the waves were Gaussian, ζnc would be identical to the
wave group ζc in (5). For nonlinear waves, does ζnc still
represent a group forming a large crest with amplitude hnl?
The answer to this question is given by exploiting the weakly
nature of the nonlinear interactions of ζ . First, ignore four-wave
resonances in (1). Then, ζ1 is Gaussian and ζ is homogeneous
in space and time, but non-Gaussian. Under these conditions,
the crest statistics deviate from the Rayleigh distribution, but
they are well described by the Tayfun distribution [4,5,12]. For
long-crested narrow-band waves in deep water, as the spectral
bandwidth ν → 0, ζ assumes the simple form [4,5]

ζ = ζ1 + µ

2σ

(
ζ 2

1 − ζ̂ 2
1

)
+ O (ν) , (9)

where the component ζ2 is explicitly identified in terms of ζ1,
µ = λ3/3 is related to the skewness coefficient λ3 =

〈
ζ 3〉 /σ 3,

and ζ̂1 denotes the Hilbert transform of ζ1 with respect to time.
From (9) it is clear that the component ζ2 is phase-coupled
to the extremes of the Gaussian ζ1. So, a large crest of ζ
with amplitude hnl occurs simultaneously when ζ1 itself is at a
large crest with an amplitude, say h [14]. Thus, the conditional
process (8) is equivalent to the simpler process

ζnc = {ζ |ζ1 = ζc} , (10)

which explicitly follows, by replacing ζ1 in (9) with ζc of (6), as

ζnc = ζc + µ

2σ

(
ζ 2

c − ζ̂ 2
c

)
. (11)

The amplitude hnl of the largest crest of ζnc occurs at x = x0
and t = t0, i.e. X = 0 and T = 0, when ζc = h and ζ̂c = 0, and
it is given in the Tayfun form as

ξmax = ξ + µ

2
ξ2, (12)

where ξmax = hnl/σ [12]. Thus, the Tayfun (T) model for the
exceedance of the crest height ξmax readily follows from the
Rayleigh distribution of ξ as [4]

Pr {ξmax > λ} = exp

(

−ξ2
0
2

)

, (13)

where ξ0 satisfies the quadratic equation

ξ0 + µ

2
ξ2

0 = λ. (14)

For TL * t0 * TN L ∼ O(µ−2), third-order resonant
interactions develop and the wave field becomes nonstationary
in time but still homogeneous in space. Moreover, the crest
statistics deviates from the Tayfun model because the latter is
based on the particular non-resonant form (9) of the generic
ζ in (1). The deviations from the second-order theory can be
still quantified by exploiting the space–time evolution of wave
groups. In fact, the new group ζnc in (10) arising from the four-
wave resonances of narrow-band waves is given by

ζnc = ζd + µ

2σ

(
ζ 2

d − ζ̂ 2
d

)
, (15)

where ζd originates from the modulation of the group ζc in (6)
from pure resonant interactions. An explicit expression for ζd
stems from ζ1 in (2) by replacing the initial values B1 of the
associated complex amplitude b1(t) in (3) with those values B̃1
of ζc in (7), that is

ζd =
∫

ei(θ1−Ω1t)
{

B̃1(1 + iµ2Ω1t)

− 2µ2
[
G(t; B̃) − G(0; B̃)

]}
dk1 + c.c. (16)

By a direct inspection of both (15) and (16) one can show that
the nonlinear group ζnc still focuses at x = x0 and t = t0 for
t0 * TN L with the largest crest amplitude ξmax given by

ξmax = ξ + µ

2
ξ2 + I(t0)ξ3 +A(t0)ξ2∆̃ + B(t0)ξ∆̃2, (17)

where O(∆̃3, µ3) terms have been neglected and the
dependence on x0 drops out because the field is homogeneous
in space but nonstationary in time. Moreover I, A and B are
multidimensional integrals in (k2, k3, k4) space. In particular,

I =
∫

Q12
34S2S3S4 dk234,

with

Q12
34 = µ2g

2m2
0

W 12
34

√
ω1

ω2ω3ω4
δ12

34
1 − cos

(
ω12

34t0
)

ω12
34

,

and in the narrow-band limit, as ν → 0,

A ≈ O(ν), B = −3I
/(

1 − ψ∗2
)

+ O(ν).

Drawing upon [8], the coefficient I relates to the fourth-order
cumulant λ40 = µ4 − 3 of the wave surface as λ40 = 24I,
µ4 being the kurtosis. The probability of exceedance for the
nonlinear wave-crest height ξmax is given by

Pr {ξmax > λ} =
∫ ∞

−∞
Pr

{
ξ > ξ∗ (λ)

∣∣∣∆̃
}

p∆̃d∆̃, (18)

where p∆̃ is the Gaussian density of ∆̃, ξ is Rayleigh-
distributed and its associated threshold ξ∗ satisfies ξmax = λ

in (17). Further, correct to O(ν), ξ∗ can be Taylor-expanded in
terms of ∆̃ starting from ξ = ξ0 of (14) as

ξ∗ = ξ0 − λ40

24

(

ξ3
0 − 3ξ0∆̃2

1 − ψ∗2

)

+ O(∆̃3).
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Fig. 1. Crest exceedances from Tern in comparison with the Tayfun,
generalized Tayfun and Gram–Charlier models. Labels: R=Rayleigh, T =
Tayfun (µ), GT= generalized Tayfun (µ, λ40), GC= Gram–Charlier.

Ignoring terms of O(∆̃3) in the integration of (18) yields the
probability of exceedance for ξmax as

Pr {ξmax > λ} = exp
(

−1
2
ξ2

0

) [
1 + λ40

24
λ2

(
λ2 − 3

)]
,

correct to O(µ2). We shall refer to this asymptotic result, as the
generalized Tayfun (GT) distribution, which is very similar to
the Gram–Charlier (GC) approximation proposed in [5], viz.

Pr {ξmax > λ} = exp
(

−1
2
ξ2

0

) [
1 + λ40

24
λ2

(
λ2 − 4

)]
.

Note that for directional broadband waves, wave-number
quadruplets are in perfect resonance, i.e. ω12

34 = 0, and the
Tayfun model is recovered from both the GT and GC models
since λ40 = 0.

5. Comparisons

The data to be considered for comparisons here comprise
9 h of measurements gathered during a severe storm in January,
1993 with a Marex radar from the Tern platform located in
the northern North Sea in 167 m water depth. This data set
is hereafter simply referred to as Tern. Tern represents storm
seas under fairly steady conditions with broadband spectra
characterized with σ = 3.024 m, spectral bandwidth ν = 0.629
and λ3 = 0.174. A stable estimate of the steepness µ in terms
of spectral properties is given by µa = µm

(
1 − ν + ν2) [12].

In Fig. 1, the empirical distribution from Tern is compared
with the T (µ , µa = 0.073), GT (µ , µa = 0.073,
λ40 , 0.023) and GC models respectively. It is observed
that both the GT and GC models do not appear to improve
significantly the predictions derived from the simpler T model.
For most practical applications, the differences between the
models appear insignificant, falling within a band of 1%–2%.
Consider now the case of unidirectional narrow-band waves.
The trend of the experimental wave-flume data of Fig. 2
in [6] is reproduced and shown in Fig. 2 here together with

Fig. 2. Crest-height distribution from wave-flume experiments (Fig. 2 in [6])
in comparison with the Tayfun, generalized Tayfun and Gram–Charlier models.
Labels are as for Fig. 1.

Fig. 3. Crest exceedances from numerical simulations (Fig. 9, case C in [7]) in
comparison with the Tayfun, generalized Tayfun and Gram–Charlier models.
Labels are as for Fig. 1.

the predictions based on GT, GC (µ , 0.075, λ40 , 0.80)
and T (µ , 0.075) models. The original T model tends to
underestimate the data whereas both the GT and GC models
appear to explain data qualitatively well. The latter models also
describe well the crest-height distribution from Fig. 9 (case
C) of [7] obtained from numerical simulations of the Dysthe
equation, reproduced and shown in Fig. 3 in comparison with
the GT, GC (µ , 0.07, λ40 , 0.40) and T (µ , 0.07) models.

6. Conclusions

A generalized Tayfun model for the statistics of crest
heights over large waves in oceanic turbulence is proposed. The
new crest model can explain the deviations from the Tayfun
distribution observed in flume experiments of narrow-band
waves. However, for realistic oceanic sea states the differences
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between the predictions of the new model and the Tayfun
distribution appear negligible.
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Appendix

The wave profile ηc(T ) at X = 0 is expressed in terms of
an O(h) contribution ηdet(T ) = ζdet (0, T ) and the random
residual r(T ) = Rζ (0, T ) of O(h0) as

ηc(T ) = ηdet(T ) + r(T ),

where ηdet(T ) = ζdet(0, T ) = hψ(T )/σ 2. Drawing upon [15],
the effects of the residual r(T ) on ηc are now determined.
Specifically, as h/σ → ∞, with probability approaching 1,
the surface profile locally near a large crest tends to assume
the shape given by ηdet(T ) [1,2]. The latter represents a wave
profile with a crest of amplitude h at time T = 0 followed by
the absolute minimum of amplitude ηdet(T ∗) at T = T ∗, with
T ∗ being the abscissa of the first local minimum of ψ(T ). For
large values of h, the wave trough of the profile ηc(T ) following
the crest of amplitude h shall now occur at time T = T ∗ + u,
with u being random. As h/σ → ∞, a crest of amplitude h that
occurs at T = 0, is followed after a time lag T ∗+u by a trough,
and ηc(T ) and its first time derivative η̇c(T ) at T = T ∗ attain
values given, correct to O

(
h0), by

ηc(T ∗) = ηdet(T ∗) + ∆, η̇c(T ∗) = −η̈det(T ∗)u.

For linear Gaussian functions, an approximation to ηc(T )

satisfying the preceding conditions exactly is given by

ηc(T ) = ηdet(T ) + ∆
σ 2

−ψ(T )ψ(T ∗)/σ 2 + ψ(T − T ∗)
1 − ψ(T ∗)2/σ 4 ,

where u drops out ignoring terms of O(h−1). The straightfor-
ward extension of the above time formulation to the space–time
domain leads to (5).
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Abstract

This paper considers the role of scientific expertise and moral reasoning in the decision making process involved in climate-change issues. It
points to an unresolved moral dilemma that lies at the heart of this decision making, namely how to balance duties towards future generations
against duties towards our contemporaries. At present, the prevailing moral and political discourses shy away from addressing this dilemma and
evade responsibility by falsely drawing normative conclusions from the predictions of climate models alone.

We argue that such moral dilemmas are best addressed in the framework of Expected Utility Theory. A crucial issue is to adequately incorporate
into this framework the uncertainties associated with the predicted consequences of climate change on the well-being of future generations. The
uncertainties that need to be considered include those usually associated with climate modeling and prediction, but also moral and general
epistemic ones. This paper suggests a way to correctly incorporate all the relevant uncertainties into the decision making process.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 92.60.Ry; 92.70.Gt
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1. Introduction

Significant and enduring anthropogenic impact on climate
is not a peculiarity of our time. Man is part of the biosphere
and as such always did and always will influence the climate
system, a system that comprises, apart from the atmosphere
and hydrosphere, also the bio, litho and cryosphere. Slash-
and-burn agriculture, changes in farming practices, building
development or regulation of inland waters have modified the
back-scattering of radiation by Earth’s surface and the near-
surface atmospheric winds [1,2]. The shift from nomadism to
farming several thousands of years ago resulted in vast clearings
and thus had a significant and sustained influence on regional
climate.

The converse influence that climate exerts on man,
particularly via atmospheric conditions and weather, has been
acknowledged for a long time, too. The European revolutions of

∗ Corresponding author.
E-mail address: rafaela.hillerbrand@philosophy.ox.ac.uk (R. Hillerbrand).

1789 and 1848, no doubt a result of long-lasting social, political
and economic circumstances, were also affected by continued
years of bad weather, bad crops, and high corn prices [3].
Recent research suggests that a possibly worldwide drought
in the 10th century was the catalyst for the demise of the
Tang Dynasty in China, as well as of the Mayan civilization
in Central America [4].

The increased use of fossil fuels, started at the beginning
of the industrial revolution, has led to rapid increase in
greenhouse emissions since World War II. In particular,
atmospheric concentrations of carbon dioxide, the most
abundant and hence best-known anthropogenic greenhouse gas,
have increased measurably and significantly over the last few
decades [5]. The so-called “greenhouse effect” of trapping
outgoing thermal radiation in the lower atmosphere yields, in
all likelihood, an anthropogenic climate change of global extent
and unprecedented consequences, for decades to come.

The present paper does not aim at an overview of the
currently available predictions on the future state of the
climate system, their relative merit or their shortcomings [5].

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.015
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We aim instead at describing the role of science within the
debate on adaptation and mitigation, and at complementing
an understanding of the scientific uncertainties [6] with
an introduction to the epistemic, i.e. knowledge-theoretical,
uncertainties. By bringing these issues to the attention of
the scientific community, we hope to improve communication
between this community, the broader public, and decision
makers.

We choose to evaluate the state of the climate system only
in terms of its value for humans (or other sentient beings).
Section 2 points out that this choice implies one cannot base
a normative – i.e. prescriptive rather than purely descriptive
or empirical – evaluation of the consequences of climate
change on the scientific predictions of the system’s future state
alone: putting adaptation and mitigation issues into the broader
context of competing needs and limited resources raises moral
problems that cannot be easily dismissed. Section 3 suggests
addressing the moral dilemmas raised in Section 2 within
the framework of Expected Utility Theory (EUT) [7,8]. The
EUT approach, however, depends sensitively on the predicted
impacts of climate change on people’s well-being, which are
still highly uncertain, and may have to remain so for a long
time.

Section 4 argues that not all of these uncertainties can
be properly quantified. Intrinsic obstacles to communicating
certain types of scientific uncertainties to broader audiences
might exist. Each scientific community has its own language (or
jargon) and translation between these languages, and between
either one of them and the common language of educated lay
people, poses possibly unsurmountable difficulties. Already the
difficulty of communicating between climate dynamicists and
welfare economists has been noted by many participants in the
emerging dialog between these two communities. Section 5
draws conclusions about the role of science in the normative
evaluation of anthropogenic climate change.

2. Jumping to conclusions

Large segments of the media, in Europe and elsewhere,
presuppose a clear moral obligation to mitigate the socio-
economic consequences of climate change. Likewise, most
related moral-philosophical considerations focus on questions
like how to distribute the costs of mitigation, while considering
principles of fairness. The moral obligation to mitigate is rarely
discussed; for noteworthy exceptions see [9–11]. At first glance,
the sole questions remaining open as regards climate change
thus seem to be of a political or scientific nature.

In contrast, we argue here that there are as yet unresolved
ethical questions regarding our obligation to mitigate climate
change, questions that precede the practical ones discussed in
the current literature and media. If there is a moral obligation
to preserve the climate in its present state, where does it stem
from? Addressing this question seems inevitable in determining
what our moral duties as regards climate may reasonably be.
Moreover, formulating explicitly the reasons behind what is
perceived by many, but not all, as a moral obligation should
help in convincing the sceptics.

Fig. 1. Estimating the impacts of anthropogenic emissions of greenhouse gases
on the living conditions of future generations. The short straight arrows (double
arrow, grey) correspond to “yields the output”, while long oblique (heavy arrow,
red) arrows correspond to “is input for”. The dashed rectangle indicates the
combination of scientific prognoses that, as a whole, serve as an input for a
political or moral evaluation, on the last line.

Let us suppose a moral obligation to take into account the
well-being of future generations in the same way as our own
and that of our fellow human beings. Obviously this calls for
environmentally sound actions in order to not deprive posterity
of adequate resources. But, as usual, the devil is in the details:
What exactly does this mean in the case of the climate system?

If we value the climate system only because of its value for
future generations (or for other sentient beings), a mere rise
in global mean temperature is not morally relevant per se, as
illustrated in Fig. 1. What matters is the effects of this change
in mean temperature and other climatic variables on the living
conditions of present and future human beings. These effects
are far from straightforward. The so-called impact models
estimate the direct and indirect influences of climate change on
the expectancy and quality of human life. The most advanced of
these welfare-economic models determine the monetary costs
arising in a broad range of market sectors, as well as in non-
market sectors, such as the costs arising from changes in human
mortality or in biodiversity [12–14].

Still, these models fail to adequately account for many
aspects of human suffering possibly caused by climate change,
as they evaluate the impact of climate change on human welfare
purely in monetary terms [9,12]. Money can be lent, exchanged,
traded or it can carry an interest; many factors which
(co-) determine an individual’s welfare cannot. Moreover,
future losses are discounted at a fairly arbitrary rate. Of course,
any realistic analysis has to take into account that future
generations might have means and possibilities to adapt to
the consequences of climate changes, maybe even of severe
ones. The single discount rate currently used is not, however,
connected to predictions on the capacity to adapt or mitigate.
Furthermore, welfare-economic analysis commonly ignores
costs stemming from psychological afflictions that are hard
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or even impossible to monetarize. Finally, almost all impact
models in use so far ignore economic variability, e.g. business
cycles and major crashes, and the genuine coupling of this
variability to climate dynamics [15,16].

Yet, for the time being, we have to accept these modeling
shortcomings – just as we have to deal not only with the various
shortcomings of present climate models but also with those of
other predictions, e.g. on weather, earthquakes, or stock market
prices. These shortcomings introduce uncertainties into the
model outputs, which then have to be taken into consideration,
along with those of climate-change predictions and of the
energy scenarios.

In practice, the distribution of the various tasks in
determining the effects of anthropogenic greenhouse gas
emissions is not as clear-cut as sketched in Fig. 1. Economic
models are frequently mistaken as moral assessments, although
they clearly do not constitute evaluations on moral grounds.
Basic modeling assumptions – like discounting future losses
or evaluating the harm in purely monetary terms, etc. –
cannot be morally justified, although they might be reasonable
assumptions for estimating the economic impact of climate
change. But even if we accept these assumptions as reasonable
for the time being, the economic models still do not qualify as a
“first-order approximation” to a normative assessment, whether
moral or political.

In determining what it means to act rightly or wrongly,
in moral terms, a cost-benefit analysis of one action always
has to include an evaluation of alternative actions. Climate
change and its mitigation cannot be treated as the only
issue at hand: epidemics caused by other factors, industrial
and agricultural pollution endangering air and water quality,
educational opportunities, poverty, discrimination etc., are
matters of legitimate concern as well. Existing cost-benefit
analyses, even those few that try to avoid the above-mentioned
shortcomings of economic models [9], fail to put the analysis
of climate change into the requisite broader context.

Societies (or other subjects) are able to part only with a
certain amount of money or other resources for predominantly
altruistic goals, of which the mitigation of major changes
in future climate is only one. Investing in the mitigation
of climate-change effects means forgoing other investments,
e.g. the reduction of world poverty, towards which we have
a moral obligation. For example, on the one hand, the Stern
report [12] famously mentions 1% of global gross domestic
product (GDP) as the sum needed to avoid major hazards that
may arise from climate change. This amounts to an investment
of US $ 450 billion per year, if we base the calculation on the
current GDP value. On the other hand, current estimates of the
money needed to provide 80% of rural populations in Africa
with access to water and sanitation by 2015 amounts to only
US $ 1.3 billion per annum [17].

The trade-off between investment into the mitigation of and
adaption to climate-change effects and investment in safe water
supply in developing countries, for example, is currently not
included in the moral or political evaluation of climate change.
Political reasoning seems to shy away from the trade-off. The
moral discourse contents itself with an ex post justification of

established public opinion. As a result, the discussion is cut
short and moral obligations are derived already on the level of
merely discussing climate-model predictions.

This preempting of the moral debate is not only at variance
with sound decision making. Putting the cart before the horse,
i.e. presupposing a moral obligation before all the steps of
the cost-benefit analysis have been carried out, also seems
to adversely affect the science itself. As Pielke [18], p. 406,
notes in this context: “In many instances science, particularly
environmental science, has become little more than a mechanics
of marketing competing political agendas, and scientists have
become leading members of the advertising campaigns”.

The heated debate that followed the publication of
Lomborg’s book [19], as well as many of the current
discussions on various ‘scientific’ blogs [20], illustrate how
scientific reasoning is, mostly implicitly, accused of being but a
political instrument for the wrong side [21].

3. Balancing costs and benefits

Reasoning about morally right or wrong actions becomes
significantly more difficult when their consequences affect also
future generations. Quite often, various moral duties cannot
be honored simultaneously; thus there might arise a conflict
between preventing future harm from climate change and
fulfilling our duties to currently living humans. Philosophers
refer to such situations as moral dilemmas. Such dilemmas are
not restricted to climate-change issues, but they do become
quite critical in this case. Should we invest in educating women
in developing countries now or invest in some of the less
promising sources of alternative energy? Shall our concerted
actions aim at reducing the number of currently ongoing wars or
at preventing future flood damages? Such questions are clearly
bothersome but still cannot be dismissed easily: has alleviating
current suffering priority over mitigating future losses about
whose extent legitimate uncertainties might exist?

Having posed the moral dilemma in this way, it seems
natural to approach its solution by pursuing a more complete
cost-benefit analysis. In such an analysis, costs and benefits
have to reflect the impact of alternative courses of action on
human well-being, current and future. In this broader setting,
the morally correct action is the one that maximizes overall
human welfare. This approach can be seen as a variant of
utilitarian ethics, dating back to Bentham and Mill [22]. These
early thinkers identified well-being boldly with happiness;
modern utilitarianists replace the concept of happiness by
the general term welfare and refer to the fulfillment of the
individual’s preferences.

The individual preference function Ui : X → R, reflects
the preference of person i in the distribution X of some goods,
with the preference function going from −∞ to +∞, i.e. it
can be any real number Ui in R. Note that ‘goods’ are to be
understood here in a very general way, not restricted to material
goods but also including mental states, being free from pain,
etc. The utilitarian or welfare-ethical principle then amounts to
maximizing the welfare function U = ∑

i λiUi , where the sum
is over all individuals which are affected by the action under
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consideration and λi is some arbitrary weighting factor. In this
setting, the utilitarian principle of procedural justice, Bentham’s
famous “Everybody to count for one, nobody for more than
one” becomes “λi = λ j for all i, j”.

The utilitarian approach has the advantage that it generalizes
in a straightforward manner to actions for which the outcomes
are not known with certainty, but only known to occur
with some likelihood; e.g. the exact number of class-5
hurricanes at the end of this century that would result from a
given greenhouse-gas emission scenario. In this probabilistic
generalization, one maximizes the mean expected welfare,
rather than the deterministic welfare function above. In the
welfare-economic and philosophical literature, this approach is
referred to as Expected Utility Theory (EUT).

Applying EUT to climate-change issues is not straightfor-
ward, since assigning actual likelihood values to expected im-
pacts on human welfare is often difficult or even impossible
with the current state of knowledge; see Section 4 for a dis-
cussion of this issue and [6] and the references therein for the
underlying uncertainties in climate-change estimates. Another
problem with this approach, which has been addressed exten-
sively within the philosophical and economic literature, regards
the very existence of an individual welfare function Ui . It seems
odd to assign cardinal values to individual harms and bene-
fits in order to make them accessible to interpersonal compar-
isons [23].

In the context of intergenerational ethics, another problem
becomes quite arduous, namely that of assigning preferences to
future generations: are theirs going to be necessarily the same
as ours? More likely not! J.H. Ausubel [24] gives an amusing
example of how the unknown preferences of posterity challenge
cost-benefit analysis for climate-change issues: “One hundred
years ago icebergs were a major climatic threat impeding travel
between North America and Europe. 1513 lives ended when
the British liner Titanic collided with one on 14 April 1912.
50 years later jets overflew liners. Anticipating the solution to
the iceberg danger required understanding not only the rates
and paths on which icebergs travel but the ways humans travel,
too.”

In fact, ascribing our own preferences to future generations
clearly contradicts the above-mentioned utilitarian principle of
procedural justice; see [25] for a possible way of avoiding such
problems.

In approaching climate-change issues from a moral
point of view, we have chosen here an anthropocentric
consequentialism: There are no a priori obligations, and any
action has to be evaluated as to how it promotes overall human
welfare. To defend this approach within an intergenerational
ethics discourse, we begin with a defense of consequentialism.

Modern normative ethics are frequently classified as either
consequentialist or deontological. The latter focuses on the
rightness or wrongness of actions themselves, as opposed to the
rightness or wrongness of the consequences of those actions.
Kant’s categorical imperative is a paradigm of a deontological
principle. The utilitarian approach discussed above is rooted
in consequentialist ethics, as the actions are evaluated solely
on the basis of their impact on human welfare. As previously

mentioned, one advantage of the consequentialist approach is
that it generalizes to actions with highly uncertain outcomes,
while this is not possible for deontological approaches [26].
Moreover, Patzig [27] and others have argued that, in handling
moral dilemmas, consequentialist approaches are superior to
deontological ones [28,29].

Various environmentalists have criticized valuing the
environment solely as a basic resource for humanity, as done
in the present paper. Movements like “deep ecology” [30]
or “land ethics” [31] recently attracted considerable attention
in environmental arguments. Their positions are genuinely
non-anthropocentric: either nature as a whole or parts of
(nonhuman) nature are assigned some moral value. Hence the
whole ecosystems or even the climate system have to be valued
for their own sake, i.e. not merely due to their value for a
sentient being. Note that by ‘non-anthropocentric’, we refer
here to approaches that assign actual moral values to plants or
inanimate matter; while we do not pursue this avenue in this
paper, the welfare-based approach can be generalized to other
sentient beings in a straightforward manner.

Most of the proposed non-anthropocentric approaches in the
literature have difficulties in dealing with moral dilemmas [32].
This is not a crucial shortcoming of such approaches, though,
as a hierarchical value structure could solve this problem.

A key shortcoming of non-anthropocentric approaches,
however, is that they contradict Occam’s razor: a larger
number of premises is needed in arguing for physiocentricism
or holism, and these added premises cannot be justified
any further [32]. Keeping the number of such metaphysical
assumptions as low as possible is particularly important within
environmental ethics, for the following reason: In order to
become effective, norms that, for example, rule the emissions of
greenhouse gases have to be implemented on a global scale and
by future generations as well. The metaphysical background
shared by different cultures – or, within one culture, over
several generations – seems rather limited. The assumptions of
a welfare-based approach are the most likely to be shared by
people from different cultural backgrounds.

4. Communicating epistemic uncertainties

Determining the ultimate impacts of present and future
greenhouse gas emissions necessitates a multifaceted interplay
of various disciplines, as sketched in Fig. 1. The suggested
welfare-based approach to climate-change issues – in which
the morally correct action is that which maximizes overall
human welfare – is seriously called into question by the lack
of reliable probability estimates. The requisite estimates range
from the various anthropogenic impacts on the climate system
to the consequences of these impacts on human welfare. As
stressed in [5], even the probability distribution estimates for
future mean temperatures or other climatic variables require
considerable refinement; this holds true all the more for the
estimated probabilities of specific consequences, for example,
of the influence of climate change on farming in Africa and its
implications on migration [12].
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One refers to actions for which there are no reliable
probability estimates in terms of objective frequencies of
occurrence as “actions under (epistemic) uncertainty.” This is
opposed to “actions under risk,” for which all outcomes of a
given action can be assigned some frequency of occurrence.
This classification of risk and uncertainty became popular
in discussing the civilian use of nuclear power and is now
commonly used within technology assessment.

For actions under uncertainty, it has been suggested to fall
back on non-probabilistic decision models. The most popular
model of this type is the minimax rule, i.e. minimizing the
maximal harm that can be expected; within environmental
ethics or political decision making, this rule is known as the
‘precautionary principle’. Note that the use of this phrase is
fraught with ambiguity: within a juridical context in general
or in European Union legislation in particular, the notion is
fairly vague [33]. Hence we prefer to use the term as used
within ethics and popularized by H. Jonas [34], namely: if we
cannot exclude with certainty that an action, like the release
of greenhouse gases, has the potential to cause severe or
irreversible harm – to present or future generations – it is to
be abandoned.

This principle, however, raises several difficulties [35], the
central problem being that, in almost all practical cases, acting
as well as not acting might yield unacceptable consequences.
Unless a morally relevant distinction between act and omission
exists, the precautionary principle therefore is incomplete,
and thus is inadequate for actual decision making processes.
Hence, despite the lack of probability estimates for the impact
of climate change on the well-being of future generations,
we have to proceed along the lines of EUT. Applying
EUT to decisions under uncertainty requires supplementing
the frequencies that are already available for some of the
predicted consequences of climate change with subjective
probabilities for other consequences. While economists are
familiar with such subjective probabilities, natural scientists,
including climate dynamicists, are generally quite sceptical
about their use.

Note in particular that what is referred to as uncertainties
within climate science [6,37,36] differs from the epistemic
uncertainties as defined above. To be more precise, the
uncertainties that climatologists discuss do not involve a need
for subjective probabilities. Uncertainties like the range of the
predicted temperatures for the end of this century, for example,
are only one aspect of the uncertainties that decision making
has to deal with. In particular, the uncertainties with which
decision making struggles most are those that are not quantified
as yet. A very broad or highly skewed probability distribution
is awkward, as one needs to discuss issues related to risk-
averseness. Such uncertainties, though, do not challenge the
foundations of the proposed EUT approach.

Reducing the uncertainties faced by the various IPCC
working groups can be associated with the various rectangles in
Fig. 1. Each group so far has proceeded within the methodology
of a specific field of knowledge [5,38]. For the climate
dynamics addressed within Working Group I, methods for
reducing uncertainties in prediction have advanced significantly

of late [6,39]. The same holds true for the economical analyses
within Working Group II. Quantitative methods for how to
determine not only objective occurrence frequencies, but also
reliable subjective probabilities were provided. These methods
include, for example, the use of decision markets [40] or the
implementation of Delphi methods, in which several experts
provide subjective probability estimates that are refined in
a multi-level process [41]. Also other quantitative tools for
decision making were put forward [42].

Despite this progress, not all epistemic uncertainties can be
quantified in a simple figure, like the width of a probability
distribution or the area of a Schneider–Moss plot [43], say.
Such plots have been used to yield ostensibly a quantification
of the subjective reliability a researcher assigns to a theory, an
observation, or the consensus within the field for the model
results that underlie a specific prediction. Still, in estimating the
reliability of a physical or economic model there always remain
factors that are hard to communicate. For example, the outputs
of a statistical analysis will always depend on the specific
experimental paradigm, the accepted practice, and the general
research experience within the field; these factors cannot be
defined in lay language in a straightforward way, but must be
learned by working in the field.

Scientists in a given field tend to assign so-called “higher-
order beliefs” to all these factors, i.e. beliefs that express
their confidence in the underlying theory, the methodology
used, the researcher or group who carried out the work,
etc. These higher-order beliefs, however, are only very rarely
quantifiable themselves in terms of a subjective probability.
Schneider–Moss plots [43], for example, presuppose that
subjective beliefs can be expressed in cardinal numbers.

Hence the communication of uncertainties is, at least
in part, limited to a scientific community — physical or
economical, say. A scientific community is thus an instance of
a Wittgensteinian language community: “the term ‘language-
game’ is meant to bring into prominence the fact that the
speaking of a language is part of an activity [. . . ]”. As
an example of a language-game, Wittgenstein himself refers
to “presenting the results of an experiment in tables and
diagrams” [44]. Assessing the reliability of climate-change
predictions seems, at least to some extent, something that
is learnt by the practice of carrying out and verifying such
predictions.

5. Concluding remarks

The preceding discussion suggests an antithetic conclusion
as regards the role of science in political and moral decision
making: (i) A partial delegation of responsibility by the
decision makers to the scientists, i.e. mainly climatologists and
economists, is absolutely necessary, while (ii) at the same time,
the climate-change debate demands a somewhat more restricted
role of scientific prognoses than the one they currently play
in the public debate. We discuss now the two terms of this
antithesis in succession.

(i) Non-quantified epistemic uncertainties – whether
contingent or necessary – hamper the proper communication
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of the actual degree of reliability of predicting anthropogenic
impacts on the climate system. These uncertainties are wedded
to specific model outputs, whether climatic or impact models.
The respective modelers thus seem to have the high ground
insofar as they can best assess those uncertainties that remain
unquantified, at least for the moment.

A cost-benefit analysis depends sensitively on these
uncertainties. This sensitivity implies, first, that performing
such an analysis rests on the shoulders of the scientists. Second,
it calls for more interdisciplinary work: It is the output of impact
models that is needed for cost-benefit analysis; in this output,
however, the uncertainties from the predicted concentration of
greenhouse gases and from climate models, for instance, are
compounded, linearly [37] or nonlinearly [6].

The proposed strengthening of the role of the sciences
clearly does not imply a blind trust in scientific outcomes. First,
it is the decision makers who set the rules for how to perform
the cost-benefit analysis; see item (ii) below. Second, taking
uncertainties seriously implies scrutinizing closely the scientific
methodology. Shifting the actual performance of cost-benefit
analysis to the sciences just acknowledges that neither political
decision making nor moral evaluation are the place for a critical
evaluation of scientific methodology. This is the task of the
scientific community itself, together with an exterior watchdog
consisting of, for example, the sociology and philosophy of
science. Although currently this watchdog seems to lag behind
the scientific progress, there already exist some interesting
accounts on the “science of climate change,” seen from the
outside. The practice of welfare-economic analysis, however,
is still insufficiently elucidated.

(ii) Saying that the cost-benefit analysis has to be performed
on the basis of criteria from outside the sciences merely
acknowledges the fact that the decision to choose among several
ways of reacting to or anticipating climate changes invokes
genuine moral values that science can – and indeed should –
be neutral about. As it presumes such a value judgement, the
oft-used term “catastrophe” has no place within the scientific
debate on climate change.

The decision for or against a reduction or mitigation of
predicted climate-change impacts is always a decision for or
against the promotion of other investments, e.g. in water supply
or education for developing countries. In current political
decision making, scientific prognoses, however, act as “fig
leaves” [45] that hide the actual decision making process
and the normative assumptions on which it rests. Scientific,
i.e. climatological or economical, prognoses as regards climate
change or any other topic, taken on their own, give no sufficient
reasons for acting or not acting, this way or the other.
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Abstract

We discuss a Lagrangian reconstruction method of the velocity field from galaxy redshift catalog that takes its root in the Euler equation.
This results in a “functional” of the velocity field which must be minimized. This is helped by an algorithm solving the minimization of cost-flow
problems. The results obtained by applying this method to cosmological problems are shown and boundary effects happening in real observational
cases are then discussed. Finally, a statistical model of the errors made by the reconstruction method is proposed.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Cosmologists are highly interested in studying galaxy
peculiar velocities. Indeed, their study is a direct way to
measure the dynamical state of a system and would thus permit
to better understand the dark matter distribution in our local
Universe. The main difficulty is that measured velocities are
only available sparsely and hence does not provide a good
probe of the matter distribution. One must then devise an
algorithm that is able to predict, under fair hypotheses, galaxy
peculiar velocities from their present positions, which are their
sky coordinates and their redshift, and compare the result
to the measurement. Jim Peebles [1] first tried to do full
orbit reconstruction by evolving the present system back in
time. This method proved to be quite accurate for very small
volume and number of objects. However, whenever one tries
to reconstruct orbits of a large number of galaxies, the method
fails because the number of plausible solution is blowing up. A
simplification of this problem is presented: 3D galaxy positions
are assumed to be known and a simpler gravitational dynamic
model is going to be assumed. We will also assume that the
dynamics of galaxies is mostly driven by collisionless dark
matter particles.

∗ Corresponding address: Institut d’Astrophysique de Paris, 98bis Bd Arago,
75015Paris, France. Tel.: +33 1 44 32 81 34; fax: +33 1 44 32 80 01.

E-mail address: lavaux@iap.fr.

This proceeding is organized as follows. In Section 2,
we recall the principal result of the reconstruction method
developed in [2] (see also the companion paper [3]). The
method requires to use a special fast algorithm to solve the
problem. This algorithm is presented in Section 3. The method
is then applied to a dark matter distribution obtained from
a cosmological simulation and the reconstructed velocities
are checked against the simulated ones (Section 4). Finally,
a discussion on problems with bad boundary conditions, as
usually met in observational cosmology, is quickly discussed
in Section 5.

2. Velocity reconstruction theory

The theory of velocity reconstruction in cosmology is
detailed in [3]. We recall here the main results. To reconstruct
the peculiar velocity field one must first compute the
displacement field of dark matter particles by solving a
Monge–Ampère equation (Eq. (16) of [3]). We achieve that
by minimizing Eq. (17) of [3] in its simplified form using the
“Auction” algorithm, with σ the pairing map and µ the mass of
each particles of the mesh:

Sσ = µ
N∑

i=0

(
xi − qσ(i)

)2
, (1)
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The minimization is conducted over σ . We recall also the
Zel’dovich approximation (Eq. 12 of [3]) for the velocity field
is taking the following form:

v(xi ) = β
(
xi − qi

)
, (2)

where β is the linear growth factor, which is well approximated
by β $ Ω9/5

m when it is computed at redshift z = 0.

3. Minimization algorithm

Direct minimization of Eq. (1) is a computationally difficult
problem [time complexity O(N !)]. Fortunately, there exist
better alternatives that have been developed for solving minimal
cost-flow problems and that can be adapted to our minimal
transportation problem. In particular, we are going to use the
“Auction” algorithm developed in [4]. The time complexity of
this algorithm is of the order of O(n2.25) by direct performance
measurement, with n the particle density.1 The exact constant
hidden in O(n2.25) depends a lot on the difficulty of the
assignment problem, which means it is catalog dependent.

3.1. Auction algorithm

The algorithm tries to evolve the pairing map σ between
xi and q j such that when the function is stationary between
two consequent iterations it corresponds to minimizing the
given total association cost. Particles located at different
Eulerian positions xi compete against each other for Lagrangian
positions q j . Minimization of the total association cost Sσ

is achieved by studying the dual problem of minimization of
association penalties p j . In [4] it is shown that

min
σ

Sσ = max
p j ; j=1,...,n

{
∑

j

p j +
∑

i

ri

}

, (3)

with ai, j = µ(xi − q j )
2, the cost of associating xi to q j and

ri = min j (ai, j + p j ). Once the set {p j } is determined by the
above maximization, the map σ is simply given by:

σ(i) = arg min
j

{
ai, j + p j

}
. (4)

Effectively, {p j } is computed iteratively by the algorithm. Each
iteration is composed of two parts. During the first one, we
obtain a set of best assignment A( j) for each particle q j by
minimizing all possible ri . Then, we link xi∗j to q j with i∗j being
the particle having the minimal ri∗j in the setA( j). We also have
a reverse mapping for this link that we write j∗i . Finally, the
penalty p j is updated such that

p j → p̃ j = ai∗j , j + wi∗j − ε, (5)

with ε > 0 and

wi = min
j &= j∗i

(
ai, j + p j

)
. (6)

1 This number is obtained for a given simulation, and particles randomly
until the desired average density is obtained. The worst case of this algorithm
is actually O(N 3), if one makes a dense search on purely random data.

The solution found is the same as for ε = 0 provided ε < ε0/N ,
with

ε0 = min
{i, j}/ai, j &=0

ai, j . (7)

The time complexity depends quite a lot on the way ε is scaled
down from its initial value to the ε0/N . Numerical experiments
have shown that trying to converge in about 5 iterations and
starting from ε/ε0 $ N/2 seems to give a faster convergence.

3.2. Implementation

We developed a C++ multi-threaded (shared memory
parallelism) and MPI version of the “Auction” algorithm, it
will be available later as a multi-purpose library for cost-
flow problems at the address http://www.iap.fr/users/lavaux/.
Besides doing a full minimization over all q j for a given
xi (“dense” mode), it also supports a “sparse” mode that
solves a partial minimization problem: for a given xi , it only
minimizes over a subset of {q j } such that ‖xi − q j‖∞ <

R, where R is a parameter given at the initialization to the
algorithm. This allows us to reduce drastically the computing
time while giving the same result provided that R is not too
small (typically R = 40 h−1 Mpc for a ΛCDM Universe). On
a Dual-core AMD Athlon64 4800+, the SMP implementation
(dense mode) takes 50 min to assign 79,000 particles. It has
successfully reconstructed a 1283 dense mesh in a month in the
sparse mode. The MPI version of the corresponding algorithm
is only performant for larger number of particles (typically
N ! 500,000). Most of the time is, at the moment, spent
at computing min j

(
ai, j + p j

)
as the cost values are only

kept in a minimalistic cache. Precomputing the costs is also
not feasible because of the excessive amount of memory that
would be needed to store all costs for all (i, j) pairs. We also
consider to implement a general purpose totally asynchronous
implementation in the near future.

4. Application to cosmology: Test on cosmological simula-
tion

To check that the dark matter dynamical model is working,
we are testing it against a 1283 N -body sample [5] which
was generated with the public version of the N -body code
HYDRA [6] to simulate collisionless structure formation in a
standard ΛCDM cosmology. The volume of the simulation is
2003 h−3 Mpc3. The mean matter density is Ωm = 0.30 and
the cosmological constant is ΩΛ = 0.70. The Hubble constant
is H0 = 65 km s−1 Mpc and the normalization of the density
fluctuations in a sphere of radius 8 h−1 Mpc is σ8 = 0.99.

Haloes of dark matter particles are identified using a friend-
of-friend algorithm with a traditional value of the linking
parameter l = 0.2 times the mean particle separation. A
limit of 5 linked particles is put to bind particles into a halo.
The particles left unbound by this criterion were kept in a
set called the “background field”. All objects are kept in a
mock catalog called FullMock. We have run a reconstruction
on FullMock using a MAK mesh with 1283 elements. Each
object of FullMock was given a number of elements xi equal

http://www.iap.fr/users/lavaux/
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Fig. 1. Application to Cosmology — Top left: A slice of the density field of the ΛCDM simulation that is used for the tests (shades of gray indicate logarithm of
the mass density). Top right: Adaptively smoothed line-of-sight component of the velocity field in the same slice. Bottom right: MAK reconstructed line-of-sight
component of the velocity field of the same slice. Linear color scale: dark (blue, color online) = −1000 km s−1, white = +1000 km s−1. Bottom left: Scatter plot
between reconstructed and simulated velocities for objects identified in the simulation. Shades of gray show levels of the logarithm of the point density.

Fig. 2. Cosmology / Multi-streaming regions — This figure illustrates the
different problems that may occur for a halo of dark matter particles near a
cluster of galaxies. Galaxy A is in the region of first infall. The displacement
field will be well reconstructed. Galaxy B is coming from the same direction
as Galaxy A but has already gone through the center of the cluster and is
decelerating. In that case, its displacement is badly reconstructed as, most
likely, MAK predicts that the matter composing Galaxy B is coming from the
region opposite to Galaxy A’s region. Galaxy C is also wrongly reconstructed.

to the number of particles of the original simulation which
has been bound into this object. We distributed the q j mesh
elements regularly on a cubic grid of the same physical size as
the simulation box. Finally we computed the convex mapping
σ corresponding to the MAK problem with the help of the

algorithm described in Section 3. The velocities for each
particle were computed using the Zel’dovich approximation Eq.
(2), using the same cosmology as the simulation to compute β.

Fig. 1 summarizes the results obtained using the MAK
method on the reconstructed velocities. The individual object
velocities, in the bottom-left panel, are exceptionally well
reconstructed. Visual inspection of the line-of-sight component
of the velocity field in the two right panels shows nearly
no discrepancy except in regions with really high velocities.
In these regions, the dynamics is highly nonlinear, which
means that the convex hypothesis is not valid anymore. This
problem arises on a typical cosmological scale of at most a few
Mpc around large clusters. Indeed, in those regions the fluid
description of dark matter particles completely fails because
the mass tracers may have already crossed the center of the
gravitational attractor and are currently falling back to the
center, as illustrated in Fig. 2. This renders the displacement
field reconstruction dubious in those cases.

5. Application to cosmology: Boundary problems

One does not necessarily know the Lagrangian domain q
on which the MAK reconstruction must be computed. This is
the case for real cosmological observations and one must use
some empirical prescription to attenuate the boundary effects
on reconstructed velocities. This scheme is helped by the
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Fig. 3. Cosmology / Boundary problems — Left panel: Illustration of
the NaiveDom approach to handle boundary problems while doing a
reconstruction. The dark starry ball illustrates the current dark matter
distribution as inferred from galaxy catalogs. The whitish transparent ball is the
assumed initial volume for the dark matter that has fallen in present structures.
Right panel: Same as left panel but this illustrates the PaddedDom approach.

overall homogeneity of the Universe above scales larger than
200 h−1 Mpc. We propose thus to check two schemes to handle
boundary effects:

- A naive approach would be to assume that the piece of
Universe considered has not changed its volume sufficiently
between initial time and the current time. This means that we
may assume that if we select a ball of matter, in the Universe,
centered on us, all the mass that is inside this ball is coming
from the same homogeneous ball in the Universe as it was
at decoupling time. We call this approach NaiveDom. It is
equivalent to say that tidal field effects are totally negligible
on the considered scale.

- An alternative approach is not to make an assumption
on the exact shape but on the low amount of fluctuation
on the boundary. Consequently, if one selects the same
ball of matter in the present Universe, it is fair under
this approximation to pad the matter distribution using
homogeneously distributed particles. One may then build
the mapping between the “padded piece of Universe” and
an initial completely homogeneous set of particles. We call
this approach PaddedDom.

These two ways of handling boundary effects are illustrated
in Fig. 3 and the results are presented in Fig. 4.

As expected, boundaries are badly reconstructed in
PaddedDom and NaiveDom. However at the center of the
spherical cut, the velocity field seems correctly reconstructed
by visual comparison to the velocity field computed from the
simulation. Looking carefully at the result using NaiveDom
indicates that there is likely a systematic error near the center
(the dark region is deeper in color and more extended than in the
two other figures). This is probably due to stronger boundary
effects that are not correctly attenuated by the NaiveDom
scheme (a detailed quantitative analysis of boundary artefacts
are given in [7]). Empirically, we found that a buffer zone of, at
least, about 20 h−1 Mpc is needed to reduce boundary effects
with a PaddedDom reconstruction scheme.

Fig. 4. Cosmology / Boundary problems — Outer boundary problems while doing reconstruction on finite volume catalog. Color scale is the same everywhere: dark
(blue, color online) = −1000 km s−1, white = +1000 km s−1. Top left: Density field of the mock catalog (log scale). Top right: Simulated velocity field, smoothed
with a 5 h−1 Mpc Gaussian window. Low left: PaddedDom velocity field, smoothed equally. Low right: NaiveDom velocity field, smoothed equally.
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Fig. 5. Error in the reconstruction — This plot displays the probability
distribution of the quantity vr,rec − vr,sim, where vr,rec and vr,sim are the line-
of-sight reconstructed and simulated velocities, respectively, after choosing an
observer at the center of the simulation box. The dashed and dot-dashed curves
give the best fit of a Gaussian and a Lorentzian distribution, respectively.

6. Statistical analysis of errors in the reconstruction

The measurement of the slope between velocities and
reconstructed displacements should give an estimation of Ωm.
However, building a reliable estimator of this slope without the
statistical model of errors made both at the observation and
the reconstruction level may produce unacceptable bias. We
propose to show how to use models on reconstruction errors
to make a Bayesian analysis of the reconstructed velocities.
We will focus here on errors made during a reconstruction
and assume that the observed peculiar velocities v are equal to
their true velocities. A more detailed discussion can be found
in [7].

Using simulations, we have measured the distribution of
reconstruction errors, for each object i of a catalog of galaxy,
{ei } defined as

e = vr − βψr,rec, (8)

with β = 0.51 for the studied simulation (corresponding to
Ωm = 0.30), vr the line-of-sight component of the simulated
velocity of the considered, ψr,rec the reconstructed radial
displacement. The result is given in Fig. 5. We have tried to
fit a histogram of the errors {ei } by both a Gaussian function of
width B

fG(e) ∝ exp
(

− e2

B2

)
(9)

and a Lorentzian function

fL(e) ∝ 1

1 + e2

B2

. (10)

We obtained approximately the same width B for the two
fits (which is expected from the second-order development of
both functions), however it is striking that fL is a much better
approximation than fG to the observed error distribution.

We equate the probability of getting an error e on the true
velocity vr for an object of the catalog to fL(e). We also assume

now that the distribution of velocities in the object sample is, for
a sufficiently large volume, Gaussian with a width σv:

P(vr|σv) ∝ exp
(

− v2
r

2σ 2
v

)
. (11)

Now we can build the joint probability of getting vr, ψr,rec and
β:

P(vr, ψr,rec, β|B, σv)

∝ P(e(vr, ψr,rec)|B, σv)P(vr|B, σv)P(ψr,rec|B, σv)

∝ P(ψr,rec|B, σv)
exp

(
− v2

r
2σ 2

v

)

1 +
(

vr−βψr,rec
B

)2 , (12)

where the constant of proportionality eventually depends on B,
σv and β. Using the theorem of Bayes, it is now possible to
compute the conditional probability that the true velocity of
some object is vr given that the reconstructed displacement is
ψr,rec:

P(vr|ψr,rec, β, B, σv)

=
e
− v2

r
2σ2

v

(
1 +

(
β∗ψr −α∗vr +γ∗

Bv

)2
)−1

∫ +∞
v=−∞ e

− v2

2σ2
v

(
1 +

(
β∗ψr −α∗v+γ∗

Bv

)2
)−1

dv

. (13)

To obtain the total likelihood L(β) to observe true
velocities {vi,r} given that the reconstructed displacements are
{ψi,r,rec}, one may assume the statistical independence of the
(vi,r, ψi,r,rec) duets. With this assumption, L is simply

L(β) =
∏

i

P(vi,r|ψi,r,rec,β,B,σv ). (14)

Using that approach we have made measurements in finite
volume mock catalogs. For example, with a PaddedDom
reconstruction, one measure Ωm = 0.34 with this approach
(for an effective Ωm = 0.35 in this catalog), whereas a naive
measurement would yield Ωm $ 0.26.

7. Conclusion

We presented a method to predict velocities of galaxies from
their current position. To solve this problem, we implemented
a fast algorithm invented by Dimitri Bertsekas [4] and applied
the method to a pure dark matter simulation. It happens that
the reconstructed velocities are impressively accurate on large
scales (Section 4). However, the solution is only approximate
in regions where multi-streaming occurs.

We proposed two methods for partially correcting boundary
effects (Section 5) and showed how boundary effects affect
the reconstructed velocity field. We preferred the PaddedDom
reconstruction scheme as it seems to give overall better results.
Empirically we found that a buffer zone of 20 h−1 Mpc
is needed before obtaining a reconstructed velocity field
correlated with the one given by the simulation.
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At last, we proposed a Bayesian model (Section 6) to
account for reconstruction errors while estimating the slope
between the reconstructed displacements and the true velocities
of objects in a galaxy catalog.

We would like to continue this work by improving the
padding schemes to have even less boundary effects and
make full use of available data in astronomy. We are also
working on an improved algorithm that is able to take into
account in a better way the nonlinearities that are introduced
in the velocity field due to gravitational effects occurring along
particle trajectories. This new algorithm will try to fully solve
the Euler–Poisson problem.2
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Abstract

Motion of a continuous fluid can be decomposed into an “incompressible” rearrangement, which preserves the volume of each infinitesimal
fluid element, and a gradient map that transfers fluid elements in a way unaffected by any pressure or elasticity (the polar decomposition of
Y. Brenier). The Euler equation describes a system whose kinematics is dominated by incompressible rearrangement. The opposite limit, in
which the incompressible component is negligible, corresponds to the Zel’dovich approximation, a model of motion of self-gravitating fluid in
cosmology.

We present a method of approximate reconstruction of the large-scale proper motions of matter in the Universe from the present-day mass
density field. The method is based on recovering the corresponding gradient transfer map. We discuss its algorithmics, tests of the method against
mock cosmological catalogues, and its application to observational data, which results in tight constraints on the mean mass density Ωm and age
of the Universe.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 95.35.+d; 95.75.Pq; 98.62.Py; 98.65.Dx

Keywords: Dark matter; Proper motions of galaxies; Reconstruction; Convex optimization

1. Introduction

In the spectrum of possible models of fluid motion, the
Euler equation of incompressible fluid constitutes an extreme.
As was shown by Y. Brenier [1,2], any Lagrangian motion
of fluid admits a polar factorization into a composition
of an “incompressible” rearrangement, which preserves the
volume of each infinitesimal fluid element, and an “absolutely
compressible” transfer, which displaces fluid elements to their
final locations prescribed by the gradient of a suitable convex
potential, while expanding or contracting them in a way
unaffected by any pressure or elasticity. Decomposing a fluid
motion into a sequence of small time steps and factoring out
the compressible transfer from the inertial fluid motion at each

∗ Corresponding author at: Physics Department, M. V. Lomonossov Moscow
State University, 119992 Moscow, Russia. Tel.: +7 499 2425366.

E-mail addresses: mohayaee@iap.fr (R. Mohayaee),
sobolevski@phys.msu.ru (A. Sobolevskiı̆).

step yields a difference scheme for the incompressible Euler
equation [3].

In this article we show how the opposite approach, in which
only the compressible transfer is retained, can be applied to
solving the problem of reconstructing peculiar motions and
velocities of dark matter elements in cosmology. We also
discuss the algorithmics of this method, which gives an explicit
discrete approximation to polar decomposition and can also be
applied to model incompressible fluid as suggested in [3].

Recall that on scales from several to a few dozen of h−1 Mpc
the large-scale structure of the Universe is primarily determined
by the distribution of the dark matter. This distribution can
be described by the mass density field and by the large-
scale component of the peculiar velocity field,1controlled
by dark matter itself via gravitational interaction. The dark

1 The cosmological flow of dark matter is conveniently decomposed into the
uniform Hubble expansion and the residual, or peculiar, motion.

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.007
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matter distribution is traced by galaxies, whose positions and
luminosities are presently summarized in extensive surveys
[4–6]. On large scales luminosities of galaxies allow to
determine their masses, from which the mass density of the dark
matter environment can be estimated using well-established
techniques [7,8].

It is appropriate to consider the reconstruction of the field
of peculiar velocities as part of the more complex problem
of reconstructing the full dynamical history of a particular
patch of the Universe. Several approximate methods have been
proposed to this end, of which we mention here two. The
Numerical Action Method, based on looking for minimum
or saddle-point solutions for a variational principle involving
motion of discrete galaxies, was introduced by P.J.E. Peebles
in the late 1980s [9]; its modern state is addressed in the
present volume by A. Nusser [15]. In this paper we concentrate
on the Monge–Ampère–Kantorovich method introduced in
[10] (hereafter the MAK method), specifically highlighting
the structural relationship between the MAK method and the
variational approach to the Euler equation of incompressible
fluid [11].

In Section 2 the mathematical setting of the MAK
reconstruction is derived by the application of the Zel’dovich
approximation to a suitable variational formulation of dark
matter dynamics, which leads to the Monge–Kantorovich
mass transfer problem and the Monge–Ampère equation. In
Section 3 we discuss the algorithmics of solving the discretized
Monge–Kantorovich problem, which gives as a byproduct an
algorithm of polar decomposition for maps between discrete
finite point sets. In Section 4 we show that the MAK method
performs very well when tested against direct numerical
simulations of the cosmological evolution and review the
recent applications of the MAK method to real observational
data, which yielded new tight constraints on the value of the
mean mass density of the Universe. A detailed treatment of
implementation and testing the MAK method against N -body
simulations is presented in the companion paper by G. Lavaux
in the present volume [20]. The paper is finished with a
discussion and conclusions.

2. Dynamics of cold dark matter and the Zel’dovich
approximation

The most widely accepted explanation of the large-scale
structure seen in galaxy surveys is that it results from small
primordial fluctuations that grew under gravitational self-
interaction of collisionless cold dark matter particles in an
expanding universe (see, e.g., [12] and the references therein).
The relevant equations of motion are the Euler–Poisson
equations written here for a flat, matter-dominated Einstein–de
Sitter universe (for a more general case see, e.g., [13]):

∂τ v + (v · ∇xv) = − 3
2τ

(v + ∇xφ), (1)

∂τ ρ + ∇x · (ρv) = 0, (2)

∇2
xφ = 1

τ
(ρ − 1). (3)

Here v(x, τ ) denotes the velocity, ρ(x, τ ) denotes the density
(normalized so that the background density is unity) and
φ(x, τ ) is a gravitational potential. All quantities are expressed
in comoving spatial coordinates x and linear growth factor
τ , which is used as the time variable; in particular, v is the
Lagrangian τ -time derivative of the comoving coordinate of
a fluid element. A non-technical explanation of the meaning
of these variables and a derivation of Eqs. (1)–(3) in the
Newtonian approximation can be found, e.g., in [14]; see also
[15] in the present volume, where the growth factor is denoted
by a.

The right-hand sides of the Euler and Poisson equations
(1) and (3) contain denominators proportional to τ . Hence, it
suffices for the problem not to be singular as τ → 0 that

v(x, 0) + ∇xφ(x, 0) = 0, ρ(x, 0) = 1. (4)

Note that the density contrast ρ − 1 vanishes initially, but the
gravitational potential and the velocity, as defined here, stay
finite thanks to our choice of the linear growth factor as the
time variable. Eq. (4) provides initial conditions at τ = 0; at
the present time τ = τ0 the density is prescribed by a galaxy
survey as explained above:

ρ(x, τ0) = ρ0(x). (5)

In parallel with the Euler equation of incompressible fluid,
Eq. (1) can be considered as the Euler–Lagrange equation for a
suitable action [16,14]:

Iα = 1
2

∫ τ0

0
dτ

∫
dx · τα(ρ|v|2 + α|∇xφ|2), (6)

where α = 3
2 for the flat Universe and minimization is

performed under the constraints expressed by Eqs. (2)–(5).
Note that the term containing |∇xφ|2 may be seen as a
penalization for the nonuniformity of the mass distribution,
which corresponds to the lack of incompressibility of the
fluid; enhancing this penalization infinitely would suppress
the “absolutely compressible” transfer of fluid elements, thus
recovering the incompressible Euler equation.

However, according to Eq. (4) the rotational component of
the initial velocity field vanishes, which strongly suppresses the
“incompressible” mode of the fluid motion at early times. Based
on this observation, Ya.B. Zel’dovich proposed [17] an opposite
approximation in which α → 0. In this approximation Eq. (1)
assumes the form

∂τ v + (v · ∇x)v = 0. (7)

Much as the incompressible Euler system, the study of
the Zel’dovich approximation benefits from the Lagrangian
approach. Let x(q, τ ) be the comoving coordinate at time τ of
a fluid particle that was initially located at q: x(q, 0) = q. Then

ρ(x(q, τ ), τ ) = (det(∂x/∂q))−1, (8)

v(x(q, τ ), τ ) = ∂τ x(q, τ ), (9)

where the τ derivative is taken as q is fixed. As observed by
Zel’dovich, in these new variables the nonlinear equation (7)
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assumes a linear form

∂2
τ x = 0. (10)

Moreover Eq. (2) is satisfied automatically, and the action
becomes

I0 = 1
2

∫ τ0

0
dτ

∫
dq |∂τ x(q, τ )|2 = 1

2τ0

∫
dq |x0(q) − q|2.

(11)

Here we denote x0(q) = x(q, τ0) and use the fact that
action minimizing trajectories of fluid elements, determined by
Eq. (10), are given by

x(q, τ ) = q + (τ/τ0)(x0(q) − q). (12)

Note that according to the first condition (4), v(q, 0) =
(1/τ0)(x0(q) − q) = ∇qΦ̄(q) and the Lagrangian map
(12) remains curl-free for all τ > 0: x(q, τ ) = q +
τ∇qΦ̄(q) = ∇qΦ(q, τ ) with Φ(q, τ ) = |q|2/2 + τ Φ̄(q); thus
the “incompressible” rotational component of the fluid motion
is indeed fully suppressed.

To find the motion of the fluid in the Zel’dovich
approximation it is necessary to minimize the action (11) under
the constraint provided by the representation of density (8) and
the boundary conditions (4) and (5):

det(∂x0(q)/∂q) = 1/ρ(x0(q)). (13)

In optimization theory this problem is called the
Monge–Kantorovich problem. Equivalently, one can solve the
Monge–Ampère equation that follows from (13) for the func-
tion Φ0(q) = Φ(q, τ0) such that x0(q) = ∇qΦ0(q):

det(∂2Φ0(q)/∂qi∂q j ) = 1/ρ0(∇qΦ0(q)). (14)

At large scales the Lagrangian map x0(q) in cosmology is free
from multistreaming (the presence of several streams of dark
matter at the same spatial location). Under this assumption
the potential Φ0(q) is necessarily convex,2 and the Legendre
transform

Ψ0(x) = max
q

(q · x − Φ0(q)), (15)

where the maximum is attained at q such that x = ∇qΦ0(q),
gives (14) a simpler form

det(∂2Ψ0(x)/∂xi∂x j ) = ρ0(x). (16)

The Monge–Ampère–Kantorovich (MAK) method, introduced
in [10], consists in solving either of these two problems for
x0(q) and using Eqs. (9) and (12) to approximately recover the
present field v(x, τ0) of peculiar velocities.

3. Algorithmics of solving the Monge–Kantorovich prob-
lem and the discrete polar decomposition

To solve the Monge–Kantorovich problem numerically
we discretize the initial and final distributions of mass

2 Convexity of the function Φ(q, τ ) = |q|2/2 + τΦ0(q) holds at τ = 0 and
must be preserved for τ > 0 if no multistreaming occurs.

into collections of Dirac point masses: all initial point
masses (µ, qi ) are assumed to lie on a regular grid and be
equal, whereas the masses (m j , x j ) discretizing the present
distribution ρ0(x) typically come from a galaxy survey. The
discretized action functional (11) assumes the form

1
2

∑

i, j

γi j |x j − qi |2, (17)

where γi j ≥ 0 denotes the amount of mass transferred from qi
to x j and mass conservation implies for all i, j
∑

k

γk j = m j ,
∑

l

γil = µ. (18)

In practice we choose all m j to be integer multiples of the
elementary mass µ, which guarantees that all γi j assume only
values 0 or µ.

Observe that the unknowns γi j enter into the problem of
minimizing (17) under constraints (18) linearly. Problems of
this form are called linear programs and can be efficiently
solved by various optimization methods, see, e.g., [18]. Often
the original, primal formulation of a linear program is treated
simultaneously with a (Lagrange) dual formulation, which is
another linear program; such algorithms are called primal–dual
algorithms. For the linear program at hand the dual formulation
is to maximize

−µ
∑

i

φi −
∑

j

ψ j m j (19)

under the constraints

1
2
|x j − qi |2 + φi + ψ j ≥ 0 for all i, j . (20)

Here φi , ψ j are Lagrange multipliers for constraints (18);
the duality comes from the following representation of the
(coinciding) optimal values of the two problems:

min
γi j ≥0

max
φi ,ψ j

(
1
2

∑

i, j

γi j |x j − qi |2

+
∑

i

φi

(
∑

j

γi j − µ

)

+
∑

j

ψ j

(
∑

i

γi j − m j

))

,

where taking max or min leads to the primal or dual problem
respectively. The coincidence of the optimal values implies that
γ̄i j , φ̄i , ψ̄ j solve the respective problems if and only if

∑

i, j

γ̄i j

(
1
2
|x j − qi |2 + φ̄i + ψ̄ j

)
= 0. (21)

In view of the nonnegativity conditions this means that for each
pair (i, j) either γ̄i j = 0 or constraint (20) is satisfied with
equality (and then γ̄i j = µ). For all other values of γi j ≥ 0 and
φi , ψ j that satisfy constraints (18) and (20), the left-hand side
of (21) is strictly positive and thus the value of (17) is strictly
greater than that of (19); such γi j , ηi , ψ j cannot be solutions to
the respective optimization problems.

A typical primal–dual algorithm starts with a set of values
of φi , ψ j for which all inequalities (20) hold and proceeds in
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a series of steps. At each step a constraint of the form (20) is
found that is, in a certain sense, the easiest to be turned into
equality, values of the corresponding φi and ψ j are updated
accordingly, and the γi j is set to µ. An algorithm stops when
the number of equalities in (20) equals the number of masses
(µ, qi ), so that (21) is satisfied.

We found the auction algorithm of D. Bertsekas [19] (see
also [20]) to be a particularly efficient primal–dual algorithm
for the huge data sets arising from the cosmological application.
The search for the constraint (20) that is to be satisfied with
equality at each step may be performed very efficiently using
a specially developed geometrical search routine, which is
based on suitably modified routines of the ANN library [21].
Further details of this numerical implementation of the
MAK method are given in [14] and in our forthcoming
publication with M. Hénon. A new implementation in a parallel
computing environment is reported in the companion paper of
G. Lavaux [20].

We finally show why the solution of the Monge–Kantorovich
problem in the discrete case gives a discrete analogue of polar
decomposition. Let a discrete “map” γ ∗ between two sets of
points (µ, qi ) and (m j , x j ) be given such that m j = ∑

i γ ∗
i j

and γ ∗
i j take only values 0 and µ. Solving the correspond-

ing Monge–Kantorovich problem will give a discrete analogue
γi j of the gradient transfer. To see this observe that for Φi =
1
2 |qi |2 + φi , Ψ j = 1

2 |x j |2 + ψ j equality in (20) means that

Ψ j = max
k

(qk · x j − Φk) (22)

(cf. (15)), i.e., the map sending qi to x j is a discrete analogue
of the gradient map x(q) = ∇qΦ(q) of the previous section.
The corresponding discrete analogue of “incompressible”
rearrangement is a permutation of (µ, qi ) that for any j sends
the set of points i such that γ ∗

i j > 0 to the set of points i ′ such
that γi ′ j > 0; if furthermore m j = µ for all j , both sets are
singletons and the permutation is recovered uniquely.

In the MAK method we are interested in the “gradient”
part of the Lagrangian map sending elements of dark matter
to their present positions, whereas in the difference scheme
for the Euler equation proposed by Y. Brenier in [3] it is the
permutation part that is retained.

Finally note that an alternative approaches to solve the
Monge–Kantorovich problem, based on direct numerical
resolution of Eqs. (2) and (7), was proposed in [22].

4. Testing and application of the MAK method to
cosmological reconstruction

The validity of the MAK method depends on the quality
of the Zel’dovich approximation, which is hard to establish
rigorously. To be able to apply the method to real-world data
we have instead to rely on extensive numerical tests.

We report here a test of the MAK method against an N -
body simulation with over 2 × 106 particles [23]. The N -body
simulation had the following characteristics: 1283 particles
were assembled in a cubic box of 200 h−1 Mpc, giving the mean
inter-particle separation of 1.5 h−1 Mpc; the initial conditions

Fig. 1. Scatter plot of the MAK-reconstructed initial coordinates of particles
versus their true initial coordinates for a sample of an N -body simulation with
1283 particles in a cubic box of size 200 h−1 Mpc; ideal reconstruction would
correspond to the diagonal. A “quasi-periodic (QP) projection” coordinate
q̃ = (q1 + q2

√
2 + q3

√
3)/(1 +

√
2 +

√
3) is used with 0 ≤ qi ≤ 1, where

1 corresponds to the (rescaled) box size. The QP projection maps a regular
grid in the unit cube into the unit segment such that q̃ images of no two grid
points coincide. Shown is the decimal logarithm of the local density of points
plus 1; the resolution in QP coordinates is 1/256, the Lagrangian mesh spacing
is 1/128.

Table 1
MAK reconstruction: percentage of successfully reconstructed initial positions
at different scales (measured in units of mesh size in a box of 1283 grid points)

Scale 0a ≤1 ≤2 ≤3 ≤4 ≤5
% 18% 41% 54% 66% 74% 81%

a Exact reconstruction.

for the velocity field v(q, 0) were taken Gaussian; the density
parameter was chosen to be Ωm = 0.3, the Hubble parameter
to be h = 0.65, the normalization of the initial power-spectrum
σ8 = 0.99, and the mass of a single particle in this simulation
was M = 3.2 × 1011h−1 M+ where M+ is the solar mass.

The scatter plot in Fig. 1 demonstrates the performance
of the MAK method in finding Lagrangian positions of the
particles. At the scales that were probed, positions of about
20% of particles are reconstructed exactly (for detailed data
see Table 1). This low rate is due to large multistreaming
at such small scales; at larger scales where mean inter-
particle separation is about 6 h−1 Mpc (up to 3 meshes),
the MAK reconstruction gives the Lagrangian positions of
two thirds of the particles exactly. At the moment of its
implementation in 2006 this reconstruction of 1283 particles
was unprecedented and broke a computational barrier for
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Fig. 2. Constraints on the mean mass density and the age of the Universe
obtained by applying reconstruction techniques to real observational data.
Left pane: solid contours mark σ and 2σ confidence levels for the MAK
reconstruction (shaded) and the least-action (LA) reconstruction (unfilled).
Shaded also is the confluence of the constraints on density and age parameters
from WMAP [24] of Ωm h2 = 0.134 and from SDSS [6] of Ωm h = 0.21.
The 2σ concordance region of the four methods is filled. Right pane: density
parameter estimates for H0 = 80. For details see [25].

cosmological reconstruction schemes; more detailed tests of
the MAK reconstruction of the same scale are reported by
G. Lavaux [20] in the present volume.

We now turn to applications of the MAK reconstruction
to real observational data. The MAK reconstruction of the
peculiar velocities depends on the mean density of the Universe
(the parameter Ωm), the age of the Universe τ0 (τ0 ∼ 1/H0
where H0 = 100 × h is the Hubble parameter), and the
mass-luminosity relation. Assuming certain values of these
parameters, one can estimate the peculiar velocities of the
galaxies as ratios of their displacements to τ0. Optimizing the
matching between these velocities and the observed velocities
of a few test galaxies, one can then constrain the parameters of
the reconstruction.

This procedure is illustrated in Fig. 2, taken from [25].
The catalog of galaxies (m j , x j ) that is used here is a 40%
augmentation of the Nearby Galaxies Catalog, now including
3300 galaxies within 3000 km s−1 [4]. This depth is more
than twice the distance of the dominant component, the Virgo
cluster, and the completion to this depth in the current catalog
compares favourably with other all-sky surveys. The second
observational component is an extended catalog of galaxy
distances (or radial component of peculiar velocities). In this
catalog, there are over 1400 galaxies with distance measures
within the 3000 km s−1 volume; over 400 of these are derived
by high quality observational techniques that give accurate
estimates of the radial components of peculiar velocities. The
important feature of Fig. 2 is that the MAK contours are
transversal to contours provided by other methods, which
largely reduces the degeneracy of constraints in the parameter
space.

5. Conclusion

According to the polar decomposition theorem of Y. Bre-
nier [1,2], kinematics of continuous fluid motion can be de-
composed into “incompressible” rearrangement and “infinitely
compressible” gradient transfer. The Euler equation describes
a system whose kinematics is dominated by incompressible
motion. In this paper we show that the opposite limit, in which
the incompressible component is negligible, corresponds to the
Zel’dovich approximation, a physically meaningful model of
motion of self-gravitating fluid arising in cosmology.

This result enables us to approximately reconstruct peculiar
motion of matter elements in the Universe from information
on their present-day distribution, without any knowledge of
the velocity field; indeed, the latter itself can be recovered
from the reconstructed Lagrangian map. The viability of this
method is established by testing it against a large-scale direct
N -body simulation of cosmological evolution; when applied
to real observational data, the method allows to get very tight
constraints on the values of the mean mass density and the age
of the Universe.

Another of our contribution is an efficient numerical method
decomposing a given displacement field into “incompressible”
and “infinitely compressible” parts. This method is not limited
to cosmological reconstruction but can also be used for
modelling the dynamics of incompressible fluid as suggested
by Y. Brenier in [3].
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Abstract

Numerical experiments with the one-dimensional inviscid Burgers equation show that filtering the solution at each time step in a way similar
to CVS (Coherent Vortex Simulation) gives the solution of the viscous Burgers equation. The CVS filter used here is based on a complex-valued
translation-invariant wavelet representation of the velocity, from which one selects the wavelet coefficients having modulus larger than a threshold
whose value is iteratively estimated. The flow evolution is computed from either deterministic or random initial conditions, considering both white
noise and Brownian motion.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.27.Eq
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1. Introduction

The fully-developed turbulent regime is described by so-
lutions of the Navier–Stokes equations for two or three-
dimensional incompressible fluids, in the limit where the
kinematic viscosity becomes very small. By analogy, Burgu-
lence is described by the solutions of Burgers equations for
a one–dimensional fluid in the same limit, as first proposed
by Burgers [3] and advocated by von Neumann [19]. This toy
model for turbulence has been extensively used since then [1,
13,15,21,23]; Frisch and Bec have proposed to name it: Burgu-
lence [11].

We consider the one-dimensional Burgers equation in a
periodic domain of support x ∈ [−1, 1], which describes
the space–time evolution of the velocity u(x, t) of a one-
dimensional fluid flow:

∂t u + 1
2
∂x u2 = ν∂xx u, (1)

supplemented with a suitable initial condition and where
ν denotes the kinematic viscosity. The solutions of (1) can be

∗ Corresponding author.
E-mail addresses: rnguyen@lmd.ens.fr (R. Nguyen van yen),

farge@lmd.ens.fr (M. Farge).

computed analytically using the Cole–Hopf transformation [4,
6,14]. When ν → 0 the solutions of the viscous Burgers
equation approach weak solutions of the inviscid problem.
The uniqueness of these solutions stems from the condition
that shocks have negative jumps, which guarantees energy
dissipation. For Burgers equation, this condition is equivalent
to an entropy condition [12,17,18,20].

The wavelet representation has been proposed for studying
turbulence [7], since it preserves both the spatial and spectral
structure of the flow by realizing an optimal compromise
in regard of the uncertainty principle. We have found that
projecting the vorticity field onto a wavelet basis, and
retaining only the strongest coefficients, extracts the coherent
structures out of fully-developed turbulent flows [8,9]. We
have then proposed a computational method for solving the
Navier–Stokes equations in wavelet space [8]. We have shown
that extracting the coherent contribution at each time step
preserves the nonlinear dynamics, whatever its scale of activity,
while discarding the incoherent contribution corresponds to
turbulent dissipation [22]. This is the principle of the CVS
(Coherent Vortex Simulation) method we have proposed
[8,10].

The aim of the present paper is to apply the CVS filter to
the inviscid Burgers equation and check if this is equivalent

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.011
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Fig. 1. Deterministic initial conditions. Left: Time evolution of energy. Right: Energy spectrum at t = 5. We compare the Galerkin-truncated inviscid (square),
viscous (triangle) and CVS-filtered inviscid (circle) cases. We observe that for the inviscid case (right) the wavelet spectrum (white line) better exhibits the energy
equipartition than the Fourier spectrum (black line).

to solving the viscous Burgers equation. The outline is the
following. First we recall the principle of CVS filtering and its
extension using complex-valued translation-invariant wavelets.
The numerical scheme is described briefly and the main part
presents results of several numerical experiments, considering
either deterministic or random initial conditions. Finally, we
draw conclusions and propose some perspectives.

2. Numerical method

The Burgers equation (1) is discretized on N grid points
using a Fourier spectral collocation methods,

∂U
∂t

+ 1
3

DN (U 2) + 1
3

U · DN (U ) − νD2
N (U ) = 0, (2)

where U approximates (u(x0, t), u(x1, t), . . . , u(xN−1, t)),
DN stands for the Fourier collocation differentiation and · is
the pointwise product of two vectors. The discretization of
the nonlinear term in (2) is chosen in order to conserve the
kinetic energy E = 1

2

∫ 1
−1 u2(x, t)dx when ν = 0 [5]. For time

integration a fourth-order Runge–Kutta scheme is used.
At each time step we filter the solution using the CVS

method, which we now recall briefly. Given orthogonal
wavelets (ψ j i ) and the associated scaling function at the largest
scale ϕ, the velocity can be expanded into

u(x) = 〈u | ϕ〉ϕ(x) +
J−1∑

j=0

2 j∑

i=1

〈u | ψ j i 〉ψ j i (x), (3)

where j is the scale index, i is the position index and the inner
product is 〈a | b〉 =

∫ 1
−1 a(x) · b∗(x)dx with b∗ denoting the

complex conjugate of b. Since location in orthogonal wavelet
space is sampled on a dyadic grid, this representation breaks
the local translation invariance of (1) which may impair the
stability of the numerical scheme. Therefore we prefer using,
instead of real-valued wavelets, complex valued wavelets [16]
which very closely preserve translation invariance. In this case,
(3) still holds as long as we replace the right-hand side by its
real part.

The CVS filter then consists in discarding the wavelet
coefficients whose modulus is below a threshold T . In addition,
wavelet coefficients at the finest scale are systematically filtered
out to avoid aliasing errors. The resulting velocity uT is a
nonlinear approximation of u.

Because the velocity field decays in time, the threshold has
to be estimated at each time step in a self-consistent way. To
do this, we follow the iterative method introduced in [2], which
consists in imposing the ratio between the standard deviation of
the discarded wavelet coefficients and the threshold itself,

T 2 = 5
NT

J−1∑

j=0

2 j∑

i=1

|̃u ji |2 H(T − |̃u ji |), (4)

where H is the Heaviside step function and NT is the number
of wavelet coefficients below the threshold. The solution
of (4) is determined numerically using a fixed point iterative
procedure [2], initialized with T0 = 5E/N , where E is the total
energy.

3. Deterministic initial condition

We consider Burgers equation (1) with the deterministic
initial condition u(t = 0, x) = − sin(πx). We begin by
comparing three computations: a Galerkin-truncated inviscid
case (ν = 0), a viscous case (ν = 10−4), and an inviscid case
with the CVS filter applied at each time step. The solutions are
computed up to time t = 5, using N = 4096 grid points.

By computing in the Galerkin-truncated inviscid case
(ν = 0), we check that our numerical scheme conserves
energy (Fig. 1, left) as theoretically predicted. We observe
that the final solution at t = 5 exhibits energy equipartition
(Fig. 1, right) with a Gaussian velocity PDF, as expected.
Note that the white line in Fig. 1 (right) corresponds to the
wavelet energy spectrum, i.e., the squared modulus of the
wavelet coefficients computed with a complex-valued Morlet
wavelet. It better exhibits the k0 scaling, characteristic of
the energy equipartition, than the highly oscillatory Fourier
energy spectrum (black line). This illustrates the fact that the
wavelet energy spectrum is more stable than the Fourier energy
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Fig. 2. Deterministic initial conditions. Snapshots of velocity for the viscous (left) and the CVS-Filtered inviscid (right) cases at t = 0 (dotted line), t = 0.5 (solid
line) and t = 5 (dashed line). The insets show a zoom of the shock at t = 0.5.

Fig. 3. Deterministic initial conditions. Left: Time evolution of the percentage of wavelet coefficients retained after filtering. Right: Dyadic tree of the wavelet
coefficients which are retained after filtering at t = 5. The crosses indicate the 7%N retained wavelet coefficients, while the small dots correspond to the 93%N
discarded wavelet coefficients. The scale varies from coarse to fine, up the vertical axis.

spectrum when we analyse only one realization of a stochastic
process [7].

For the viscous and CVS-filtered inviscid cases, the energy
remains basically constant until the shock forms at t = 1/π , but
then decays with a t−2 law. In Fig. 1 (right) the energy spectra
of the viscous and CVS-filtered inviscid cases exhibit a power
law behaviour with slope −2.

Fig. 2 shows the velocity at three time instants for the
viscous and CVS-filtered inviscid cases. The CVS-filtered
inviscid solution follows the same dynamics as the viscous
one, except for the small overshoot we observe at x = 0 after
the shock has formed. This Gibbs phenomenon is stronger but
less oscillatory for the CVS-filtered inviscid case than for the
viscous case (see the insets in Fig. 2).

The time evolution of the percentage of retained wavelet
coefficients is presented in Fig. 3 (left). It shows that, with only
relatively few coefficients (about 7%N ), we are able to track
the nonlinear dynamics of the flow and this number remains
almost constant after the shock formation. At t = 5, the retained
wavelet coefficients are located around x = 0, the position

of the shock, and span all scales there, as illustrated in Fig. 3
(right).

We now show that, when N increases, the filtered solutions
converge towards the entropy solution uref which solves the
Burgers equation in the inviscid limit. For comparison, we also
consider viscous solutions with viscosity depending on N (ν =
0.4096N−1), which are known to converge to uref everywhere,
except at x = 0. The entropy solution uref is directly calculated
using the method of characteristics.

First, we consider a global error estimate, the relative mean
square error, defined as

εN (t) = ‖u − uref‖2
2

‖uref‖2
2

. (5)

On Fig. 4(left) we plot εN (t) for N = 4096. The error for the
CVS-filtered inviscid case is larger but saturates after t ) 2. In
contrast, the error for the viscous case keeps increasing because
the finite viscosity smooths the shock away. Considering
now t = 5 and varying N , we find that for both the viscous
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Fig. 4. Deterministic initial conditions. Left: Time evolution of the relative mean squared error εN at N = 4096. Right: Relative mean squared error εN at t = 5
for different numerical resolutions, N = 128 to N = 8192. We compare the viscous (triangle) and CVS-filtered inviscid (circle) cases.

Fig. 5. Deterministic initial conditions. Error on the relative total variation ε′
N (left), and number of retained wavelet coefficients (right), as functions of N at t = 5,

for the viscous (triangle) and CVS-filtered inviscid (circle) solutions.

and CVS-filtered inviscid cases εN decreases as N−1 (Fig. 4,
right).

We now study the behaviour of the oscillations in the
neighbourhood of the shock when the resolution N is increased.
The total variation of a function f on [−1, 1] is defined by:

‖ f ‖T V =
∫ 1

−1
|∂x f |dx . (6)

To detect the presence of spurious oscillations, we compute
the relative error on the total variation.

ε′
N (t) = ‖u(x, t)‖T V − ‖uref(x, t)‖T V

‖uref(x, t)‖T V
, (7)

which is plotted as a function of N for t = 5 on Fig. 5 (left).
For the viscous case, ε′

N is negative and converges towards zero
when N increases. For the CVS-filtered inviscid case, ε′

N tends
to a finite positive value close to 0.84. The overshoot that could
be seen on Fig. 2 persists but becomes more and more localized
around the singularity when N increases, thus ensuring mean
square convergence.

Let us end this section by a short discussion on the evolution
of the compression rate when N increases. Fig. 5 (right)

shows that the number of retained wavelet coefficients increases
roughly logarithmically as a function of N . As a consequence,
notice that for the filtered solution the relative mean square
error εN (t), if it is considered as a function of the number
of retained coefficients only, converges to zero exponentially
fast. However, to experience this promising rate of convergence
in practice, we should compute the evolution of u using only
the wavelet coefficients whose modulus remains above the
threshold.

4. Random initial condition

In the previous section we demonstrated that the CVS-
filtered inviscid Burgers equation exhibits an evolution similar
to that of the viscous Burgers equation. We now would like to
check if this is still verified in the context of Burgulence for
both white noise [1] and Brownian motion [21].

4.1. White-noise initial condition

We take as initial velocity one realization of a Gaussian
white noise computed at resolution N = 4096, which
corresponds to a random non-intermittent initial condition.
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Fig. 6. White noise initial conditions. Left: Time evolution of energy. The inset shows the t−2/3 decay in log–log coordinates. Right: energy spectrum at t = 5. We
compare the viscous (triangle) and CVS-filtered inviscid (circle) simulations. We observe that the wavelet spectrum (white lines) better exhibits the k−2 scaling of
energy than the Fourier spectrum (black lines).

Fig. 7. White noise initial conditions. Snapshots of velocity at t = 0.3 (left) and t = 5 (right). Top: viscous equation with ν = 2 × 10−5. Bottom: CVS-filtered
inviscid equation.

Since the CVS filter removes the non-intermittent noisy
contributions, if applied to a Gaussian white noise the latter
would be completely filtered out. Therefore we first integrate
the viscous equation with ν = 2 × 10−5 without filtering,
and wait until the flow intermittency has sufficiently developed
before applying the filter. To check the flow intermittency we
monitor the flatness of the velocity gradient until it reaches
the value 20, which happens at t = 0.017 for the realization
described here. Then, we reset t = 0 and integrate up to t = 5,
both the viscous equation with ν = 2 × 10−5, and the CVS-
filtered inviscid equation.

In Fig. 6 (left) we show that the energy, for both the CVS-
filtered inviscid solution and the viscous solution, decays with
a t−2/3 law, as found by Burgers [4,21]. In Fig. 6 (right)
we observe at t = 5 that both energy spectra present the
same k−2 scaling. Notice that the two white lines in Fig. 6
(right) correspond to the wavelet energy spectrum, which better
exhibits the k−2 scaling of the energy than the highly oscillatory
Fourier energy spectrum (black lines).

Finally, we show on Fig. 7 that the viscous and CVS-
filtered inviscid solutions are almost identical in physical

space, presenting a typical sawtooth profile as first noticed by
Burgers [4].

4.2. Brownian motion initial condition

We use the same resolution N = 4096 as above, but only
the initial condition changes. Since we have chosen periodic
boundary conditions we approximate the Brownian motion by
the Fourier series:

u(x, 0) = Re

(
∑

k

ûkeikx

)

(8)

where k = − N
2 + 1, − N

2 , . . . , N
2 − 1. We set û0 = 0 and,

for k ,= 0, we take for ûk a complex Gaussian random variable
with standard deviation 1/|k|.

The solution for the viscous case is computed with ν =
1.2 × 10−4. For the CVS-filtered inviscid case, as we did for
the white noise initial condition, we do not filter before enough
intermittency has developed. We thus integrate the viscous
equation with ν = 1.2 × 10−4 for 0.05 time units and then
switch viscosity off. This procedure provides the initial velocity
which, by construction, is the same for both methods (Fig. 8).
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Fig. 8. Brownian initial condition. Velocity at t = 0 (left), its Fourier energy spectrum (right, black line) and its wavelet energy spectrum (right, white line).

Fig. 9. Brownian initial condition. Left: Time evolution of energy. Right: wavelet energy spectrum at t = 5. We compare the viscous (triangle) and CVS-filtered
inviscid (circle) cases.

Fig. 10. Brownian initial conditions. Snapshots of velocity at t = 0.1 (left) and t = 5 (right). Top: viscous equation with ν = 1.2 × 10−4. Bottom: CVS-filtered
inviscid equation.

The energy decay matches well between the CVS-filtered
inviscid and the viscous solutions (Fig. 9, left). A k−2 power
spectrum is also obtained for both at t = 5 (Fig. 9, right).

At t = 0.1 numerous small shocks are present in the viscous
solution (Fig. 10, top left). All of them are correctly reproduced
by the CVS-filtered inviscid solution (Fig. 10, bottom left).
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At t = 5 the single remaining shock, which is still
resolved in the viscous solution (Fig. 10, top right), is correctly
reproduced in the CVS-filtered inviscid solution (Fig. 10,
bottom right).

5. Conclusion

We have shown that CVS filtering at each time step
the solution of the inviscid Burgers equation gives the
same evolution as the viscous Burgers equation, for both
deterministic and random initial conditions. As our contribution
to Euler equations’ 250th anniversary and Euler’s 300th
birthday, we conjecture that CVS filtering the Euler equation
may be equivalent to solving the Navier–Stokes equations in
the fully-developed turbulent regime, i.e., when dissipation
has become independent of viscosity. We predict that the
retained wavelet coefficients would preserve Euler’s nonlinear
dynamics, while discarding the weaker wavelet coefficients
would model turbulent dissipation and give Navier–Stokes
solutions. Since in the fully-developed turbulent regime
turbulent dissipation strongly dominates molecular dissipation,
there is no reason to model turbulent dissipation by a Laplace
operator anymore. Indeed, turbulent dissipation is a property
of the flow, while molecular dissipation is a property of the
fluid and may no more play a role when turbulence is fully-
developed. We think that in this regime the CVS filter could
be a better way to model dissipation, replacing global by
local smoothing, while preserving nonlinear interactions. In
this paper we have chosen the simplest toy model to test
this conjecture, although Burgers’ equation, in contrast to
Euler’s equation, is neither chaotic nor produces randomness.
Therefore we conjecture that the CVS-filter would work better
for Euler/Navier–Stokes than for Burgers, since CVS is based
on denoising which is justified when there is chaos and
randomness.
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Mech. 344 (1997) 339–374.
[14] E. Hopf, Comm. Pure Appl. Math. 3 (1950) 201.
[15] S. Kida, J. Fluid Mech. 79 (1997) 337–377.
[16] N. Kingsbury, Appl. Comput. Harmon. Anal. 10 (3) (2001) 234–253.
[17] S.N. Kruzhkov, Math. USSR Sb. 10 (2) (1970) 217–243; Amer. Math.

Transl. Ser. 2 26, 95–172.
[18] P.-D. Lax, Comm. Pure Appl. Math. 7 (1954) 159–193.
[19] J. von Neumann, in: A.H. Taub (Ed.), Collected Works, vol. 5, Pergamon,

1961, pp. 437–471.
[20] O. Oleinik, Usp. Mat. Nauk 12 (3) (1957) 3–73; Amer. Math. Transl. Ser.

2 26, 95–172.
[21] Z.S. She, E. Aurell, U. Frisch, Commun. Math. Phys. 148 (1992)

623–641.
[22] K. Schneider, M. Farge, G. Pellegrino, M. Rogers, J. Fluid Mech. 534

(2005) 39–66.
[23] M. Vergassola, B. Dubrulle, U. Frisch, A. Noullez, Astron. Astrophys. 289

(1994) 325–356.



Physica D 237 (2008) 2158–2161
www.elsevier.com/locate/physd

Boundary-value problems in cosmological dynamics

Adi Nusser

Physics Department - Technion, Haifa 32000, Israel

Available online 26 February 2008

Abstract

The dynamics of cosmological gravitating system is governed by the Euler and the Poisson equations. Tiny fluctuations near the big bang
singularity are amplified by gravitational instability into the observed structure today. Given the current distribution of galaxies and assuming
initial homogeneity, dynamic reconstruction methods have been developed to derive the cosmic density and velocity fields back in time. The
reconstruction method described here is based on a least action principle formulation of the dynamics of collisionless particles (representing
galaxies). Two observational data sets will be considered. The first is the distribution of galaxies which is assumed to be an fair tracer of the mass
density field of the dark matter. The second set is measurements of the peculiar velocities (deviations from pure Hubble flow) of galaxies. Given
the first data set, the reconstruction method recovers the associated velocity field which can then be compared with the second data set. This
comparison constrains the nature of the dark matter and the relation between mass and light in the Universe.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 95.35.+d
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1. Introduction

Cosmology is concerned with observing and modelling
the universe on large scales: from our own Milky Way,
other galaxies, galaxy clusters, super clusters up to the
largest scales as probed by measurements of the cosmic
microwave background radiation (CMB). These observations
span a huge range of scales and all strongly suggest that:
(1) the dominant form of matter is dark (a factor of six in
mass over the normal baryonic matter), (2) the clustering
amplitude decreases with scale, and (3) structure forms by
gravitational amplification of tiny initial fluctuations. These
are some of the main component of the standard paradigm
in cosmology. Violation of any of them or all of them is
consistent with only a very limited set of observations, if any.
Cosmology has had a great impact on other fields of physics
and science in general. The bare existence of the gravitationally
dominant dark matter has stimulated scientists’ (and others’)
vivid imagination for a few decades now. Abundance and
masses of nonstandard particles have been constrained from

E-mail address: adi@physics.technion.ac.il.

the observed clustering pattern alone. In addition to gravity,
hydrodynamic processes can greatly influence the formation
and evolution of galaxies, groups and clusters of galaxies.
Hydrodynamic effects, however, play a minor role in shaping
the observed distribution of galaxies on scales a few times
larger than the size of galaxy clusters. Therefore, gravitational
instability theory directly relates the present-day large-scale
structure to the initial density field and provides the framework
within which the observations are analyzed and interpreted.
Gravitational instability is a nonlinear process. Analytical
solutions exist only for configurations with special symmetry,
and approximate tools are limited to moderate density contrasts.
So, numerical methods are necessary for a full understanding
of the observed large scale structure of the universe. There are
two complementary numerical approaches. The first approach
relies on N -body techniques designed to solve an initial value
problem in which the evolution of a self-gravitating system
of massive particles is determined by numerical integration
of the Newtonian differential equations. Combined with semi-
analytical models of galaxy formation, N -body simulations
have become an essential tool for comparing the predictions of
cosmological models with the observed properties of galaxies.
Because the exact initial conditions are unknown, comparisons
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between simulations and observations are mainly concerned
with general statistical properties. The second approach aims
at finding the past orbits of mass tracers (galaxies) from their
observed present-day distribution. The orbits must be such that
the initial spatial distribution is homogeneous. This approach
is very useful for direct comparisons between different types
of observations of the large-scale structure. Most common are
the velocity–velocity (hereafter v–v) comparisons between the
observed peculiar velocities of galaxies and the velocity field
inferred from the galaxy distribution in redshift surveys. This
type of analysis yield the cosmological mass density parameter
Ωm . Any systematic mismatch between the fields serves as
an indication to the nature of galaxy formation and/or the
origin of galaxy intrinsic scaling relations used to measure
the distances, provided that errors in the calibration have been
properly corrected for. This second approach also allows to
perform back-in-time reconstructions of the density field on
scales ∼5 h−1 Mpc [3].

Finding the orbits that satisfy initial homogeneity and match
the present-day distribution of mass tracers is a boundary value
problem. This problem naturally lends itself to an application of
Hamilton’s variational principle where the orbits of the objects
are found by searching for stationary variations of the action
subject to the boundary conditions. The use of the Principle of
Least Action in a cosmological frame-work has been pioneered
by Peebles [6] and has long been restricted to small systems
such as the Local Group [7] and the Local Supercluster [8].
Early applications to large galaxy redshift surveys have been
hampered by the computational cost of handling the relatively
large number of objects. Subsequent numerical applications
speeded up the method and allowed the reconstruction of the
orbits of ∼103 particles [8]. However, it was only recently that
the improvement of the minimization techniques and the use of
efficient gravity solvers made it possible to deal with more than
104 objects [5], comparable to the number of objects contained
in the largest all-sky galaxy catalogues.

2. Cosmological dynamics

For the background cosmology we work with a Friedmann-
Robertson-Walker Universe. In this uniform background, the
physical distance, r , between two points is r ∝ a(t) where a(t)
is the scale factor. We consider a matter dominated universe
with mean density ρ̄ = Ωρc with ρc = 3H2/8πG. For a
Ω = 1, we get a critical density flat universe with a ∼ t2/3.
The Universe is geometrically hyperbolic for Ω < 1 and
spherical for Ω > 1. Current observations indicate that the
Universe contains a cosmological constant which makes it flat
even though Ω ≈ 0.3 [9]. Apart from the dependence of a on
t the presence of a cosmological constant has very little effect
on our description here. In particular, the equations of motion
of perturbations remain correct. We further define, H(t) = ȧ/a
is the Hubble function, and denote the comoving coordinate of
a patch of matter by x = r/a. The fluctuations are described
by the density contrast δ(x, t) = ρ(x, t)/ρ̄(t) − 1 and the
comoving velocity by v = dx/dt . Also, let D(t) be the linear
density growing mode normalized to unity at the present epoch,

and f (Ωm) = d ln D/d ln a ≈ Ω0.6
m . The equations governing

the evolution of fluctuations in a collisionless mass component
in an expanding Universe are, The Euler equation,

dv
dt

+ 2Hv + v · ∇v = −∇ϕg, (1)

the continuity,

∂δ

∂t
+ ∇ · (1 + δ)v = 0 (2)

and the Poisson equation,

∇2ϕg = 4πGρ̄δ. (3)

The term 2Hv in the Euler equation is due to the expansion
of the cosmological background. The source term in the
Poisson equation represents density fluctuations above the
mean background density.

2.1. Linear gravitational instability

Neglecting the non-linear terms v · ∇v and ∇ · δv, the
equations of motion reduce to

δ = − 1
f (Ω)H

∇ · v (4)

and

δ̈ + 2H δ̇ = 3
2

H2Ωδ, (5)

where an over-dot indicates a partial time derivative. For a
critical density Universe (Ω = 1 and H = 2/3t), the Eq. (5)
gives δ1 ∝ t2/3 and δ2 ∝ t−1, as the growing and decaying
solutions, respectively. A few things to note. First, without
the term 2H δ̇ the solutions would be exponential functions
rather than power laws in time. Second, even in the linear
regime, the decaying mode prevents a full recovery of the initial
conditions, at t ≈ 0 near the big bang cosmological singularity.
Indeed, recovering this mode requires a precise knowledge of
the present δ and δ̇ (or v), in order to prevent a blow-up as
t → 0.

The relation (4) has a simple interpretation. Since H ∼ 1/t
and t∇2φg ∼ −δ, it gives the intuitive relation v ∼ −∇φgt
between the acceleration, −∇φg and velocity. The relation has
played a prominent role in the analysis of large scale structure.
The density contrast δ(x) as estimated form the distribution of
galaxies, could be used in this relation to obtain the associated
peculiar velocity v(x). This velocity fields could be compared
with the actual observed velocities of galaxies. A good
agreement between the fields yields the cosmological density
parameter, Ω , and also a confirmation of the gravitational
instability mechanism for structure formation. But, perhaps
more interestingly, any mismatch between the fields could be
an indication of a strange mode of galaxy/structure formation
the result of which is a galaxy distribution different from that of
the dark matter.
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2.2. Nonlinear cosmological dynamics

Linear theory is valid only when the fluctuations are small.
We describe here some nonlinear methods which can be used
for a variety of purposes, e.g. recovery of the initial conditions,
estimating v from the galaxy distribution and constraining the
masses of galactic halos. Here we focus on the estimation
of v. One can use numerical simulations of nonlinear gravity
to calibrate semi-analytical nonlinear generalizations to (4).
The approach is useful as it provides partial differential
equations which can be solved for v for a given source term,
δ. Nevertheless, such generalizations are usually statistical in
nature. In the following, we will describe a more rigorous and
accurate approach.

We switch to a Lagrangian description for a system of N
equal mass particles in an expanding universe. Each particle
represents a patch of matter which, for practical purposes, could
be a galaxy. The equations of motion are (i = 1 · · · N ),

dvi

dt
+ 2Hvi = gi , (6)

where g = −∇φg and is given by

g(x) = − G
a3

∑

i

x − xi

|x − xi |3
+ 4

3
Gρ̄ax. (7)

The equations can be derived from the action,

S

=
∫ t0

0
dt

∑

i

{
a2

2
v2

i + G
a

[
∑

j<i

1
|xi − x j |

+ 2π

3
ρ̄a3x2

i

]}

(8)

under stationary first variations of the orbits that leave x fixed
at the present epoch and satisfy the constraint t1/3v → const
as t → 0 [1,5,6]. The second condition on the velocities
guarantees homogeneity near the big bang singularity t → 0,
preventing a blow up of the solutions. We expand the orbits in
a time-dependent base functions qn (t) in the form,

xi (t) = xi,0 +
nmax∑

n=1

qn (t)Ci,n, (9)

where xi,0 is the position of the particle i at the present epoch,
and the vectors Ci,n are the expansion coefficients with respect
to which the action is varied, i.e. they satisfy ∂S/∂Ci,n = 0. The
base functions qn are chosen such that the boundary conditions
are satisfied.

Our strategy is to find orbits that are as close as possible
to the Hubble flow. Therefore, we search for the minimum
of the action and do not look for stationary points which
might describe oscillatory behaviour of the orbits. To find the
coefficients Ci,n that minimize the action, we use the Conjugate
Gradient Method (CGM) which is fast and easy to implement.
The gravitational force g and its potential are computed using
the TREECODE gravity solver. The time integration in the
expression for the action is done using the Gaussian quadrature
method with 10 points at the time abscissa. The CGM requires
an initial guess for Ci,n . We will use the term FAM, for

Fast Action Method, to refer to the reconstruction method
described here. In the standard FAM application we compute
the initial guess using the linear theory relation between the
velocity and mass distribution. The minimum of the action
proved to be rather insensitive to the choice of initial guess
for Ci,n , as we have checked by running FAM experiments
with initial Ci,n both set to zero and to random numbers with
appropriate variance. Besides the initial set of Ci,n , the other
free parameters are the softening used by the gravity solver and
the tolerance parameter that sets the convergence of the CGM
method. The success of the least action reconstruction method
is illustrated in Fig. 1.

3. Discussion

The rapid rotation of galactic disks revealed the existence of
dark matter halos which engulf the luminous component. The
measured virial motions of galaxies in clusters of galaxies also
require a gravitationally dominant dark component. Away from
bound systems of galaxies and galaxy clusters, field galaxies
show coherent flow pattern which deviates from a pure Hubble
expansion. This coherent velocity field is a direct probe of the
large-scale dark matter distribution in as much as rotational
speeds and virial motions are a measure of the dark matter
in galaxies and clusters. Indeed, the cosmic gravitational field
responsible for the motions of galaxies, mainly depends on
the gravitationally dominant mass density field of the dark
matter. The actual distribution of galaxies may well be quite
different from the dark matter distribution. Recent analysis of
the galaxy surveys, however, reveal a good match between
the statistical properties of the galaxy distribution and the
corresponding properties for the dark matter as inferred from
numerical simulations of dark matter evolution in the universe.
This is encouraging, but there may still be significant deviations
between the distribution of the dark and luminous components,
which are not reflected in statistical comparisons. The only
way to detect such deviations is via direct detailed comparisons
between the measured velocities of galaxies and velocities
estimated from the galaxy distribution. These comparisons
have been done in the linear regime. The overall agreement
between the fields is impressive, but minor persisting mismatch
is detected in some regions in the local volume. It is possible
that nonlinear analysis based on the least action principle could
mitigate some of the disagreement. This remains to be seen.
The least action principle could also be used to recover the
initial conditions, allowing us to answer one of the fundamental
question of whether or not initial fluctuations were gaussian [4].

The program is not without flaws. Many physical effects
need to be addressed in detail. Most pressing is incorporating
the assembly (or merging) history of galaxies. Galaxies reside
in dark matter halos which form in a hierarchical manner from
small to large. Thus our own Milky Way galaxy, for example, is
likely to have had a major merging activity some 8 Gyr ago. All
reconstruction methods assume that galaxies are point tracers of
the mass density field and do not account for merging effects.

For a discussion of an alternative approach to cosmological
reconstruction, see [2].
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Fig. 1. Maps of 2D-projected peculiar velocities for points residing in a slice of thickness 6 h−1 Mpc cut through a simulated catalogue. The length of the vectors
is drawn in units of 1 h−1 Mpc = 50 Km s−1. The top row shows the least action predicted velocities (labelled FAMz). N -body velocities are shown in the middle
row. The velocity residuals, vNbody −vFAMz, are displayed on the bottom. The maps shown in the panels to the left hand side refer to all the points in the slice while
only the velocities of points with moderate density contrast are plotted in the central and right columns.
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Abstract

The axisymmetric intrusion of a fixed volume of fluid, which is released from rest and then propagates radially at the neutral buoyancy level
in a deep linearly stratified ambient fluid is investigated. The SW equations representing the high-Reynolds number motion are used. For the
long-time motion an analytical similarity solution indicates propagation with t1/3, but the shape is peculiar: the intrusion propagates like a ring
and the inner domain contains a thin tail of clear ambient fluid. To avoid accumulation of numerical errors the problem was reformulated in terms
of new variables and solved by finite-difference scheme. It is shown that the initial-value problem tends to the similarity prediction. Comparison
with the non-stratified case is presented. It was found that for the non-stratified case there is a similar “tail-ring” stage of propagation, however
this stage is only a transient to a different self-similar shape.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.10.A-; 47.15.ki

Keywords: Intrusion; Axisymmetric; Stratified

1. Introduction

Intrusive gravity currents are formed when a given volume of
fluid of constant density ρc and kinematic viscosity ν is released
from the lock of height h0 into a vertically stratified ambient of
density ρa at the level of a neutral buoyancy. The typical system
configuration is sketched in Fig. 1. The propagation starts from
rest in a region of radial dimension r0 about the axis and the
velocity has no lateral (azimuthal) component. We assume that
the density of the ambient fluid varies linearly over the full
depth of the container and that the Reynolds number Re of the
flow is large.

The previous investigations (e.g. Hoult [2], Grundy and
Rottman [1]) were concerned mainly with the axisymmetric
gravity currents released from behind a lock into a non-
stratified homogeneous ambient. The recent investigations of
axisymmetric intrusions released from behind a lock into a
linearly stratified ambient were presented by Ungarish and

∗ Corresponding author.
E-mail address: tamart@cs.technion.ac.il (T. Zemach).

Fig. 1. Schematic description of the system (a) the geometry; (b) density profile
in the ambient. In the dimensionless form, the horizontal lengths are scaled with
r0 and the vertical lengths with h0. The subscripts denote: N — nose (or front);
a — ambient; b — bottom; c — current (intrusion); o — open surface.

Zemach [6]. They showed that for the large time developed
motion an analytical similarity solution exists. The self-
similarity result indicates radial propagation with t1/3, but the
shape is peculiar: the intruding fluid propagates like a ring with
a fixed ratio of inner to outer radii. Inside the inner radius of
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the ring there is a thin “tail” — residual layer of mixed fluid,
whose thickness decreases as t−2. To confirm this analytical
approach, Ungarish and Zemach [6] have solved the shallow-
water (SW) initial-value problem by a finite-difference scheme
for 0 ≤ t ≤ 10. They showed that after an initial propagation
to about 2.5 times the initial radius, at t ≈ 5, the intrusion
approaches a self-similar behavior.

The “tail-ring” form similarity solution of the axisymmetric
stratified problem is unique and it is different from the
similarity solution of the non-stratified axisymmetric problem.
As it is shown by Ungarish and Zemach [5] quite soon after the
release, at t ≈ 8, the axisymmetric non-stratified current takes
the form which reminds the stratified current “tail-ring” form.
However according to Grundy and Rottman [1] the similarity
solution for this case is different and if so, the “tail-ring” stage
of propagation is finite and an additional stage between the
“tail-ring” and the similarity solution stages should occur.

This behavior of the non-stratified current indicates that the
stage of stratified current should also be carefully investigated
numerically for long periods. However, as for the non-stratified
case, large times after release the current becomes very thin and
the solution of the standard SW problem by numerical methods
is expected to contain a large numerical error. To overcome this
loss of accuracy the problem should be reformulated.

In the present paper we attempt to confirm numerically the
similarity solutions for the large time limits. For this purpose,
the problem is reformulated in terms of long-time variables.
The comparison with the non-stratified case is also discussed.

2. Formulation and SW approximations

We use the SW one-layer axisymmetric inviscid model (see
Ungarish [3]). The ambient fluid is in the domain −H ≤ z ≤
H and is stably linearly stratified (see Fig. 1). The density
increases linearly from ρo at z = H to ρb at z = −H . In
the ambient fluid domain we assume that u = v = w = 0
and hence the fluid is in purely hydrostatic balance. The motion
is assumed to take place in the intruding layer of fluid only,
0 ≤ r ≤ rN and −h ≤ z ≤ h. The subscript N denotes the
nose (front) of the intrusion. The density ρc of the intrusion is
constant and is defined to be ρc = 1

2 (ρb + ρ0). The initial flow-
field configuration is symmetric with respect to the horizontal
plane z = 0. The following SW approximations are concerned
with the inviscid and Boussinesq limits. In this case, the initial
symmetry is expected to prevail also during the time-dependent
propagation. It is therefore sufficient to consider the flow in the
domain 0 ≤ z.

We note that the buoyancy frequency of the unperturbed
ambient is constant and given by

N =
(

g′

H

)1/2

, (2.1)

where g′ = ρc−ρo
ρo

g and g is the gravitational acceleration.
The dimensional variables (denoted here by asterisks) are

scaled as follows
{
r∗, z∗, h∗, H∗, t∗, u∗, p∗} =

=
{

r0r, h0z, h0h, h0 H, Treft, Urefu, ρoU 2
ref p

}
, (2.2)

where Uref = N h0, Tref = r0
Uref

; r0 and h0 are the initial length
and half-thickness of the intrusion, Uref is the typical inertial
velocity of propagation on the nose and Tref is a typical time
period for longitudinal propagation over a typical distance r0.
The typical Reynolds number is large and defined by Re =
Urefh0

ν , where ν is the kinematic viscosity.
We emphasize that hereafter the variables r, z, u, t, h, H, p

are in dimensionless form unless stated otherwise.

2.1. The governing equations

The equations of motion were formulated by Ungarish and
Zemach [6]. The shallow-water equations can be expressed in
dimensionless form for the dense fluid variables: the height
h(r, t) and the averaged longitudinal velocity u(r, t). Using
these dependent variables, the continuity and momentum
equations can be expressed as:
{

ht + (hu)r = −uh
r

ut + hhr + uur = 0.
(2.3)

The appropriate boundary conditions are: (1) the no-flow
condition u(0, t) = 0 at the center; (2) kinematic condition at
the nose d

dt rN = u(rN , t); (3) the boundary condition for the
velocity at the nose

u(rN , t) = Fr√
2

hN , (2.4)

where the Froude number, Fr is in the range: 1 ≤ Fr ≤
√

2. A
more rigorous justification of the nose condition is presented by
Ungarish [3], Ungarish [4] and Ungarish and Zemach [6]. The
initial conditions are

rN (0) = 1;
u(r, 0) = 0, 0 ≤ r < 1;

h(r, 0) =
{

1, for the cylinder;√
1 − r2, for the ellipsoid;

0 ≤ r < 1.

(2.5)

2.2. Similarity solution

According Ungarish and Zemach [6], for a deep intrusion
(Fr is constant) and large values of t , the above-mentioned
system of Eq. (2.3) with appropriate boundary conditions is
satisfied by the following self-similarity solution:

rN (t) = K (t + γ )1/3;

h(y, t) = 1
3

K (t + γ )−2/3 ·
√

2(y2 − y2
1)1/2;

u(y, t) = 1
3

K (t + γ )−2/3 y

(2.6)

where y = r
rN (t) is stretched radial coordinate which maps the

radial domain [0, rN (t)] into [0, 1]; y1 =
√

1 − 1
Fr2 ; K is a
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positive constant given by:

K = 3Fr
(

V0

3
√

2

)1/3

, (2.7)

where V0 is the constant volume of the upper part of the
intrusion (per unit azimuthal angle) and is equal to 0.5 for
the standard initial cylinder and to 1/3 for an initial ellipsoid.
The constant γ ≈ −1.53 for the cylinder and −1.63 for the
ellipsoid.

The solution (2.6) is valid only in the y1 ≤ y ≤ 1 domain,
where the intruding fluid propagates like a ring with a fixed
ratio of inner and outer radii. We will call this region the “ring
region”. Inside the inner radius of the ring there is a thin “tail”
— residual layer of mixed fluid, whose thickness decreases like
t−2.

The behavior of the thin tail region in the domain 0 ≤ y ≤ y1
is given by the analytical expression

h(r, t) = C1

(t + C2)2 ; u(r, t) = 1
t + C2

r, (2.8)

where for Fr = 1.19, C1 = 1.194 and C2 = 0.194 for the
cylinder and C1 = 1.946 and C2 = 0.815 for the ellipsoid.

To patch these two regions we derive the analytical
expression of their meeting point yM by the assumption that
the height is continuous at yM :

y2
M (t) = 9

2
C2

1
K 2

(t + γ )4/3

(t + C2)4 + y2
1 . (2.9)

A short calculation shows that (1) for Fr > 1 the long-time
solution conserves its “tail-ring” form; The case Fr = 1 is
different from the rest since for this case y1 = 0 and the
“intrusion tail” region vanishes. (2) the value of yM is always
greater than y1 and (3) limt→∞ yM = y1.

2.3. Numerical solutions

We follow the method used by Grundy and Rottman [1] for
the non-stratified problem. Here we develop the appropriate
solution for the stratified intrusion. The original system of
Eq. (2.3) with appropriate boundary and initial conditions is
reformulated here in terms of the new independent variables

y = r
rN

, (0 ≤ y ≤ 1); T = 1
3

ln(t), T ≥ 0 (2.10)

and the dependent variables R, H and U , defined by

rN (t) = K t1/3 R(T );

h(r, t) = 1
3

K t−2/3 H(y, T );

u(r, t) = 1
3

K t−2/3U (y, T ),

(2.11)

where K is given by (2.7).

The original equations were subjected to the correspond
become:





HT + 1
R

(HU )y − y(1 + R′

R
)Hy = 2H − 1

R
HU

y
,

(U H)T + 1
R

(U 2 H)y − y(1 + R′

R
)(U H)y

= 4U H − 1
R

U 2 H
y

− 1
R

H2 Hy .

(2.12)

The boundary conditions are:

U (0, T ) = 0;
R(T ) + R′(T ) = U (1, T );

U (1, T ) = Fr√
2

H(1, T ).

(2.13)

The appropriate initial conditions (2.5) at T = 0 (T = 0
corresponds to t = 1) are:

H(y, 0) =






3
K

, for the cylinder;

3
K

√
1 − y2, for the ellipsoid;

U (y, 0) = 0;

R(0) = 1
K

.

(2.14)

The system (2.12)–(2.14) is solved numerically by a finite-
difference McCormack scheme. The boundary conditions for
H at y = 1 and y = 0 are calculated for each new time step
from the balances on the characteristics C±.

The choice of variables keeps the independent variables
(2.10) within reasonably moderate ranges, 0 ≤ y ≤ 1 and
0 ≤ T and the dependent variables were found to be in the
range 0 ≤ H < 2, 0 ≤ U ≤ 2.5, 0.6 ≤ R ≤ 1.1.
The dependent variables can be compared directly with the
similarity forms (2.6). For this comparison moderate values
of T can be used (since T = 2 corresponds to t = e6

≈ 403).

3. Results and comparisons

The comparison between the SW numerical solution and
analytical similarity solution for Fr = 1.19 and cylindrical
initial configuration is shown in Fig. 2.

Fig. 2(a)–(b) are plots of H(y, T ) and U (y, T ) at several
values of T . The similarity “ring” solution is shown as a bold
solid line. Fig. 2 shows that at the initial phase of propagation
(T ≤ 1), the shape resembles the behavior of the dam-break
problem, however at T ≈ 1 the similarity “tail-ring” form is
already obtained. By the time T ≈ 2 (t ≈ e6) the numerical
solution is very close to the analytical similarity solution. For
T > 2 this numerical solution changes very slowly and actually
coincides with the numerical solution at T ≈ 2, except, to a
very small region near y = y1.

Fig. 2(c) shows that the front position R(T ) (solid line)
approaches the similarity result 1 (bold dashed curve). The
comparison between the analytical and numerical results for the
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Fig. 2. Stratified axisymmetric intrusion for cylindrical initial configuration:
comparison between the similarity and numerical solutions for Fr = 1.19.
(a), (b): Computed height and velocity profiles H(y, T ) and U (y, T ) vs.
T = 1.0, 1.5, 2.0, 2.24 (t ≈ 19.9, 88.8, 396.1, 812.0). (c): the computed
transformed front position R(T ). The bold solid curve is the similarity solution
(2.6).

position of the meeting point yM is shown in Fig. 3 for Fr =
1.19. The numerical values of yM were calculated according to
the location of the velocity jump. The function yM decreases
with T and its numerical value tends to approach y ≈ 0.52
when T → ∞. The comparison shows that the numerical
results confirms the analytical estimate (2.9) and deviates from
it by about 3%. However, running the simulation to longer

Fig. 3. Comparison between the analytical expression (2.9) and numerical
result for the position of patching point yM .

times probably would show that the solution oscillates about
the similarity solution.

To strengthen the insights into the propagation of a deep
intrusion, we also considered the release of an initial ellipsoid
volume of mixed fluid, i.e. h =

√
1 − r2 for 0 ≤ r ≤ 1 at

t = 1. The results show that the essential propagation is similar
to that of the previous cylindrical problem. The initial spread
is slightly delayed by the fact that the height of the nose must
develop from zero, but the tendency to the similarity shape at
T > 1.6 is evident.

The comparison with non-stratified results (see Grundy and
Rottman [1]) shows that in both, the stratified and non-stratified
cases, a “tail-ring” shape appears at about t = 2 and in both
cases, the thickness of the tail decreases like t−2. However,
for the stratified problem the length of the tail increases (the
patching point between the tail and the ring, yM , is near ≈ y1
and hence rM = yMrN (t) increases). On the other hand, for
the non-stratified case, the length of the tail decreases till the
patching point rMN S = yMN S rN (t) approaches zero and the
“tail” disappears. Thus, for the non-stratified case, the “tail-
ring” form appears only for a finite period of time during the
developing of the similarity solution.

4. Conclusions

The propagation of an axisymmetric intrusion of a fixed
volume released from a lock at the neutral buoyancy level in
a stratified ambient was considered. We used a new analysis,
based on a one-layer SW closed formulation. The previous SW
results presented by Ungarish and Zemach [6] show that after
an initial propagation to about 2.5 times the initial radius, the
intrusion tends to a self-similar behavior with an unique “tail-
ring” form. On the other hand, analysis of the non-stratified
intrusion shows that for this case there also is a stage of
propagation when the intrusion has a “tail-ring” form, but the
analytical similarity solution for this case is quite different
and a tail in the very long-time behavior is unacceptable.
Our investigation elucidated the details of the approach to
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similarity in these cases. To verify the similarity analytical
prediction long time after release, the SW problem was
reformulated in terms of new variables to avoid accumulation
of numerical errors. Predictions were obtained for realistic
cylindric and elliptic lock geometries, initial and boundary
conditions. Various values of the Froude number were used in
the domain 1 ≤ Fr <

√
2. We note that, for the Boussinesq

currents considered here such values of Fr are only physically
possible.

The “tail-ring” form of the current, obtained from the
numerical solution of the rescaled SW problem, is in good
agreement with the analytical expression of the similarity
solution (for both the cylindrical and elliptical initial geometry
of the current).

The comparison of the results obtained for the stratified
intrusion with the classical non-stratified case shows that in the
latter case the “tail-ring” shape appears only as a transient stage
of propagation. The similarity behavior of the current in this
case is quite different from the former one without the “tail-
ring” behavior.

The similarity solutions considered here can be applied to
the study of various effects of axisymmetric intrusions, such as
energy transfers and stability.

After a spread to a relatively large radius the intrusion is

expected to become very thin and slow. At this stage, in a
real fluid, the effects of viscosity, mixing and wave influence
are expected to become dominant. This requires a separate
investigation.

To our best knowledge, there are presently no experimental
verification of the flow discussed in our work. The lack
of experimental data prevents sharper conclusions about
the insights provided by the present theory. We hope that
the present study will provide the background, guidelines
and the motivation for the laboratory experiments on this
problem.
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Abstract

We present a personal view of the state of the art in turbulence research. We summarize first the main achievements of the recent past, and then
point ahead to the main challenges that remain for experimental and theoretical efforts.
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1. Introduction

“The problem of turbulence” is often hailed as one of
the last open problems of classical physics. In fact, there is
no single “problem of turbulence”; rather, there are many
inter-related problems, some of which have seen significant
progress in recent years, and some are still open and inviting
further research. The aim of this short review is to explain
where fundamental progress has been made and where, in the
opinion of the present writers, there are opportunities for further
research.

There are many ways to set a fluid into turbulent motion.
Examples include creating a large pressure gradient in a channel
or a pipe, pulling a grid through a fluid, moving one or more
boundaries to create a high shear and forcing a high thermal
gradient. Customarily the vigor of forcing is measured by the
Reynolds number Re, defined as Re ≡ U L/ν where L is
the scale of the forcing, U is the characteristic velocity of the
fluid at that same scale, and ν is the kinematic viscosity. The
higher the Reynolds number the larger is the range of scales
involved in the turbulent motion, roughly from the scale L
itself (known as the “outer” or “integral” scale) down to the
so-called “viscous” scale η which decreases as Re−3/4 [1]. For
large Re a turbulent flow exhibits an erratic dependence of the

∗ Corresponding author.
E-mail address: itamar.procaccia@weizmann.ac.il (I. Procaccia).

velocity field on the position in the fluid and on time. For this
reason it is universally accepted that a statistical description
of turbulence is called for, such that the objects of interest
are almost invariably mean quantities (over time, space or an
ensemble, depending on the application), fluctuations about
the mean quantities, and correlation functions defined by these
fluctuations; precise definitions will be given below. The crucial
scientific questions thus deal typically with the universality of
the statistical objects, universality with respect to the change of
the fluid, or universality with respect to the change of forcing
mechanisms. We will see that this universality issue binds
together the various aspects of turbulence to be discussed below
into a common quest – the quest for understanding those aspects
of the phenomenon that transcend particular examples. We will
strive to underline instances when this quest has been successful
and when doubts remain.

The structure of this review is as follows: in Section 2 we
discuss the statistical theory of homogeneous and isotropic
turbulence and focus on the anomalous scaling exponents
of correlation functions. For a part of the community this
represented the important open problem in turbulence, and
indeed great progress has been achieved here. In Section 3 we
address homogeneous but anisotropic turbulence and present
recent progress in understanding how to extract information
about isotropic statistical objects, and how to characterize the
anisotropic contributions. Section 4 deals with wall-bounded
turbulence where both isotropy and homogeneity are lost (this

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.025
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being the norm in practice, rather than the exception). We
focus on the controversial issue of the log versus power-
laws, clarifying the scaling assumptions underlying each of
these approaches and replacing them by a universal scaling
function; we show that this achieves an excellent modeling of
channel or pipe flows. In Section 5 we consider turbulence
with additives (like polymers or bubbles) and review the
progress in understanding drag reduction by such additives.
Section 6 discusses problems in thermal convection, with
emphasis on recent work. Finally, Section 7 provides a
selective account of the problems that have come to the fore
in superfluid turbulence, sometimes bearing directly on its
classical counterpart. The article concludes with a summary of
the outlook.

2. Anomalous scaling in homogeneous and isotropic
turbulence

A riddle of central interest for more than half a century
to the theorist and the experimentalist alike concerns the
numerical values of the scaling exponents that characterize
the correlation and structure functions in homogeneous and
isotropic turbulence. Before stating the problem one should
note again that strictly homogeneous and isotropic state of
a turbulent flow is not achievable in experiments; typically
the same forcing mechanism that creates the turbulent flow
is also responsible for breaking homogeneity or isotropy.
Nevertheless, some reasonable approximations have been
created in the laboratory. To get an even closer approximation,
one has to resort to numerical simulations. For a long time,
the Reynolds number of simulations was limited by numerical
resolution and by storage capabilities, but this situation has
improved tremendously in the past few years. Indeed, as an
idealized state of turbulence which incorporates the essentials
of the nonlinear transfer of energy among scales, homogeneous
and isotropic turbulence has gained a time-honored status in
the history of turbulence research, since its introduction by
Taylor [2].

Consider then the velocity field u(r, t) which satisfies the
Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇ p + ν∇2u + f , (1)

where p is the pressure and f the (isotropic and homogeneous)
forcing that creates the (isotropic and homogeneous) turbulent
flow. Defining by 〈. . .〉 an average over time, we realize that
〈u〉 = 0 everywhere in this flow. On the other hand, correlations
of u are of interest, and we define the so-called “unfused” nth-
order correlation function Tn as

Tn(r1, t1, r2, t2, . . . rn, tn) ≡ 〈u(r1, t1)u(r2, t2) . . . u(rn, tn)〉.
(2)

When all the times ti are the same, ti = t , we get the equal-
time correlation function Fn(r1, r2, . . . rn) which, for a forcing
that is stationary in time, is a time-independent function of the
n(n − 1)/2 distances between the points of measurements, due

to homogeneity. An even more contracted object is the so-called
“longitudinal structure function” Sn ,

Sn(R) ≡ 〈{[u(r + R, t) − u(r, t)] · R/R}n〉, (3)

which can be obtained by sums and differences of correlation
functions Fn , together with some fusion of coordinates [3].
On the basis of evidence from experiments and simulations,
it has been stipulated (although never proven) that Sn is a
homogeneous function of its arguments when the distance R
is within the so-called “inertial range” η ( R ( L in the sense
that

Sn(λR) = λζn Sn(R). (4)

A central question concerns the numerical values of the “scaling
exponents” ζn and their universality with respect to the nature
of the forcing f . Even if we set aside questions about the form
of Sn(R), the question on exponents poses serious difficulties
since it is impossible to derive a closed-form theory for the
general structure function Sn , since any such theory involves
higher-order unfused correlation functions with integrations
over the time variable [4,5].

A closely related question with lesser theoretical difficulties
pertains to other fields that couple to the velocity field, with
the “passive scalar” case drawing most attention during the
nineties. A passive scalar φ(r, t) is a field that is advected by a
turbulent velocity which itself is unaffected by it. For example,

∂φ

∂t
+ u · ∇φ = κ∇2φ + f. (5)

If u and f are homogeneous and isotropic, and Re → ∞ and
κ → 0, the structure functions Sn ≡ 〈[φ(r + R) − φ(r)]n〉 are
stipulated to be homogeneous functions of their arguments with
scaling exponents ξn .

Dimensional considerations predict ζn = ξn = n/3, with
ζ3 = 1 being an exact result from fluid mechanics, going back
to Kolmogorov [6]. Experimental and simulations data deviated
from these predictions (except, of course, for n = 3), and a
hot pursuit for an example where these exponents could be
calculated theoretically was inevitable. The first example that
yielded to analysis was the Kraichnan model [7], in which u is
not a generic velocity field, but rather a random Gaussian field
whose second-order structure function scales with a scaling
exponent ζ2 as in Eq. (4), but is δ-correlated in time. This
feature of the advecting field leads to a great theoretical
simplification, not as much as to provide a closed-form theory
for Sn , but enough to allow a derivation of a differential
equation for the simultaneous 2nth-order correlation function
F2n = 〈φ(r1) . . . φ(r2n)〉, having the symbolic form [7]

OF2n = RH S(F2n−2). (6)

Guessing the scaling exponent of F2n by power counting
and balancing the LHS against the RHS yields dimensional
scaling estimates which, in this case, are ξ2n = (2 − ζ2)n. The
crucial observation, however, is that the differential equation
(6) possesses, in addition to the inhomogeneous solution that
can be guessed by power counting, also homogeneous solutions
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of the equation OF2n = 0 [8–10]. These “zero modes” are
homogeneous functions of their arguments but their exponent
cannot be guessed from power counting; the scaling exponents
are anomalous – i.e., ξ2n < (2 − ζ2)n – and therefore dominant
at small scales. As the scaling exponents appear in power-laws
of the type (r/Λ)ξ , Λ being some typical outer scale and r ( Λ,
the larger the exponent, the faster the decay of the contribution
as the scale r diminishes. The exponents could be computed in
perturbation theory around ζ2 = 0, demonstrating for the first
time that dimensional scaling exponents are not the solution to
the problem. For a further review see [11].

An appealing interpretation of the physical mechanism for
anomalous exponents of the Kraichnan model was presented
in the framework of the Lagrangian formulation [12]. In this
formulation an nth-order correlation function results from
averaging over all the Lagrangian trajectories of groups of
n fluid points that started somewhere at t = −∞ and
ended their trajectories at points r1 . . . rn at time t = 0.
Analyzing this dynamics revealed that the Richardson diffusion
of these groups did not contribute to anomalous scaling.
Rather, it is the dynamics of the shapes (triangles for 3
points, tetrahedra for 4 points, etc.) that is responsible for the
anomaly. In fact, the anomalous scaling exponents could be
related to eigenvalues of operators made from the shape-to-
shape transition probability [13]. The zero modes discussed
above are distributions over the space of shapes that remain
invariant to the dynamics [14]. It appears that these findings
of the importance of shapes rather than scales in determining
anomalous exponents is a new contribution to the plethora of
anomalous exponents in field theory, and it would be surprising
if other examples where shapes rather than scales are crucial
will not appear in other corners of field theory, classical as well
as quantum-mechanical.

The finding of distributions that remain invariant to the
dynamics meant that there must be such distributions in the
Eulerian frame as well, since the change from Lagrangian to
Eulerian is just a smooth change of coordinates. Indeed this
was the case; and this provided the clue to generalizing the
results of the non-generic Kraichnan model to the generic
case represented by Eq. (5) with a generic velocity field that
stems from the Navier–Stokes equations. The central comment
is that the decaying passive scalar problem, i.e. Eq. (5) with
f = 0, is a linear problem for which one can always define a
propagator from Fn at t = 0 (i.e. 〈φ(r1, t = 0) · · · φ(rn, t =
0)〉) to the same object at time t (note that for the decaying
problem this is no longer a stationary quantity) [15]. This
propagator possesses eigenfunctions of eigenvalue 1 which are
homogeneous functions of their arguments, characterized by
anomalous exponents. They are the analogs of zero modes
of the Kraichnan model, and are responsible for anomalous
exponents in the generic case [16,17]. Thus the general
statement that can be made is that the anomaly for the
passive scalar, generic or otherwise, is due to the existence of
“statistically preserved structures”; the structures can change in
every single experiment, but remain invariant on the average.
This is a novel notion that pertains to nonequilibrium systems
without a known analog in equilibrium problems.

At present it is still unclear whether the insight gained from
linear models might have direct relevance to the nonlinear
velocity problem itself. Some positive indications in this
direction can be found in [18], but much more needs to be done
before firm conclusions can be drawn.

3. Statistical theory of anisotropic homogeneous turbulence

As mentioned above, the agents that produce turbulence tend
to destroy its homogeneity and isotropy. In this section we are
concerned about the loss of isotropy and review the extensive
work that has been done to come to grips with this issue in
a systematic fashion. Since this subject has been reviewed
extensively [19], we limit this section to only a few essential
comments.

The need for rethinking the issue of loss of isotropy
was underlined by the appearance of several papers where
anisotropic flows were analyzed disregarding anisotropy, and
exponents were extracted from data assuming that the inertial
range scales were isotropic. The results were confusing: scaling
exponents varied from experiment to experiment, and from one
position in the flow to another. If this were indeed the case, the
notion of universality in turbulence would fail irreversibly. In
fact, it can now be shown that all these worrisome results can
be attributed to anisotropic contributions in the inertial range,
as explained below.

The basic idea in dealing with anisotropy is that the
equations of fluid mechanics are invariant to all rotations.
Of course, these equations are also nonlinear, and therefore
one cannot foliate them into the sectors of the SO(3)
symmetry group. The equations for correlation functions are,
however, linear (though forming an infinite hierarchy). Thus
by expanding the correlation functions in the irreducible
representations of the symmetry group, one gets a set of
equations that are valid sector by sector [20]. The irreducible
representations of the SO(3) symmetry group are organized by
two quantum numbers j, m with j = 0, 1, 2, . . . and m =
− j, − j +1, . . . j . It turns out that the m components are mixed
by the equations of motion, but the j components are not.
Accordingly one can show that an n-point correlation function
admits the expansion

Fn(r1, r2, . . . rn) =
∑

q jm

Aq jm(r1, r2, . . . , rn)

× Bq jm(r̂1, r̂2 . . . r̂n), (7)

where r̂ is a unit vector in the direction of r, and Aq jm is a
homogeneous function of the scalar r1 . . . rn ,

Aq jm(λr1, λr2, . . . , λrn) = λζ
( j)
n Aq jm(r1, r2, . . . , rn). (8)

Here ζ
( j)
n is the scaling exponent characterizing the j-

sector of the symmetry group for the nth-order correlation
function. Bq jm(r̂1, r̂2 . . . r̂n) are the n-rank tensorial irreducible
representations of the SO(3) symmetry group, and the index q
in Eq. (7) is due to the fact that higher-order tensors have more
than one irreducible representation with the same j, m [20].
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It was shown that this property of the nth-order correlation
functions is inherited by the structure functions as well [21].
Since these are scalar functions of a vector argument they get
expanded in standard spherical harmonics φ jm(R̂)

Sn(R) =
∑

jm

a jm(r)φ jm(R̂), (9)

with

a jm(λr) = λζ
( j)
n a jm(r). (10)

The main issue for research was the numerical values of this
plethora of scaling exponents.

Of considerable help in organizing the scaling exponents in
the various sectors of the symmetry group were the Kraichnan
model and related models (like the passive vector model with
pressure), where the exponents could be computed analytically
in the Eulerian frame in any sector of the symmetry group.
The central quantitative result of the Eulerian calculation is the
expression for the scaling exponent ξ

(n)
j which is associated

with the scaling behavior of the nth-order correlation function
(or structure function) of the scalar field in the j th sector of the
symmetry group. In other words, this is the scaling exponent of
the projection of the correlation function on the j th irreducible
representation of the SO(d) symmetry group, d being the space
dimension, with n and j taking on even values only, n =
0, 2, . . . and j = 0, 2, . . . [23]:

ξ
(n)
j = n − ε

[
n(n + d)

2(d + 2)
− (d + 1) j ( j + d − 2)

2(d + 2)(d − 1)

]
+ O(ε2).

(11)

The result is valid for any even j ≤ n, and to O(ε). In the
isotropic sector ( j = 0) we recover the result of [8]. It is
noteworthy that for higher values of j the discrete spectrum
is a strictly increasing function of j . This is important, since
it shows that for diminishing scales the higher-order scaling
exponents become irrelevant, and for sufficiently small scales
only the isotropic contribution survives. Recall that the scaling
exponents appear in power-laws of the type (r/Λ)ξ with Λ a
typical outer scale and r ( Λ; the larger the exponent, the
faster the decay of the contribution as the scale r diminishes.
This is precisely how the isotropization of small scales takes
place, with the higher-order exponents describing the rate of
isotropization. Nevertheless, for intermediate scales or for finite
values of the Reynolds and Peclet numbers, the lower-lying
scaling exponents will appear in all the measured quantities,
and understanding their role and disentangling their various
contributions cannot be avoided.

For Navier–Stokes turbulence the exponents cannot be com-
puted analytically, but the results obtained from experiments
[21] and simulations [22] indicate that the picture obtained for
the Kraichnan model repeats itself. The isotropic sector is al-
ways leading (in the sense that scaling exponents belonging
to higher sector are numerically larger). There is growing ev-
idence of universality of scaling exponents in all the sectors,
but this issue is far from being settled, and more experiments
and simulations are necessary to provide decisive evidence. It

is noteworthy that the issue of universality of the exponents in
the isotropic sector is here expanded many-fold into all the sec-
tors of the symmetry group, and is certainly worth further study.

4. Wall-bounded turbulence

Turbulent flows of highest relevance for engineering
application possess neither isotropy nor homogeneity. For
example, turbulent flows in channels and pipes are strongly
anisotropic and inhomogeneous; indeed, in a stationary plane
channel flow with a constant pressure gradient p′ ≡ −dp/dx
the only component of the mean velocity V, the streamwise
component Vx ≡ V , depends strongly on the wall normal
direction z; the derivatives of Vx with respect to z and
the second-order quantities such as mean-square-fluctuations
similarly depend only on z. A long-standing challenge is the
description of the profiles of the mean velocity and second-
order fluctuations throughout the channel or pipe at relatively
high but finite Reynolds numbers.

To understand the issue, focus on a channel of width 2L
between its parallel walls, where the incompressible fluid
velocity U(r, t) is decomposed into its mean (i.e., average over
time) and a fluctuating part

U(r, t) = V(r) + u(r, t), V(r) ≡ 〈U(r, t)〉. (12)

Near the wall, the mean velocity profiles for different
Reynolds numbers exhibit data collapse once presented in wall
units. Here in “data collapse” we mean that data obtained at
different experimental conditions can be collapsed on the same
curve by re-plotting in different units (see Fig. 4 for example).
The ‘wall units’ are obtained by defining the Reynolds number
Reτ , the normalized distance from the wall z+ and the
normalized mean velocity V +(z+) (for channels) by

Reτ ≡ L
√

p′L/ν, z+ ≡ z Reτ /L , V + ≡ V/
√

p′L.

The classical theory of Prandtl and von Kármán for infinitely
large Reτ is based on dimensional reasoning and on the
assumption that the single characteristic scale in the problem is
proportional to the distance from the (nearest) wall (see below
for details). It leads to the celebrated von Kármán log-law [1]

V +(z+) = κ−1 ln(z+) + B , (13)

which serves as a basis for the parametrization of turbulent
flows near a wall in many engineering applications. On the face
of it, this law agrees with the data (see, e.g. Fig. 1) for relatively
large z+, say for z+ > 100, giving κ ∼ 0.4 and B ∼ 5. The
range of validly of the log-law is definitely restricted by the
requirement ζ ( 1, where ζ ≡ z/L (channel) or ζ ≡ r/R
(pipe of radius R). For ζ ∼ 1 the global geometry becomes
important leading to unavoidable deviations of V +(ζ ) from the
log-law (13), known as the wake.

The problem is that for finite Reτ the corrections to the
log-law (13) are in powers of ε ≡ 1/ ln Reτ [24,25] and
definitely cannot be neglected for the currently largest available
direct numerical simulation (DNS) of channel flows (Reτ =
2003 [26,27] or ε ≈ 0.13). Even for Reτ approaching 500,000
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as in the Princeton superpipe experiment [28], ε ≈ 0.08. This
opens a Pandora box with various possibilities to revise the log-
law (13) and to replace it, as was suggested in [24], by a power-
law

V +(z+) = C(Reτ )(z+)γ (Reτ ) . (14)

Here both the coefficients C(Reτ ) and the exponents γ (Reτ )

were represented as asymptotic series expansions in ε. The
relative complexity of this proposition compared to the
simplicity of Eq. (13) resulted in a mixed response in the
fluid mechanics community [29], leading to a controversy.
Various attempts [24,28–32] to validate the log-law (13) or the
alternative power-law (14) were based on extensive analysis of
experimental data used to fit the velocity profiles as a formal
expansion in inverse powers of ε or as composite expansions in
both z+ and ζ .

Recently a complementary approach to this issue was
proposed on the basis of experience with critical phenomena
where one employs scaling functions rather than scaling
laws [33]. The essence of this approach is the realization that
a characteristic scale, say .̃, may depend on the position in the
flow. The simple scaling assumption near the wall, .̃+ = κz+,
leads to the log-law (13). The alternative suggestion of [24],
.̃+ ∝ (z+)α(Reτ ), leads to alternative power-law (14). But there
is no physical reason why .̃ should behave in either manner.
Instead, it was shown that .̃/L should depend on ζ = z/L ,
approaching κζ in the limit ζ → 0 (in accordance with the
classical thinking). However, for ζ ∼ 1, .̃ should saturate
at some level below κL due to the effect of the other wall.
We recall now the recent analysis of DNS data that provides
a strong support to this idea, allowing one to get, within
the traditional (second-order) closure procedure, a quantitative
description of the following three quantities: the mean shear,
S(z) = dV (z)/dz, the kinetic energy density (per unit mass),
K (z) ≡ 〈|u|2〉/2, and the tangential Reynolds stress, W (z) ≡
− 〈ux uz〉. This is achieved in the entire flow and in a wide
region of Reτ , using only three Reτ -independent parameters.

The first relation between these objects follows from the
Navier–Stokes equation for the mean velocity. The resulting
equation is exact, being the mechanical balance between the
momentum generated at distance z from the wall, i.e. p′(L −
z), and the momentum transferred to the wall by kinematic
viscosity and turbulent transport. In physical and wall units it
has the form

νS + W = p′(L − z) ⇒ S+ + W + = 1 − ζ. (15)

Neglecting the turbulent diffusion of energy (known to be
relatively small in the log-law region), one gets a second
relation as a local balance between the turbulent energy
generated by the mean flow at a rate SW , and the dissipation
at a rate εK ≡ ν〈|∇u|2〉: εK ≈ SW . For stationary conditions
εK equals the energy flux toward smaller scales from the
outer scale of turbulence, .̃K . Thus, the flux is estimated as
γK (z)K (z), where γK (z) is the typical eddy turnover inverse
time, estimated as

√
K (z)/.̃K (z). This gives rise to the other

(now approximate) relations:

S+W + ≈ ε+
K
, ε+

K
= γ +

K
K + = K +√

K +/.̃+
K
. (16)

The third required relationship can be obtained from the Navier
Stokes equation, similar to Eq. (16), as the local balance
between the rate of Reynolds stress production ≈SK and its
dissipation εW : εW ≈SK . The main contribution to εW comes
from the so-called Return-to-Isotropy process and can be
estimated [34], similarly to εK , as γW W with γW =

√
K/.̃W ,

involving yet another length scale .̃W which is of the same order
of magnitude as .K . Thus one has, similarly to Eq. (16),

S+K + ≈ ε+
W

, ε+
W

= γ +
W

W + = W +√
K +/.̃+

W
. (17)

Now we show that the source of ambiguity is the assumption
that the length scales can be determined a priori as .+

K ,W
∝

(z+)α with α = 1 or α 3= 1. In reality we have another
characteristic length scale, i.e. L , that also should enter the
picture when ζ = z/L is not very small. The actual dependence
.̃W and .̃K on z and L can be found from the data. Consider
first .̃W , defined by Eq. (17), and introduce a new scale .W ≡
.̃W rW (z+)/κW such that

.+
W

≡ W +(z+, Reτ ) rW (z+)

κW S+(z+, Reτ )
√

K +(z+, Reτ )
. (18)

Here, rW (z+) is a universal i.e. Reτ -independent dimensionless
function of z+, chosen such that new scale .W /L = .+

W
/Reτ

becomes a Reτ -independent function of only one variable ζ =
(z/L) = (z+/Reτ ). The dimensionless constant κW ≈ 0.20 is
chosen to ensure that limz(L .+

W
(ζ ) = z+. Note that if rW were

a constant, .W would have started near the wall quadratically,
i.e. as z × z+. Later .+

W
would have become ∝ z+ for 50 (

z+ ( Reτ [34]. Thus to normalize it to slope 1 we need
the function rW (z+) that behaves as 1/z+ for z+ ( 50 and
approaches unity (under a proper choice of κW ) for z+ 4 50.
A choice that leads to good data collapse is

rW (z+) =
[
1 +

(
.+

buf/z+)6
]1/6

, .+
buf ≈ 49, (19)

where .+
buf is a Reτ -independent length that plays a role of

the crossover scale (in wall units) between the buffer and log
regions. The quality of the data collapse for this scaling function
is demonstrated in Fig. 2.

The second length scale, .̃+
K

, is determined by Eq. (16):

.̃+
K

≡ (K +(z+, Reτ ))
3/2

ε+
K
(z+, Reτ )

= κK .+
K
, κK ≈ 3.7. (20)

In Fig. 2 we demonstrate that this simple scaling function leads
to good data collapse everywhere except perhaps in the viscous
layer. We will see below that this has only negligible effects on
our results.

Solution and velocity profiles: Solving Eqs. (16) and (17) and
accounting for Eqs. (18) and (20) we find

W + =
(
κS+.+)2 r−3/2

W , (21)
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Fig. 1. Color online. Comparison of the theoretical mean velocity profiles (red solid lines) at different values of Reτ with the DNS data for the channel flow [26,
27] (left panel, grey squares; model with .buf = 49, κ = 0.415, .s = 0.311) and with the experimental superpipe data [28] (right panel, grey circles; model with
.buf = 46, κ = 0.405, .s = 0.275). In orange dashed line we plot the viscous solution V + = z+. In green dashed dotted line we present the von Kármán log-law.
Note that the theoretical predictions with three Reτ -independent parameters fits the data throughout the channel and pipe, from the viscous scale, through the buffer
layer, the log-layer and the wake. For clarity different plots are shifted vertically by five units.

Fig. 2. Color online. The scaling function .+
W

(ζ )/Reτ (left panel), .+
K

(ζ )/Reτ (middle panel) and the final scaling function .+(ζ ) (right panel), as a function of
ζ ≡ z/L , for four different values of Reτ , computed from the DNS data [26,27]. Note that the data collapse everywhere except at ζ → 1 where W+ ∼ S+ ( 1
and accuracy is lost. The green dash line represents ζ̃ = ζ (1 − ζ/2) with a saturation level 0.5; in orange solid line we show the fitted function Eq. (24) with
.sat = 0.311.

where we have defined the von Kármán constant and the crucial
scaling function .+(ζ ) as

κ ≡ (κ3
W κK )1/4 ≈ 0.415, .+ ≡ [.+

W
3
(ζ ) .+

K (ζ )]1/4. (22)

The convincing data collapse for the resulting function
.+(ζ )/Reτ is shown in Fig. 2, rightmost panel. Substituting
Eq. (21) in Eq. (15) we find a quadratic equation for S with the
solution

S+ =
√

1 + (1 − ζ )[2κ.+(ζ )]2/rW (z+)3/2 − 1
2[κ.+(ζ )]2/rW (z+)3/2 . (23)

To integrate this equation and find the mean velocity profile
for any value of Reτ we need to determine the scaling function
.+(ζ ) from the data. A careful analysis of the DNS data allows
us to find a good one-parameter fit for .+(ζ ),

.+(ζ )

Reτ
= .s

{
1 − exp

[
− ζ̃

.s

(
1 + ζ̃

2.s

)]}
, (24)

where ζ̃ ≡ ζ(1 − ζ/2) and .s ≈ 0.311. The quality of the fit
is obvious from the continuous line in the rightmost panel of
Fig. 2.

Finally the theory for the mean velocity contains three
parameters, namely .s together with .+

buff and κ . We
demonstrate now that with these three parameters we can
determine the mean velocity profile for any value Reτ ,
throughout the channel, including the viscous layer, the buffer
layer, the log-law region and the wake. Examples of the
integration of Eq. (23) are shown in Fig. 1. We trust that,
irrespective of the reader’s own preference to the log-law or
the power-law, he would agree that these fits are very good.
It remains now to estimate, using (23), the conditions under
which we expect to see a log-law and those when deviations
due to finite Reτ would seem important. In addition, our theory
yields the kinetic energy and Reynolds stress profiles which are
in qualitative agreement with the DNS data; for W profiles see
Fig. 3.

To show that the present approach is quite general, we apply
it now to the experimental data that were at the center of the
controversy [24], i.e., the Princeton superpipe data [28]. In
Fig. 1 right panel we show the mean velocity profiles measured
in the superpipe compared with our prediction using the same
scaling function .+(ζ ). Note that the data spans values of
Reτ from 5050 to 165,000, and the fits with only three Reτ -
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Fig. 3. The Reynolds stress profiles (solid lines) at Reτ from 394 to 2003 (in
channel) and from 5050 to 165,000 (in pipe) in comparison with available DNS
data (dots) for the channel.

independent constants are excellent. Note the 2% difference in
the value of κ between the DNS and the experimental data; we
do not know at this point whether this stems from inaccuracies
in the DNS or the experimental data, or whether turbulent
flows in different geometries have different values of κ . While
the latter is theoretically questionable, we cannot exclude this
possibility until a better understanding of how to compute κ

from first principles is achieved.
So far we discussed turbulent channel and pipe flows and

demonstrated the existence and usefulness of a scaling function
.+(ζ ) which allows us to get the profiles of the mean velocities
for all values of Reτ and throughout the channel. While this
function begins near the wall as z+, it saturates later, and its
full functional dependence on ζ is crucial for finding the correct
mean velocity profiles. The approach also allows us to delineate
the accuracy of the log-law presentation, which depends on z+

and the value of Reτ . For asymptotically large Reτ the region
of the log-law can be very large, but nevertheless it breaks
down near the mid channel and near the buffer layer, where
corrections were presented.

The future challenge is to apply this idea to other examples
of wall-bounded flows, including time-developing boundary
layers, turbulent flows with temperature gradients or laden with
particles. There may be more typical “lengths” in such systems,
and it is very likely that turning these lengths into scaling
functions will provide new insights and better models for a
variety of engineering applications. Such efforts are not entirely
new; see, for example, [35].

5. Drag reduction by additives

One severe technological problem with turbulent flows is
that they cost a lot to maintain; the drag that the fluid exerts
on the wall increases significantly when turbulence sets in. It
is therefore important that there exist additives, in particular
polymers and bubbles, that can reduce this drag significantly.
Over the last few years there has been great progress in
understanding these phenomena, and here we provide a short
review of this progress.

5.1. Drag reduction by polymers

The addition of few tens of parts per million (by weight)
of long-chain polymers to turbulent fluid flows in channels
or pipes can bring about a reduction of the friction drag by
up to 80% [36–39]. This phenomenon of “drag reduction”
is well documented and is used in technological applications
from fire engines (allowing a water jet to reach high floors)
to oil pipes. In spite of a large amount of experimental
and simulations data, the fundamental mechanism for drag
reduction has remained under debate for a long time [39–
41]. In such wall-bounded turbulence, the drag is caused by
momentum dissipation at the walls. For Newtonian flows (in
which the kinematic viscosity is constant) the momentum flux
is dominated by the so-called Reynolds stress, leading to the
logarithmic (von-Kármán) dependence of the mean velocity on
the distance from the wall [34]. However, with polymers, the
drag reduction entails a change in the von-Kármán log-law such
that a much higher mean velocity is achieved. In particular, for
high concentrations of polymers, a regime of maximum drag
reduction is attained (the “MDR asymptote”), independent of
the chemical identity of the polymer [37], see Fig. 4. During the
last few years the fundamental mechanism for this phenomenon
was elucidated: while momentum is produced at a fixed rate
by the forcing, polymer stretching results in a suppression of
the momentum flux from the bulk to the wall. Accordingly
the mean velocity in the channel must increase. It was shown
that polymer stretching results in an effective viscosity that
increases linearly with the distance from the wall. The MDR
asymptote is consistent with the largest possible such linear
increase in viscosity for which turbulent solutions still exist. In
other words, the MDR is an edge solution separating turbulent
from laminar flows. This insight allowed one to derive the MDR
as a new logarithmic law for the mean velocity with a slope
that fits existing numerical and experimental data. The law is
universal, explaining the MDR asymptote.

5.2. Short review of the theory

The riddle of drag reduction can be introduced by a
juxtaposition of the effect of polymers with respect to the
universal Newtonian law (13). In the presence of long chain
polymers the mean velocity profile V +(y+) (for a fixed value of
p′ and channel geometry) changes dramatically. For sufficiently
large concentration of polymers V +(y+) saturates to a new
(universal, polymer independent) “law of the wall” [37],

V +(y+) = κV
−1 ln

(
e κV y+)

for y+ ! 10. (25)

This law, which was discovered experimentally by Virk (and
hence the notation κV), is also claimed to be universal,
independent of the Newtonian fluid and the nature of the
polymer additive, including flexible and rigid polymers [38].
Previous to our work in this network, the numerical value of the
coefficient κV was known only from experiments, κV

−1 ≈ 11.7,
giving a phenomenological MDR law in the form [37]

V +(y+) = 11.7 ln y+ − 17. (26)
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For smaller concentration of polymers the situation is as
shown in Fig. 4. The Newtonian law of the wall (13) is the black
solid line for y+ ! 30. The MDR asymptote (25) is the dashed
red line. For intermediate concentrations the mean velocity
profile starts along the asymptotic law (25), and then crosses
over to the so-called “Newtonian plug” with a Newtonian
logarithmic slope identical to the inverse of von-Kármán’s
constant. The region of values of y+ in which the asymptotic
law (25) prevails was termed “the elastic sublayer” [37]. The
relative increase of the mean velocity (for a given p′) due to the
existence of the new law of the wall (25) is the phenomenon
of drag reduction. Thus the main theoretical challenge is to
understand the origin of the new law (25), and in particular its
universality, or independence of the polymer used. A secondary
challenge is to understand the concentration-dependent cross
over back to the Newtonian plug. In our work we argue that
the phenomenon can be understood mainly by the influence of
the polymer stretching on the y+-dependent effective viscosity.
The latter becomes a crucial agent in carrying the momentum
flux from the bulk of the channel to the walls (where the
momentum is dissipated by friction). In the Newtonian case the
viscosity has a negligible role in carrying the momentum flux;
this difference gives rise to the change of Eq. (13) in favor of
Eq. (25) which we derive below.

The equations of motion of polymer solutions are written
in the FENE-P approximation [42,43] by coupling the fluid
velocity u(r, t) to the tensor field of “polymer conformation
tensor” R(r, t). The latter is made from the “end-to-end”
separation vector as Rαβ(r, t) ≡ 〈rαrβ〉, and it satisfies the
equation of motion

∂ Rαβ

∂t
+ (uγ ∇γ )Rαβ = ∂uα

∂rγ
Rγβ + Rαγ

∂uβ

∂rγ

− 1
τ

[
P(r, t)Rαβ − ρ2

0δαβ

]
,

P(r, t) = (ρ2
m − ρ2

0)/(ρ2
m − Rγ γ ) (27)

ρ2
m and ρ2

0 refer to the maximal and the equilibrium values of
the trace Rγ γ . In most applications ρm 4 ρ0

P(r, t) ≈ (1/(1 − αRγ γ )),

where α = ρ−2
m . The equation for the fluid velocity field gains

a new stress tensor:

∂uα

∂t
+ (uγ ∇γ )uα = −∇α p + νs∇2uα + ∇γ Tαγ (28)

Tαβ(r, t) = νp

τ

[
P(r, t)

ρ2
0

Rαβ(r, t) − δαβ

]

. (29)

Here νs is the viscosity of the neat fluid, and νp is a viscosity
parameter which is related to the concentration of the polymer,
i.e. νp/νs ∼ cp.

We shall use the approximation

Tαβ ∼ νp

τ

P

ρ2
0

Rαβ.

Armed with the equation for the viscoelastic medium
we establish the mechanism of drag reduction following the

standard strategy of Reynolds. Eq. (15) changes now to another
exact relation [44] between the objects S and W which includes
the effect of the polymers:

W + νS + νp

τ
〈P Rxy〉(y) = p′(L − y). (30)

On the RHS of this equation we see the production of
momentum flux due to the pressure gradient; on the LHS we
have the Reynolds stress, the Newtonian viscous contribution
to the momentum flux, and the polymer contribution to the
momentum flux. A second relation between S(y), W (y), K (y)

and R(y) is obtained from the energy balance. In Newtonian
fluids the energy is created by the large scale motions at a rate
of W (y)S(y). It is cascaded down the scales by a flux of energy,
and is finally dissipated at a rate ε, where ε = ν〈|∇u|2〉. In
viscoelastic flows one has an additional contribution due to the
polymers. Our calculation [44] showed that the energy balance
equation takes the form:

aν
K
y2 + b

K 3/2

y
+ A2νp

2τ 2 〈P〉2(〈Ryy〉 +〈 Rzz〉) = W S. (31)

We note that contrary to Eq. (30) which is exact, Eq. (31) is not
exact. We expect it, however, to yield good order of magnitude
estimates as is demonstrated below. Finally, we quote the
experimental fact [37] that outside the viscous boundary layer

W (y)

K (y)
=

{
c2

N
, for Newtonian flow,

c2
V

, for viscoelastic flow.
(32)

The coefficients cN and cV are bounded from above by unity.
(The proof is |c| ≡| W |/K ≤ 2|〈ux uy〉|/〈u2

x+u2
y〉 ≤ 1, because

(ux ± uy)
2 ≥ 0.)

To proceed, one needs to estimate the various components
of the polymer conformation tensor. This was done in [45] with
the final result that for cp large (where P ≈ 1), and Deborah
number De ≡ τ S(y) 4 1 the conformation tensor is highly
anisotropic,

R(y) 6 Ryy(y)




2De2(y) De(y) 0
De(y) 1 0

0 0 C(y)



 .

The important conclusion is that the term proportional to
〈Ryy〉 in Eq. (31) can be written as νp〈Ryy〉(y)S(y). Defining
the “effective viscosity” ν(y) according to

ν(y) = ν0 + νp〈Ryy〉(y). (33)

The momentum balance equation attains the form

ν(y)S(y) + W (y) = p′L . (34)

It was shown in [44] that also the energy balance equation can
be rewritten with the very same effective viscosity, i.e.,

ν(y)

(
a
y

)2

K (y) + b
√

K (y)

y
K (y) = W (y)S(y). (35)

In the MDR region the first term on the RHS in Eqs. (34) and
(35) dominate; from the first equation ν(y) ∼ 1/S(y). Put
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in Eq. (35) this leads to S(y) ∼ 1/y, which translates to the
new logarithmic law which is the MDR. We will determine the
actual slope momentarily. At this point one needs to stress that
this results means that ν(y) must be proportional to y in the
MDR regime. This linear dependence of the effective viscosity
is one of the central discoveries of our approach. Translated
back, it predicts that 〈Ryy〉 ∼ y outside the boundary layer.
This prediction is well supported by numerical simulations.

The crucial new insight that explained the universality of the
MDR and furnished the basis for its calculation is that the MDR
is a marginal flow state of wall-bounded turbulence: attempting
to increase S(y) beyond the MDR results in the collapse of the
turbulent solutions in favor of a stable laminar solution W = 0.
As such, the MDR is universal by definition, and the only
question is whether a polymeric (or other additive) can supply
the particular effective viscosity ν(y) that drives Eqs. (34) and
(35) to attain the marginal solution that maximizes the velocity
profile. We predict that the same marginal state will exist in
numerical solutions of the Navier–Stokes equations furnished
with a y-dependent viscosity ν(y). There will be no turbulent
solutions with velocity profiles higher than the MDR.

To see this explicitly, we first rewrite the balance equations
in wall units. For constant viscosity (i.e. ν(y) ≡ ν0), Eqs.
(34) and (35) form a closed set of equations for S+ ≡
Sν0/(P ′L) and W + ≡ W/

√
P ′L in terms of two dimensionless

constant δ+ ≡ a
√

K/W (the thickness of the viscous boundary
layer) and κK ≡ b/c3

V (the von Kármán constant). Newtonian
experiments and simulations agree well with a fit using δ+ ∼ 6
and κK ∼ 0.436 (see the black continuous line in Fig. 4 which
shows the mean velocity profile using these very constants).
Once the effective viscosity ν(y) is no longer constant we
expect cV to change and consequently the two dimensionless
constants will change as well. We will denote the new constants
as ∆ and κC respectively. Clearly one must require that for
ν(y)/ν0 → 1, ∆ → δ+ and κC → κK . The balance equations
are now written as

ν+(y+)S+(y+) + W +(y+) = 1, (36)

ν+(y+)
∆2

y+2 +
√

W +

κC y+ = S+. (37)

where ν+(y+) ≡ ν(y+)/ν0. Substituting now S+ from Eq.
(36) into Eq. (37) leads to a quadratic equation for

√
W +. This

equation has as a zero solution for W + (laminar solution) as
long as ν+(y+)∆/y+ = 1. Turbulent solutions are possible
only when ν+(y+)∆/y+ < 1. Thus at the edge of existence
of turbulent solutions we find ν+ ∝ y+ for y+ 4 1. This is
not surprising, since it was observed already in previous work
that the MDR solution is consistent with an effective viscosity
which is asymptotically linear in y+ [46,47]. It is therefore
sufficient to seek the edge solution of the velocity profile with
respect to linear viscosity profiles, and we rewrite Eqs. (36)
and (37) with an effective viscosity that depends linearly on
y+ outside the boundary layer of thickness δ+:

[1 + α(y+ − δ+)]S+ + W + = 1 , (38)

[1 + α(y+ − δ+)]∆
2(α)

y+2 +
√

W +

κC y+ = S+ . (39)

We now endow ∆ with an explicit dependence on the slope
of the effective viscosity ν+(y), ∆ = ∆(α). Since drag
reduction must involve a decrease in W , we expect the ratio
a2 K/W to depend on α, with the constraint that ∆(α) → δ+

when α → 0. Although ∆, δ+ and α are all dimensionless
quantities, physically ∆ and δ+ represent (viscous) length
scales (for the linear viscosity profile and for the Newtonian
case, respectively) while α−1 is the scale associated to the
slope of the linear viscosity profile. It follows that αδ+ is
dimensionless even in the original physical units. It is thus
natural to present ∆(α) in terms of a dimensionless scaling
function f (x),

∆(α) = δ+ f (αδ+). (40)

Obviously, f (0) = 1. In [48] it was shown that the balance
equations (38) and (39) (with the prescribed form of the
effective viscosity profile) have a nontrivial symmetry that
leaves them invariant under rescaling of the wall units. This
symmetry dictates the function ∆(α) in the form

∆(α) = δ+

1 − αδ+ . (41)

Armed with this knowledge we can now find the maximal
possible velocity far away from the wall, y+ 4 δ+. There the
balance equations simplify to

αy+S+ + W + = 1, (42)

α∆2(α) +
√

W +/κC = y+S+. (43)

These equations have the y+-independent solution for
√

W +
and y+S+:

√
W + = − α

2κC

+
√(

α

2κC

)2

+ 1 − α2∆2(α),

y+S+ = α∆2(α) +
√

W +/κC . (44)

By using Eq. (44) (see Fig. 5), we obtain that the edge solution
(W + → 0) corresponds to the supremum of y+S+, which
happens precisely when α = 1/∆(α). Using Eq. (41) we find
the solution α = αm = 1/2δ+. Then y+S+ = ∆(αm), giving
κ−1

V
= 2δ+. Using the estimate δ+ ≈ 6 we get the final

prediction for the MDR. Using Eq. (25) with κ−1
V

= 12, we
get

V +(y+) ≈ 12 ln y+ − 17.8. (45)

This result is in close agreement with the empirical law (26)
proposed by Virk. The value of the intercept on the RHS of
Eq. (45) follows from Eq. (25) which is based on matching
the viscous solution to the MDR log-law in [46]. Note that
the numbers appearing in Virk’s law correspond to δ+ = 5.85,
which is well within the error bar on the value of this Newtonian
parameter. Note that we can easily predict where the asymptotic
law turns into the viscous layer upon the approach to the wall.



2176 I. Procaccia, K.R. Sreenivasan / Physica D 237 (2008) 2167–2183

Fig. 4. Mean normalized velocity profiles as a function of the normalized
distance from the wall during drag reduction. The data points from numerical
simulations (green circles) [52] and the experimental points (open circles) [53]
represent the Newtonian results. The black solid line is the universal Newtonian
line which for large y+ agrees with von-Kármán’s logarithmic law of the
wall (13). The red data points (squares) [54] represent the Maximum Drag
Reduction (MDR) asymptote. The dashed red curve represents our theory for
the profile which for large y+ agrees with the universal law (25). The blue
filled triangles [54] and green open triangles [55] represent the cross over, for
intermediate concentrations of the polymer, from the MDR asymptote to the
Newtonian plug. Our theory is not detailed enough to capture this cross over
properly. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. The solution for 10
√

W+ (dashed line) and y+S+ (solid line) in the
asymptotic region y+ 4 δ+, as a function of α. The vertical solid line
α = 1/2δ+ = 1/12 which is the edge of turbulent solutions; Since

√
W+

changes sign here, to the right of this line there are only laminar states. The
horizontal solid line indicates the highest attainable value of the slope of the
MDR logarithmic law 1/κV = 12.

We can consider an infinitesimal W + and solve Eqs. (36) and
(37) for S+ and the viscosity profile. The result, as before, is
ν+(y) = ∆(αm)y+. Since the effective viscosity cannot fall
bellow the Newtonian limit ν+ = 1 we see that the MDR cannot
go below y+ = ∆(αm) = 2δ+. We thus expect an extension of
the viscous layer by a factor of 2, in very good agreement with
the experimental data.

5.3. Non-universal aspects of drag reduction by polymers

When the concentration of polymers is not large enough, or
when the Reynolds number is too low, the MDR is attained only

up to some value of y+ that depends in a non-universal manner
on the Reynolds number and on the nature of the polymer [49].
These non-universal turn-backs to the so-called “Newtonian
plug” can be understood theoretically, and we refer the reader
to [44,50] for further details.

5.4. Drag reduction by micro-bubbles

Finally, we should mention that drag reduction by polymers
is not the solution for many technologically pressing problems,
the most prominent of which is the locomotion of ships. Here
a more promising possibility is the drag reduction by bubbles,
a subject that is much less developed than drag reduction by
polymers. For some recent papers on this subject, see, for
example [51] and the references therein; we stress that this
subject is far from being exhausted by these papers, and expect
more work to appear in the near future.

6. Thermal convection

Convection in Nature often occurs in conjunction with
other physical effects such as rotation, magnetic field and
particulate matter, so the knowledge of the subject is relevant
to several closely related fields. The complexity of the
underlying equations has precluded much analytical progress
for circumstances of practical interest, and the demands of
computing power are such that routine simulations have not
yet been possible. Thus, the progress in the field has depended
more on input from experiment, which has limitations of its
own in terms of accessible parameter ranges. The progress in
the subject, such as it is, has been possible only through strong
interactions among theory, experiment and simulation. This is
as it should be.

The paradigm for thermal convection is the Rayleigh–Bénard
problem in which a thin fluid layer of infinite lateral extent is
contained between two isothermal surfaces with the bottom sur-
face maintained slightly hotter. When the expansion coefficient
is positive (as is the case usually), an instability develops be-
cause the hot fluid from below rises to the top and the colder
fluid from above sinks to the bottom. The applied driving force
is measured in terms of a Rayleigh number, Ra,

Ra = gα∆T H3/νκ, (46)

which emerges [56] as the appropriate non-dimensional
measure of the imposed temperature difference across the fluid
layer. Here, g is the acceleration due to gravity, H is the
vertical distance between the top and bottom plates, α, ν and
κ are, respectively, the isobaric thermal expansion coefficient,
the kinematic viscosity and the thermal diffusivity of the fluid.
Physically, the Rayleigh number measures the ratio of the rate
of potential energy release due to buoyancy to the rate of its
dissipation due to thermal and viscous diffusion.

The second important parameter is the Prandtl number

Pr = ν/κ, (47)

which is the ratio of time scales due to thermal diffusion
(τθ = H2/κ) and momentum diffusion (τv = H2/ν), and
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Table 1
Values of the combination of fluid properties α/νκ for air, water and
helium [66]; SVP = saturated vapor pressure

Fluid T (K) P (Bar) α/νκ

Air 293 1 0.12
Water 293 1 14
Helium I 2.2 SVP 2.3 × 105

Helium II 1.8 SVP –
Helium gas 5.25 2.36 6 × 109

Helium gas 4.4 2 × 10−4 6 × 10−3

determines the ratio of viscous and thermal boundary layers on
the solid surfaces. With increasing Ra the dynamical state of
the Rayleigh–Bénard system goes from a uniform and parallel
roll pattern at the onset (Ra ∼ 103) to turbulent state beyond
Ra of 108, say.

For purposes of theoretical simplification, it is customary to
assume that the thermal driving does not affect the pressure
or the incompressibility condition, and that its only effect is
to introduce buoyancy. This is the Boussinesq approximation.
How closely the theoretical results correspond to observations
depends on how closely the experiments obey the Boussinesq
approximation. It is also not clear if small deviations from the
ideal boundary conditions produce only small effects.

6.1. Experiments using cryogenic helium

Since many examples of convection occur at very high
Rayleigh numbers [57], it is of interest to understand the heat
transport characteristics in that limit. It is also necessary to
be able to cover a large range of Ra in order to discover
the applicable scaling laws. Cryogenic helium has been
used successfully for the purpose. Though experiments in
conventional fluids have been valuable [58,59], the Rayleigh
number has been pushed to the limit only through the use of
cryogenic helium. The same properties that make helium a
suitable fluid for convection studies also makes it suitable for
creating flows with very high Reynolds numbers [60].

Historically, a small “superfluid wind tunnel” was con-
structed [61] with the idea of exploiting the superfluid prop-
erties of helium II for obtaining very high Reynolds numbers.
Potential flow was observed for low velocities, with no mea-
surable lift on a pair of fly wings hanging in the tunnel, but
the inevitable appearance of quantized vortices (see Section 7
on superfluid turbulence) altered that picture for higher flow
speeds. Threlfall [62] recognized the advantages of using low
temperature helium gas to study high-Ra convection. The later
work by Libchaber and co-workers [63] brought broader aware-
ness to the potential of helium. The work of Refs. [64,65] is a
natural culmination of this cumulative effort. It is regrettable,
though understandable, that the drive towards higher Rayleigh
numbers has occurred in all these experiments at the sacrifice
of the lateral extent of the apparatus (so the connection to the
ideal Rayleigh–Bénard problem needs some justification).

The specific advantage of using helium for convection is the
huge value of the combination α/νκ near the critical point. This
can generate large Ra (see Table 1). For a fluid layer some 10 m

Fig. 6. Log–log plot of the Nusselt number versus Rayleigh number. The line
through the data is a least-square fit over the entire Ra range, and represents a
d log Nu/d log Ra slope of 0.32.

tall and a reasonable temperature difference of 0.5 K, Rayleigh
numbers of the order 1021 are possible. Table 1 also shows that
α/νκ is quite small at pressures and temperatures sufficiently
far away from the critical value. In fact, the range shown in the
table covers a factor of 1012, so any experiment of fixed size
H can yield about 12 decades of the control parameter Ra by
this means alone. However, if H is chosen to be large enough,
this entire range of Ra can be shifted to a regime of developed
turbulence where well-articulated scaling relations might be
observed. This tunability is essentially impossible for air and
water, especially because one cannot use more than modest
temperature difference to increase Ra (due to the attendant non-
Boussinesq effects, Section 6.3). For other advantages of using
helium, see [66].

6.2. The scaling of the heat transport

The heat transport in convection is usually expressed in
terms of the Nusselt number Nu

Nu = q
qcond

= q H
k f ∆T

, (48)

where q is the total heat flux, qcond is the heat flux in the
absence of convection, given by Fourier’s law, and k f is the
thermal conductivity of the fluid. Nu represents the ratio of the
effective thermal conductivity of the fluid due to its turbulent
motion to its molecular value. One goal of convection research
is to determine the functional relation Nu = f (Ra, Pr). This
relation is at least as fundamental as the skin friction relation in
isothermal flows.

Fig. 6, reproduced from Ref. [66], illustrates the enormous
range of Ra and Nu that is possible in low temperature
experiments of modest physical size (1 m height). The Nusselt
numbers have been corrected here for sidewall conduction and
also for finite thermal conductivity of the plates (and both
corrections are small, see [66]). That Nusselt numbers attain
values as high as 104 in these measurements is a testimony to
the great practical importance of turbulence.

We have shown this figure partly because it represents the
highest Ra achieved so far under laboratory conditions and also
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the largest range of Ra in the turbulent scaling regime, both
of which represent the fulfilment of the promise of cryogenic
helium gas. The average power-law exponent over 11 decades
is 0.32, close to 1/3. We show this figure also because one
might have hoped that such an unusual straight line spanning
many decades in Ra might have a finality to it. Perhaps it
does. However, experiments of Chavanne et al. [65], and by
Niemela and Sreenivasan [67] for a different aspect ratio,
have found a scaling exponent rising beyond 1/3 towards the
very highest Ra. The plausible conclusions of Niemela and
Sreenivasan [67,68] were that those data corresponded to large
non-Boussinesq conditions and to variable Prandtl number
(which occur when one operates close to the critical point), but
it is important to test these plausible conclusions directly. We
shall momentarily discuss the current work in this direction. If
we ignore the apparently non-Boussinesq regime, it has been
argued in Refs. [67,68] that the scaling exponent from existing
data is most likely consistent with a value close to 1/3.

As already mentioned, computations have not yet ap-
proached experiments in terms of high Ra, but their advantage
is that Pr can be held constant and the Boussinesq approxi-
mation can be enforced strictly. The available computational
ability has recently been pushed by Amati et al. [69], who have
reached Rayleigh numbers of 2×1014. Even though this number
is still about three orders of magnitude lower than the highest
experimental value, it has become quite competitive with re-
spect to many other experiments. This work suggests that the
one-third exponent is quite likely, reinforcing the conclusion
of Refs. [67,68]. Computational simulations have also explored
the effects of finite conductivity, sidewall conduction and non-
Boussinesq effects [70,71].

In spite of the limitations of Ra attainable in simulations,
much of the details we know about boundary layers and
fluctuations come from them. If one were to desire more
of simulations (apart from nudging the ranges of Rayleigh
and Prandtl numbers), it is that they should test the limits
of resolution better. Direct knowledge of the velocity is
most desirable in understanding the dynamics of plumes
and boundary layers, and also the importance of the mean
wind. Experiments in convection have limited themselves to
measuring the mean wind and temperature at a few points,
but not the spatial structures. The conventional techniques
of velocity measurements and flow visualization are fraught
with difficulties when considered for thermal convection in
cryogenic helium, as has been discussed in [66].

We should now comment on the contributions of the theory
to the heat transport problem. Two limiting cases for the scaling
of Nu have been considered. The first scenario imagines that
the global flux of heat is determined by processes occurring
in the two thermal boundary layers at the top and bottom of
the heated fluid layer. Then the intervening fluid, being fully
turbulent and “randomized”, acts as a thermal short circuit
and therefore its precise nature is immaterial to the heat flux.
We can then determine by dimensional arguments the relation
to be Nu ∼ Ra1/3 [72]. This scaling assumes that the heat
flux has no dependence on H . In the limit in which molecular
properties are deemed irrelevant in determining heat transport

– that is, when boundary layers cease to exist – an exponent
of 1/2 (modulo logarithmic corrections) has been worked
out phenomenologically [73]. There has been an alternative
theory [63] that obtains the 2/7th scaling through intermediate
asymptotics, but this aspect of the experimental result that
motivated the work has not been sustained by more recent work.

The upperbound theory, though quite old (see Refs. [72,74]),
has been taken to new levels through the efforts of Constantin
and Doering (e.g., Ref. [75]), as well as by others more recently,
and has contributed the following valuable hints on the heat
transport law:

1. Arbitrary Prandtl number: Nu < Ra1/2 uniformly in
Prandtl number, Pr [75]. This result rules out dependencies
such as Pr1/2 [76,77] and Pr−1/4 [73]. In particular, [73]
was written when the boundary layer structure was
understood much less than now, and there is a need
to reconstruct its arguments afresh, in particular for the
reassessment of the Rayleigh number at which the so-called
“ultimate regime” with an exponent of 1/2 is supposed to
prevail for Prandtl numbers of the order unity.

2. Large but finite Prandtl numbers: The largeness of the
Prandtl number is prescribed by the condition Pr > cRa,
where c is a constant of the order unity. Under this condition,
the upperbound is given by Nu ≤ Ra1/3(lnRa)2/3 [78]. For
higher Rayleigh numbers the upperbound is still given by (1)
above.

3. Infinite Prandtl number: The latest result due to Doering
et al. [79], is Nu ≤ C Ra1/3(lnRa)1/3. Robust calculations
by Ireley et al. [80], which still seem to fall short of
mathematical proof, is Nu ≤ a Ra1/3, where a is a constant
of the order unity.

Thus, as far as the upperbound theory is concerned, the
Ra1/2 result is permissible for Prandtl numbers of the order
unity, though some semi-analytical results on Prandtl number
dependencies are ruled out as noted in (1) above. Simulations
suggest that the Nusselt number is independent of the Prandtl
number above values of the order unity, so it is possible that the
infinite Prandtl number limit already operates for unity values.
The half-power seems likely when there are no boundary layers
(such as in vertical pipes with no bottom and top boundaries),
but there is also the continuing (though dwindling) hope of
finding this behavior for “very large” Rayleigh numbers in
a closed container. Exactly how large is “very large”? The
notion that boundary layers will become irrelevant at very high
Rayleigh numbers seems misconstrued to us.

Finally, we mention the effect of rough surfaces on the
global heat transfer rate [81,82] and the presence of a weakly
organized mean wind [83–86]. The studies just mentioned have
added to our understanding of turbulent convection. The wind
phenomenon has had a rather broad reach; e.g., quantitative
observations of occasional reversals of the mean wind flow
direction have been related to simple models of self-organized
criticality [87]. Furthermore, the lifetimes of the metastable
states of the bi-directional mean flow have intriguing analogies
with reversals of the Earth’s magnetic field polarity, a
phenomena arising from turbulent convection within the outer



I. Procaccia, K.R. Sreenivasan / Physica D 237 (2008) 2167–2183 2179

core [88]; there is also a quantitative statistical analogy with the
lifetime of solar flare activity driven by turbulent convection in
the Sun’s outer layer [89]. This latter conclusion may indicate
the existence of an underlying universality class, or a more
direct physical similarity in the convective processes that lead
to reshuffling of the magnetic footprints and to flare extinction.

6.3. Non-Boussinesq effects

One possible constraint for the Boussinesq condition to hold
is that the fractional change in density across the layer,

∆ρ

ρ
= α∆T, (49)

must be small. On the basis of a comparison to the Boussinesq
problem at the onset of convection, it is generally assumed that
values of α∆T < 0.2, or less than 20% variation of density
across the flow thickness, is acceptable. In the experiments
this criterion is indeed satisfied up to very high values of
Ra (up to 1015 for one set of data [67] and up to 1016 for
another [64]), although there is no assurance that asymmetries
of this magnitude are irrelevant at such high Ra. In fact, a more
stringent requirement by a factor of 4 was adopted in Ref. [67].

Owing to the importance of non-Boussinesq effects, as
discussed in Ref. [67], recent attention has been focused on
them. An early exploration was by Wu and Libchaber [90],
who reported top-bottom asymmetry in boundary layers as a
main characteristic of non-Boussinesq effects, and observed,
with increasing Ra, a reduction in the ratio of temperature drop
across top boundary layer to that across the bottom boundary
layer. Velocity profiles measured in a follow-up paper [91], at
lower Ra, using glycerol, also showed an asymmetry. Ahlers
and collaborators [92] showed that non-Boussinesq effects
depend on the fluid, as one could readily expect. For water, Nu
showed a modest decrease with increase in ∆T . For ethane,
they found larger Nu than in the Boussinesq case, nearly 10%
higher when α∆T = 0.2.

As there are many possible non-Boussinesq effects and their
relative importance depends on the fluid and its operating
conditions, it is difficult to study these effects systematically
in experiments. A numerical computation by [93] in two
dimensions, using glycerol as the working fluid, showed that
effects on Nu were marginal, with some decrease in Nu with
α∆T for Ra > 107. In [71], these effects have been explored
in three-dimensional convection, also computationally. The
finding is that – at least for conditions corresponding to
cryogenic helium gas at moderate Rayleigh numbers – while
viscosity plays an important role in diminishing the movement
of plumes to the interior of convection, it is the coefficient of
thermal expansion that affects heat transport most.

6.4. Whither helium experiments?

While thermal convection has been studied for quite some
time, the recent surge of interest – even in theory and
simulations – has been triggered by helium experiments.
Indeed, these experiments were ahead of theory and simulations

about two decades ago. Since then, theory has been making
its presence felt slowly and simulations have been making
considerable inroads. Experiments have surely extended the
parameter ranges, but, just as surely, they have not kept up the
pace of sophistication. A major step in the understanding of the
problem will occur only if accompanied by major improvement
in experimental sophistication. It is therefore useful to take
stock of the situation briefly. It is perhaps useful even to raise
the question as to whether the promise of helium is realizable
in its entirety anytime soon.

It has been recognized abundantly that the problem is with
instrumentation and with probes of the desired temporal and
spatial resolution. It is not clear to us that smaller probes
based on the principles of standard thermal anemometry are the
solution to the problem, part of which is that the use of helium
raises the Reynolds number of the probe itself to higher values
than in conventional fluids, leading to unfavorable (and poorly
understood) heat transfer characteristics.

In thermal convection flows, where some direct knowledge
of the velocity would be most desirable even at scales much
larger than the Kolmogorov length, the use of hot and cold wires
is further complicated by the fact that they require a steady flow
– and the mean wind is effective only near the boundaries and
also becomes weaker with Ra. Complications arise because the
probe is sensitive simultaneously to temperature and velocity
fluctuations in the environment.

Even if single-point measurements were successful, the need
to measure the entire velocity field in a turbulent flow remains
to be addressed. While a number of hot wires at several points
can be used to obtain some spatial information, there is a limit
to how far this procedure can be escalated. Particle Image
Velocimetry (PIV) has been applied recently to liquid helium
grid turbulence at 4.2 K [94,95], in counterflow turbulence [96]
and in helium II turbulence [97]. However, the information has
been obtained only in the form of two-dimensional sections,
and time evolution of the flow cannot be assessed because of
constraints of data acquisition. The PIV images do little justice
to the three-dimensionality of the flow and to the enormous
range of scales present at high Rayleigh numbers.

Particle selection and injection remain a fundamental hurdle
for PIV measurements at low temperatures. Liquid helium
has a relatively low density, and this makes it harder to find
suitably buoyant particles that are also not too large. The use of
hydrogen particles that match the density of helium has been the
most promising step in this direction [97], but refined control
of the particle generation is needed to render the technique
routinely usable.

The seeding of helium gas for thermal convection
experiments is probably even more difficult owing to the large
variation of the density, and its nominally small value, which at
best is less than half that of the liquid phase. As noted above,
the liquid flow can be seeded to some level of adequacy but
the price to pay is that the large range of Rayleigh numbers is
attainable only in the gaseous phase.

Flow visualization can focus experimental – and even
theoretical – efforts, and yet this domain has not been well
developed for cryogenic helium. We believe that there is a
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huge pay-off here because most existing flow visualizations in
water and other room-temperature fluids are at low to moderate
Rayleigh numbers, and the intuition that one derives from
low Ra cannot easily be extended to high Ra. There are
no technological barriers to perfecting the present efforts –
only one of integrating various components together. We may
also remark that it is not easy to test new particles in the
actual low temperature environment. In experimental phase,
White et al. [94] had resorted to testing in a pressurized SF6
environment, where the density could be matched to that of
liquid helium.

Where density gradients exist in the flow, visualization can
occur in the absence of tracer particles, using shadowgraphy
(which depends on the density gradient) or schlieren technique
(which depends on the second derivative of the density). It
has been demonstrated [98] that shadowgraphy can be used in
helium I to visualize even weak flows near the convective onset.
A light beam reflected from the cell displays intensity variations
resulting from the convergence or divergence due to gradients
in refractive index. Note that the technique does not give local
information, but can be used to visualize only global flows. In
the case of large apparatus, installing an optically transparent
and thermally conducting plates is a nontrivial task.

For the case of turbulence under isothermal conditions,
it would be possible to use helium 3 as a marker for
shadowgraphs.

Scattering of ultrasound is another method that can in
principle be used for velocity measurements in helium. It can
be used in the gas phase which makes it a plausible candidate
for cryogenic convection experiments. However, there would
be substantial problems in achieving sufficiently high signal-
to-noise ratio resulting from a mismatch of acoustic impedance
between the sound transducers and the helium. The work in
this direction [99,100] has not yet been adopted for cryogenic
helium.

In summary, one part of the promise of helium (namely
large values and ranges of the control parameters) has been
delivered; flows with huge values of Ra and Re have indeed
been generated in laboratory-sized apparatus. However, the
second part of the promise (of being able to develop versatile
techniques for precise measurements of velocity and vorticity)
has lagged behind substantially, despite some impressive
efforts. This is the aspect that needs financial investment and
intellectual focus.

Once the instrumentation issues are clearer, we need to
seriously consider an experiment that can combine moderate
aspect ratio (say, 4) with high Ra, constant Pr , and
Boussinesq conditions. Such an experiment is probably not
without considerable technical difficulties. A large scale low
temperature apparatus could be constructed, say at a facility
like CERN or BNL, where there is adequate refrigeration
capacity. Having a horizontal dimension of, say, 5 m or more
would probably require some type of segmentation of the
plates with multiplexing of the heating and temperature control.
Fundamentally, this is no more complicated than the mirror
arrays used in astrophysical observation. The bottom plate,
which has a constant heat flux condition imposed, can be

arbitrarily thick since it can be supported from below. The
temperature control of the plate would probably be more
difficult. Estimates for the cooling power required for cells of
the size just mentioned seem well within the capacity of the
existing refrigeration plants [66].

7. Superfluid turbulence

We now review some phenomenological aspects of liquid
helium below the lambda point, called helium II. Helium II
has a normal component and a superfluid component whose
relative fractions depend on the temperature. The superfluid
is frictionless at low flow velocities but enters, beyond a
critical velocity, a state in which thin vortex lines are formed
spontaneously. These line vortices align themselves with the
axis of rotation if the container as a whole rotates, but otherwise
form self-sustained tangles. The vortex lines move about in
the background of elementary excitations or “quasi-particles”
(which, in fact, form the normal component). The vortices
scatter the excitations when there is relative velocity between
them, thus generating the so-called mutual friction [101]. It
was recognized by Onsager [102] that quantum mechanics
constrains the circulation around the vortices to be nκ/m,
where κ is Planck’s constant and m is the mass of the helium
atom; the integer n = 1 normally. However, the irrotational
flow away from the core of the vortices, whose diameter is
estimated to be of the order of an angstrom, is thought to be
classical [103]. The motion produced by a vortex tangle, which
can be quite complex because of the tangle’s complex geometry,
is called superfluid turbulence [104,105].

7.1. The −5/3 law and analogies to classical turbulence

One of the recent findings [106] is that turbulence in helium
II has the Kolmogorov form for the spectral density with a well-
defined −5/3 power, independent of whether the fraction of the
superfluid is negligible or dominant. This result may not seem
surprising if one takes the view that any nonlinearly interacting
dissipative system of many scales will behave similarly to
the classical Kolmogorov turbulence in the inertial range [1]:
What is needed is merely the existence of mechanisms of
excitation at some large scale and dissipation at the small scale,
with no further detail mattering in the inertial range. However,
several problems come to the fore when one examines possible
scenarios for these mechanisms.

First the dissipation mechanism: Feynman [103] proposed
a scenario by which vortex reconnections generate smaller
and smaller loops in a cascade-like fashion, carrying energy
away from larger scales. Vinen [107] suggested that the short
wavelength Kelvin waves, which are created presumably by
impulses associated with the reconnection of vortices, act
as mediators of dissipation. For temperatures of 1 K and
above, the Kelvin waves are damped out by the background
excitations thus providing the dissipation mechanism. For
lower temperatures, for which the normal fluid is negligible,
the energy is radiated away as sound at sufficiently small
wavelengths. There is follow-up work on the Kelvin-wave
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mechanism for dissipation and on the nature of energy spectrum
at very high wavenumbers (e.g., [108–110]; see also [105,111])
but the details are not yet fully understood. In particular, for
energy loss by radiation to be effective, one needs very high
velocities and short wavelengths: Modest motion of vortices
will not do. Higher velocities are possible very close to the
vortex core because of the inverse power-law of the potential
velocity field – and also because of reconnection events,
which produce cusp-like local structures with sharply repelling
velocities.

Regarding the forcing scale, in experiments with a pull-
through grid in helium II [112], it is conceivable that the forcing
is produced very similarly to that in classical turbulence, and
is related to the mesh length and the time of evolution of
the turbulence. In simulations, on the other hand, the forcing
scale cannot be defined unambiguously. For instance, in the
important foray into superfluid turbulence that was made by
Schwarz [113], it appears at first sight that the forcing scale
was the size of the computational box, as also in the case of the
simulations of the Taylor–Green problem by Nore et al. [114]
and Araki et al. [115]. However, it appears that reconnections
play an important role in determining this scale (or range of
scales).

As another perspective on the same issue, the occurrence of
the −5/3 spectrum in superfluid turbulence may be regarded
as surprising if one takes the stand that the key mechanism
for energy transfer across scales in hydrodynamic turbulence,
namely vortex stretching, is absent in superfluid turbulence:
No intensification and break-up due to vortex stretching is
possible. It is the vortex break-up due to reconnections, not
vortex stretching, that appears to be the key to the spectral
distribution here. If this is true, it is interesting to speculate
about the central importance attached to vortex stretching in
classical turbulence.

To be sure, one should look closely at the veracity of
claims about the −5/3 power-law. Our view is that the
available evidence is too fragile to sustain the claim on the
existence of the −5/3 spectrum in experiment or simulations. In
experiments, the only real piece of evidence comes from [106],
but at least to us it is not exactly clear what is being measured
at the low end of the temperature (below 1 K), despite a good
assessment in [104]. At slightly higher temperatures than 1 K,
for which the available evidence for the −5/3 law also comes
from [106], the data concern different fractions of superfluid
and normal helium making it hard to disentangle the two. The
measurements of [112], though intrinsically exciting in addition
to having instigated the recent interest in the problem, are only
indirectly supportive of the −5/3 law. Here, one measures
the decay of superfluid vorticity (with certain caveats which
are partially resolved by [116]) and notes that the behavior
is similar to that of the classical vorticity. From this one can
compute the energy dissipation rate and infer the classical
Kolmogorov spectrum.

In simulations of superfluid turbulence, the result is
unconvincing because the computational box size is still small.
Here, we make a strong case for pushing the computational size
to those that are currently the norm for classical turbulence.

Our conclusion is not that the −5/3 power is ruled out, but
that the evidence is soft at present; one needs to produce more
direct and convincing evidence.

There is another interesting wrinkle. If one assumes that the
wavelength of the Kelvin waves which dissipate or radiate the
energy are very small compared to the Kolmogorov scale, it
is plausible to infer the spectral amplitude of fluctuations of
superfluid velocity in the sub-Kolmogorov range. Presumably,
the only relevant parameter in that range is the strain rate at
the Kolmogorov scale, quite like the situation of the passive
scalar spectrum at high Schmidt numbers. It then follows from
dimensional reasoning that one should expect a −1 power for
the spectrum in that region (see also [110]). On the other hand,
decay data of superfluid vorticity were analyzed in [117] to
suggest that the energy spectrum is consistent with a −3 power-
law. This behavior is poorly understood at present.

7.2. Visualization of quantized vortex lines

An exciting development of recent few years is the
visualization of quantized vortices and their reconnection using
small neutral particles [97,118]. These particles are made by
the in situ freezing of mixtures of hydrogen and helium. While
these visualization studies have confirmed some interesting
aspects of quantized vortices such as rings and reconnections,
the particles are still too large compared with the diameter of
the vortices (by a factor of about 104). Thus, while it is easy
to convince oneself that the particles get attracted to vortex
cores and decorate them, it is obvious that the particles are not
always passive. One can calculate conditions under which the
inertia of the particles has marginal influence on vortex lines,
but there is no controlled means to ensure that this happens
always: One would have to devise smaller particles before one
can be confident of the fine details.

7.3. Concluding remarks on superfluid turbulence

At least in the initial stages when the study of
superfluid turbulence was brought closer to classical turbulence
community, one of the hopes was that it might be possible to
create enormous Reynolds numbers in modest-sized facilities
using helium II. However, it has turned out that the situation is
no better than what is possible with helium I. The bottleneck
is that the superfluid vorticity introduces an effective kinematic
viscosity which is of the same order as the kinematic viscosity
of helium I [104,111,112]. There indeed is a lot to learn and
understand about superfluid turbulence as a subject of intrinsic
interest. It is also likely that such knowledge offers new insights
on classical turbulence.

A new direction of superfluid turbulence concerns helium 3
at much colder temperatures [119].

8. Final remarks

If we are interested in discovering laws underlying systems
with many strongly interacting degrees of freedom and are far
from equilibrium, it is important to begin with a study a few
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of them with the same rigor and control for which particle
physics, say, is well known. We can probably make the case
that hydrodynamic turbulence, which arises in flowing fluids,
is an ideal paradigm. Our first point is that the dynamical
equations for the motion of fluids are known to great accuracy,
which means that understanding their analytic structure can
greatly supplement experimental queries; in just the same way,
computer simulations – even if they require much investment
of time and money – can be far more useful here than for many
other problems of the condensed phase, in which the interaction
potential among microscopic parts is often simply an educated
guess. The stochasticity of turbulence (and of all systems that
are driven hard) means that one may discern only laws that
concern statistical behavior. If we are fortunate, these laws are
universal in some well-understood sense. This is the way we
regard the “problem of turbulence”.

While we have not yet reached a state when we can declare
victory (perhaps that may never happen in a strict sense),
the “problem of turbulence” is being slowly chipped away by
understanding, albeit partially, its several aspects. This review
has touched a few aspects of the problem in which considerable
progress has been made recently. There is, of course, much to
do, and one needs to understand the richness of the problem and
possess the discipline and focus needed to make a dent in one
of its nontrivial aspects.
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Abstract

We present a hybrid approach for computational aeroacoustics in the time domain. The flow field is computed using large eddy simulation and
coupled to the acoustic propagation solver based on linearized Euler equations. Coupling in the time domain avoids storage of large flow field
volume data, avoiding the slow hard disk access rate and hence speeding up the computation. Acoustic sources are calculated on the fine fluid grid
and interpolated conservatively onto the coarse acoustic grid. The problem studied is flow-induced noise from flow over a forward facing step and
the Reynolds number based on the height of the step (H = 12 mm) is ReH ≈ 8000. The sound pressure levels obtained compare well with the
published results.
c© 2007 Elsevier B.V. All rights reserved.

PACS: 47.27.ep; 43.28.Gq; 43.28.Ra; 43.58.Ta

Keywords: Aeroacoustics; Large eddy simulation; Linearized Euler equation; MpCCI

1. Introduction

Some of the causes of aerodynamically generated noise
in the transportation industry are geometries similar to the
forward facing step (FFS). These geometries occur due to
deliberate design features and are often due to manufacturing
imperfections, which could be power supply units on top
of high-speed trains, wings of aeroplanes or wiper blades
in automobiles. Several numerical and experimental studies
are available in the fluid dynamics literature [1–3], which
show that the flow physics in FFS is highly complex and
is not clearly understood for such a simple geometry. In a
recent paper by Largeau and Moriniere [4], it was further
mentioned that large discrepancies exist in published data on
the recirculation bubble length on the step. Flow over FFS
is two-dimensional below the critical Reynolds number of
Recritical < 135 [2]; with increasing Reynolds number the
flow becomes turbulent and three-dimensional. Experimental

∗ Corresponding author. Tel.: +49 9131 8529508; fax: +49 9131 8529503.
E-mail address: irfan@lstm.uni-erlangen.de (I. Ali).
URL: http://www.lstm.uni-erlangen.de/∼irfan (I. Ali).

aeroacoustic investigations carried out by Becker et al. [5,6]
showed that the broad-band noise generated by a step (H =
12 mm) is present between 1 and 8 kHz for 8000 < ReH

< 24 000.
The turbulent structures present in the flow are responsible

for the radiated acoustic energy, which itself is a minute
fraction of the turbulent kinetic energy (TKE). Furthermore,
acoustic generation in fluid simulation is non-linear and its
propagation is linear, which can be described with the help of
linear numerical solvers. The disparity of scales results in the
prevalence of hybrid methods for computational aeroacoustics
(CAA), employing different numerical methods for fluid and
acoustic simulation. Direct computation of sound has been
tried [7,8], but is not applicable for complex geometries and
the industrially relevant Reynolds numbers. Linearized Euler
equations (LEE) have been successfully used in a hybrid
approach for jet noise [9], vortex–blade interaction [10] and
cavity flow [11]. In this present study, the turbulent flow was
simulated with a finite-volume (FV) code using a large eddy
simulation (LES), which has been widely used in CAA [11]
and the noise propagation is computed with LEE in the time
domain.

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
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2. Numerical method

2.1. Flow simulation

The flow field is computed with LES using our in-house
incompressible finite-volume code FASTEST-3D [12]. The
underlying numerical scheme is based on a procedure described
by Perić [13], consisting of a fully conservative second-order
FV space discretization with a collocated arrangement of
variables on non-orthogonal grids. For the time discretization,
an implicit second-order scheme is employed, while a non-
linear multi-grid scheme, in which the pressure correction
method acts as a smoother on the different grid levels, is used
for convergence acceleration. In DNS, all the relevant scales of
turbulence have to be directly computed, whereas in a RANS
calculation, all the relevant scales of turbulence need to be
modeled. In LES, the flow field is decomposed into a large-
scale or grid scale (GS) component and a sub grid scale (SGS)
component, given for a field variable φ as, φ = φ̄︸︷︷︸

GS

+ φ′
︸︷︷︸
SGS

.

The GS component is obtained by filtering the entire domain
using a grid filter function, G and ∆̄, the filter width which
defines the smallest resolved scale:

φ̄(x, t) =
∫∫∫ ∞

−∞
φ(x − s, t)G(x, s; ∆̄)ds. (1)

The filtering operation removes the SGS turbulence from the
Navier–Stokes equations. The resulting governing equations
are then solved directly for the GS turbulent motions, while the
effect of the SGSs is computed using an SGS model, such as
the classical Smagorinsky model [14] as used in this work. In
this model the, eddy viscosity is written as a function of the
density ρ, a length scale l and the magnitude of the resolved
strain rate tensor |S̄i j |. The governing equations for LES can be
given as below, where the continuity equation is ∂Ū

∂xi
= 0 and

the momentum equation is given as:

ρ

(
∂Ū j

∂t
+ Ui

∂Ū j

∂xi

)

= − ∂ P̄
∂x j

− ∂τ̄i j

∂xi
−

∂τSGS
i j

∂xi
. (2)

The SGS τSGS is divided into the isotropic and the aniso-

tropic part as τSGS
j = τi j︸︷︷︸

anisotropic

+ 1
3
δi jτ

SGS
kk

︸ ︷︷ ︸
isotropic

. The anisotropic

part of the Reynolds stress tensor is given as a function of the
eddy viscosity and the strain rate tensor τi j = −2µt S̄i j . Similar
to the eddy viscosity, the turbulent eddy viscosity is written as
a function of the GS variables, characteristic length scale, lc =
Cs∆̄ and some characteristic velocity Uc = lc|S̄i j |, where Cs
is called the Smagorinsky constant, giving µt = ρl2

c |S̄i j |. The
Cs depends on the Reynolds number and the flow configuration
and needs special attention close to the wall. The van Driest-
damping function [15] is used which is defined as

lc = Cs∆̄
{

1 − exp
[(−z+

A+

)γ1]}γ2

(3)

where the dimensionless distance from the wall is z+ = zuτ /ν

Fig. 1. Numerical domain for FFS simulation.

and the wall shear stress velocity is uτ = √
τw/ρ, and the

constants are given as A+ = 25, γ1 = 3 and γ2 = 0.5.
In the model used, Cs = 0.1 and ∆̄ = (∆x∆y∆z)

1
3 ,

where ∆ is the grid size in the respective direction. The FV
code used is block structured and parallel based on domain
decomposition. The fluid computational domain for the FFS
consists of 12 blocks with refinement at the step as shown in
Fig. 1 to resolve the boundary layer, where H is the height
of the step. The fine grid consists of 360 × 100 × 40 control
volumes. The stretching factor from the wall was taken to
be 1.05. The height of the numerical domain is 30 H, width
5 H and length 60 H as used by Moon et al. [16]. For the
simulation the fluid was taken as air at 25 ◦C. The inlet profile
is provided based on the experiments performed by Becker
et al. [5] (U0 = 10 m/s), giving a ReH = 7816. The low
Mach number justifies the use of an incompressible flow solver
for acoustic source calculation [17]. The outlet boundary has a
convective exit condition and the remaining boundaries are slip
walls. A time step of ∆t f = 1.5 × 10−6 s is used.

Fig. 2 shows the vortex structures present over the step and
the grid around the step. At different planes over the step, the
velocity is compared with experiments as shown in Fig. 3.
The instantaneous pressure data on the wall of the step were
monitored to carry out frequency analysis as shown in Fig. 4.
PSD was calculated using 194 718 time steps, averaged over
4 equal timeseries, giving a resolution of around 1 Hz. The
positions shown are relative to the position of the step i.e. −10,
−5, 15, 30 and 50 mm, where at position 0 mm is the step.
The monitoring points lie on the center plane of the simulation
domain at Z = 2.5 H. A broad-band spectrum is seen in
the points after the step. The PSD spectrum shows roughly a
slope of −1 up to 2 kHz, which rapidly decays afterwards. A
broadened peak of a tonal component at 165 Hz is seen, with
higher modes of it being more dominant in monitoring points
before the step.

2.2. Fluid–acoustic coupling

Acoustic sources are coupled from the fluid computation
to the acoustic propagation solver in time domain. We use
the assumption that it is a one-sided coupling as in the low
Reynolds number flows, i.e. the acoustic field has negligible
influence on the fluid field. The source terms are coupled
along with the mean flow from the fluid simulation using the
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Fig. 2. Instantaneous eddy structures (Q-criteria) over the step, showing the
grid and blocking around the step.

Fig. 3. Comparison of velocity profiles.

Fig. 4. PSD based on monitoring points on the step.

MpCCI [18] library. MpCCI is based on MPI and communication
between the solvers is as per MPI protocols and also supports
message transfer between parallel codes. The topologies of

the meshes on both sides are provided and the bilinear
interpolation coefficients are generated at the very beginning
of the simulation. With the completion of this initialization
phase, simulation proceeds and after each fluid simulation
time step the source terms are coupled to the acoustic
solver. A detailed overview of the coupling was published by
Ali et al. [19].

2.3. Acoustic simulation

One of the early theoretical references to the use of LEE
in aeroacoustics was by Goldstein [20]. In computational
context LEE were first used in a simplified form with global
linearization followed later by local linearization based on the
mean flow values. Early references can be found in unsteady
turbomachinery aerodynamics such as in cascades of airfoils,
where it is natural to look at flow linearized about a uniform
state in the work of Hall [21] and Clark [22]. Kerrebrock [23]
investigated the propagation of small disturbances in a duct
with swirling flow and used the normal mode analysis
applied directly to LEE, and showed the presence of nearly-
convected shear-like disturbances and pressure waves. In-jet
noise references can be found in the work of Maestrello
et al. [24], Mankbadi et al. [9] and by Hardin and Pope [25]
on low Mach number aeroacoustics. Tam [26] showed that
the aeroacoustics problems are linear and supported the use
of LEE. Further improvements came with the development
of suitable boundary conditions as proposed by Giles [27]
and Hu [28]. During the last few years, with increasing
computational resources, there has been ever-increasing focus
on LEE and very promising results have been obtained, as
in the work of Bailly et al. [29]. The governing equations
for the acoustic field are the LEE which are solved using the
ADER-DG method as proposed by Dumbser and Munz [30,
31] and implemented in an unstructured two-dimensional code
Hydsol. The Euler equations in primitive variables are given as
follows [32]:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u
∂x

+ v
∂ρ

∂y
+ ρ

∂v

∂y
= 0

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ 1
ρ

∂p
∂x

= 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ 1

ρ

∂p
∂y

= 0

∂p
∂t

+ γ p
∂u
∂x

+ u
∂p
∂x

+ γ p
∂v

∂y
+ v

∂p
∂y

= 0.

(4)

In the low Reynolds number aeroacoustics, changes in the
perturbation quantities are much smaller than their reference
values. The acoustic pressure p′ is many orders of magnitude
smaller than the stagnation pressure p0. Computing small
differences in large numbers on the computer leads to
cancellation and hence are negligible. Thus the primitive
variables are linearized around a stationary field and only
the perturbations are computed. The unknown values are
decomposed into a stationary mean value and a perturbation
component:
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u p = uq =





ρ0 + ρ′

u0 + u′

v0 + v′

p0 + p′



 =





ρ0
u0
v0
p0





︸ ︷︷ ︸
u p0

+





ρ′

u′

v′

p′





︸ ︷︷ ︸
u′

p

.

Under the approximation that for the matrix elements only
the mean values are considered:

Apq(u p0 + u′
p) ≈ Apq(u p0) and

Bpq(u p0 + u′
p) ≈ Bpq(u p0)

we obtain

∂u′
p

∂t
+ Apq(u p0)

∂u′
q

∂x
+ Bpq(u p0)

∂u′
q

∂y

= −∂u p0

∂t
− Apq(u p0)

∂uq0

∂x
− Bpq(u p0)

∂uq0

∂y
. (5)

The mean values u p0 of the original unknown vector u p now
are source terms on the right-hand side of the equation. For a
good approximation, the right-hand side can be reduced to a
time derivative vector including only the pressure derivative as
source term. The LEE in two dimensions can finally be written
as

∂u p

∂t
+ Apq

∂uq

∂x
+ Bpq

∂uq

∂y
= S (6)

with u p = uq = (ρ′, u′, v′, p′)T are the fluctuation quantities,
the Jacobians of the fluxes are Apq and Bpq , where the
linearization performed about the mean flow is denoted by
subscript 0. S = (0, 0, 0, − ∂p

∂t ) is the source term for the current
LEE implementation as suggested by Ewert and Schröder [33]
for low Mach number and incompressible flows. Apq and Bpq
are given by




u0 ρ0 0 0

0 u0 0
1
ρ0

0 0 u0 0
0 γ p0 0 u0




and





v0 0 ρ0 0
0 v0 0 0

0 0 v0
1
ρ0

0 0 γ p0 v0





respectively, where a suitable numerical flux Fh
p must be

introduced for the surface integral.
ADER-DG schemes are really of arbitrary high order of

accuracy in space and time on structured and unstructured grids.
The very compact ADER-DG formulation does not need a
reconstruction and thus provides the possibility of achieving
arbitrary high order of accuracy in space and time even on
unstructured grids, which should be useful for accurate noise
propagation in the time domain around complex obstacles or in
complex geometries. ADER-DG schemes are quadrature-free
finite elements which perform time integration in single step
and are ideal for parallelization. The two-dimensional acoustic
grid consists of a semicircle with the step bottom point at its
center and radius 5 m. For the directivity analysis, monitoring
points were created at radius of 1, 2 and 3 m. The acoustic
grid consisted of 130 006 control volumes, with which all
final acoustic simulations were carried out. The minimal wall

Fig. 5. Time series of acoustic pressure at a 1 m distance at 40◦ from the step.

Fig. 6. FFT of acoustic pressure at a 1 m distance at 40◦ from the step.

spacing was 10 times larger than the hydrodynamic value. For
the simulations, the fluid was assumed to be air at 25 ◦C, as
in the LES. The simulation was run for 36 900 iterations with
∆ta = 1.5 × 10−6 s, giving a physical simulation time of
0.055 s. The time step chosen corresponds to a CFL = 0.73
for the acoustic fine grid, based on the minimal element
size ∆x = 1.157 × 10−3 m. The resolution of the Fourier
transformed signal is 19.2 Hz, which is relatively high and
could be improved by longer simulation runs. Fig. 5 shows the
time series of the monitoring point located at 40◦ from the step
at a distance of 1 m. In Fig. 6, its FFT is shown with a broad-
band signal between 1 and 5 kHz, as expected.

3. Results and discussion

The coupling of the acoustic sources from Eq. (6) from the
fluid computation to the acoustic code is very critical to the
computation. This leads to a large dependence of the results on
the computational grids both on the fluid and acoustic sides as
already mentioned in Section 2.2. The computational effort is
very high, needed for higher resolution of the acoustic results
and requiring a longer simulation physical time.

In the current implementation, p′ calculated is larger than
in [5]. This can be attributed to the two-dimensional acoustic
field calculation with normalization for the three-dimensional,
and also to the lower order of discretization used in the
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Fig. 7. Instantaneous acoustic pressure field, step at the origin.

Fig. 8. Directivity map with the step located at the origin.

acoustic computation, which again is dependent on the current
implementation of the fluid–acoustic coupling. Fig. 7 shows the
instantaneous pressure fluctuation field (∆p′ = p − p0). Using
the time series of p′ at the monitoring points in the acoustic grid
at a fixed radius, directivity plots are generated. At an observer
location 1 m from the step, for 200 Hz a prominent monopole
and for 500 Hz a dipole nature are observed, with the dipole
aligned in the flow direction, as seen in Fig. 8. It is seen that
directivities at higher frequencies show a multi-polar nature.
These results are in good qualitative agreement with work by
Moon et al. [16].

4. Conclusion

Investigations on flow-induced noise from a forward facing
step were performed using LES and LEE. The coupling occurs
in the time domain, avoiding storage of large LES volume
data. Improvement in the source term evaluation is needed to
smooth out large flow field fluctuations present in a well-refined
LES. The coupling strategy was evaluated and the acoustic
source generation mechanism was studied. There is good
qualitative agreement of the results with published numerical
and experimental data. The developed tool can be used in
aeroacoustic optimization studies.
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[32] C. Bailly, D. Juvé, Numerical solutions of acoustic propagation problems
using linearized Euler equations, AIAA J. 38 (1) (2000) 22–29.
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Abstract

Direct Numerical Simulations (DNS) of an incompressible turbulent channel flow with local forcing at the walls are performed. Time-periodic
blowing/suction is applied by means of narrow spanwise slots located at the lower and upper walls in x/Lx = 0 (where Lx is the channel
length). The normal perturbing velocity is varied sinusoidailly in time at several perturbing frequencies between 0.16 < f < 1.6 and at a fixed
amplitude of Ao = 0.2. The temperature field is also computed and assumed to be a passive scalar. The Reynolds number of the unperturbed
case is Reτ = 394 and the Prandtl number is Pr = 0.71. It is concluded that the forcing frequency of f = 0.64 or f + = 0.044 produces
the largest local increase of the skin friction in the region 0.1 < x/Lx < 0.3, followed by the highest augmentation of the Stanton number.
Furthermore, budgets of the passive-scalar variance and wall-normal turbulent heat fluxes at this frequency demonstrate a significant enhancement
of the molecular diffusion at the wall and pressure-related terms, respectively. The latter confirms the importance of pressure fluctuations on the
transport of passive scalars and redistribution of energy.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important characteristics of the near-
wall region in turbulent channel flows is the presence of
coherent structures [1]. These structures play a key role in the
turbulence production, dissipation and transport phenomena in
wall-bounded flows. In fact, there have been many attempts
to control near-wall turbulence by managing such coherent
structures [2]. Among all the techniques employed so far, local
forcing is a simple and efficient active approach, which consists
of perturbing the flow by a steady or time-periodic velocity
(i.e., blowing and/or suction) applied in a confined zone of
the wall. Park et al. [3,4] performed experiments in a wind
tunnel to analyze the flow structures behind the point, at which
a local time-periodic blowing/suction perturbation is applied
on a flat plate, by considering integer multiples of the bursting

∗ Corresponding author.
E-mail address: araya@mailaps.org (G. Araya).

frequency found by Tardu [5]. They showed that, by increasing
the forcing frequency, a local reduction in the skin friction, up to
75%, was obtained and significant changes in the downstream
structures were observed. Additionally, time-periodic blowing
from a spanwise slot was numerically (DNS) investigated by
Kim and Sung [6] in an evolving boundary layer at three
different forcing frequencies. They obtained maximal increase
of the skin friction and streamwise vorticity fluctuations at
an optimal blowing frequency of f + = 0.035 downstream
of the maximum drag reduction location. Furthermore, the
budget analysis of the Reynolds stresses indicated that the
greatest augmentation of the pressure–strain term occurred at
this frequency. Investigations of the influence of local forcing
on turbulent heat transfer are rather scarce. Rhee and Sung [7]
numerically predicted the enhancement of heat transfer in
a locally forced turbulent, separated and reattaching flow
over a backward-facing step. Several forcing frequencies were
employed in simulations at a fixed amplitude, namely, 3% of
the streamwise time-mean centerline velocity at the inlet, U∞.
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They obtained a maximal increase of 40% in the peak value
of the Stanton number, St , at a dimensionless frequency of
f H/U∞ = 0.275, where H is the height of the backward-
facing step. Kong et al. [8] performed a DNS of a spatially
evolving boundary layer and found a significant dissimilarity
between the Stanton number and the friction coefficient, due to
the pressure gradient generated by uniform blowing or suction.

According to Mosyak and Hetsroni [1], coherent structures
exhibit their dynamics through the bursting process, defined
by alternating sweeps and ejections in the near-wall region.
In addition, Hussain [9] includes the following comments
on coherent motions: If the coherent structure plays a key
role in the transport phenomena in a boundary layer, then
excitation at the bursting frequency should alter the bursting
event and thus the overall characteristics of the boundary
layer. Despite advances in the understanding of near-wall
structures, the effect of unsteady excitation on coherent
structures and energy transport among turbulence components
has not been elucidated completely yet. Motivated by the
previous statement, we will explore the effects of several
blowing/suction frequencies (selected as integer multiples of
the bursting frequency) on the temperature field and thermal
correlation budgets of a turbulent channel flow.

2. Numerical details

The non-dimensional governing equations, i.e. continuity,
momentum and passive-scalar transport, for an incompressible
flow are given below:

∂Ui

∂ x̄i
= 0; (1)

∂Ui

∂ t̄
+ ∂UiU j

∂ x̄ j
= − ∂ P

∂ x̄i
+ 1

Reh

∂2Ui

∂ x̄2
j

; (2)

∂Θ
∂ t̄

+ ∂
(
ΘU j

)

∂ x̄ j
= 1

RehPr
∂2Θ
∂ x̄2

j
. (3)

The instantaneous temperature is normalized by the lower wall
(hot) and upper wall (cold) temperatures. Isothermal conditions
are assumed at each wall.

The equations of motion have been discretized in an
orthogonal coordinate system using a staggered central second-
order finite-difference scheme. The discretized system is
advanced in time by using a fractional-step method, with
viscous terms treated implicitly and convective terms explicitly.
More details about the numerical procedure are given by
Orlandi [10].

2.1. Boundary conditions and input forcing parameters

A mean parabolic velocity profile with random fluctuations
is used as an initial condition in the entire domain. The
molecular Prandtl number, Pr, is 0.71 and the Reynolds number
is 394, Reτ = huτ /ν, where uτ is the friction velocity
of the unforced channel and ν the kinematic viscosity. The
temperature difference between both walls is assumed small;

Fig. 1. Schematic of the channel with local forcing.

therefore, buoyancy effects and the temperature dependence of
material properties are negligible. The perturbing flow does
not contain the scalar and the walls are very thin; hence,
heat conduction in the solid is neglected. Periodic boundary
conditions are used along the spanwise and streamwise
directions. Moreover, local forcing is modeled as a vertical
velocity, V f , (i.e. blowing and suction) with a time sinusoidal
behavior imposed at both walls in thin slots of length, Lz , and
width, W = Lx/85, as shown in Fig. 1. Normal perturbing
velocities are in phase at both walls in order to preserve mass in
the computational box. The forcing frequencies are normalized
by the half height, h, and the centerline laminar velocity, UC , of
the channel (i.e. f = f to, where to = h/UC ). Integer multiples
of the bursting frequency found in [5,1] are used in this paper.
Thus, the bursting frequency is around 0.011 when normalized
as f + = f ti , where ti = υ/u2

τ . This value corresponds to f =
0.16 according to our non-dimensionalization. Furthermore,
five forcing frequencies are considered in the present study
(i.e. f = 0.16, 0.32, 0.64, 1.28 and 1.6), which correspond to
one, two, four, eight and ten integer multiples of the bursting
frequency. The forcing amplitude, Ao = V f max/UC , is fixed at
0.2, where V f max is the maximum normal perturbing velocity.

3. Numerical simulations

Fig. 1 shows the computational domain with the following
dimensions: Lz = πh, L y = 2h and Lx = 2πh. A grid-
independence test is performed and details are given in Araya
et al. [11]. Two mesh configurations are tested: 161×177×257
and 257 × 193 × 257, which represent numbers of points along
the spanwise, normal and streamwise directions, respectively.
Fig. 2 depicts thermal fluctuation profiles at f = 0.64 for both
mesh configurations at two x-locations and normalized by the
unforced friction temperature, Tτ = qw/[ρC puτ ]. It can be
observed that predictions of the coarser mesh (161×177×257)
almost overlap the results from the finer grid (257×193×257);
therefore, the first configuration is selected for further analyses
in this paper. The mesh resolution is: 'z+ = 7.7, 'y+

min =
0.1, 'y+

max = 12 and 'x+ = 9.7. The Courant, Friedrichs,
Levy (CFL) parameter remains constant during simulations (but
is modified according to the frequency) and the time step range
is 't+ ≈ 0.046 − 0.28.

3.1. Analysis of time-mean components

The friction coefficient is time-spanwise averaged and
shown for different frequencies in Fig. 3 in terms of the
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Fig. 2. Thermal fluctuations in wall units.

Fig. 3. Relative friction coefficient.

calculated unforced value, C f o. Flow perturbation is more
pronounced over and at the adjacent downstream zone of the
local forcing slot, which results in large velocity gradients and,
consequently, large skin-friction coefficients. Downstream, the
friction coefficients of the forced cases reach a minimum local
value. In essence, local forcing creates a spanwise vortex that
generates a reverse flow in the near wall region and reduces the
velocity gradient. Thus, an overshoot is attained afterwards, as
observed in Fig. 3. Finally, the skin friction tends toward the
unforced channel value. It is also observed in Fig. 3 that, as
the frequency increases, the maximum local drag reduction also
increases and the location moves upstream. This is because the
diameter of the spanwise vortex [3], created by local forcing,
is inversely proportional to the frequency. Furthermore, if the
frequency is augmented beyond a certain value (i.e. f = 1.28),
negative streamwise velocities with small zones of separated

Fig. 4. Relative Stanton number.

flow around x/Lx = 0.02 begin to develop as the reverse flow
becomes more intense.

It is interesting to highlight the observed similarity
between the present friction coefficient behavior and the
results from Kim and Sung [6] in their figure 10. In
their study, time-periodic blowing was applied in a spatially
evolving boundary layer at three different frequencies, namely,
f + = 0.01, 0.035 and 0.08, by considering two inlet Reynolds
numbers, Reθ = 300 and 670. They stated that points of
maximum local drag reduction also moved upstream as the
frequency was augmented and the downstream overshoot of the
friction coefficient was most prominent at f + = 0.035. In the
present simulations, the results of Fig. 3 also show a maximum
overshoot of the friction coefficient around x/Lx = 0.18 at a
similar dimensionless frequency of f = 0.64 or f + = 0.044.

Fig. 4 depicts the time-spanwise averaged Stanton number
along the channel in terms of the computed unforced value,
Sto. In the immediate downstream vicinity of the slot,
the perturbation induced on the flow is more evident; this
significantly increases the wall heat flux and the Stanton
number (up to 50%). Afterwards, the ratio St/Sto displays a
behavior similar to that of the friction coefficient. However,
the undershoots and overshoots become less pronounced,
particularly as the frequency increases. This dissimilarity
between the momentum and scalar transport [8] arises mainly
because of the existence of a large streamwise pressure gradient
and pressure fluctuations, at walls in the vicinity of slots,
provoked by blowing/suction. Finally, a zone of heat-transfer
enhancement, between 0.1 < x/Lx < 0.3, is observed in
Fig. 4 at a specific frequency of f = 0.64. Hence, thermal
energy budgets are examined in the following sections for that
condition.

3.2. Budgets of the scalar variance and wall-normal turbulent
heat flux for the unperturbed channel

Budgets of the temperature correlations of the unforced
channel are computed and compared with other simulations
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Fig. 5. Budget of the temperature variance, θ ′+2/2.

and experimental data. The time-spanwise averaged transport
equations of temperature variance, θ ′2/2, and wall-normal
turbulent heat fluxes, v′+θ ′+, are derived in Sumitani and
Kasagi [12]. It is concluded that major contributions to different
terms are given by the y-derivatives; the x-derivatives affect
mostly peak values of the production and dissipation terms. All
terms, including those of forced cases, have been normalized
by u2

τ T 2
τ /ν. The convection term is almost negligible as can

be seen in Fig. 5, in accordance with Kasagi and Iida [13].
Moreover, the thermal-production component, −v′+θ ′+ ∂Θ̄+

∂y+ ,
shows a maximum value at y+ ≈ 13 in the buffer zone. The
theoretical maximum value of 0.1775 for production computed
in Teitel and Antonia [14], by assuming a molecular Prandtl
number of 0.71, is confirmed as seen in Fig. 5. Notice that
present computations of thermal production agree fairly well
with experimental data from [14]. In addition, good agreement
is observed with DNS data from Johansson and Wikström [15]
at Reτ = 265. However, some discrepancies are observed
with the computations given in Kawamura et al. [16] and
Kasagi and Iida [13] at lower values of Reτ than those used in
the present simulations. In particular, differences are observed
in the production and dissipation terms in the region y+ >
20; these may arise from Reynolds number effects. Fig. 6
shows the wall-normal turbulent heat flux budget together with
DNS results from Johansson and Wikström [15]. Fairly good
agreement is obtained in the near-wall region; however, some
differences are found in the buffer layer, where maximum
values are observed. Again, this feature may arise because of
some Reynolds number dependence. However, the y-locations
of the maxima do not change significantly with Reτ .

3.3. Budgets of the scalar variance and wall-normal turbulent
heat flux for the forced channel

Budgets of thermal correlations (θ ′+2/2 and v′+θ ′+) at the
characteristic frequency, f = 0.64, are plotted in Figs. 7–9
for x/Lx = 0.18 and for x/Lx = 0.75. The first location

Fig. 6. Budget of wall-normal turbulent heat fluxes, v′+θ ′+.

Fig. 7. Budget of temperature variance θ ′+2/2.

corresponds to the point where the maximum Stanton number
was achieved; and the second location is selected far
downstream from the slot. The most noticeable changes occur
in the zone very close to the wall, namely, 0 < y+ < 50.
Beyond this region, the different budget terms of the forced
cases tend to the unforced channel values as expected.

Fig. 7 exhibits the budget of the temperature variance θ ′+/2
versus y+ at f = 0.64. For x/Lx = 0.18, molecular
diffusion and dissipation undergo a significant augmentation
(up to 60%) mostly in the near wall region. In the buffer
layer, 10 < y+ < 30, all peak values experience a considerable
enhancement, particularly for production and dissipation.
Furthermore, locations of maxima are pushed to the wall; this
corresponds to the zone of streamwise vortex centers. Profiles
for x/Lx = 0.75 and unperturbed curves almost overlap,
confirming that the flow has recovered its undisturbed features
by this streamwise location. Figs. 8 and 9 show the budget of
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Fig. 8. Budget of wall-normal turbulent heat fluxes, v′+θ ′+: pressure–
temperature gradient correlation, dissipation, production and convection.

Fig. 9. Budget of wall-normal turbulent heat fluxes, v′+θ ′+: turbulent,
molecular and pressure diffusion terms.

wall-normal turbulent heat fluxes. For clarity, terms have been
split in two plots. According to Fig. 8, the pressure–temperature
gradient correlation term is dominant at x/Lx = 0.18, which
indicates the important role that pressure fluctuations play in
the turbulent thermal transport. Its peak values, i.e. at the wall
and in the buffer layer, are more than twice as large as those
of the corresponding unforced maxima. To a similar extent, the
production of v′+θ ′+ is also intensified in the buffer layer. The
convection of v′+θ ′+ is significant in the region 20 < y+ < 50
for x/Lx = 0.18; and it is found that the major contribution
comes from the streamwise convection. In Fig. 9, the different
diffusion terms of v′+θ ′+ are shown. The pressure diffusion
is significantly increased by local forcing; this confirms the
key role of pressure fluctuations in the normal heat-transfer
component. The maximum of the pressure diffusion term at
y+ ≈ 10 for x/Lx = 0.18 is approximately 3 times higher

than that of the unforced channel. Note also that the transport
of wall-normal turbulent heat fluxes (or the turbulent-diffusion
term) is enhanced by local forcing, with local increases up
to 100%, as observed in its peak values. Finally, the trend of
the v′+θ ′+ budget at x/Lx = 0.75 resembles the unperturbed
channel-flow profiles.

4. Conclusion

Based on extensive DNS, a numerical analysis of the influ-
ence of local forcing on the molecular heat transfer and scalar
fluctuations in a turbulent channel flow is performed. Maximum
local increases of the Stanton number are obtained at a charac-
teristic forcing frequency of f = 0.64 or f + = 0.044. The
budget analysis of the temperature variance and wall-normal
turbulent heat fluxes indicates, in general, an increase of all
terms in the zone of Stanton number augmentation, principally,
very close to the wall (i.e., 0 < y+ < 50). In particular, molecu-
lar diffusion and dissipation of the temperature variance experi-
ence a remarkable enhancement at the wall with peaks up to 1.7
times larger than their unperturbed values. On the other hand,
the budgets of wall-normal turbulent heat fluxes show clear ev-
idence of the key role of pressure fluctuations in the energy ex-
change and redistribution among the components.
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Abstract

Superfluidity, the hallmark property of quantum fluids (e.g. liquid helium, atomic Bose–Einstein condensates, neutron stars), is characterised
by the absence of viscosity. At temperatures which are low enough that thermal excitations can be neglected, liquid helium can be considered a
perfect superfluid, and one would expect that superfluid turbulence were dissipationless because the Reynolds number is infinite. On the contrary,
experiments show that helium turbulence decays, even at these low temperatures. The solution of this apparent puzzle lies in subtle but crucial
differences between a superfluid and a classical Euler fluid.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The motivation behind this article is the relation between
the concept of inviscid, incompressible Euler fluid (as in
traditional textbooks of fluid mechanics) and superfluid helium.
This relation is particularly intriguing in view of recent
experiments [1,2] concerning the nature of turbulent dissipation
near absolute zero. A second motivation is that research in
superfluidity, quantised vorticity and turbulence [3] has gone
beyond the traditional context of liquid helium (the two isotopes
4He and 3He) and now includes ultra-cold atomic gases [4] and
neutron stars [5]. Clearly the three physics communities which
are involved (condensed matter physics, atomic physics and
astrophysics) should benefit from more contact with classical
fluid mechanics. The third motivation is the recognition of
the great potential of cryogenics helium to produce turbulence
at very large Reynolds numbers [6] and Rayleigh numbers
[7], which is making classical fluid mechanicists interested in
issues of turbulence at very low temperatures. An example of
the successful interaction between classical fluid mechanicists
and low temperature physicists is the recent application of
the classical Particle Image Velocimetry method in liquid
helium [8,9].

∗ Tel.: +44 191 222 7307; fax: +44 191 222 8020.
E-mail address: C.F.Barenghi@ncl.ac.uk.

Since the best known superfluid is still the common isotope
4He, most of the following considerations will refer directly
to it, unless stated otherwise. Helium is a gas at room
temperature. To turn it into a liquid it is necessary to cool
it down to approximately 4 K degrees above absolute zero.
Upon further cooling a phase transition occurs at the critical
temperature Tc = 2.1768 K (at saturated vapour pressure),
marking the onset of Bose–Einstein condensation [10]. Below
Tc liquid helium is a quantum fluid called helium II. Its
strange properties are well described by the two-fluid model
of Landau and Tisza [11]. According to this model, helium II
is the intimate mixture of two-fluid components, the normal
fluid and the superfluid. The normal fluid consists of thermal
excitations (similar to phonons in a solid) which carry the
entire entropy and viscosity of the liquid. The superfluid is
related to the Bose–Einstein condensate [10] and has zero
entropy and viscosity. Hereafter, for the sake of simplicity, I
shall ignore the difference between the superfluid fraction and
the condensate. The feature which is crucial in our problem
is that the normal-fluid fraction decreases very rapidly with
temperature, and below 1 K, at temperatures which can be
easily reached experimentally, helium II can be considered
a pure superfluid. The normal fluid can be neglected in the
case of 3He too; although the critical temperature Tc for the
onset of superfluidity is much lower (few mK) than in 4He,
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turbulence experiments can be performed at very small values
of T/Tc [12].

In classical fluid dynamics the ratio of the magnitudes of
inertial and viscous forces acting on a fluid is the Reynolds
number Re = UD/ν, where D and U are the characteristic
length scale and velocity scale of the flow and ν is the kinematic
viscosity of the fluid. If Re # 1 inertial forces dominate and
the flow is turbulent. Thus Re measures the intensity of the
turbulence. The kinematic viscosity of liquid helium is almost
two orders of magnitude less than water’s, so it is relatively easy
to make liquid helium turbulent.

The issue which we address is what happens at temperatures
so small that helium II is a pure superfluid. Since a superfluid
has zero viscosity, the Reynolds number of helium II flow
is infinite and one would expect a form of dissipationless
turbulence. On the contrary, experiments [1,2] show that
turbulence decays, even at temperatures as low as few mK,
which is puzzling. The natural question is: what is the ultimate
energy sink near absolute zero? To answer the question and to
solve the puzzle we must identify subtle but crucial differences
between a superfluid and a classical Euler fluid.

2. The NLSE

Quantum mechanics constrains the rotational motion of the
superfluid to vortex lines [13]. To understand the superfluid
vortex structure it is convenient to consider the nonlinear
Schroedinger equation (NLSE) for a weakly-interacting
Bose–Einstein condensate [14]:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V0|ψ |2ψ − E0ψ, (1)

where ψ = ψ(x, t) is the macroscopic single-particle
wavefunction, V0 the (delta-function repulsive) potential of
interaction between the bosons, m the mass of one boson,
E0 the energy increase upon addition of a boson, h Planck’s
constant and h̄ = h/(2π) The total energy of the condensate,
defined as

Etot = h̄2

2m

∫
|∇ψ |2d3x + V0

2

∫
|ψ |4d3x, (2)

is a constant of motion. In the case of a trapped atomic
condensate, a term of the form Vextψ must be added to the
right-hand side of Eq. (1), where Vext is a confining harmonic
potential [10].

In using the NLSE model one should keep in mind that the
NLSE has quantitative predicting power in the case of atomic
Bose–Einstein condensates, but is only a qualitative model of
helium II. The reason is that helium II is a liquid, not a weakly-
interacting gas; as far as our discussion is concerned, however,
the difference should not be essential. Our aim is to compare
vortex lines solutions of the NLSE model with vortex lines
solutions of the classical incompressible Euler equations

∂vs

∂t
+ (vs · ∇)vs = − 1

ρs
∇ p, ∇ · vs = 0. (3)

Fig. 1. Straight vortex line (a) and Kelvin wave (b).

3. Fluid dynamics interpretation of the NLSE

The fluid dynamics interpretation of the NLSE is based on
the Madelung transformation ψ = ReiS where R and S are the
amplitude and the phase of ψ . Substitution into Eq. (1) yields
the following classical continuity equation for the superfluid
density ρs = m R2:

∂ρs

∂t
+ ∇ · (ρsvs) = 0, (4)

and the following (quasi) Euler equation for the superfluid
velocity vs = (h̄/m)∇S:

ρs

(
∂vs j

∂t
+ vsk

∂vs j

∂xk

)
= − ∂p

∂x j
+ ∂Σ jk

∂xk
, (5)

where vs j is the j th component of vs . The pressure, p, and the
quantum stress, Σ jk , are defined as

p = V0

2m2 ρ2
s , Σ jk =

(
h̄

2m

)2

ρs
∂2 ln ρs

∂x j∂xk
. (6)

Note that without the quantum stresses term, Eq. (5) would be
the classical Euler equation (3).

4. Vortex lines and vortex tangles

The solution of the NLSE which corresponds to a vortex
aligned along the z-axis, as in Fig. 1(a), is obtained by letting
S = φ in cylindrical coordinates (r, φ, z). The resulting
velocity is

vs = h̄
mr

φ̂, (7)

where φ̂ is the unit vector along the φ direction. This is the
textbook velocity field of a vortex line in a classical Euler fluid,
shown in Fig. 2. As we shall see in Fig. 4, the corresponding
density is zero on the axis of the vortex.
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Fig. 2. Superfluid velocity field around a vortex line.

Let C be any path of integration around the vortex line. Then
the circulation Γ around C is

Γ =
∮

C
vs · d" = κ, (8)

where the constant κ = h/m ≈ 10−3 cm2/s is called the
quantum of circulation. Since ∇ × ∇S = 0, a superfluid
vortex line has zero vorticity but finite circulation: the core
is a microscopic hole, surrounded by a macroscopic region of
potential flow.

A sinusoidal, or, more in general, a helical displacement of
the vortex line away from the straight position is called Kelvin
wave, as shown in Fig. 1(b). The wave rotates with angular
frequency ω ∼ κk2, where k is the wavenumber and λ = 2π/k
the wavelength.

5. Turbulence

Vortex systems can be laminar or turbulent. If the vessel
which contains helium II rotates at constant angular velocity
* (larger than some small critical value), the superfluid
breaks into vortex lines which are aligned along the axis of
rotation [13] forming a lattice of areal density n = 2*/κ .
Essentially the superfluid mimics the classical vorticity 2* of a
rotating Euler fluid by making n vortices (per unit area) carrying
one quantum of circulation each.

Disordered systems of vortex lines are easily created by
making the helium turbulent, This can be done, for example, by
imposing a heat flow [15,16] or by agitating the liquid helium
with towed grids [17], rotating propellers [18,19], vibrating
grids [1,2] or wires [20]. Numerical simulations indicate that
superfluid turbulence manifests itself as a disordered tangle
of vortex filaments, as shown in Fig. 3. The intensity of the
turbulence is usually characterised by the vortex line density L
(vortex length per unit volume). The quantity δ = L−1/2 is the
average distance between the vortex lines in the tangle.

The nature of superfluid turbulence and its similarities with
classical turbulence is a problem which is attracting attention,
as reviewed by Vinen and Niemela [21]. The particular aspect
which is relevant to our problem is the experimental observation
that turbulence generated at very low temperatures decays [1,2]
or diffuses away [20], which is at first surprising, given that

Fig. 3. Tangle of vortex filaments in a periodic box computed using the
approach of Schwarz.

Fig. 4. Superfluid density near a vortex line.

the superfluid is usually interpreted as an inviscid Euler fluid.
To understand these experiments, it is necessary to understand
the difference between a superfluid and a classical Euler fluid,
expressed by the last term of Eq. (5).

6. Euler fluid vs superfluid

In the classical Euler case we are free to assume that the
fluid’s density is constant. In the NLSE model the density near
the vortex must be determined self-consistently by solving the
NLSE for the amplitude of ψ . The result is shown in Fig. 4.
The density drops from its bulk value (away from the vortex)
to zero (on the axis of the vortex) over a characteristic distance
a ≈ 10−8 cm called the vortex core radius; this quantity is of
the order of the superfluid healing length ξ = h̄/

√
m E0. Fig. 4

shows that the superfluid vortex core is hollow, and the presence
of a vortex makes a region of liquid helium to become multiply-
connected. This means that the diverging velocity field, vsφ →
∞ for r → 0 predicted by Eq. (7) is not a problem, because, in
the same limit, ρs → 0, whereas the classical Euler model of a
vortex line breaks down on the axis.
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Fig. 5. Schematic vortex reconnection.

In general, the total circulation Γ around an arbitrary region
is preserved by the evolution until a vortex line crosses C ,
which causes a change of Γ by one quantum κ . Note that the
classical Kelvin’s theorem that Γ is constant does not apply
because when the vortex meets C the density becomes zero.
Thus, although both the classical Euler fluid and the superfluid
conserve the total energy, there is an important difference: in
the classical Euler case the circulation cannot change and the
topology of the flow is determined by the initial condition.
In the NLSE case, on the contrary, vortex reconnections are
possible (see Fig. 5), as first demonstrated by Koplik and
Levine [22], and the topology can change while conserving the
total energy. The existence of vortex reconnections in a classical
viscous fluid is well known [23,24]. However, whereas in the
Navier–Stokes equation reconnections are controlled by the
viscosity and dissipate energy, in the NLSE reconnections are
controlled by the quantum stress and maintain the total energy
constant.

A striking consequence of the ability of superfluid vortices
to reconnect is the following. Consider a vortex tangle initially
confined within a region of radius R in infinite space. The tangle
consists of a number of vortex loops of any size and orientation.
If the loops obeyed ordinary Euler dynamics, the initial linkage
between the loops could not change, because helicity, hence the
linking number, must be conserved. On the contrary, superfluid
vortex loops can reconnect and undergo the following unusual
process of diffusion in space [25]. Suppose that a vortex
reconnection creates a vortex loop which is smaller than the
average distance δ between loops, is located near the boundary
of the tangle and has circulation such that its translational
velocity points out of the tangle. The small loop can escape
to infinity with very little probability of being re-absorbed into
the tangle by another vortex reconnection, because its speed is
inversely proportional to its size and most other loops are larger
and slower. Once the small loop has escaped, the total vortex
length of the tangle has been reduced, hence the typical spacing
of loops has increased, which favours the escape of a second
loop, and so on. In this way the tangle evaporates into loops,
thus spreading in space. This scenario [25] is consistent with
what is seen in the experiments [20].

Vortex nucleation is another phenomenon which is possible
in a superfluid but not in a classical Euler fluid. Typically
nucleation occurs near a boundary where ψ → 0, for example
in the equatorial region of a rapidly moving ion [26,27], or at the
edge of a trapped condensate [28] or at an intense rarefaction
sound pulse [29] or at a dark soliton [30].

Vortex reconnections are special events which arise from the
presence of the quantum stress Eq. (6), the term which makes
Eq. (5) to differ from Eq. (3). Let D be the typical length scale
of a flow. The ratio of the pressure term and the quantum stress
term scales as h̄2 /(m E0 D2) and becomes unity only if D ∼ ξ .
Thus the quantum stress term is important only at scales smaller
than the vortex core radius, Away from vortices ρs is constant
and Eq. (5) reduces to the classical Euler equation. The smallest
macroscopic flow scale D in a superfluid vortex tangle is of the
order of the average distance δ ≈ L−1/2 between vortex lines;
typical experimental values are δ ≈ 10−3–10−4 cm, orders of
magnitude bigger than a ≈ 10−8 cm. We conclude that, apart
from vortex reconnecting events, in most of the fluid and at
most times the quantum stress term in Eq. (5) is negligible, and
the superfluid obeys classical Euler dynamics.

This consideration justifies the vortex filament approach to
superfluid turbulence of Schwarz [31]. He modelled superfluid
vortices as space curves of infinitesimal thickness which move
under the velocity field which each line induces upon each
other. Let x be a point along a filament and x′ the derivative
with respect to arclength. In the absence of the normal fluid, the
velocity of the vortex at x is given by the Biot–Savart integral

dx
dt

= − κ

4π

∮
(x − z)
|x − z|3 × dz, (9)

which expresses Euler’s dynamics in integral form. A
convenient approximation to Eq. (9) which is often used is the
Local Induction Approximation (LIA), dx/dt ≈ βx′×x′′ where
β = κ/(4π) ln(1/(|x′′|a)). To implement Schwarz’s approach,
the computer code must introduce vortex reconnections when
two vortex lines come sufficiently close to each other.

7. Dissipation of kinetic energy at absolute zero

Using the NLSE model, Nore et al. [32], made a discovery
which shed light onto the nature of dissipation at absolute zero.
They computed the temporal evolution of an arbitrary vortex
configuration (a Taylor–Green flow) which evolved into a
vortex tangle, and noticed that, while the total energy remained
constant, incompressible kinetic energy was transformed into
compressible sound energy. They also found that the energy
spectrum is consistent with the k−5/3 classical Kolmogorov
spectrum observed experimentally [18] above and below Tc.
Further work using both the vortex filament model [33] and
the NLSE [34] gave spectra consistent with the classical
Kolmogorov law.

7.1. Sound radiation by vortex motion

Generation of sound by vortex motion is a known classical
effect. In the case of quantised vorticity, the effect can
be accurately investigated in the controlled experimental
conditions of trapped Bose–Einstein condensates. In particular,
Parker et al. [35] suggested to add a Gaussian dimple at the
bottom of the harmonic trapping potential. By tuning the depth
of the dimple, the sound which is radiated by the vortices can
escape the dimple, whereas the vortices remain trapped in it;
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Fig. 6. Density waves created by an a single vortex which orbits a dimple trap
(x and y coordinates are in units of ξ ).

Fig. 7. Density waves created by a vortex–vortex pair.

this allowed Parker et al. to relate the vortex acceleration to
the sound energy. Fig. 6 shows the dipolar radiation pattern
generated by an off-centre vortex which moves along an orbit
in the dimple; the quadrupolar pattern emitted by a corotating
vortex–vortex pair is shown in Fig. 7.

Fig. 8 shows a two-dimensional vortex–antivortex pair
which travels towards an isolated vortex [36]. The vortex pair is
deflected, and the sound which is generated by the interaction is
visible as a density ripple. After the interaction, the separation
between the two vortices of the pair is reduced because some
kinetic energy was turned into sound energy.

In three dimensions, sound radiation can be emitted by
rotating Kelvin waves [37]. The power which is radiate per
unit length by a co-rotating vortex–vortex pair separated by
the distance . is proportional to .−6. Taking . ∼ δ (where δ

is the average intervortex spacing deduced from the observed
vortex line density L) we find that sound radiation by moving
vortices cannot account for the observed decay of superfluid
turbulence [21]: a much shorter length scale is necessary to
radiate enough sound and explain the measurements.

Fig. 8. Left: interaction of vortex–antivortex pair (coming from the top of the
figure) with a third vortex. Right: corresponding density wave; the trajectory of
the vortex pair is superimposed.

7.2. The Kelvin wave cascade

A mechanism to transfer energy towards small scales
is the reconnection-driven cascade of smaller and smaller
loops, eventually to thermal excitations [38], proposed by
Feynman [39], later demonstrated numerically [40] and also
modelled by a master-equation approach [41]. Here I shall
describe other recently discovered mechanisms which can
create very short length scales. The first is the Kelvin wave
cascade [42]. Fig. 9 shows that when vortex lines collide
and reconnect, the resulting reconnection cusps generate large
amplitude Kelvin waves (compared to the wavelength) which
interact with each other and create further Kelvin waves of
shorter and shorter wavelength. At temperatures above 1 K the
friction with thermal excitations would damp out the Kelvin
waves, feeding energy into the normal fluid, but in the low
temperature regime this energy sink does not exist. Kinetic
energy is thus shifted to higher and higher wavenumbers k
as in the energy spectrum shown in Fig. 10, until k is large
enough that sound can be efficiently radiated away. The Kelvin
wave cascade is thus similar to the Richardson cascade of
classical Kolmogorov turbulence. The important difference is
that the energy sink is acoustic for the Kelvin cascade and
viscous for the Richardson cascade. Studying the Kelvin wave
cascade numerically, it is important to realize that the LIA is
not suitable because it conserves length, not energy (like the
exact Biot–Savart law). There are still many open questions on
the Kelvin wave cascade; current work attempts to determine
the precise power law of the Kelvin cascade energy spectrum
[43–45] and what happens in the transition regime [46,47]
between the Richardson cascade (k - 1/δ) and the Kelvin
wave cascade (k # 1/δ).

7.3. Reconnection pulses

Another more direct mechanism to turn kinetic energy into
sound energy was found by Leadbeater et al. [48] by studying
the collision of vortex rings in the NLSE model, see Fig. 11.
They found that at the point of reconnection a rarefaction pulse
is created, expanding in size and becoming more shallow as it
moves away. Fig. 12 shows density profiles of the same pulse at
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Fig. 9. Collision of four vortex rings. t = 0: initially the rings are set to
travel against each other; t = 0.59: cusps created by the vortex reconnections;
t = 0.069: the cusps relax and launch large amplitude Kelvin waves along
the vortices. t = 0.129: generation of Kelvin waves of larger and larger
wavenumber.

Fig. 10. Energy spectrum before the collision of the four vortex rings of the
previous figure, and after the collision. Note the saturated energy spectrum.

different times following the vortex reconnection. Immediately
after the reconnection the pulse is short (few times the healing
length ξ ) and intense (the density drops to zero). Later the
pulse spreads out and becomes more shallow as it moves away.
The kinetic energy which is transformed into sound energy of
the pulse depends on the initial impact parameters, and it is
maximum if the two rings collide head-on and destroy each
other.

Calculations involving a small number of interacting vortex
rings [49] show that in general the Kelvin wave cascade and the
rarefaction pulses are present at the same time. Fig. 13 shows
that the total vortex length, which can be taken as a proxy for
total kinetic energy, decreases with time. The sudden drops in
length are caused by the creation of rarefaction pulses, and the
oscillations are due to Kelvin waves. The relative importance of
the Kelvin wave cascade and the rarefaction pulses depends on

Fig. 11. Collision of vortex rings in the NLSE model. The time sequence shows
the interaction of two rings, which are initially slightly offset with respect to
each other.

Fig. 12. Density along the z-axis for a collision of two vortex rings initially
offset with respect to each other. The eleven curves correspond to different
times. Just before the reconnection (bottom curve) the density is uniform except
for a slight increase near the origin indicating the approaching rings. At the
reconnection a rarefaction pulse is created in which the depth drops to zero. As
the pulse moves away, the depth decreases.

the vortex line density L and how the vortex reconnection rate
scales with L [50].

8. Conclusions

The vortex filaments shown in Fig. 3 are similar to coherent
vortex structures computed in classical turbulence [51,52]. The
similarity of superfluid turbulence to classical turbulence seems
to go beyond pictures: the same laws of vortex dynamics are
present, and the same k−5/3 Kolmogorov spectrum is observed.
In many respects superfluid turbulence is simpler than classical
turbulence: superfluid vortices are discrete filaments with the
same circulation and the same microscopic core structure,
whereas in classical turbulence vorticity is continuous and
eddies can be of any size and strength; moreover, the flow
around each superfluid vortex line is potential, whereas in
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Fig. 13. Total vortex length (which can be interpreted as measure of kinetic
energy) vs time for the interaction of a small number of vortex rings.

classical turbulence eddies have arbitrary rotation curves;
finally, the superfluid is inviscid, whereas a classical fluid is
viscous.

The classical theory of homogeneous, isotropic turbulence
deals with incompressible fluids. In superfluid turbulence
density changes are relevant only when one considers effects at
length scales of the order of the vortex core radius (e.g., vortex
reconnections) or at length scales bigger than the vortex core
but still much smaller than the average intervortex distance δ
(eg sound emission by Kelvin waves). At length scales larger
than δ, superfluid turbulence can be considered incompressible.
Indeed, for k - 1/δ, superfluid turbulence and classical
turbulence seem to obey the same Kolmogorov spectrum
(although numerical calculations with better resolution are
needed). It is the nature of the energy sink at high wavenumbers
which is very different: viscous for the classical fluid and
acoustic for the quantum fluid.

In conclusion, the NLSE can be interpreted as a way to
regularise the Euler equation, removing the singularities on
the axes of vortices and allowing the vortices to reconnect.
Superfluid turbulence at very low temperatures can be
interpreted as the turbulence of an incompressible, reconnecting
Euler fluid, in which the energy sink at very small scales is
acoustic.

The solution of our puzzle is that, although the superfluid
has zero viscosity, the Reynolds number is infinite only
nominally. Dissipation exists even in the limit of absolute zero:
organised kinetic energy can be turned into disorganised sound
energy. Vortex reconnections are the key to understand the
puzzle, because they trigger both the Kelvin wave cascade and
rarefaction pulses.

The approach of Schwarz is convenient because it allows
the calculation of more intense vortex tangles than the
NLSE, but it is incompressible, so it does not include the
acoustic loss of kinetic energy which is crucial at low
T . However, the finite discretisation along the filaments
introduces a small, unavoidable energy sink. Future work
should calibrate this numerical dissipation (particularly during

vortex reconnections) against results obtained using the NLSE,
in order to create a more realistic model of superfluid
turbulence.
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Abstract

Motivated by recent experiments, numerical simulations of cylindrically converging shock waves were performed. The converging shocks
impinged upon a set of 0–16 regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped
patterns near the point of focus. The maximum pressure and temperature as a function of the number of obstacles were studied. The self-similar
behavior of cylindrical, triangular and square-shaped shocks was also investigated.
c© 2007 Elsevier B.V. All rights reserved.

PACS: 47.10.ab; 47.40Nm

Keywords: Converging shock; Mach reflection; Regular reflection; Adaptive mesh refinement; Overlapping structured grids

1. Introduction

Converging shock waves can be found in a broad range
of situations, from astronomical size events like supernovae
collapse, to microscopic events such as sono-luminescence
when tiny bubbles collapse so strongly as to produce light.
Shock waves are an effective method to generate high
temperatures and pressures for experimental and engineering
purposes and thus remain an area of continued research.

Over the years many experiments have been performed
on cylindrically converging shock waves (see e.g. [1,2]). It
is common to use annular shock tubes to create and study
converging shock waves. The converging shocks are often
visualized by either schlieren photographs or interferograms
taken during the focusing process. These methods give a
measure of the shock position and shape development as a
function of time. With these techniques it is not possible
to measure other quantities, like temperatures and pressures.
In a recent paper Eliasson et al. [3] presented experimental
results on the light emission occurring at the focal point for

∗ Corresponding author at: KTH Mechanics, KTH, SE-100 44 Stockholm,
Sweden.

E-mail address: veronica@mech.kth.se (V. Eliasson).

converging shock waves of different shapes. By analyzing the
response from a photomultiplier tube, Eliasson et al. found
that the amount of emitted light depended on the shape of
the converging shock wave. In [3] only a small number of
obstacles were considered, which resulted in polygons with a
small number of sides.

In this paper we present numerical simulations of the
experimental setup used in [3]. We consider cylindrically
converging shock waves shaped by 0–16 obstacles, yielding
17 different configurations. From monitoring the maximum
pressure and temperature as the shocks converge, we find that a
small number of obstacles gives a low maximum pressure and
temperature, compared to the case with no obstacles. This is
consistent with the amount of light observed in [3] for zero,
one, three and four obstacles. However, as we increase the
number of obstacles we see a gradual increase in the maximum
pressure and temperature; this is somewhat surprising since a
greater portion of the initial cylindrical shock is reflected by
the obstacles. The present model, the Euler equations for an
ideal gas, does not take real gas and ionization effects into
account, thus it is not possible to make detailed predictions
on light production. Our numerical results suggest that further
experiments for more than four obstacles would be of great
interest.

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.021

http://dx.doi.org/10.1016/j.physd.2007.11.021
http://www.elsevier.com/locate/physd
mailto:veronica@mech.kth.se


2204 V. Eliasson et al. / Physica D 237 (2008) 2203–2209

Fig. 1. Experimental and numerical schlieren photographs of a converging polygonal shock wave. Top: experimental results for seven obstacles. Lower left:
numerical results. Lower right: an AMR grid with two levels of refinement adapted to the shock structures (every eighth line is plotted).

Converging shock waves of different polygonal shapes have
been studied for example in [4,5]. For a polygonal shock the
regions of high curvature, such as corners, generally travel
faster than the planar parts. This leads to a reconfiguration of
the shape of the shock wave during the focusing process. For
example, a square-shaped shock wave will transform into an
octagon and then back to a square again. This process repeats
as the shock focuses provided there are no other disturbances to
interrupt it.

In this work we use the method suggested and tested in
experiments by Eliasson et al., [4] to produce converging
polygonal shock waves. The numerical simulations were
performed using a state of the art adaptive mesh refinement
(AMR) flow solver. Disturbances in the form of cylindrical
obstacles were introduced in front of an initially cylindrical
converging shock. The obstacles used to shape the shock
are not small. Therefore it takes some time for the shock
front to reach the asymptotic state described by the theory
of Schwendeman and Whitham [5]. From our highly resolved
numerical simulations we find that only at the very final
stage of the convergence does a shock perturbed by four
obstacles become square-shaped. At this stage, the mean radius
of the shock is well described by Guderley’s [6] self-similar
solution, giving a base solution around which geometrical
shock dynamics [5] can be utilized. The fact that the polygonal
shape of the shock is attained only at the final stage, where
characteristic length scales (the sides of the polygon) are very
small compared to the initial scales (the diameter of initial

shock), means that the numerical simulations become quite
challenging.

2. Numerical method and experiments

The Euler equations of gas dynamics are solved numerically
using a high-order accurate Godunov method [7,8]. The
geometry is discretized with overlapping structured grids.
The initial grids for the geometry are constructed with the
overlapping grid generator that comes with the Overture
software package. Adaptive mesh refinement is used to
dynamically track the shocks and contacts. The refinement
meshes are automatically created every few time steps, based
on an estimate of the error. For further details please refer to [7,
8] where the accuracy and convergence rates of the numerical
method are carefully validated, and where solutions computed
using different grids are compared. The basic conclusions
are that excellent results are obtained with the scheme.
The software, along with references describing the approach
can be found at http://www.llnl.gov/casc/Overture. The initial
conditions in front of the shock are set to be a gas at pressure
p = 13.33 kPa (100 Torr) and at room temperature T = 294 K,
where γ = 1.4, Rg = 287.06 J/kg K and p = ρRgT . The
shock front is given an initial shock Mach number of M = 2.4.
The state behind the shock is determined by the standard shock
relations. The diameter of the computational domain is set to
150 mm.

The following cases were simulated: an initially cylindrical
shock wave perturbed by 0–16 obstacles (cylinders with a

http://www.llnl.gov/casc/Overture
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Fig. 2. Maximum pressure and temperature near the focal point as a function of the number of cylinders.

diameter of 15 mm) placed in a symmetrical pattern at a
radial distance of 46.25 mm from the focal point (see Fig. 1).
The boundary conditions on the cylinders are modeled by slip
wall conditions. Supersonic outflow boundary conditions are
imposed at the perimeter of the computational domain.

In a first set of simulations we compute solutions with
0–16 obstacles to study how quantities like the maximum
pressure and temperature vary with the number of obstacles. For
these computations the initial grid is composed of a Cartesian
background grid (covering most of the domain), an annular
perimeter grid and embedded cylindrical grids around each
obstacle. The annular grids have a cell size adjusted to the (non-
refined) Cartesian grid which has a grid-spacing of 0.2 mm. We
use two levels of AMR with a refinement ratio of four yielding
a smallest grid size of 50 µm. The main features of the flow
are very similar when computed using a coarser base mesh
or fewer levels of refinement. However, additional fine scale
features appear as the mesh is refined.

In a second set of experiments, we use an initial grid with
a Cartesian grid-spacing of 0.5 mm but with four levels of
AMR with refinement ratio four, yielding a smallest grid size
of 7.8125 µm. With this setup, we limit our simulations to
the cases with zero, three and four obstacles and focus on the
asymptotic behavior of the converging shocks.

2.1. Maximum pressure and temperature as a function of the
number of cylinders

The pressure and temperature near the focal point were
measured for all 17 cases. Fig. 2 shows the maximum pressure
and temperature as a function of the number of cylinders. Fig. 7
shows the numerically computed schlieren images for some of
these cases. The results show that the undisturbed cylindrical
shock gives the highest pressure and temperature near the focal
point. This should be expected, since in all other cases part
of the flow is reflected by the obstacles and never reaches the
focal point. For a small number of cylinders (one to six) the
maximum values are low. This is most likely caused by the fact
that all parts of the shock front do not reach the focal point at
the same time and hence the focusing effect is lost (see Fig. 7).
Higher pressure and temperatures are obtained for the cases
with a larger number of obstacles (seven to thirteen).

Table 1
Self-similarity exponents for converging cylindrical shock waves

Self-similar exponent

Present results (zero obstacles) 0.844
Present results (four obstacles) 0.835
Guderley (1942) [6] 0.834
Butler (1954) 0.835217
Stanyukovich (1960) 0.834
Welsh (1967) 0.835323
Mishkin & Fujimoto (1978) 0.828
Nakamura (1983) 0.8342, Ms = 4.0

0.8345, Ms = 10.0
de Neef & Nechtmana (1978) 0.835 ± 0.003
Kleinea (1985) 0.832 + 0.028, −0.043
Takayamaa (1986) 0.831 ± 0.002

a Experiments.

2.2. Comparison with Guderley’s self-similar solution

Guderley [6] derived a self-similar solution for the radius of
the converging shock wave as a function of time, which can be
expressed as

R = ξ0 (tc − t)α . (1)

Here α is the self-similar power law exponent, R is the radius
of the converging shock wave, t is the time, tc is the time when
the shock wave arrives at the center of convergence and ξ0 is a
constant. Guderley found the self-similar power law exponent
for cylindrical shock waves to be α = 0.834 and this has been
confirmed by many other investigations (see Table 1).

In this study we investigate when the converging shocks
shaped by obstacles are described by Guderely’s solution. We
fit data from the numerical experiments to Eq. (1) in order to
find the similarity exponent, α. We do this for the three cases of
a cylinder, a triangle and a square-shaped shock.
Zero Obstacles. To test the accuracy of the numerical
algorithms we first consider an unperturbed converging shock
and extract the distance between the shock front and the focal
point. Starting at time 20 we save solutions every 0.02 time
units until time 22.46. For each of the saved solutions we
find the position along rays starting at the focal point, where
the pressure is half of its global maximum. Precisely, we use
rays along the positive and negative x and y axis and the four
diagonals in between. We fit the extracted data to Eq. (1) by
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Fig. 3. The case with zero obstacles. Left: the solution along the negative x axis and the line y = x, x > 0, at times 22.28, 22.38, 22.48. The difference between
the solutions increases as the shock sharpens up. Right: the value of the pressure averaged along the positive and negative x and y axes at times 22.34–22.56 with
time spacing 0.02. Note that the shock is accelerating.

Fig. 4. Contours of the pressure for three obstacles showing the formation of the triangular converging shock.

minimizing
∑

i |R(ti )−ξ0 (tc − ti )α |2, thus finding α, tc and ξ0.
Here R(ti ) is taken as the average of the data from the eight rays
at time ti . The value of the self-similar power law exponent,
α = 0.844, agrees well with other values in the literature (see
Table 1). Note that for the rays used here, the anisotropy in the
solution due to grid effects is largest (see Fig. 3), thus the errors
in the results obtained using these values are likely maximized.
Three Obstacles. The triangular shape was generated by
placing three obstacles in an equilateral triangular pattern.
Close to the focal point, the shock wave assumes a triangular
shape and the similarity exponent can be found. The shock
front just before the triangular shape appears is shown in
Fig. 4(a)–(b). The plane sides develop as soon as the reflected
part of the shock, originating from the reflection off the
cylinder, has passed the whole side of the triangle. In Fig. 4(a)

the reflected shock is still interacting with the sides of the
triangle. In (b), the reflected shocks have passed the sides of
the triangle and in (c) a triangle-shaped shock is observed.
Once the triangle-shaped shock has formed it remains for the
duration of the focusing process since the plane sides undergo
regular reflection; this is consistent with results in [9]. For
this experiment the self-similar exponent was computed from
solution data along the three lines shown in Fig. 4(d). The
pressure, averaged along the three lines, is plotted in Fig. 5.
Referring to Fig. 5, there is a significant difference in the profile
of the pressure in the regions to the left and right of the focal
point at the origin; we therefore make two fits to the data. Using
the averaged values of the solutions at times 22.34–22.56 we
get a self-similar exponent α = 1.155 for the data to the left
and α = 0.977 to the data on the right. The fact the similarity
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Fig. 5. The value of the pressure with three obstacles averaged along the lines
t1, t2, t3 of Fig. 4. The solutions are displayed at times 22.28–22.5 with time
spacing 0.02. The solution to the left of the origin corresponds to the part of the
lines t1, t2, t3 closest to the obstacles.

exponent is not exactly equal to unity probably results from the
sides not being perfectly plane until the very last stages of the
focusing process (see Fig. 4(c)).

Four Obstacles. A square-shaped shock was obtained by
perturbing a cylindrical shock with four obstacles placed
in a square formation (see Fig. 6). A square-shaped shock
undergoes Mach reflection if the shock Mach number is larger
than 1.24, [9], as is the case here. This means that when two
plane sides meet in a corner, a new shock (the Mach stem) is
created. The Mach stem travels faster than the adjacent plane

sides and will consume these; repeating for the rest of the
focusing process. In the present setup, the Mach stem will form
along the lines s2 and s4 (see Fig. 6(d)) and expand outwards
towards the lines s1 and s3. When adjacent stems meet the
square has turned 45 degrees. Because of this reconfiguration
process it is impractical to detect the location of the shock
along rays. Instead we compute the area of the domain where
the pressure is within 5% of its quiescent state. Assuming the
area to be proportional to the square of the mean radius, we can
use the square root of the area instead of R to find α from (1).
Using solutions from the final stages, corresponding to times
21.96–22.7 (with a time step of 0.02), we obtain a self-similar
exponent α = 0.835. This is in agreement with the theory in [5].
It should be noted that in general the computed value of the
self-similar exponent depends slightly on the data set used. In
particular for the case of four obstacles, there is a tendency for
the computed value of α to be somewhat larger when solutions
at earlier times are included.

3. Conclusions

The shape of the shock front and the diffraction pattern
behind the shock in the numerical simulations agree well
with the experimental results in [4]. The maximum pressure
and temperature near the focal point were computed using
0–16 cylindrical obstacles. The highest maximum pressure and
temperature occurred with zero obstacles. With a small number
of obstacles (one to six) the maximum pressure and temperature
were lower than with a large number of obstacles (seven to

Fig. 6. Contours of the pressure for four obstacles. The square shaped shock front periodically reforms, rotated by 45 degrees.
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Fig. 7. Numerically computed schlieren images for a converging shock diffracted by 0, 1, 2, 3, 4, 5, 8, 12 and 16 cylindrical obstacles. The dominant portion of the
shock is located near the focal point. This part of the shock front is far from circular in cases 1–5, whereas it is close to circular in cases 8–16.

sixteen). During the final stages of the focusing process, a self-
similar solution is obtained for the triangular and the square-
shaped shock. The triangle-shaped shock undergoes regular
reflection and the same shape remains during the focusing
process. For the triangle, the self-similar exponent depends
on the direction in which the location of the shock front is
measured. For the two directions measured here the exponents
were α = 0.977 and α = 1.155, compared to the expected
value of 1. The square-shaped shock undergoes Mach reflection
and the self-similar exponent was found to be α = 0.835, in
agreement with other published results.
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Abstract

We show how the ideas of topology and variational principle, opened up by Euler, facilitate the calculation of motion of vortex rings.
Kelvin–Benjamin’s principle, as generalised to three dimensions, states that a steady distribution of vorticity, relative to a moving frame, is
the state that maximizes the total kinetic energy, under the constraint of constant hydrodynamic impulse, on an iso-vortical sheet. By adapting this
principle, combined with an asymptotic solution of the Euler equations, we make an extension of Fraenkel–Saffman’s formula for the translation
velocity of an axisymmetric vortex ring to third order in a small parameter, the ratio of the core radius to the ring radius. Saffman’s formula for a
viscous vortex ring is also extended to third order.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.10.A-; 47.10.ad; 47.15.ki; 47.32.C-

Keywords: Vortex ring; Translation velocity; Variational principle; Iso-vortical sheet

1. Introduction

Euler opened up the field of topology when he presented
the solution to the Königsberg bridge problem in 1735 [1]. As
“geometry of position” in the title signifies, Euler envisaged
a new type of geometric problem in which distance is not
relevant. In 1750, he discovered the polyhedral theorem on the
Euler characteristic, a summation of alternately signed numbers
of vertices, edges and faces of a polyhedron [2]. This theorem
stands as the cornerstone of topology. Almost at the same time,
the Euler equations for fluid flows were born.

Euler’s 1757 paper [3] certainly overcame the limitation
to irrotational velocity field, posed by Bernoulli, and
accommodated vorticity. However a century passed before
Helmholtz discovered the key to the heart of vortex motion
that the vortex lines are frozen into the fluid [4]. Helmholtz’
theorem implied that link and knot types of vortex lines remain
unchanged throughout the flow evolution. This implication,
along with the invariance of circulation, sparked, in Scotland,
the construction of atom models by knotted vortex tubes.
Inspired by the vortex atom theory, Tait attempted classification

∗ Corresponding author. Tel.: +81 92 642 2762; fax: +81 92 642 2779.
E-mail address: yasuhide@math.kyushu-u.ac.jp (Y. Fukumoto).

of knot and link types [5]. It took another century for the
helicity to be discovered [6–9]. This topological invariant is
tied with linkage and knottedness of vortex filaments [9]. More
precisely, the helicity embodies the Cǎlugǎreanu invariant [10],
a summation of the writhe and the twist, of a twisted flux
tube [11].

The study of the motion of vortex rings started simultane-
ously with the birth of the field of vortex dynamics [4]. Ex-
tending Helmholtz’ analysis, Kelvin obtained the formula for
velocity of an axisymmetric vortex ring, steadily translating in
an inviscid incompressible fluid of infinite extent, for a distri-
bution of vorticity, in the core, proportional to the distance from
the axis of symmetry. The assumption is made that the ring is
very thin:

ε = σ/R0 # 1, (1)

where σ is the core radius and R0 is the ring radius. The formula
allowing for an arbitrary distribution of vorticity was found by
Fraenkel [12] and Saffman [13] (see also Ref. [14]) as

U0 = Γ
4π R0

{
log

(
8R0

σ

)
+ A − 1

2

}
, (2)

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
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where Γ is the circulation and

A = lim
r→∞

{
4π2

Γ 2

∫ r

0
r ′v0(r ′)2dr ′ − log

( r
σ

)}
, (3)

with v0(r) being the local velocity of circulatory motion of the
fluid around the toroidal center circle, as a function only of the
local distance r from the circle. In the absence of viscosity,
v0(r) and therefore the local vorticity field may be arbitrary
functions of r .

Viscosity acts to diffuse vorticity, and the motion ceases to
be steady. For a vortex ring with its toroidal vorticity ζ(r, t) ‘δ-
function’ concentrated on the circle of radius R0, at a virtual
instant,

ζ(r, 0) = Γ δ(ρ − R0)δ(z − Z) at t = 0, (4)

with r2 = (ρ − R0)
2 + (z − Z)2, it suffices to substitute, into

(3), the Oseen diffusing vortex

ζ0 = Γ
4πνt

e−r2/4νt , v0 = Γ
2πr

(
1 − e−r2/4νt

)
, (5)

where ν is the kinematic viscosity and t is the time measured
from the instant at which the core is infinitely thin. With this
form, (2) supplemented by (3) becomes

U0 = Γ
4π R0

{
log

(
8R0

2
√

νt

)
− 1

2
(1 − γ + log 2)

}
, (6)

where γ = 0.57721566 · · · is Euler’s constant. Comparison
with the result of numerical simulation of the axisymmetric
Navier–Stokes equations [15] illustrates that validity of
Saffman’s formula (6) is limited to very small times (νt/R2

0 #
1) [16].

Vortex rings observed in nature are not necessarily thin.
Kelvin’s formula is an asymptotic solution to O(ε) for
vorticity linear in the distance from the symmetric axis.
Dyson [17] accomplished its extension to O(ε3) [18]. For this
distribution, evidence is available that Dyson’s formula fits
rather well with the speed of Hill’s spherical vortex, the fat
limit of Fraenkel–Norbury’s family of vortex rings [19]. This
unexpected agreement stimulates us to pursue a higher-order
correction to (2).

The method of matched asymptotic expansions has been
previously developed for a systematic treatment of motion of
slender vortex tubes [14,20], and was extended to second order
in ε [21]. Derivation of the correction to Fraenkel–Saffman’s
formula (2) requests us to enter into the third order. A flood
of nonlinear terms of a higher order in the Navier–Stokes
equations makes our mathematical handling out of control.
It was shown that the radius of the circle of vorticity
centroid grows linearly in time due to the action of vorticity
[22], but reduction of the expression for the speed of a
vortex ring remains yet to be attained. The method of
Lamb–Saffman–Rott–Cantwell [23,13,24] provides an efficient
means.

We show how topological ideas help to bring in a further
simplification. It is well known that a stationary configuration
of vorticity, embedded in an inviscid incompressible fluid, is

realizable as an extremal of energy on an iso-vortical sheet
[25–27]. An iso-vortical sheet comprises volume-preserving
diffeomorphisms, or smooth maps of fluid particles, with
vorticity frozen into the fluid. For a moving state, this
conditional variational principle should be augmented by a
constraint. Benjamin [28] put forward a variational principle
that an axisymmetric vortex ring moving steadily in an inviscid
incompressible fluid is realizable as the maximum state of
the kinetic energy H on an iso-vortical sheet, subject to the
constraint of constant hydrodynamic impulse

P = 1
2

∫∫∫
x × ωdV . (7)

When translated into three dimensions, Kelvin–Benjamin’s
principle reads

δH − U · δP = 0, (8)

where the velocity U of the region plays the role of the
Lagrangian multipliers.

An iso-vortical sheet is infinite dimensional. A family of
solutions of the Euler equations include several parameters. By
posing some relations on these parameters, we can maintain the
solutions on a single iso-vortical sheet, and, when restricted to
this family, the dimension of an iso-vortical sheet is reduced
to finite. Thus the traveling speed of a vortex ring may be
calculable through (8). This is indeed the case for the first-order
velocity formula as listed in the book [29]. The principle (8) has
a wider applicability as exemplified by a vortex ring governed
by the Gross–Pitaevskii equation [30]. In this paper, we adapt
this variational principle to deduce the O(ε3) correction to the
traveling speed. At large Reynolds numbers, the viscosity plays
a secondary role only of selecting vorticity profile, and the
inviscid formula is applicable to give the correction term to
Saffman’s formula (6).

We begin with the general variational formulation in three
dimensions (Section 2). After a statement of asymptotic
expansions of the flow field, the kinetic energy and the impulse
(Section 3), we recall the outer and inner solutions [22] in
Sections 4 and 5 respectively. Thereafter, we calculate, in
Section 6, the energy and the impulse to O(ε2) and present, in
Section 7, a recipe for implementing (8) to produce the O(ε3)

correction to Fraenkel–Saffman’s formula (2) and Saffman’s
formula (6) for the traveling speed of vortex rings. It is highly
probable that a vortex ring obeying the Euler equations is a
maximum-energy state [28,31]. The upper bound of energy,
if available, guarantees the existence of this extremal, and is
furnished by a topological invariant [32]. Appendix gives a
concise description for viewing this invariant as a variant of the
helicity [33].

2. Variational principle

Roberts [34] proved the above principle for an axisymmetric
vortex ring steadily translating in an inviscid fluid. Below, we
extend this principle to three dimensions to gain an insight into
the variational structure.



2212 Y. Fukumoto, H.K. Moffatt / Physica D 237 (2008) 2210–2217

Under the assumption that the fluid is incompressible, we
can introduce the vector potential A for the velocity field u (u =
∇ × A). We assume that the vorticity ω = ∇ × u is localised
in some finite region in such a way that the velocity decreases
sufficiently rapidly. These assumptions admit a representation
of the total kinetic energy H of the fluid, filling an unbounded
space, as

H = 1
2

∫∫∫
u2dV = 1

2

∫∫∫
ω · AdV, (9)

where the density of fluid is set to be unity.
We confine ourselves to steady motion, with constant speed

U, of a region with vorticity and assume that the flow is
stationary in a frame moving with U. It is expedient to partition
the velocity u as u = ū+U. By the assumption that the relative
velocity ū is steady, it obeys

∇ × (ū × ω) = 0. (10)

Consequently, there exists a globally defined spatial function
h(x) such that

ū × ω = ∇h. (11)

Suppose that fluid particles undergo an infinitesimal
displacement δξ while preserving the volume of an arbitrary
fluid element:

x → x̃ = x + δξ(x) ; ∇ · δξ = 0. (12)

We impose the condition that the flux of vorticity through an
arbitrary material surface be unchanged throughout the process
of the displacement. Its local representation is [26,27,32]

δω = ∇ × (δξ × ω) . (13)

In keeping with the above, we decompose the vector potential
A(x) as A = Ā − x × U/2. Using the definition ū = ∇ × Ā, we
can deduce, from (11) and (13),

Ā · δω = −∇ ·
{
hδξ + Ā × (δξ × ω)

}
. (14)

The variation δH of the kinetic energy, subjected to the
variation of fluid-particle positions (12), is calculated as

δH =
∫∫∫

A · δω dV = U ·
(

1
2

∫∫∫
x × δω dV

)

−
∫∫ {

hδξ + Ā × (δξ × ω)
}

· n dA. (15)

The surface integral is taken over the closed surface receding
to infinity that bounds the whole region. The second term of
the surface integral vanishes under the assumption that the
vorticity |ω| decays sufficiently rapidly with distance |x|, say
exponentially in |x|. Under the same assumption, h approaches
a constant h∞ at large distances |x|, and the first term of the
surface integral vanishes, with the aid of the Gauss theorem,
owing to (12). Consequently, we are left only with the volume
integral in (15). The variation of the hydrodynamic impulse (7)
is

δP = 1
2

∫∫∫
x × δω dV . (16)

With this form, (15) is reckoned upon as the variational
principle (8) for the translation speed U of the vortex region.

A steadily moving vortex ring would be the maximal of
the energy [28,31]. For a compact distribution of vorticity of
an axisymmetric vortex ring, an upper bound on the energy is
supplied by the topological invariant (A.8), with fluid density
ρf = 1, which guarantees the existence of the solution
for vortex rings. By Poincaré’s inequality, the energy (9) is
bounded above as

∫
u2dV ≤ C

∫
ω2dV for some constant

C . Introduce cylindrical coordinates (ρ, φ, z) with the z-axis
coincident with the axis of symmetry and ρ being the distance
from the symmetric axis, Supposing that the vorticity ω = ζeφ ,
with eφ being the unit vector in the φ-direction, is confined to
a compact region A in the meridional plane, the enstrophy is
shown to be bounded above in the following way [32]:
∫

A
ζ 2ρdρdz =

∫

A

(
ζ

ρ

)2

ρ2ρdρdz

≤
{∫

A

(
ζ

ρ

)4

ρdρdz
∫

A
ρ4ρdρdz

}1/2

= const. (17)

The similar would hold true for a continuous, but localised,
distribution of vorticity.

3. Asymptotic expansions of energy and impulse

We confine ourselves to steady motion of axisymmetric
vortex rings with vorticity ω in the toroidal directions. The
vector potential A = −ψ(ρ, z, t)/ρeφ possesses azimuthal
components only. The scalar field ψ is named the Stokes
streamfunction.

We build the solution of the Euler equations in the form
of a power series in the small parameter ε, inside and around
the core. To this end, it is advantageous to employ the local
moving cylindrical coordinates (r, θ), on the meridional plane,
with the origin maintained in the core. We nondimensionalize
the variables in terms of the circulation Γ , the typical ring
radius R0 and the core radius σ . Attached with an asterisk, the
nondimensional variables look like

r∗ = r/εR0, t∗ = t/
R2

0
Γ

, ψ∗ = ψ

Γ R0
,

ζ ∗ = ζ/
Γ

R2
0ε2

, u∗ = u/
Γ

R0ε
,

(Ṙ∗, Ż∗) = (Ṙ, Ż)/
Γ
R0

. (18)

A glance at the equations written in this moving frame tells
the dependence, on θ , of the solution in a power series in ε to
be [22]

ψ = ψ(0)(r) + εψ
(1)
11 (r) cos θ

+ ε2
[
ψ

(2)
0 (r) + ψ

(2)
21 (r) cos 2θ

]
+ O(ε3), (19)

ζ = ζ (0)(r) + εζ
(1)
11 (r) cos θ

+ ε2
[
ζ

(2)
0 (r) + ζ

(2)
21 (r) cos 2θ

]
+ O(ε3). (20)



Y. Fukumoto, H.K. Moffatt / Physica D 237 (2008) 2210–2217 2213

We solve the Euler equations in a frame moving with the vortex
ring. The origin of this moving frame should have some bearing
with the core center in the meridional plane, but, for a core of
finite thickness, the definition of the center is subtle. We expand
the radial position R of the center in powers of ε as

R = 1 + ε2 R(2) + O(ε3). (21)

Keeping the first term to be unity by adjusting the origin of the
moving frame would be helpful to the analyses that follow.

For axisymmetric flows, the kinetic energy (9) and the
hydrodynamic impulse (7) reduces, respectively, to

H = −π

∫∫
ψζ dρdz, P = π

∫∫
ζρ2dρdzez . (22)

Correspondingly to (18), these are normalized as

H∗ = H/Γ 2 R0, P∗
z = Pz/Γ R2

0, (23)

where Pz is the z component of P. Upon substitution from (19)–
(21), we obtain a representation of (23) to O(ε2), as

H = −2π2
∫ ∞

0

{
rζ (0)ψ(0) + ε2r

[
1
2
ζ

(1)
11 ψ

(1)
11

+ ζ (0)ψ
(2)
0 + ζ

(2)
0 ψ(0)

] }
dr + O(ε3), (24)

Pz = π + ε2π

[
2R(2) + π

∫ ∞

0
ζ (0)r3dr

+ 2π

∫ ∞

0
ζ

(1)
11 r2dr

]
+ O(ε3). (25)

It is noteworthy that the kinetic energy H and the impulse
Pz are gained, to O(ε2), without knowledge of the quadrupole
components ψ

(1)
21 and ζ

(1)
21 of O(ε2). Except for cores of

uniform ζ/ρ, calculation of ψ
(2)
21 and ζ

(1)
21 requires numerical

integration and stands as an obstacle, though this is not the
case with the monopole component ψ

(2)
0 and ζ

(2)
0 (r) of O(ε2)

and O(ε) field. Relying on the variational principle, the kinetic
energy H and the impulse Pz , to O(ε2), are sufficient to deduce
the formula for U valid to O(ε3). Advent of the variational
principle dispenses not only with the quadrupole field of O(ε2)

but also with the O(ε3) field. In the following sections, we
enumerate the necessary expressions of flow field.

4. Outer solution

The energy (24) desires the flow field only in the region
supported by vorticity, namely the inner solution. In spite of
this, the outer solution is necessary to supply the boundary
condition on the inner field.

The outer solution is nothing but the Biot–Savart law and is
written, for the Stokes streamfunction, as

ψ(ρ, z) = − ρ

4π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0
dρ′dφ′dz′ζ(ρ′, z′)ρ′ cos φ′

/

{
ρ2 − 2ρρ′ cos φ′ + ρ′2 + (z − z′)2

}1/2
. (26)

Dyson’s shift-operator technique is adapted to manipulate the
inner limit of (26) for an arbitrary distribution of vorticity
in the form of (20) [22]. The asymptotic development of the
Biot–Savart law valid to O(ε2), in a region ε # r/R # 1
surrounding the core, is

ψ = − Γ
2π

[
log

(
8
εr

)
− 2

]

+ ε

{
− Γ

4π

[
log

(
8
εr

)
− 1

]
r cos θ + d(1) cos θ

r

}

+ ε2

{

− Γ
25π

([
2 log

(
8
εr

)
+ 1

]
r2

−
[

log
(

8
εr

)
− 2

]
r2 cos 2θ

)
+ d(1)

2

[
log

(
8
εr

)

+ cos 2θ

2

]
− Γ R(2)

2π
log

(
8
εr

)
+ q(2) cos 2θ

r2

}

+ O(ε3), (27)

where Γ = 2π
∫ ∞

0 rζ (0)dr = 1, when nondimensionalized,
and d(1) = d1/Γσ 2 is the strength of the dipole of O(ε) whose
dimensional form will be provided later by (39). The expression
of q(2), the strength of the quadrupole at O(ε2), is left out, as
this is unnecessary.

5. Inner solution

The radial coordinate r∗ in (18), normalized by the core
radius σ , is peculiar to the inner expansion. The inner solution
is found by solving the Euler or Navier–Stokes equations made
dimensionless with use of the inner variables (18), subject to
the matching condition (27), in powers of the small parameter
ε. In the following we write down the resulting expressions of
the vorticity and the Stokes streamfunction. The detail is found
in Ref. [22].

In the absence of viscosity, the vorticity profile ζ (0)(r) may
be left unspecified. The local radial velocity is u(0) = 0, and the
local azimuthal velocity v(0), ψ(0) and ζ (0)(r) are linked with
each other via

v(0) = −∂ψ(0)

∂r
, ζ (0) = ∆ψ(0) = −1

r
∂

∂r

(
rv(0)

)
. (28)

Integrating the first of (28), we obtain the leading-order
streamfunction, complying with O(ε0) of (27), as

ψ(0) = −
∫ r

0
v(0)(r ′)dr ′ + lim

r→∞

{∫ r

0
v(0)(r ′)dr ′

− 1
2π

[
log

(
8
r

)
− 2

]}
. (29)

Viscosity plays the role of selecting the functional form of
ψ(0). We introduce a dimensionless parameter switching on the
action of viscosity ν.

ν̂ = 0 for the inviscid case, = 1 for the viscous case. (30)

For the viscous case, ε = √
ν/Γ takes the place of the

small parameter. The axisymmetric (or θ -averaged) part of
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the vorticity equation at O(ε2) leads to the heat conduction
equation for ζ (0). For the initial δ-function core (4), the Oseen
vortex (5) is picked out.

The first-order solution comprises a dipole field. The
streamfunction corresponding to the uniform flow −Ż (0)ez in
the z direction is given by −Ż (0)ρ2/2. Here a dot stands
for differentiation with respect to time. Denote the dipole
coefficient of the streamfunction for the flow, relative to the
moving frame, to be ψ̃

(1)
11 = ψ

(1)
11 + r Ż (0). The coefficient

function ψ̃
(1)
11 admits an explicit expression, in the form of a

repeated integral, as

ψ̃
(1)
11 = Ψ (1)

11 + c(1)
11 v(0), (31)

where c(1)
11 is a constant (which may depend on t), and

Ψ (1)
11 = −v(0)

{
r2

2

+
∫ r

0

dr ′

r ′[v(0)(r ′)]2

∫ r ′

0
r ′′

[
v(0)(r ′′)

]2
dr ′′

}

. (32)

The vorticity is calculable through

ζ
(1)
11 = aψ̃

(1)
11 + rζ (0), (33)

where

a(r, t) = − 1
v(0)

∂ζ (0)

∂r
. (34)

The Fourier coefficient ψ̃
(2)
0 (r) of the monopole component

of O(ε2), relative to the moving coordinate frame, is defined by
ψ̃

(2)
0 = ψ

(2)
0 + Ż (0)r2/4. The vorticity equation is integrated for

this component, resulting in

∂ψ̃
(2)
0

∂r
= 1

r

∫ r

0
r ′ζ (2)

0 dr ′ + r
2

∂ψ̃
(1)
11

∂r
+

(
r2

2
− R(2)

)
v(0). (35)

The O(ε2) monopole component ζ
(2)
0 of vorticity obeys

∂ζ
(2)
0

∂t
− ν̂

1
r

∂

∂r

(

r
∂ζ

(2)
0

∂r

)

= 1
r

∂

∂r

{

− r
2v(0)

[
∂ζ

(1)
11

∂t

− ν̂

(
∂2

∂r2 + 1
r

∂

∂r
− 1

r2

)
ζ

(1)
11

]

ψ̃
(1)
11 + Ṙ(2)r2

2
ζ (0)

}

. (36)

This equation is extracted from the axisymmetric part of the
vorticity equations at O(ε4). The constraint that no net vorticity
is created, 2π

∫ ∞
0 rζ

(2)
0 dr = 0, is compatible with (36).

6. Asymptotics of energy and impulse

There are no terms of O(ε) in the energy (24) and impulse
(25). By substitution from (29), we obtain the leading-order
term H (0) of (24), which is expressed, in terms of dimensional
variables, as

H0/Γ 2 = 1
2

R0

{
log

(
8R0

σ

)
+ A − 2

}
, (37)

where H0 = Γ 2 R0 H (0) and A is defined by (3).
Likewise, after some algebra, we obtain H2 = Γ 2 R0ε

2 H (2),
the dimensional form of the second-order term H (2) of (24), as
follows:

H2

Γ 2 = − πd1

2Γ R0

{
log

(
8R0

σ

)
− 1

2
+ 4π R0

Γ
U0

}
+ π2 B

R0

− π2

Γ 2 R0

[
1
2

∫ ∞

0
r4ζ0v0dr +

∫ ∞

0
ra(ψ̃

(1)
11 )2dr

]

− 4π2 R0

Γ 2

∫ ∞

0
v0(r)

[∫ r

0
r ′ζ (2)

0 (r ′)
]

dr

+ R2

2

{
log

(
8R0

σ

)
+ A − 1

}
, (38)

where v0 = Γv(0)/σ , ζ0 = Γ ζ (0)/σ 2, U0 = Γ Ż (0)/R0 and
R2 = R0ε

2 R(2) are dimensional variables, and

d1 = −1
4

(∫ ∞

0
r3ζ0dr + 2R0

∫ ∞

0
r2ζ

(1)
11 dr

)
, (39)

B = lim
r→∞

{
1
Γ 2

∫ r

0
r ′v0ψ̃

(1)
11 dr ′ + r2

16π2

[
log

( r
σ

)
+ A

]

+ d1

2πΓ
log

( r
σ

)}
. (40)

It is to be understood that, in the above, the dimensional
variables v0 and ζ0 are used in place of v(0) and ζ (0),
respectively.

In the inviscid case, (36) is integrated to produce
∫ r

0
r ′ζ (2)

0 (r ′)dr = − r
4v(0)

aψ̃
(1)
11 + R(2)

2
r2ζ (0), (41)

and cancellation among several terms is effected in (38).
The second-order term P(2) in (25), the z component of the

hydrodynamic impulse, has a link with the strength d1 of a
dipole defined by (39), in such a way that

P2 = π (2Γ R0 R2 − 4πd1) , (42)

where P2 = Γ R2
0ε2 P(2) [22].

7. Third-order correction to speed

We are now ready to implement the variational calculation
(8) to produce the translation speed of an axisymmetric vortex
ring. We set, as a natural profile of local velocity field featuring
a vortex ring,

v0(r) = − Γ
2πr

f
( r
σ

)
, ζ0 = Γ

2πr
d
dr

f
( r
σ

)
, (43)

where f is an arbitrary function, except for the requirement that

f (ξ) = O(ξ2) as ξ → 0, f (ξ) → 1 as ξ → ∞. (44)

The parameter σ introduces the scale for the core thickness,
and (43) includes both the constant vorticity, within the core,
and the Gaussian distribution (5).

Suppose that the fluid particles occupying a toroidal region
of radius r around the center circle of radius R are mapped
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to another toroidal region of radius r̂ around the center circle
of radius R̂. To maintain these flow fields on an iso-vortical
sheet, it is necessary for the circulation Γ to remain unchanged.
Preservation of volume enforces

2π2r2 R = 2π2r̂2 R̂, 2π2σ 2 R = 2π2σ̂ 2 R̂, (45)

from which follows r/σ = r̂/σ̂ . Consequently, the local
circulation around the circle of radius r

Γ (r) = 2π

∫ r

0
ζ0(r ′)r ′dr ′ = Γ f (r/σ) (46)

is invariant: Γ (r) = Γ (r̂). Under an infinitesimal perturbation
of R → R̂ = R+δR, σ → σ̂ = σ+δσ , with R = R0+R2, (45)
demands that, at each order, σ 2 R0 = const. and σ 2 R2 = const.,
and therefore that

2δσ/σ = −δR0/R0 = −δR2/R2. (47)

We can show that, under this perturbation, Â = A+O
(
(δR)2) ,

or δA = 0. It follows from this and the first of (47) that the
variation of (37), under an iso-vortical perturbation, is

δH0 = Γ 2

2

[
log

(
8R0

σ

)
+ A − 1

2

]
δR0. (48)

The variation of the leading term of impulse P0 = Γπ R2
0 is

δP0 = 2πΓ R0δR0, and application of δH0 = U0δP0 restores
Fraenkel–Saffman’s formula (2). This result supplements the
list in Ref. [29].

A great care should be exercised to proceed to a higher
order. Because of the space limitation, we cannot help omitting
the detail, and write out the resulting expressions only. The
variation of (38) leads, after some manipulations, to

δH2/δR0 = 2πΓd1

R2
0

{
log

(
8R0

σ

)
+ A

2
− 5

4

}
− 2π2Γ 2

R2
0

B

+ π2

R2
0

[∫ ∞

0
r4ζ0v0dr −

∫ ∞

0
ra(ψ̃

(1)
11 )2dr

]

− 4π2
∫ ∞

0
v0(r)

[∫ r

0
r ′ζ (2)

0 (r ′)
]

dr

+ Γ 2 R2

2R0

{
log

(
8R0

σ

)
+ A + 1

2

}
. (49)

The hydrodynamic impulse, the second-order term of which is
(42), varies as

δP = [2πΓ R0 + 4π (Γ R2 + πd1/R0)] δR0. (50)

Enforcement of (8) or δH0 + δH2 = (U0 + U2) δP,

eventually gives rise to the desired correction term of O(ε3)

to the traveling speed:

U2 = d(1)

2R3
0

{
log

(
8R0

σ

)
− 2

}
− πΓ

R3
0

B

+ π

2Γ R3
0

[∫ ∞

0
r4ζ0v0dr −

∫ ∞

0
ra(ψ̃

(1)
11 )2dr

]

− 2π

Γ R0

∫ ∞

0
v0(r)

[∫ r

0
r ′ζ (2)

0 (r ′)
]

dr

Fig. 1. Variation of speed of a viscous vortex ring with time. The thick line
is the higher-order formula (53), while the thick dashed line is the Saffman’s
formula (6). The dashed lines are the values read off from the graph of
numerical simulations [15]. Γ/ν = 200, 100, 50, 0.01 from above.

− Γ R2

4π R2
0

{
log

(
8R0

σ

)
+ A − 3

2

}
. (51)

The perturbation R2 is retained, in order to deal with time
variation of the ring radius. For an inviscid vortex ring, the ring
radius is constant in time, and we may take R2 = 0 without loss
of generality. By exploiting (41) and (51) collapses to

U2 = 1

R3
0

{
d1

2

[
log

(
8R0

σ

)
− 2

]
− πΓ B

+ π

2Γ

∫ ∞

0
r4ζ0v0dr

}
. (52)

This is an extension, to O(ε3), of Fraenkel–Saffman’s formula
(2), and is expected to be applicable to a fat core.

The above derivation rests on the assumption of zero
viscosity. However, even if viscosity comes into play, the
resulting higher-order asymptotics (51) is not invalidated,
presumably because, at a large Reynolds number, the action
of viscosity is confined to selecting the vorticity profile. In
the presence of viscosity (ν > 0), we are forced to solve the
inhomogeneous heat-conduction Eq. (36) for the axisymmetric
part of the second-order vorticity ζ

(2)
0 . Taking the initial

condition (4), a circular vortex line, of radius R0, with vanishing
thickness, avoids mathematical complication. For this initial
condition, (36) is reduced to an ordinary differential equation,
with an introduction of similarity variables. The parameters c(1)

11
in (31) and R2, both being functions of t , play a common role of
specifying the radial position of the ring at O(ε2) relative to R0.
This redundancy is removed, for instance, by taking c(1)

11 ≡ 0
and by taking the constant P2 = 0 in (42). This amounts to
placing the center r = 0 of the local moving frame at the
stagnation point relative to this frame [22]. Performing the
integration of (36) and then integration in (51), we eventually
arrive at an extension of Saffman’s formula (6) as

U ≈ Γ
4π R0

{

log
(

4R0√
νt

)
− 0.5580 − 3.6716

νt

R2
0

}

. (53)

Fig. 1 illustrates the comparison of the asymptotic formula
(53) with the direct numerical simulation of the axisymmetric
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Navier–Stokes equations [15]. The normalized speed U R0/Γ
of the ring is drawn as a function of normalized time νt/R2

0
for its small values. The thick solid line is our formula (53),
and the thick broken line is the first-order truncation (6). The
thin lines are the results of the numerical simulations. The
number attached to each line is the circulation Reynolds number
Γ/ν, being no larger than 200. We observe that inclusion
of the correction U2 achieves a significant improvement in
approximation. It is remarkable that the large-Reynolds-number
asymptotics formula (53), valid to O(ε3), compares fairly well
with the numerical result of even moderate and small Reynolds
numbers.

Mathematical labor to reach the same formula for the speed
of a vortex ring dramatically decreases in order of the method
of matched asymptotic expansions [22], Lamb’s method and the
variational principle. By appealing to the variational principle,
we have succeeded in achieving higher-order extension
of Fraenkel–Saffman’s and Saffman’s formulae, which are
applicable to fat cores, Hopefully this principle encompasses
helical vortex tubes if allowance is made for the rotation of the
system (cf. [35]).

Appendix. Unified view of topological invariants

The helicity is a topological invariant of an ideal fluid
in three dimensions. Two-dimensional ideal flows admit an
integral of any function of vorticity as topological invariants.
This is extended to axisymmetric flows. However, Noether’s
theorem associated with the particle relabeling symmetry does
not discriminate between two and three dimensions. Inspired
by this fact, it can be shown that these are variants of the cross
helicity [33]. This appendix gives a brief sketch of this unified
view.

We start from the vorticity equations for a barotropic fluid
filling a domain D:

∂ω

∂t
= ∇ × (u × ω) . (A.1)

Since we are concerned with the kinematics of ideal barotropic
flows, the advection velocity u may be an arbitrary smooth
vector field so that the vorticity ω may be unrelated to ∇ × u.
We take compressibility into account, and the fluid density ρf
obeys the equation of continuity Dρf/Dt + ρf∇ · u = 0,

Here D/Dt = ∂/∂t + u · ∇ is the Lagrangian derivative. The
law of mass conservation holds true without reference to the
detailed form of velocity field u, and therefore pertains to the
kinematics.

Suppose that D is simply connected. Impose the following
boundary condition on ω:

ω · n = 0 on ∂D, (A.2)

or in the case the domain D is unbounded,

|ω| → 0 sufficiently rapidly as |x| →∞ . (A.3)

Then for a given solenoidal vector field ω(x, t), there exists
a vector potential v(x, t) defined, over D, by ω = ∇ ×
v. The vector potential is determined only up to the gauge

transformation. The evolution equation of v, obtained by taking
the uncurl of (A.1), is named the Euler–Poincaré equations [36],
and, when specialized as v = u, is made coincident with the
Euler equations.

Let us introduce another solenoidal vector field B(x, t)
which is frozen into the fluid. The equation of B takes the same
form as (A.1), and the boundary condition to be imposed is the
same as (A.2) or (A.3). The cross helicity

H[ω, B] =
∫

D
v · B dV (A.4)

is invariant even if the advection velocity field u is different
from v [33,37]. The helicity [6–9] is a special case of (A.4) of
taking B = ω and u = v.

For two-dimensional flows on the xy-plane with velocity
provided by u(x, t) = (ux (x, y, t), uy(x, y, t), 0), there is
a family of integral invariants for planar flows in a domain
A, namely integrals of arbitrary function of ω = ∂uy/∂x −
∂ux/∂y. For a compressible barotropic fluid, it is superseded
by

Q =
∫

A
ω f

(
ω

ρf

)
dA, (A.5)

where f is an arbitrary function. This integral is termed the
generalised enstrophy [27]. Invariance of (A.5) is a direct
consequence of the restriction of (A.1) to two dimensions,

D
Dt

f
(

ω

ρf

)
= 0, (A.6)

and the conservation law of the vorticity flux or Kelvin’s
circulation theorem. Introducing F = ∇ × f ez, (A.6) is
converted into

∂F
∂t

= ∇ × (u × F) . (A.7)

A topological invariant is manufactured by replacing B by F
in (A.4) with the volume integral of unit length in z over the
domain A. This integral is reduced, after a partial integration,
to (A.5), except for a boundary term. The latter vanishes in a
typical case that f (ω/ρ) approaches zero sufficiently rapidly
as the boundary ∂A recedes to infinity,

The axisymmetric counterpart of (A.5) is

QA =
∫

A
ζ f

(
ζ

ρfρ

)
dρdz, (A.8)

for an arbitrary function f of ζ/(ρfρ) [32]. The vector F =
∇ × f eφ/ρ fulfills (A.4) and (A.7), taking F in place of B,
coincides with (A.8) except for a boundary term.
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Abstract

A model for vortex ring circulation developed by the author [P.S. Krueger, An over-pressure correction to the slug model for vortex ring
circulation, J. Fluid Mech. 545 (2005) 427–443] is discussed. Numerical simulations of vortex ring formation are used to provide model closure
and validation data for orifice-type generators. The model results agree well with the simulation results for both tube and orifice configurations
provided the jet duration is sufficiently long. For short jets, the model discrepancy is explained in terms of an interaction between the primary and
stopping vortices.
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1. Introduction

The sudden ejection of a finite duration jet from a nozzle
or orifice is a frequently observed unsteady flow. It is a
distinguishing feature of many important systems ranging from
aquatic propulsion of squid and salps [9,11] to synthetic jet
actuators [3]. A piston–cylinder mechanism is commonly used
to generate such flows in the laboratory where the generation of
the jet is due to the piston motion as illustrated in Fig. 1.

The formation and evolution of the vortex ring that results
from the roll-up of the jet shear layer has been the subject of
a substantial body of research (see Shariff and Leonard [10]
for a review). A key vortex ring characteristic that is directly
related to the formation process is the total circulation of the
ring, namely

ΓT =
∫

ωθ drdx, (1)

where ωθ is the azimuthal vorticity and integration is over the
domain external to the vortex ring generator. Two common
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Methodist University, P.O. Box 750337, 75275 Dallas, TX, United States.
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methods for determining ΓT in terms of the formation
parameters involve consideration of the flux of vorticity in
the jet [2] and dynamics of the vortex sheet roll-up [7]. In
the case of the former, assuming uniform flow across the jet
and neglecting the transient start-up behavior leads to the so-
called ‘slug model’ in which ΓT is determined entirely by
UJ (t) [10]. The assumptions made in this approach limit it
to long duration pulses where the flow approaches steady
jet behavior. Moreover, it does not account for geometric
differences in vortex ring generators, even though orifice-type
generators produce rings with nearly twice the circulation
as tube-type generators under the same conditions (see [5]
and Section 5). Modeling the dynamics of the vortex sheet
roll-up [7], on the other hand, does account for geometric
differences through appropriate boundary conditions, but it
treats the flow as 2D, which limits its applicability to short time
behavior [6]. Neither approach provides good accuracy over a
wide range of conditions.

A different approach, developed and refined by the author [4,
5], considers the integral of the incompressible vorticity
transport equation over the domain external to the vortex ring
generator. This provides two terms which can be modeled
using primarily potential flow considerations to account for
the jet development and geometry differences, but model
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Fig. 1. Schematic of tube- and orifice-type vortex ring generators.

closure requires information about the trajectory of the vortex
ring during formation. The present discussion begins with
a summary of the model developed by the author. Then
numerical simulations of vortex ring formation are utilized to
provide model closure information in the case of the orifice
configuration and data by which the model can be validated.
Finally, the model and numerical results are compared and
model error for short duration pulses are discussed in terms of
vortex ring evolution and trajectories.

2. A model for vortex ring circulation

To aide further discussion, this section summarizes the key
features of the model developed by the author [4].

For vortex ring formation by high Reynolds number jets,
vorticity diffusion across the centerline may be ignored. Then
integrating the vorticity transport equation over the domain
external to the vortex ring generator and in time yields

ΓT = 1
2

∫ tp

0
u2

cl(t)dt
︸ ︷︷ ︸

ΓU

+ 1
ρ

∫ ∞

0
(pcl(t) − p∞)dt

︸ ︷︷ ︸
Γp

, (2)

where ucl and pcl are the velocity and pressure at (x, r) =
(0, 0) and tp is the jet duration. Since the jet ejection
period dominates the contribution of u2

cl to circulation, ΓU is
integrated only up to tp. The compact nature of the vorticity
field for high jet Reynolds number results in irrotational flow at
(x, r) = (0, 0) so that ΓT may be determined by potential flow
analysis.

For rapidly initiated jets, the initial flow appears like that
in front of a translating disk and Γp may be determined by
integrating the unsteady Bernoulli equation for the appropriate
potential flow solution. The result is

Γp ≈ U0 D
C p

, (3)

where C p = π for the tube geometry and 2.00 for the orifice
geometry. Here U0 is the maximum value achieved by the jet
velocity during the jet pulse. The jet termination process (which
gives pcl < p∞) is ignored in the evaluation of Γp because for
sufficiently long pulse duration and rapid jet termination, the
stopping vortex formed at jet termination travels back into the
vortex ring generator and does not interact with the primary
vortex ring. This issue is discussed further in Section 6.

To determine ΓU , a model for ucl(t) is required. At jet
initiation, ucl(t) can be determined by a potential flow solution

inside the vortex ring generator. As time proceeds, however,
the jet separates from the nozzle/orifice lip and the vortex ring
propagates downstream. If the jet duration is long enough it
approaches steady jet behavior. Based on these observations a
model for ucl(t) may be developed using a modeling parameter
σ to smoothly transition between the known initial and final
states. The results for the tube and orifice configurations are,
respectively,

ucl = Uc(t)
1 + 0.595(1 − σ(t))

(4)

ucl = UJ (t)
2 + (Cc − 2)σ (t)

, (5)

where Uc is the core velocity in the tube (outside the boundary
layer) and Cc < 1 is the contraction coefficient (ratio of jet area
at the vena contracta to the orifice area) for the steady state jet
in the orifice configuration. Assuming a thin boundary layer, Uc
may be approximated using the results of [1]. It should be noted
that Eq. (5) is an effective centerline velocity that accounts for
the downstream contraction of the jet at late time, making it
appropriate for computing the vorticity flux term ΓU ; it is only
equal to the actual centerline velocity at jet initiation. In either
case 0 ≤ σ(t) ≤ 1 where σ → 1 at large t .

The specification of σ for model closure is based on
the observation that the velocity of the forming ring (W (t))
increases and eventually the ring begins to move away from
the vortex ring generator as steady jet behavior is approached.
Taking U0/2 as a reference ring velocity beyond which steady
jet behavior is approximated, σ is modeled as

σ(t) =






W (t)
U0/2

: W < U0/2

1 : W ≥ U0/2.
(6)

For tube configurations, robust correlations are available for
W (t) [2,6] which, when used in Eq. (6), give ΓT accurate
to within 10% over a wide range of conditions [4], except
for short pulses. In particular, for stroke ratios L/D < 0.5
where L ≡

∫ tp
0 UJ (t)dt , ΓT tends to be over-predicted by the

model. For the orifice case, however, there was no data available
on W (t) throughout vortex ring formation when the model
was originally formulated, so model closure was problematic.
Closure based on an extension of the tube results was proposed
by [4] giving reasonable results, but validation was extremely
limited because there was very little ΓT data available for
orifice configurations. The present investigation builds on the
numerical results of [5] to resolve the model validation and
closure issues and investigate the source of the model error for
L/D < 0.5.

3. Numerical method and computational domains

Vortex ring formation was studied numerically by sim-
ulating the axisymmetric, time dependent, incompressible
Navier–Stokes equations. The equations were solved on the do-
mains shown in Fig. 2 with the coordinate systems shown in
Fig. 1. The motion of the piston was simulated using an inlet
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Fig. 2. Domains used in numerical simulation of vortex ring formation: (a) tube
configuration, (b) orifice configuration.

boundary condition at the left of the domain. For the orifice
case, Dp/D = 7 was simulated with a slip flow boundary con-
dition at the top left of the domain to approximate the case of
an orifice in an infinite plane (Dp/D → ∞). A trapezoidal
program (with acceleration and deceleration times specified as
0.1tp, each) was prescribed for the piston velocity Up(t) with a
jet Reynolds number (ReJ ≡ U0 D/ν) of 2000. Stroke ratios of
0.1 ≤ L/D ≤ 3.5 were simulated for both geometries.

The time dependent solutions were obtained using the
Finite Volume method with the SIMPLE algorithm for
pressure–velocity coupling and the QUICK scheme for
approximation of the flux terms. A second-order implicit
scheme was used for time integration.

The domain was discretized using a non-uniform, rectangu-
lar grid with the greatest node density near the exit plane and
nozzle/orifice lip. To test grid independence, the L/D = 1.0
case was simulated on the orifice geometry with three grids
having nodal dimensions Nx × Nr = 191 × 53, 388 × 120,
and 571×180. Comparing ΓT for the three cases gave less than
1% difference between the 388 × 120 and 571 × 180 grids
for both geometries. Likewise, trajectories of the peak vorticity
(obtained to subgrid resolution using a Gaussian fit of the local
vorticity peak) showed a deviation of less than 0.01D between
the 388 × 120 and 571 × 180 grids for x/D < 4.4. Thus, the
388 × 120 grid was used to obtain the results for this investiga-
tion.

A specified, but variable, time step was used for time
integration. The base time resolution used at least four time
steps during periods of jet acceleration/deceleration (to provide
sufficient resolution of the initiation and termination transients)

Fig. 3. Vortex trajectories during ring formation: (a) tube configuration,
(b) orifice configuration.

and limited the maximum time step to 5% of a convective
time scale (D/U0) during jet ejection. After jet termination, the
time step for the base resolution was limited to a maximum
of 5% of a convective time scale. More-coarse and less-
coarse time stepping was investigated to confirm time step
independence. Refining the base scheme to have 50% more
time steps gave only a 1% difference in circulation. Likewise,
time step refinement gave no discernible difference in vortex
trajectories for x/D < 0.75 and less than 0.005D difference
for x/D > 0.75. Consequently, the base time resolution was
deemed sufficient for the present investigation.

4. Vortex ring trajectories and model closure

For model closure, the ring axial location during formation
(0 < t < 0.9tp) was considered for 0.5 ≤ L/D ≤ 3.0.
The results for the tube and orifice configurations are shown
in Fig. 3. The horizontal axis in these plots is effectively a
dimensionless time where X (t) ≡

∫ t
0 UJ (τ )dτ is the time-

varying length of the ejected fluid slug. In these coordinates,
the ring trajectories collapse well.

The tube results show that x/D ∼ (X/D)3/2 for 0.5 ≤
X/D < 1.5. In fact, over this range the computational results
agree, to within experimental error, with the empirical fit
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x/D = 0.28(X/D)3/2 proposed by Didden [2]. For X/D > 1.5
a (X/D)5/4 scaling is approached as the flow transitions to
steady jet behavior. Since 0.5 ≤ X/D < 1.5 encompasses
the transition to the condition where the ring separation from
the tube is significant, the present results concur with the use
of Didden’s result for model closure as implemented by [4].
Specifically, inserting the time derivative of Didden’s empirical
fit into Eq. (6) gives the following model closure for the tube
configuration:

σ(t) =
{

0.84
√

X (t)/D : X (t)/D < 1.42
1 : X (t)/D ≥ 1.42.

(7)

The orifice results, on the other hand, show that x/D ∼
(X/D)5/4 where the flow transitions to steady jet behavior
(X/D > 1.0) and suggest a (X/D)0 scaling as X/D → 0
in agreement with [7]. In between there is no clear power-law
behavior (although the results do collapse to a universal curve).

For the sake of simplicity, a power-law fit is preferred. Since
W near the transition to steady jet behavior is most important
for model closure, a best fit of the data for X/D > 1.0 was
utilized, giving x/D = 0.447(X/D)5/4. Applying this fit in
Eq. (6), the model closure for the orifice configuration becomes

σ(t) =
{

1.118(X (t)/D)1/4 : X (t)/D < 0.64
1 : X (t)/D ≥ 0.64.

(8)

5. Comparison between model and simulations

Comparison of the numerical results with the model
predictions using Eqs. (7) and (8) for model closure is shown
in Fig. 4. The orifice model results were obtained using
Cc = 0.61, appropriate for a high ReJ jet issuing through
a sharp-edged orifice. For display purposes, percentage error
is only shown for L/D ≥ 0.5. In the range L/D ≥ 0.5
the model results compare very well with ΓT calculated from
the numerical results. In the tube case the results agree within
14% over this range, in agreement with [4]. The orifice results
agree within 20% over the same range. The agreement achieved
using Eq. (8) for closure gives an improvement of as much as
10% over the closure based on tube results proposed by [4].
Further discussion of the validity of the closure model for the
orifice case can be found in [5]. For both configurations, the
model performs significantly better than the slug model, which
under predicts ΓT by more than 20% for the tube geometry and
greater than 60% for the orifice geometry.

At L/D < 0.5 the models do not perform well. The absolute
error steadily increases as L/D decreases below 0.5 for the tube
case and 0.2 for the orifice case.

6. Discussion

The performance of the model is satisfactory for L/D >

0.5. In particular, the model captures the nearly twofold
difference in ΓT between the two configurations at the same
ReJ and L/D (cf. Fig. 4(a) and (b)). The ability of the
model to capture the geometry effects is linked to its use of
potential flow analysis, where different boundary conditions

Fig. 4. Comparison of model and CFD results: (a) tube configuration,
(b) orifice configuration.

can be naturally incorporated (e.g., through C p), and through
appropriate closure models for σ(t). Although Dp/D → ∞
was approximated in the orifice results, the orifice model is
expected to work well for Dp/D ≥ 2.

The use of potential flow analysis is noteworthy since
the model predicts ΓT even though vorticity is not explicitly
addressed. The role played by vorticity is implicitly captured
in the transition of ucl to steady jet behavior at large time. In
this regard, the analysis is analogous to classical airfoil theory,
where the appropriate bound vortex circulation is determined
by the empirically observed condition that the flow leaves the
trailing edge smoothly.

In the short L/D regime, the model degradation could
be tempered by fine tuning the closure models or by small
adjustments to C p related to deviations of the flow from the
assumed form. The primary source of the error for L/D < 0.5,
however, is the model prediction that Γp remains constant as
L/D → 0. In actuality Γp must decrease to zero along with ΓU .

The model for Γp is based on the assumption that it may
be determined by integrating the pressure term in Eq. (2) only
over jet initiation because the stopping vortex generated at jet
termination does not interact with the primary vortex and trav-
els back into the vortex ring generator. In reality, the primary
and stopping vortices are in close proximity at jet termination
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Fig. 5. Vortex trajectories: (a) tube configuration, (b) orifice configuration.
PV = primary vortex, SV = stopping vortex.

for L/D < 0.5, as illustrated in Fig. 5. In fact, for L/D = 0.1,
the stopping vortex for the tube configuration is actually drawn
out of the vortex ring generator (x > 0) by its interaction with
the primary vortex. Physically this occurs because immediately
following jet termination the primary and stopping vortex act
as a 2D vortex pair that convects toward the centerline until the
self-induced velocity of each takes over and pulls them apart.
The orifice results are similar except that the initial vortex tra-
jectory after pulse termination is directed more toward the axis.

Clearly the stopping vortex can no longer be ignored as
L/D → 0. Rather, vorticity cancellation due to the adjacent
opposite sign vorticity after jet termination tends to reduce the
final circulation of the primary ring for small L/D. This effect
is illustrated in Fig. 6 where the circulation of the ring only
(Γring) is shown to decrease after jet termination during the
period where the stopping and primary vortices are in close
contact for L/D < 0.5. In the limit of L/D → 0 one might
suppose that the primary and stopping vortices simply cancel
each other and no net vortex is formed. The primary–stopping
vortex interaction presents a challenge for development of a
robust model for short L/D.

As a concluding remark, it is interesting to note that Fig. 5
gives no indication of the primary vortex returning into the

Fig. 6. Evolution of circulation of the ring only (Γring) for the tube geometry.

vortex ring generator as L/D is reduced. This is in contrast
to the potential flow prediction of Sheffield [8], which is not
surprising since the stopping vortex was not included in his
analysis.
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Abstract

A geometric method based on information from structural complexity is presented to calculate linear and angular momenta of a tangle of
vortex filaments in Euler flows. For thin filaments under the so-called localized induction approximation the components of linear momentum
admit interpretation in terms of projected area. By computing the signed areas of the projected graph diagrams associated with the vortex tangle,
we show how to calculate the two momenta of the system by complexity analysis of tangle diagrams. This method represents a novel technique
to extract dynamical information of complex systems from geometric and topological properties and provides a potentially useful tool to test the
accuracy of numerical methods and investigate scale distribution of fluid dynamical properties of vortex flows.
c© 2008 Elsevier B.V. All rights reserved.
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1. Conservation of linear and angular momenta of a vortex
tangle

In this paper we present new mathematical results
concerning a method based on signed area of oriented graphs
developed to evaluate linear and angular momenta of a tangle
of vortex filaments in Euler’s flows. In paying our tribute to
celebrate more than 250 years of work on Euler’s equations,
we are particularly happy to present and discuss here new ideas
that rely not only on such a fruitful setting, but also on another
Euler’s remarkable contribution, rooted in his 1735 solution
of the famous Königsberg’s Bridge Problem [1], namely the
foundation of graph theory and what, arguably, we now call
topology [2]. The idea of using graph theoretical information
to study fluid dynamical properties was originally put forward
by Kelvin in 1867 [3], but it remained little explored. What
we present here benefits from the progress made in recent
years in algebraic topology and geometric fluid mechanics and,
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University of Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy. Fax: +39
02 6448 5705.

E-mail address: renzo.ricca@unimib.it.

we believe, has great potential for further developments and
future applications in visiometric diagnostics of structural flow
complexity [4,5].

For simplicity, let us consider the evolution of a vortex
tangle in an unbounded, ideal fluid at rest at infinity, where
vorticity remains localized on thin filaments of infinitesimal
cross-sections. Such vortex tangles arise naturally in superfluid
turbulence [6], where indeed vorticity remains confined on
very thin filaments for very long time. In this context vortex
evolution may be approximated by the so-called localized
induction approximation, LIA for short [7,8]. The analytical
results presented here are rigorously valid for LIA evolutions,
and can, under mild assumptions, be adapted to evolutions of
vortex filaments governed by the full Biot–Savart law (see the
last section for a brief clarifying comment).

It is well-known that LIA is directly related to the nonlinear
Schrödinger equation, that in one dimension is completely
integrable, preserving an infinity of invariants of motion. It is
remarkable that among such invariants two classical invariants
of the Euler equations survive, namely the linear and angular
momenta [9,10]. Let us consider these invariants for a vortex
tangle. Let T = {⋃i Li }i=1,...,N denote a tangle of N vortex
lines Li , each line being a smooth curve in R3, parametrized by

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
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Fig. 1. The area A of the projected graph resulting from the projection pν of
a vortex line L on the plane Π is proportional to the component of the linear
momentum of L in the ν-direction.

arc-length s. Vorticity ω is defined onLi , and is simply given by
ω = ω̄X′, where, in general, X = X(s, t) denotes the position
vector, ω̄ a constant and t ≡ X′ the unit tangent to Li (the prime
denoting the derivative with respect to s, and t is time). The
linear momentum P = P(T ) corresponds to the hydrodynamic
impulse, which generates the motion of T from rest, and from
its standard definition [11] takes the form

P = 1
2

∫

T
X × ωd3X = 1

2

N∑

i=1

Γi

∫

Li

X × X′ ds, (1)

where P is here intended per unit density, and Γi represents
the circulation of Li . Similarly, for the angular momentum
M = M(T ), that corresponds to the moment of the impulsive
forces acting on T ; we have

M = 1
3

∫

T
X × (X × ω)d3X

= 1
3

N∑

i=1

Γi

∫

Li

X × (X × X′)ds, (2)

where, again, M is intended per unit density. We remark that
under both Euler’s equations and LIA, we have

dP
dt

= 0,
dM
dt

= 0. (3)

2. Interpretation of momenta in terms of projected area

Arms and Hama [8], who first proved the conservation of
the integral on the right-hand side of Eq. (1) for a single vortex
line, showed that this quantity admits interpretation in terms of
projected area (see Fig. 1). Indeed, by direct inspection of the
integrand above, it is evident that under LIA the plane projected
area of the vortex line is proportional to the component of
the linear momentum of the vortex along the direction of
projection.

Let p = pν denote the orthogonal projection onto the plane
Π along the direction ν, and Lν = pν(L) be the graph diagram
of a smooth space curve L under pν . Evidently Lν depends on
ν. For the moment let Lν be a smooth planar curve with no

self-intersections, but in general Lν will be a nodal curve with
self-intersections, the latter resulting from the projection of the
apparent crossings of L, when L is viewed along the line of
sight ν.

By identifying the vortex line with its geometric support L,
the projected graph diagram Lν will be oriented, the orientation
being naturally induced by the vorticity vector. Let Lxy , Lyz ,
Lzx be the three graph diagrams of the projected vortex line
onto the mutually orthogonal planes x = 0, y = 0, z = 0,
and let Axy = A(Lxy), Ayz = A(Lyz), Azx = A(Lzx ) be the
corresponding areas of the plane regions bounded by Lxy , Lyz ,
Lzx , respectively.

By applying the results of Arms and Hama [8], from (1) we
have

Pxy = Γ Axy, Pyz = Γ Ayz, Pzx = Γ Azx , (4)

where Γ is vortex circulation. Moreover:

Definition 2.1. The resultant area Amax is the maximal area
obtained by maxν p(A) = pmax(A) (along the resultant axis
νmax) among all possible projected areas A.

The direction of the resultant axis νmax is clearly that of the
linear momentum. Hence, also from [8], we have

Theorem 2.2 (Maximal Area Interpretation). The resultant
linear momentum of a vortex line L, of circulation Γ , under
LIA is given by P = Γ Amaxνmax, where Amax is the resultant
area. The projected area of L on any plane perpendicular to
that of the resultant area is zero.

Similar results hold true for the angular momentum. With
reference to the right-hand side of Eq. (2), the second integral
can be interpreted in terms of areal moment, according to the
following definition:

Definition 2.3. The areal moment around any axis is the
product of the area A multiplied by the distance d between
that axis and the axis aG , normal to A through the centroid
G of A.

For a vortex line L, the centroid G of the projected area A is
the center weighted with respect to the vorticity distribution of
L. As for the linear momentum, the components of the angular
momentum are determined by the areal moments:

Mxy = Γdz Axy, Myz = Γdx Ayz, Mzx = Γdy Azx , (5)

where evidently dx , dy , dz are the distances between the
rotational axis and the centroid axes through Ayz , Azx , Axy ,
respectively. Similar considerations apply to define the resultant
areal moment of L:

Definition 2.4. The resultant areal moment of L is the areal
moment around the resultant axis aG of the projected areas of
L onto two mutually orthogonal planes, parallel to aG .

These observations are easily extended to a tangle T =⋃
i Li of N vortex lines Li , provided we carefully define the
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Fig. 2. (a) The number in the dashed region is the value of the index IP (C) according to the right-hand rule convention and the algebraic intersection number
calculated by Eq. (6). (b) The oriented nodal curve, resulting, for example, from the standard projection of a figure-8 knot, has 5 bounded regions. Note that one of
the interior regions has index 0, due to the opposite orientation of the strands crossed by ρ. (c) Contribution from each A(R j ) must be weighted according to the
circulations on the boundary ∂R j .

area of the resulting oriented graph diagram. The difficulty here
is precisely in the correct calculation of such area.

3. Signed area of oriented graph diagrams

The oriented graph diagram of a tangle of vortex lines
is an oriented nodal curve (i.e. the “underlying universe”
of the tangle) in R2, and this can easily attain considerable
complexity, particularly as regards the localization of self-
intersections. A necessary first step is to reduce nodal curves of
any complexity to good nodal curves, that have (at most) double
points. Nodal points are classified according to their degree of
multiplicity µ(P) given by the number of arcs incident at the
point of intersection P . If P is a double point, then µ(P) = 2.
If P is a point of multiplicity µ(P) = n (n > 2), we can always
reduce its multiplicity by “shaking” the graph diagram (actually
its pre-image) near P to get m = 1

2 (n2 − n) double points, by
virtual perturbations of the incident arcs from their location.
Thus, if h(n) is the total number of points of multiplicity n, by
applying this shaking technique we can always replace these
h(n) points with h(n) = mh(n) (m ≥ 3) double points. We say
that a graph diagram is a good projection, when it has at most
double points. Hence, by the shaking technique, we can always
reduce highly complex graph diagrams to good nodal curves.

Let C denote one such good nodal curve on Π , and let A(C)
be the corresponding total area. In order to calculate this area,
first we need to define the index IP (C) of C at the point P (for
this see, for example, [12]). Let P (∈ C, t the tangent to C and ρ
the radiant vector with foot at P , that intersects C transversally.
At each intersection point X ∈ ρ ∩ C assign the algebraic
sign ε(X) = ±1, according to the standard convention given
by the right-hand rule, that is ε(X) = +1 when the frame
{ρ, t} is positive (see Fig. 2(a)). If X is a double point, then
the intersection is computed with one of the neighbouring pairs
of the incident, equi-oriented arcs.

Definition 3.1. The index IP (C) of C at P is the algebraic
intersection number given by

IP (C) =
∑

X∈ρ∩C
ε(X). (6)

Hence, IP (C) ∈ Z.

Let us now consider the Z sub-domains {R j } j=1,...,Z
determined by C ∩ Π and bounded by C, and let A(R j ) > 0
denote their standard area. Since every point P ∈ R j has the
same IP (C), we shall call I j the index associated with any
point P ∈ R j and assign this value to each sub-domain R j
of C∩Π (see Fig. 2(b)). The signed area of an oriented graph, a
concept that can be traced back to Gauss [13], is thus given by
the following rule.

Rule 3.2 (Signed Area). The signed area A(C) of an oriented,
planar nodal curve C, is given by

A(C) =
Z∑

j=1

I j A(R j ), (7)

where A(R j ) > 0 is the standard area of R j .

4. Linear and angular momenta of a vortex tangle by
structural complexity analysis

By the signed area rule we can calculate the projected
area of any nodal curve, be it the graph of a single vortex
line, or that of a complex tangle of vortices. If the vortices
have different circulations, a weighting factor defined in terms
of contributions from each arc of ∂R j must be assigned to
A(R j ) (see Fig. 2(c)). The simplest correction comes from the
algebraic weighting γ j . Let L j = L(∂R j ) = ∑

k=1,...,M Lk, j
denote the total length of the boundary curve ∂R j made of M
oriented arcs, the k-th arc having length Lk, j and circulation
Γk . We have

Definition 4.1. The circulation weighting factor γ j of R j is
given by

γ j =

M∑
k=1

Γk Lk, j

L j
. (8)

If all the vortices have same circulation Γ , then evidently
γ j = Γ . Appropriate weighting of circulation is necessary to
determine the correct location of the centroid of the projected
area. To summarize, we have the following result.
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Theorem 4.2 (Signed Area Interpretation). Let T be a vortex
tangle evolving under LIA. Then, the linear momentum
P = P(T ) has components

Pxy =
Z∑

j=1

γ jI j Axy(R j ), Pyz = · · · , Pzx = · · · , (9)

and the angular momentum M = M(T ) has components

Mxy = dz

Z∑

j=1

γ jI j Axy(R j ), Myz = · · · , Mzx = · · · ,(10)

where Axy(R j ), . . . , etc. denotes standard area of R j .

Proof of the above theorem is based on direct applications of
(4) and (5), by using the signed area Rule 3.2.

5. Dynamical aspects based on signed area information

Signed area contributions provide useful information, that
can be applied, predictively, to estimate and, postdictively,
to understand some dynamical properties of the system.
Remember that: (i) areas with index 0 do not contribute
to the momentum; (ii) areas with high index (in absolute
value) weight more and, proportionally, contribute more to
the dynamical impulse of the system; (iii) areas of opposite
sign determine contributions in opposite directions. Additional
information on dynamical aspects may also come from index
gradient analysis. Take the case of Fig. 2(b): here the alignment
of regions, where the index gradually changes from −1 to +2,
indicates the presence of a principal axis of revolution. The
exact location of this axis, placed orthogonally to the alignment
of such regions, is determined by an accurate estimate of the
weighted areas and, in any case, it can be determined by signed
area information.

Let us consider two other examples, assuming, for
simplicity, equal circulations and maximal projected areas. In
Fig. 3(a) we have the projection of a single coiled filament, that
in space is wound up 5 times around a circular axis (not shown).
Contribution from the 5 negative areas exceeds that from the
positive area, hence the resultant momentum is oriented in
the negative direction. If such a vortex configuration existed,
it would propagate backwardly in space. Such an unusual
behaviour may not be so unrealistic, as recent analytical
solutions [14,15] and numerical tests [16] seem to suggest.

Another interesting case is illustrated by the following
example. Consider the head-on collision of two anti-parallel
vortex rings, propagating co-axially one against the other.
The linear momentum of the two-ring system (as a whole) is
obviously zero, and in ideal conditions this value is conserved
until collisional time. In the case of real dynamics at sufficiently
high Reynolds number, slight perturbations of the circular
axes are likely to develop and, upon collision, we can expect
that these will trigger sinusoidal disturbances along the two
colliding ring axes. Here, analysis of the projected diagram
may be rather illuminating. Without loss of generality and for
the sake of simplicity, let us drastically simplify the situation
and consider the perturbed circular axes as the elliptical curves

Fig. 3. (a) Projected diagram of a coiled vortex filament: contribution from
negative areas (light grey) exceeds that from positive area (dark grey); hence,
the resultant linear momentum of the vortex is negative. (b) Graph of the
projection of two anti-parallel, elliptical vortex rings: opposite contributions
from regions of index of alternating sign (light grey) cancel out; hence, the
resultant linear momentum of the two-ring system is zero.

sketched in Fig. 3(b) (realistic perturbations would obviously
generate a far more complex diagram). The central region
has index 0 and is surrounded by four regions (light grey) of
alternating sign. Consistently with what we expect from the
annihilation of the rings velocity, this gives zero contribution
to the resultant linear momentum of the two-ring system.

When the two rings collide, the alternating sign of the four
surrounding regions is an indicator of an imminent structural
instability, that produces the shoot-off of a pair of small
vortex rings on either side of the collisional plane. In a
realistic scenario, the precise number of surrounding regions
will depend on geometric details of the perturbation, but in
any case the production of an equal number of secondary
small rings on either side of the collisional plane must be
expected. These considerations seem confirmed by direct
inspection of experimental results (see, for instance, [17]). In
real experiments a diadem of a large number of secondary
small vortex rings is clearly visible. This diadem grows from
the instability of a fluid membrane that is produced in the
collisional plane, upon collision of the primary large vortex
rings. These secondary rings appear to be alternately distributed
on either side of the collisional plane, surviving just for a short
time before final dissipation.

6. Concluding remarks

The geometric method based on the signed area interpreta-
tion summarized by Theorem 4.2 provides a new and poten-
tially useful tool for fluid dynamics research. The method ex-
ploits information from structural complexity analysis of a tan-
gle of vortex filaments to estimate linear and angular momenta
of the system. This is done by computing the signed areas of
the projected graph diagrams associated with the vortex tangle,



R.L. Ricca / Physica D 237 (2008) 2223–2227 2227

after application of appropriate shaking and weighting tech-
niques. The results are rigorously valid in the LIA context, but,
as mentioned earlier, in principle they could be extended to thin
vortex filaments governed by the Biot–Savart law. This exten-
sion seems plausible as long as vorticity remains localized in a
tubular domain of volume small compared with the fluid vol-
ume ‘embraced’ by the tangle. In terms of projected areas, this
corresponds to assuming that the (standard) area of the vortic-
ity domain is much smaller compared with the overall area en-
closed by the outermost boundary projected curve, the order of
approximation depending presumably on this ratio. Physically,
this simply means that the higher the localization of vorticity,
the most efficacious is the production and transfer of hydrody-
namic impetus and moment, two quantities that are conserved
under Euler’s equations, regardless of the validity of the local-
ized induction approximation.

In any case, for LIA systems the geometric method proposed
here provides a potentially useful tool for predictive and
postdictive diagnostics. By analyzing projected areas, it can
be applied to implement tests of accuracy of numerical
methods simulating vortex tangles. In superfluids, in particular,
by analyzing the area distribution of the vortex projection
one can judge about the scale distribution of linear and
angular momenta, and compare this with the expected
values of the spectrum of turbulence (Kolmogorov’s two-
thirds law). Moreover, since LIA preserves an infinity of
invariants of motion, all of these admitting a geometric
interpretation in terms of global curvature, torsion and higher-
order gradients [18,10], these can be implemented to supply
further information on dynamical properties (for instance,
kinetic energy and helicity). Other features associated with the
analysis of projected graphs can be related to dynamical issues,
but this is beyond the scope of this article. We just like to
conclude mentioning that the famous relation [19] χ(G) =
v − e + r , between the Euler characteristic χ(G) of a graph
G (associated with vortex topology), of v vertices, e edges
and r regions, may find also useful applications in the study
of complex systems [20] and in the advanced diagnostics of
complex flow patterns.
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Abstract

Direct numerical simulations of two-dimensional decaying turbulence in wall bounded domains are presented. The Navier–Stokes equations
are solved using a Fourier pseudo-spectral method with volume penalization. Starting from random initial conditions, we study the influence of
the geometry of the domain on the flow dynamics, in particular on the long time behaviour. Circular, square, triangular and annular domains
are considered and we show how the geometry plays a crucial role regarding the decay scenario towards final states. Three stages can be
distinguished: formation of coherent vortices from random initial conditions, vortex wall interactions, and finally relaxation towards a quasi-
steady structure. The eigenvalues estimated from the decay rate of both energy and enstrophy depend on the geometry and agree well with the
theoretical eigenvalues based on the Stokes mode of the corresponding domain. For the final states we find a linear functional relation between
vorticity and streamfunction.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.27.Eq; 47.32.Cc
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1. Introduction

Two-dimensional turbulence in wall-bounded domains has
many applications in geophysical flows, e.g. the prediction
of currents in oceanic basins, the transport and mixing
of pollutants. Experiments in rotating tanks, e.g., in [2],
leading to quasi two-dimensional geostrophic flows, have
shown the formation of long-lived coherent vortices. Quasi
two-dimensional experiments in stratified fluids for square
and circular containers have been presented in [10,6,16].
Several numerical simulations of two-dimensional turbulence
in bounded domains have been performed so far, e.g., in circular
and square domains [15,5,4,22]. Compared to simulations
in double periodic domains the decay scenario is altered in
bounded domains with no-slip boundary conditions, since the

∗ Corresponding author. Tel.: +33 491118529; fax: +33 491113502.
E-mail addresses: kschneid@cmi.univ-mrs.fr (K. Schneider),

farge@lmd.ens.fr (M. Farge).

role of viscous boundary layers is determinant, for a discussion
see, e.g., [7].

The aim of the present paper is to study the influence of the
geometry of the domain on the flow dynamics, in particular on
its long-time behaviour. Therefore we consider four different
geometries: circular, square, triangular and annular domains.
Typically, we observe the formation of stable large-scale
structures which persist for a long time before they are finally
dissipated.

Late states of decaying two-dimensional flows in periodic
domains were investigated, e.g., in [17,23]. Here we study
the final states of wall-bounded flows considering different
geometries with no-slip boundary conditions.

Several theoretical predictions of the long time behaviour
of two-dimensional flows have been made for unbounded or
periodic domains. Variational principles for predicting the final
state are based on the ‘selective decay’ hypothesis supposing
conservation of energy and decay of enstrophy [13]. In this
heuristic approach enstrophy is minimized under constraint
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of conservation of energy and eventually additional conditions.
Another variational hypothesis has been proposed, based on
statistical mechanics, which introduces a measure of mixing,
leading to the definition of an entropy. The final states then
correspond to a maximum of entropy as turbulence maximizes
mixing [8,19]. For two-dimensional flows in bounded domains,
with either free-slip [9] or no-slip [10] boundary conditions, a
different approach based on viscous eigenmodes of the Stokes
flow has been used to predict the self-organization of the flow
into ’final’ states. Stokes eigenmodes in a square domain with
no-slip boundary conditions have been computed in [14].

The paper is organized as follows. First, we briefly
recall the volume penalization technique and the numerical
method employed to solve Navier–Stokes equations in
different geometries (Section 2). The construction of viscous
eigenmodes is sketched in Section 3. Then, numerical results
of decaying flows in four different geometries are presented in
Section 4 and conclusions are drawn in Section 5.

2. Numerical scheme and geometry

The numerical technique we use here is based on a Fourier
pseudo-spectral method with semi-implicit time discretization
and adaptive time-stepping [21]. The Navier–Stokes equations
are solved in a double periodic square domain of size L =
2π using the vorticity–velocity formulation. The bounded
domain Ω is imbedded in a periodic domain and the no-
slip boundary conditions on the wall ∂Ω are imposed using
a volume penalization method. A mathematical analysis of
the method is given in [1], proving its convergence towards
the Navier–Stokes equations with no-slip boundary conditions.
Details on the code, together with its numerical validation, can
be found in [21]. The governing equations in vorticity-velocity
formulation, written in dimensionless form, are

∂tω + #u · ∇ω − ν ∇2 ω + ∇ ×
(

1
η

χ #u
)

= 0, (1)

where #u is the divergence-free velocity field, i.e., ∇ · #u = 0,
ω = ∇ × #u the vorticity, ν the kinematic viscosity and χ(#x)

a mask function which is 0 inside the fluid, i.e., #x ∈ Ω , and 1
inside the solid wall.

Four different geometries are considered: a circle with radius
R = 2.8, a square of sidelength S = 5.712, an equilateral
triangle with sidelength T = 5.8 and an annulus with minor
radius Rm = 0.8 and major radius RM = 2.8. All domains are
centred inside the periodic square domain of size L = 2π . The
viscosity is set to ν = 0.001. For all computations the resolution
is N = 2562 and the penalization parameter η is chosen to be
sufficiently small (η = 10−3) [21].

Different integral quantities, the energy E , enstrophy Z and
palinstrophy P , can be defined as [11]

E = 1
2

∫

Ω
|#u|2d#x, Z = 1

2

∫

Ω
|ω|2d#x,

P = 1
2

∫

Ω
|∇ω|2d#x, (2)

respectively.

Table 1
Properties for different geometries

Circle Triangle Annulus Square

tν 200 180 210 280
Theor. EV µ1 1.87 – 2.73 1.60
Estim. EV 1.89 5.88 2.74 1.70
Estim. α 1.90 4.25 2.70 1.70

Viscous time, theoretical eigenvalues [10,12], eigenvalues estimated from the
energy and enstrophy decay (Fig. 2) and estimated slope of the linear functional
relationship at final instants (Fig. 4).

The energy dissipation is given by dt E = −2νZ and the
enstrophy dissipation by

dt Z = −2ν P + ν

∮

∂Ω
ω(#n · ∇ω)ds, (3)

where #n denotes the outer normal vector with respect to the
boundary of the domain ∂Ω . The line integral in (3) reflects
the enstrophy production at the wall, involving the vorticity and
its gradients, which is due to the no-slip boundary conditions.
This second term is not present in the case of periodic boundary
conditions.

3. Viscous eigenmodes of the Stokes flow

Final decay of two-dimensional turbulence in bounded
domains with no-slip boundary conditions is characterized by
a self-similar decay of the fundamental mode of the Stokes
flow [5]. For a square domain an analytical expression was
derived, either for stress-free [9], or for no-slip boundary
conditions [10]. For the later case numerical computations
of the Stokes eigenmodes and the corresponding eigenvalues
were presented in [14]. The solution of the vorticity equation
neglecting the nonlinear term

∂tω − ν ∇2 ω = 0 (4)

is expressed as a superposition of exponentially decaying
modes, each characterized by an eigenvalue µn ,

ω(#x, t) =
∑

µ

Cµ ωµ(#x) e−µnνt , (5)

with µn > 0, and where the constants Cµ are determined by the
initial conditions. For each value of µn the following Helmholtz
equation for ωµ(#x) has to be solved.

∇2ωµ(#x) + µ ωµ(#x) = 0. (6)

Since for the vorticity no boundary condition is available we
consider instead the streamfunction ψ . Replacing in Eq. (6)
ω = ∇2ψ , we obtain a fourth order PDE

∇4ψµ(#x) + µ ∇2ψµ(#x) = 0. (7)

The no-slip boundary condition of the velocity yields for the
stream function ψ = ∂ψ

∂n = 0.
The available theoretical lowest eigenvalues for the circular,

annular and square geometry are given in Table 1. For the circle
the eigenvalue is the square of the first zero crossing of the
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Bessel function of order one, divided by the square of the radius
R, to take into account the domain size. For the square domain,
the value given in [10] has to be multiplied by (π/(S/2))2,
which corresponds to the value computed numerically in [14]
divided by (S/2)2, due to different normalizations. Analytical
expressions for the Stokes eigenfunctions of the annular domain
can be found in [12]. The corresponding eigenvalues are given
by a transcendent equation containing Bessel functions of the
first and second kind. More details on the eigenmodes of the
circular and annular domains are given in the Appendix.

4. Numerical results

Starting with the same random initial conditions, i.e., a
correlated Gaussian noise with an energy spectrum E(k) ∝
k−4, we compute the flow evolution in the four different
geometries for initial Reynolds numbers, Re = 2D

√
2E/ν, of

about 1000 (where D corresponds to the characteristic domain
size). Fig. 1 shows the vorticity fields at early, intermediate and
late times, for circular, square, triangular and annular domains.
All flows organize into larger and larger scale structures until
reaching the domain size and forming a structure which then no
more evolves. For the circular geometry (Fig. 1, top) we observe
the transition via a quasi-dipolar structure, before reaching the
final state where a monopole is formed. It consists of a negative
circular vortex surrounded by a band of positive vorticity which
forms a kind of circular jet. The final state of the annular
geometry (Fig. 1, bottom) corresponds to two ring-shaped
bands of oppositely signed vorticity which corresponds to a
circular jet. During the transition phase, a triangularly shaped
vortical structure forms which is surrounded by three positive
vortices. For the triangle and the square domain (Fig. 1, middle)
we see that the final state is not yet completely reached. During
the transition phase we observe a tripole which evolves towards
a kind of circular jet as for the circular and annular domains.
In the present simulations the infinite sequence of corner
eddies of the Stokes eigenmodes, predicted by Moffatt [18]
and computed numerically in [14], cannot be observed for the
triangular and square domains. Indeed, the magnitude of these
vortices decays exponentially and a high resolution spectral
method where the basis functions satisfy the no-slip boundary
conditions would be required for observing them.

Figs. 2 and 3 present the decay of different integral
quantities, energy (Fig. 2, left), enstrophy (Fig. 2, right) and
palinstrophy (Fig. 3, left) for the four geometries. All quantities
exhibit at early times a rapid monotonuous decay, which is
partly due to the fact that the flow has first to adjust to the
boundary conditions, since the initial conditions do not satisfy
them. For the square, circular and triangular geometries we
observe an oscillatory behaviour in the palinstrophy decay,
which is, however, less pronounced for the latter case. These
oscillations are due to the enstrophy production at the wall.
Considering the decay of the fundamental Stokes mode, we
can characterize the long time decay of energy, enstrophy
and palinstrophy, to be proportional to exp(−2µνt) according
to Eq. (5). At later times we find indeed, for all geometries
and all quantities, an exponential decay behaviour for which

Fig. 1. 2d decaying turbulence in bounded domains. Vorticity fields at early
(left), intermediate (middle) and late times (right). From top to bottom: circle,
square, triangle and annulus.

the decay rates depend on the geometry. Table 1 presents
the time instant tν when viscous decay starts to dominate for
the different geometries. It is identified by considering the
palinstrophy evolution and detecting the moment when the
decay slows down and becomes exponential. We computed
slopes by fitting an exponential curve using a least square
method, applied to both energy and enstrophy evolution, which
yield similar results. The square domain shows the slowest
decay for all quantities, followed by the circle, the annulus,
while the triangle exhibits the fastest decay. To get an estimation
of the eigenvalue µ we divide the slopes thus obtained by twice
the viscosity. The resulting estimated eigenvalues µ are given
in Table 1 and are compared with the theoretical values based
on the Stokes eigenmodes, given in [10] for the circle and
the square geometry, and in [12] for the annulus. Note that
the theoretical values are adapted to our normalization. The
estimated eigenvalues agree well with the available theoretical
values for all geometries.

The time evolution of the mean square wavenumber kλ =√
Z/E , which is inversely proportional to the Taylor microscale

λ, is plotted in Fig. 3, right. It is measuring the inverse average
vortex size in the flow and is bounded from below by the size of

the domain. For unbounded flows, one can show that dk2
λ

dt ≤ 0,
i.e., the average vortex size is monotonously increasing [17].
In the present cases we observe a monotonous decay at early
times. At later times a nonmonotonous behaviour is found
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Fig. 2. Decay of energy E(t) (left) and enstrophy Z(t) (right) for circular, square, triangular and annular domains.

Fig. 3. Decay of palinstrophy P(t) (left) and the normalized mean square wavenumber kλ(t)/kλ(0) (right), for circular, square, triangular and annular domains.

which is due to the intermittent generation of vortices at the
no-slip wall (cf. Fig. 3, right). Note that in [22] we also found
a nonmonotonous behaviour for a circular domain at higher
Reynolds number (Re = 50 000). At late times, the mean
square wavenumber becomes constant for all cases, which
confirms that the size of the structure is not changing anymore.
The coherence scatter plot, defined as the pointwise correlation
between vorticity and stream function, is shown in Fig. 4 for
the four geometries at the corresponding final instant of the
simulations. The coherence plot measures the self-organization
of the flow. A functional relationship between ω and ψ implies
that the nonlinearity has been depleted, and that the flow has
reached a quasi-stationary state.

For the flows in bounded domains considered here we find a
linear functional relationship between ω and ψ , i.e., ω = F(ψ)

with F(ψ) = αψ in the four cases. This is in agreement with
the linear relationship found in [10] for the square domain. We
also observe that close to the wall the linear relationship is
less pronounced. For the triangular domain we still have some
scattering which might be due to the persistence of higher order
eigenmodes. The values of α, obtained by fitting a straight
line in the scatter plot (Fig. 4), are given in Table 1 and they

agree approximately with the eigenvalues of the corresponding
geometry.

5. Conclusion

By means of DNS of wall-bounded flows in domains of
different geometries, we have shown that no-slip boundary
conditions and the geometry of the domain play a crucial role
for the decay of turbulent flows. At early times, we observe
a decay of the flow which leads to self-organization and the
emergence of vortices in the bulk flow, similarly to flows in
periodic domains. At later times, larger scale structures form
which depend on the domain geometry, and they finally relax
towards quasi-steady states. The present results confirm both
numerical and experimental studies performed for circular and
square domains [16,7].

In contrast to simulations of two-dimensional turbulence
in periodic domains, we do not observe selective decay in
bounded domains with no slip boundary conditions, since in
this case energy is no more conserved but strongly dissipated.
The viscous dissipation becomes the dominant mechanism
of these final states, which correspond to the fundamental
Stokes eigenmodes of the different geometries. The nonlinear
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Fig. 4. Coherence scatter plot for the different geometries at final instants: circle (top, left), square (top, right), triangle (bottom, left) and annulus (bottom, right).

term in the Navier–Stokes equations is depleted and we
observe a functional relationship between streamfunction and
vorticity. For wall-bounded domains this relationship is linear,
corresponding to the eigenmodes. This linear relationship,
originally suggested by Batchelor [3], corresponds to steady
motion of an inviscid fluid, or, when multiplied by exp(−µνt)
to decaying motion of viscous fluid. The observed decay rates µ
of the exponentially decaying energy and enstrophy agree well
with the smallest eigenvalues of the Stokes eigenmodes of the
different geometries.
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Appendix

In the following we present the eigenfunctions and
the corresponding eigenvalues for the circular and annular
domains. Their derivation in velocity-pressure formulation can
be found in the original papers [20,12].

For the circular domain with radius R the azimuthally
symmetrical solutions of Eq. (7) are given by [20]

ψµ(r) = J0(
√

µnr) − J0(
√

µn R) (8)

with r = |#x | and where J0 denotes the Bessel function of first
kind of order zero. The eigenvalues µn are obtained from the
zeros of the Bessel function of first kind of order one, i.e.,

J1(
√

µn R) = 0 (9)

which yields for the lowest eigenvalue, µ1 = 1.873 (with
R = 2.8). Note that (8) satisfies ψµ(r = R) = 0 and
∂rψµ(r = R) = 0.

For the solution of the vorticity equation (5) we get
correspondingly

ω(r, t) =
∑

n
cnµn J0(

√
µnr)e−µnνt . (10)

For the annular domain with minor radius Rm and major radius
RM the azimuthally symmetrical solutions of Eq. (7) are given
by [12]

ψµ(r) = J0(
√

µnr) − J0(
√

µn RM )
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− J1(
√

µn Rm)

Y1(
√

µn Rm)

(
Y0(

√
µnr) − Y0(

√
µn RM )

)
, (11)

where Y0 and Y1 denote the Bessel functions of second kind
(also called Weber functions) of order 0 and 1, respectively.

The eigenvalues µn are solutions of the transcendent
equation

J1(
√

µn RM )Y1(
√

µn Rm) − J1(
√

µn Rm)Y1(
√

µn RM ) = 0

(12)

which yields (using Maple) for the lowest eigenvalue, µ1 =
2.731 (with Rm = 0.8 and RM = 2.8).

For the vorticity in eq. (5) we get

ω(r, t) =
∑

n
dn µn

[
J0(

√
µnr)

− J1(
√

µn Rm)

Y1(
√

µn Rm)
J0(

√
µnr)

]
e−µnνt . (13)

For the square and triangular domains there are to our
knowledge no explicit expressions available.
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Abstract

Swimming in flexible-bodied animals like fish is characterised by a travelling wave passing along the spinal chord of the body. Symmetric
transverse undulations of the body generate thrust and propel the fish forward. Turns are effected by generating an asymmetric transverse
movement of the fish body, frequently as a C-shaped bend. Typical fish swimming speeds allow for simplifying assumptions of incompressible
and inviscid flow. The objective of the current work is to use existing theoretical models developed for forward swimming, to analyse fish turns.
Lighthill’s classical elongated-body theory for fish swimming forms the fundamental basis for the 3D flow model and ‘recoil’ correction concept
implemented here. In the methods developed here, transverse motion of a thin ‘waving’ plate is prescribed by a displacement signal acting along
the midline, for finite time to. Lighthill’s approach to calculate the rigid-body motion or ‘recoil’ correction is implemented to ensure zero net force
and moments act on the body. Accordingly, angular and transverse motion are computed and final orientation of the plate after the manoeuvre
is calculated. A 3D boundary-value algorithm has been developed using a vortex lattice method. The essential methodology, modifications for
turning and comparisons with the analytical methods in the small and large aspect ratio limits are presented.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 47.63.M-; 47.15.ki; 47.11.Hj

Keywords: Swimming; Flexible-body motion; Manoeuvres; Vortex methods

1. Introduction

Fish are a typical example of flexible bodies swimming
in an inviscid flow (Reynolds numbers > 105). Most fish
swim in an aquatic environment that practically eliminates
the effects of gravity. They have evolved different forms of
swimming depending upon several factors, such as habitat and
feeding habits. Gray’s [1] pioneering experiments helped to
characterise fish swimming in terms of a wave of muscular
contraction passing down the length of the body. Symmetric
transverse undulations of the body generate thrust and propel
the fish forward. However, fish rarely swim in straight lines at
constant speeds. More often, they tend to drift or swim slowly,
occasionally indulging in rapid turns or a fast start in order to
catch prey or escape from a predator. The objective of this paper
is to examine the hydrodynamics of flexible bodied swimmers
to understand the turning mechanics.

∗ Corresponding address: DAMTP, University of Cambridge, CMS,
Wilberforce Road, CB3 0WA Cambridge, United Kingdom. Tel.: +44 (0)
1223760417.

E-mail address: kiran.singh@damtp.cam.ac.uk (K. Singh).

Lighthill [2] was the first to apply the methods of slender-
body theory to an undulating body swimming in an inviscid
fluid medium. Wu [3] modified the methods of thin airfoil
theory to analyse the motion of a waving 2D plate. Both these
methods allow for calculations of thrust, side force and yaw
moment. Lighthill’s theory is most likely to be applicable to
long slender eel-like fish without prominent body-fins and a
gradual taper in dimensions to the caudal fin. These theories
have been further extended to account for body-taper at the
caudal-peduncle and fin protrusions [4], time-varying forward
speeds [5] and large amplitude motion [6]. Comparison of these
methods is often done with numerical methods. Cheng et al. [7]
first developed the vortex lattice method for rectangular,
infinitely thin waving plates. Hill and Pedley [8,9] extended
the method to examine large amplitude forward swimming. The
full panel method for fish models of realistic thickness has been
developed extensively by the Triantafyllou group at MIT [10,
11].

Significantly less attention, experimental or theoretical, has
been devoted to studying turns however. Gray’s investigations
did include observations of turning fish [12]. Through

0167-2789/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.002
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time-sequence photographs, he was able to show the body-
flexure involved in performing turns. In general however, most
observations on manoeuvring fish have been on starts from
rest [13]. Webb [14] recently examined turns in trout and
bass to measure their turning radius and dependence on speed
and acceleration. Theoretically, Weihs [15] applied the large
amplitude version of Lighthill’s theory [6] to model a turn,
using Gray’s experimental observations [12]. Although fins
are important for turning in many species, they introduce
complexities that Lighthill’s theory of an undulating body does
not account for. Recently Wolfgang et al. [10] qualitatively
compared the flow field from PIV for a Giant Danio (Danio
Malabaricus) performing a C-turn with their flow computations
from an unsteady 3D numerical panel method. Other studies
on manoeuvring swimmers have typically used methods based
on linear control theory [16–18]. The key problem with large
amplitude turns lies in the complex coupled interaction of
the active bending body with the fluid, and in particular
interaction with the vortex wake. Furthermore, the internal
dynamics, both active muscle mechanics and passive visco-
elastic deformations, depend on the inertial and hydrodynamic
forces.

The essential 2D and 3D methods developed by Wu and
Lighthill, respectively, have formed the basis from which
the turning models were developed. Here we analyse how
simple rectangular, thin, flexible-body swimmers manoeuvre.
A numerical boundary value method using the 3D vortex
lattice approach was developed to compare the validity and
applicability of the theoretical methods, using a variation of
the straight swimming techniques. The asymmetric manoeuvre
is prescribed as a deflection about of the midline and
the rigid-body motion or ‘recoil correction’ parameters are
computed based on the inertial and hydrodynamic forces and
moments. The straight swimming methods are summarised in
Section 2 and the turning methods and corresponding results
are presented in Section 3.

2. Forward swimming

This section examines the methodologies employed for
analysing forward swimming in undulating bodies and
compares some results from the analytical and numerical vortex
methods.

2.1. Analytical swimming models

The linear swimming models assume the flexible-body
swims at constant forward speed such that the thrust
force balances fluid viscous resistance. Reynolds number is
considered to be high enough (∼>105) for viscous effects to be
confined to the boundary layer. Equations are solved in a body
frame of reference with the fluid moving at velocity U∞ along
the x direction (from head to tail). For both analytical models,
the fish is represented by an undulating midline with prescribed
mass distribution. In this paper, Lighthill’s 3D ‘elongated-body’
theory is examined briefly [2]. The 2D ‘waving plate’ method
developed by Wu [3] will not be discussed here although

results from this theory will be compared with those from the
numerical methods.

Lighthill’s elongated-body theory: This theory assumes
transverse-body dimensions and deflections are an order of
magnitude smaller than the body length and there exists a
gradual variation in cross-section profile. The body has a
stretched-straight configuration such that no resultant normal
force acts at any point along the body. It executes transverse
motion hz(x, t) along the perpendicular z direction.

Slender-body theory describes flow around the body to be a
linear combination of the ambient steady flow and perturbations
in the fluid flow induced by body deflections. The transverse
velocity is given by,

v(x, t) = ∂hz

∂t
+ U∞

∂hz

∂x
(1)

relative to the free-stream. This imparts a momentum
ρ A(x)v(x, t) per unit length of the body, where m(x) = ρ A(x)

is the added mass per unit body length. In Lighthill’s model
m(x) is approximately the mass of the circular cylinder of water
Cx of diameter equal to the depth of the body at cross-section
Sx , while moving in the transverse z direction.

The transverse force per unit length is now given by,

L(x, t) = −ρ

(
∂

∂t
+ U∞

∂

∂x

)
(v(x, t)A(x)), (2)

whose integral along the length of the fish must balance the
rate of change of lateral momentum. Similarly the yaw moment
about the spanwise axis must balance the rate of change of
angular momentum. This forms the basis for Lighthill’s ‘recoil
correction’ principle, which requires that for a prescribed
backbone displacement, an imbalance in force and moment can
be corrected with a recoil translation and rotation about the
centre of mass. This is the basic concept used to analyse turning
and is examined in more detail in Section 3.

An extension of ‘elongated-body’ theory for large amplitude
motion assumes that the body is inextensible, with the
independent Lagrangian variable s indicating position along the
body from nose (s = 0) to tail (s = 1). The inextensibility
condition is represented by,

(
∂hx

∂s

)2

+
(

∂hz

∂s

)2

= 1. (3)

Spatial integration of Eq. (3) gives hx (s, t). For small amplitude
motion, x and s are interchangeable.

2.2. Numerical panel methods

Current computational capabilities now permit numerical
solutions to fish swimming problems. These may then be
compared with the analytical methods. Cheng et al. [7]
considered an infinitesimally thin waving plate modelled as a
network of rectangular vortex rings. The wake was modelled as
a spanwise row of rings shed at each time step so as to satisfy
the Kutta condition. Hill [9] extended Cheng’s method for large
amplitudes. (For details on vortex methods see [19].)
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(a) Lift coefficient: CL . (b) Moment coefficient: CM .

Fig. 1. Small amplitude pitch–heave motion of 2D flat plate, heave leading pitch by π/2.

The essential problem is to calculate the flow field generated
by a prescribed displacement, hz(x, t) of the spinal chord of the
fish swimming in a background flow (Q∞). The boundary value
problem [19] examines the flow due to a body, SB , moving in
a volume V in an irrotational, incompressible fluid bounded at
infinity by a surface, S∞. Viscous effects are confined to the
surface, SW , which is the wake shed at vorticity shedding edges
subject to the Kutta condition. The continuity condition in an
irrotational fluid requires the perturbation velocity potential,
φ, to satisfy the Laplace equation, and singularity solutions
are sought to represent this flow. Thus the body is discretised
into finite elements or ‘panels’ which are represented by a
distribution of singular elements. Discrete vortices form the
simplest singularity solution in 2D. The corollary in 3D are
quadrilateral rings constructed from a lattice of vortex lines.

Body and wake vorticity are calculated by applying the
condition of zero normal relative velocity and prescribed body
position at each panel. The Kutta condition is applied at the
trailing edge. Green’s identity is used to solve the Laplace
equation in terms of vortex ring circulation strength. In integral
form this is given by the Biot–Savart law, which prescribes the
velocity induced at a position r with respect to a closed vortex
filament, C , of circulation Γ to be,

qind = ∇φ = Γ
4π

∫

C

(
dl × r

r3

)
. (4)

The normal velocity boundary condition applied at the
collocation point of each body panel,

(qind − Q∞) · n = 0, (5)

gives a system of linear equations. Eqs. (4) and (5) are solved
for the instantaneous circulation strength of each vortex ring.
The unsteady Bernoulli equation is then applied to compute
the differential pressure across the body due to the full velocity
potential, Φ = φ + φ∞,

∆P = −ρ

(
1
2
∇Φ · ∇Φ + ∂Φ

∂t

)
, (6)

where φ∞ is the velocity potential function for the background
flow, Q∞. The pressure may be integrated spatially to solve for
thrust, side force and yaw moment.

2.3. Results

This section compares results from the theoretical and
numerical methods developed for forward swimming, which
give an estimate of the accuracy of the numerical algorithms.
The variables in these computations are non-dimensionalised
with respect to body swimming parameters. The dimensional
scales are body length l̄, steady swimming speed Ū , time t̄ and
fluid density ρ̄.

2D model-small amplitude pitch–heave: In these results, Wu’s
waving plate model is restricted to two degrees of freedom,
heave and pitch (phase difference of −π/2). The plate is
allowed to move at speed Uo and flap about its midchord,
xcg = 0.5. Fig. 1 plots the side force and moment computed
for one time period. The results suggest the numerical panel
method agrees well for small amplitude pitch and heave.

3D model-large amplitude swimming: The results in this section
examine the role of undulations on the lift generated by a
swimmer. The transverse displacement of the waving plate is
given by the waveform,

hz(s, t) = R
(
[A + B(s − scg)]ei(ωt−ks)

)
. (7)

For small enough amplitudes s is the same as x . A wavenumber
range of −3 to 5 is considered. In Fig. 2 (a) results for side force
from Wu’s 2D model are compared with the large aspect ratio
(20) 3D vortex lattice method for a heaving (A = 0.1, B = 0)

and a pitching (A = 0, B = 0.1) swimmer. The general trends
agree between analytical and numerical models, although at
k = 5, numerics differ from the analytical predictions, reasons
for which are not apparent at this point. In Fig. 2(b) the small
aspect ratio (0.5) numerical swimming model is compared with
the results by Lighthill. The waveforms are the same as for
the 2D case for heave and pitch swimming. For this case, the
maximum side force generated is predicted to be less than
from the analytical model. This is to be expected as Lighthill’s
method does not account for the shed wake. For increasingly
positive wavenumber, side-force predictions asymptote to zero
for both.
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(a) 2D lift: CL . (b) 3D lift: CL .

Fig. 2. Side force per unit span vs. wavenumber for steady swimming: (a) 2D and (b) Small aspect ratio 3D waving plate in heave (upper two curves) and pitch
(lower two curves) flexible swimming. (Analytical results: dash curves, numerical results: solid curves).

3. Turning manoeuvres

A model based on Lighthill’s method modified for turns
is presented in this section. The fish is represented as a thin
rectangular plate with constant mass per unit body length, mb.
The motion is assumed to be such that while initially gliding
along at speed U∞, it executes an asymmetric manoeuvre given
by a prescribed function hz(x, t).The initially unknown recoil
parameters (side translation, R(t) and yaw rotation, Θ(t)) are
computed at the centre of mass, from the spatial integral of
the inertial and hydrodynamic force and yaw moment. Thus
the actual trajectory is worked out by including the rigid-body
or recoil terms. The turning methodology is developed here
for the Lighthill model, although the results presented include
comparisons between the modified 2D Wu and 3D Lighthill
methods with the numerical vortex lattice method. Similarly,
the recoil approach is applied to the 3D numerical method
developed in Section 2.2. Here the recoil parameters are solved
instantaneously from the force and moment balance equations,
using Newton’s iterative root-finding technique.

3.1. 3D turns: Modified lighthill theory

The theory presented in Section 2.1 is modified to compute
the instantaneous trajectory in response to a prescribed
asymmetric manoeuvre for a swimming rectangular plate of
finite span. The basic assumptions remain the same and
similar terminology applies except where specified. Small
perturbations are assumed, thus the independent spatial variable
of choice is the x coordinate. Transverse deflection hz(x, t)
is specified as a linear combination of the prescribed function
h̄z(x, t) = f (x)g(t) and recoil variables R(t),Θ(t) as,

hz(x, t) = h̄z(x, t) + R(t) + (x − xcg)Θ(t), (8)

where xcg is the position of the centre of mass of the body. The
linear and angular momentum conservation equations are,
∫ 1

0

(
mb

∂2hz

∂t2 +
(

∂

∂t
+ U∞

∂

∂x

)
mv

)
dx = 0, (9)

∫ 1

0
(x − xcg)

(
mb

∂2hz

∂t2 +
(

∂

∂t
+ U∞

∂

∂x

)
mv

)
dx = 0 (10)

where v is given by Eq. (1) and m = ρ A(x) is the added
mass per unit length of the body. For a prescribed function
representing the transverse manoeuvre, a pair of second-order
differential equations in time are obtained. The coefficients
depend on body inertia and added mass, spanwise distribution
of mass and the transverse deflection function, f (x). Eqs.
(9) and (10) may be spatially integrated depending upon the
body profile and mass distribution to yield a pair of second-
order ODES for the time-dependent recoil parameters R,Θ .
Solutions of these differential equations give us the actual
trajectory of the body performing a prescribed manoeuvre,
subject to the coupled inertial-hydrodynamic model. Once
again, note that Lighthill’s model does not account for the wake
shed off the trailing edge (or the caudal fin).

3.2. Results

Results for prescribed transverse motion from Lighthill’s
model discussed in Section 3.1 as modified for turning as well
as the modified 2D Wu method (not developed in this paper) are
compared with numerical vortex methods. The input function,
h̄z(x, t) = f (x)g(t) is specified such that the body performs a
C-bend for a time, to, given by,

f (x) = (x − xcg)
2 (11)

g(t) = (1 − cos(2π t))
8

, 0 < t < to

= 0, t > to. (12)

2D: Wu vs. numerics: Fig. 3 compares recoil parameters
for 2D Wu method and large aspect ratio (AR = 20) 3D
numerical methods. Recoil predictions agree quite well for
this simplified turn problem. However, a comparison of the
force and moment contributions indicates that the pressure
distributions differ between analytical and numerical solutions.
Moment predictions agree reasonably well, but the side-force
predictions between the 3D large aspect ratio numerics and
analytical model differ in phase, which is possibly due to the
wake shed at the trailing edge. The planar wake assumption as
applied in the numerical models (no wake rollup) may need to
be revisited.
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(a) Recoil parameters: R, Θ . (b) Side force, yaw moment: CL , CM .

Fig. 3. Recoil parameters and force and moment comparisons for 2D Turns. Analytical calculations are in red, numerics in blue (Analytical calculations are the
solid and dashed curves, numerics are shown with symbols). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

(a) Recoil parameters: R, Θ . (b) Side force, yaw moment : CL , CM .

Fig. 4. Recoil parameters and force and moment comparisons for 3D Turns. Analytical Lighthill model calculations are the solid and dashed curves, 3D numerics
are given by symbols (CL -dashed curves, CM -solid curves).

3D: Lighthill vs numerics: Fig. 4 compares results for the
3D vortex method with Lighthill’s approach for the same
transverse displacement function. Here, a small aspect ratio
plate is considered (AR = 0.2). Translational recoil agrees
fairly well but angular recoil computations are off by a
factor of almost 2. Lighthill’s prediction of hydrodynamic
pressure distribution around the body differs considerably from
the numerical computations. This presumably explains the
difference between analytical and computational side force and
moment and therefore the higher recoil values predicted by
Lighthill. Lighthill’s theory ignores the shed wake while the
discrete vortex method explicitly includes the wake through the
Kutta condition at the trailing edge.

4. Future work

The research developed here extends the forward flexible-
body swimming models to analyse turning manoeuvres
for rectangular waving plates. The results suggest that for
these simplified geometries, the modified Lighthill elongated-
body method overpredicts the hydrodynamic side force and

corresponding yaw moments. As a result the actual turning
angles are expected to be lower than predicted by Lighthill.
The subsequent steps to this work include extension of the
3D numerical methods to include realistic body profiles,
representative body thickness, internal muscle dynamics and
fluid viscous effects. These will be implemented by modifying
the discretisation module to include various planforms. Body
thickness will be included through a source-doublet panel
method. The internal structural dynamics of the fish will be
modelled initially using Euler’s beam theory as implemented
by Cheng et al. and Hill and Pedley [20,8,9]. These studies
will initially be conducted for fish manoeuvres that involve
swimming turns. They will be extended to model manoeuvres
from rest, like C and S starts. Comparisons of these studies
will be made with the analytical methods discussed here to
understand the extent of their applicability.
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Abstract

Low Reynolds number flows are typically described by the equations of creeping motion, where viscous forces are dominant. We illustrate
using particle image velocimetry (PIV) an example of small-scale boundary driven cavity flows, where forcing relies on viscous mechanisms at
the boundary but resulting steady flow patterns are inviscid. Namely, we have investigated acoustic streaming flows inside an elastic spherical
cavity. Here, the inviscid equations of fluid motion are not used as an approximation, but rather velocity fields independent of viscosity come as a
result from the general solution of the creeping motion equations solved in the region interior to a sphere.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Low Reynolds number flows characterize flow phenomena
where fluid velocities are very slow, viscosities are high or
alternatively length scales of the flow are very small (e.g. mi-
crofluidics [1]), such that inertial forces are small compared to
viscous forces. For incompressible Newtonian fluids, in the
limit of vanishing Reynolds numbers, where Re = ρU L/µ #
1 (U is a characteristic fluid speed, L a characteristic length
scale; µ and ρ the fluid’s dynamic viscosity and density, re-
spectively), the equations of creeping motion reduce to [2]

∇ p − µ∇2u = 0, (1)
∇ · u = 0, (2)

where inertial and transient terms may be neglected and the
above equations describe, respectively, the conservation of mo-
mentum and mass (i.e. Stokes flow). Here, u is the velocity field
and p the pressure. In three-dimensional (3D) flows, the com-
ponent velocities, u = (u, v, w)T , may be related to a scalar
stream function ψ [3,4]:

u = ∇ψ × n = ∇ × Ψ , (3)

where Ψ = ψn is the stream function vector and n the unit

∗ Corresponding author.
E-mail address: sznitman@ifd.mavt.ethz.ch (J. Sznitman).

normal vector perpendicular to the plane of ∇ψ and u. For pla-
nar two-dimensional (2D) flows, Eq. (3) reduces effectively to a
single stream function ψ where u = ∂ψ/∂y and v = −∂ψ/∂x .
Under creeping motion, it is readily shown that Ψ satisfies the
biharmonic equation [5]:

∇4Ψ = 0, (4)

where ∇4Ψ = −∇2ω, and ω = ∇ × u = −∇2Ψ defines the
vorticity vector field. Neither the fourth-order differential equa-
tion for Ψ nor its boundary conditions, which govern the spatial
distribution of Ψ , contain Re such that streamlines are indepen-
dent of viscosity µ [6].

Classic examples of such low Reynolds number flow
phenomena are cavity flows which may illustrate slow internal
recirculation induced by the translation of one or more of
the containing walls [7,8], or driven by a shear flow over
the cavity [9,10]. Here, we illustrate using flow visualization
techniques (i.e. PIV), an original example of such low
Reynolds number cavity flows, where forcing relies on viscous
mechanisms at a solid–fluid interface, but resulting flow
patterns are steady and inviscid. Namely, we have investigated
acoustic streaming flows generated inside thin elastic spherical
cavities. We demonstrate analytically that the resulting velocity
fields are independent of viscosity as they may be captured
by spherical harmonic functions which arise from the general

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.020
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solution of the creeping motion Eqs. (1) and (2) in spherical
coordinates.

2. Solution to creeping motion inside a sphere

Following Lamb [11] and Happel and Brenner [2], the
general solution to Eqs. (1) and (2) in spherical coordinates
(r, θ, φ) may be given in terms of the velocity field:

u =
∞∑

n=1

[

∇ ×
(
rχn

)
+ ∇Φn + (n + 3) |r |2 ∇ pn − nr pn

2µ(n + 1)(2n + 3)

]

, (5)

with the assumption of finite velocities at the origin (r = 0), and
where the scalar functions χn , Φn , and pn are solid spherical
harmonics defined as

χn = 1
n(n + 1)

( r
a

)n
Zm

n (a, θ, φ),

Φn = a
2n

( r
a

)n [
(n + 1)Xm

n (a, θ, φ) − Y m
n (a, θ, φ)

]
,

pn = µ(2n + 3)

na

( r
a

)n

×
[
Y m

n (a, θ, φ) − (n − 1)Xm
n (a, θ, φ)

]
.

(6)

The above formulation makes use of the surface harmonics
Zm

n (r, θ, φ), Y m
n (r, θ, φ), and Xm

n (r, θ, φ) of degree m and order
n. Each harmonic function takes the form rn Pm

n (cos θ) eimφ ,
where Pm

n () are the associated Legendre functions.
The unknown scalar functions χn , Φn , and pn are determined

by matching the appropriate velocity and vorticity boundary
conditions at the surface of the sphere (r = a). These conditions
are described as follows:

un = 1
|r |

(
r · us

)∣∣∣∣
r=a

=
∞∑

n=1

Xm
n (a, θ, φ),

− |r | (∇ · us
)∣∣

r=a =
∞∑

n=1

Y m
n (a, θ, φ),

|r | ωn = r ·
(
∇ × us

)∣∣
r=a =

∞∑

n=1

Zm
n (a, θ, φ),

(7)

where the velocity vector us(θ, φ) describes the surface
velocity field at r = a and ωn is the vorticity component normal
to the surface. For the problem at hand, one may use the fact that
there is no normal velocity component, un = 0, at the surface
of the sphere, such that

Xm
n (a, θ, φ) ≡ 0. (8)

As a consequence, the full velocity field, u(r, θ, φ), in the
region interior to the sphere can be described in terms of
its surface normal vorticity, ωn , and any contribution of
source/sink distributions on the surface of the sphere resulting
from ∇ · us )= 0. By definition, u(r, θ, φ) is a solution of the
biharmonic Eq. (4) and furthermore, it follows from Eqs. (5)
and (6) that u(r, θ, φ) is independent of viscosity µ.

3. Acoustic streaming inside a thin elastic cavity

The propagation of sound waves in a fluid may lead to a bulk
non-periodic motion of the fluid. This nonlinear phenomenon

is called acoustic streaming [12] and is directly related to the
quadratic convective terms of the flow field. We have investi-
gated acoustic streaming flows generated at a solid–fluid inter-
face by a sound wave of angular frequency ω. Experimental
measurements of the resulting flow fields are based on parti-
cle image velocimetry (PIV) conducted inside millimeter-sized
thin elastic spherical cavities of characteristic diameter D =
2a. The streaming phenomenon relies on a thin viscous bound-
ary layer (Stokes layer) of thickness δ = (2µ/ρω)1/2 at the
solid wall, where the no-slip boundary condition applies, while
a steady-state solution independent of viscosity µ arises in the
bulk of the flow away from the wall (δ # D). Conceptually,
outside the boundary layer δ, the driving force behind acoustic
streaming is absorbed into the background hydrostatic pressure
p in the momentum Eq. (1) [13].

3.1. Experimental methods

The experimental apparatus consists of a test cell allowing
for optical access, enclosing a thin silicone elastomer film
(50 µm thickness, ρ = 1260 kg/m3), a loudspeaker and
an imaging system (Fig. 1). The bottom of the test cell is
connected to a graduated syringe such that spherical cavities
may be inflated by injecting air which distends the silicone
membrane. Typical cavities are generated at a 6 mm circular
orifice opening, by inflating ∼1.5–2 ml of air, resulting in a
spherical cap with a characteristic diameter of D ∼ 6.5–7 mm.

Depending on the excitation frequency, f = ω/2π , acous-
tic waves are generated using a piezoelectric loudspeaker
(3–20 kHz) or an electrostatic transducer (20–50 kHz) mounted
onto one of the test cell faces and connected to a signal genera-
tor which delivers a sinusoidal electrical waveform. The imag-
ing system consists of a progressive scan CCD camera with
15 Hz image acquisition rate and a resolution of 1008 × 1008
pixels triggered under computer control. The CCD camera is
fitted onto a microscope with a field of view of about 7×7 mm,
resulting in a spatial resolution of ∼6.9 µm. The laser sheet is
generated by a 150 mW diode laser making use of a light sheet
optic. Due to the lighting and flow conditions (driven flows
are typically #1 mm/s for the acoustic output power range), a
pulsed illumination is not required. Rather, consecutive images
with an exposure time of 1/15 s are recorded in a horizontal
plane cutting through the inflated membrane at approximately
maximum diameter. Since the elastomer film is not perfectly
transparent, scattering effects of the light sheet may be observed
close to the wall, perhaps compromising slightly PIV results in
close proximity to the membrane, while the bulk of the mea-
surement plane remains unaffected.

The syringe barrel is filled with air, seeded with oil droplets.
2D vector displacements are obtained with a custom PIV
algorithm based on cross-correlation pattern matching with
sub-pixel interpolation [14]. Typical measurements consist in
the acquisition of 100 consecutive frames and velocity vectors
obtained from independent image pairs are then time averaged
following an average correlation method [17].

3.2. Flow fields

For the range of frequencies investigated, several steady
streaming flows were observed (Fig. 2), with U # 1 mm/s
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Fig. 1. (a) Schematic of the experimental apparatus. (b) Top view of the measurement plane.

resulting in Re ≈ O(0.01–0.1). Streaming flows may
be categorized using the dimensionless parameter M =
D/2(ω/ν)1/2 , 1 [15], where ν is the kinematic viscosity.
M may be interpreted as the ratio of a body length scale to
a viscous length scale. For the cavity sizes and frequencies
investigated, M ≈ 120–450 and the resulting flows are
reproducible.

Generally, we observed a small degree of asymmetry
in several streaming flows generated. We suspect this may
result from the fact that the inflated elastic membranes are
not perfectly axisymmetric in nature. Indeed, this may be
a consequence of local differences in the tension present
in the membrane wall when inflated at the orifice opening.
Furthermore, in contrast to the solutions for the creeping motion
Eqs. (5)–(7), which are valid for the region interior to an
ideal sphere, the present cavities are, rather, truncated spheres
(i.e. spherical caps) illustrating at best axisymmetry along the
out-of-plane z-axis only. Therefore, we expect resulting flow
patterns to be influenced by such geometrical differences.

The simplest flow perhaps observed in the measurement
plane was encountered at M = 454 (Fig. 2, bottom row),
resembling the structure of a simple vortex flow (i.e. 2D
potential flow theory). To reconstruct analytically the 2D flow
measured in the plane from a 3D creeping flow solution in the
region interior to the sphere, we may consider the single surface
harmonic Z0

1(a, θ, φ). This boundary condition is equivalent to
applying in Eq. (7) a vorticity field, ωn = Ω cos θer , on the
surface of the sphere, where Ω is a constant and a radius of
unity is chosen (a = 1). Solving Eq. (5) in cartesian coordinates
yields a velocity field, u, of the form



u
v

w



 = Kr sin θ




− sin φ

cos φ

0



 = K




−y
x
0



 , (9)

where K is a constant. Physically, this 3D flow is analogous
to a “solid body rotation” of the sphere where the velocity
distribution is independent of z and holds directly in the

equatorial x–y plane (z = 0). The analytical flow field (Fig. 3)
bears a striking resemblance to the experimental measurement.

At M = 120, the resulting streaming flow in the equatorial
plane resembles qualitatively a spiraling counterclockwise
vortex flow with a source located approximately at the origin
(Fig. 2, top row). Analytically, the flow inside the cavity
may be constructed by superimposing a “solid body rotation”,
Z0

1(a, θ, φ), as described in Eq. (9), with a surface harmonic
Y 0

1 (a, θ, φ). This latter boundary condition is equivalent to
imposing a surface velocity, us = U0 sin θeθ , from Eq. (7),
where U0 is a constant. The resulting 3D velocity field is found
from Eqs. (5) and (6) and takes the form



u
v

w



 = U0




xz
yz

1 − 2(x2 + y2) − z2



 + K




−y
x
0



 , (10)

in cartesian coordinates. Note that in the equatorial plane (z =
0), u = v = 0 and only an out-of-plane w velocity component
persists. However, since the elastic cavity is a spherical cap,
as mentioned earlier, and thus not entirely axisymmetric, we
evaluate u at a small finite value z = ε, slightly off the
symmetrical plane. The resulting analytical velocity field, u
Eq. (10), captures qualitatively well the planar experimental
measurement at M = 120, with K/U0 = 0.01 (Fig. 4).

At M = 178, the planar flow is approximately axisymmetric
(Fig. 2, second row) and consists qualitatively of two distinct
regions: (i) a thin annular shaped region near the membrane
wall, separated from (ii) a central circular region with a
radially oriented flow. Fluid flows in the plane towards the
discernible ring, originating both from the center of the cavity
where it moves radially outwards, and from the outer wall
where it flows inwards. Analytically, the 3D flow inside the
cavity may be constructed by considering the surface harmonic
Y 0

2 (a, θ, φ), which is equivalent to imposing a surface velocity,
us = U0 cos θ sin θeθ , in Eq. (7). To capture the slight
rotational motion observed in the experimental planar flow
field, we superimpose again Z0

1(a, θ, φ) Eq. (9). The resulting
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Fig. 2. Acoustic streaming flows inside the elastic cavity. Left column: Time averaged PIV (scale in mm/s). Right column: Reconstructed streamlines. From top to
bottom: M = 134, 180, 306, 405, and 454.

3D velocity field is solved in cartesian coordinates from Eqs.
(5) and (6):




u
v

w



 = U0




−x(x2 + y2 + 3z2 − 1)/4
y(x2 + y2 + 3z2 − 1)/4
z(2x2 + 2y2 + z2 − 1)/2



 + K




−y
x
0



 . (11)

Here, we evaluate again u at z = ε. The resulting analytical
velocity field, u Eq. (11), resembles closely the planar flow at
M = 178, with K/U0 = −0.05 (Fig. 5).

At M = 306, the streamsurfaces form a nested family
of tori and a circle of elliptic fixed (stagnation) points lies
at the center of each of the four vortices (Fig. 2, third row).
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Fig. 2. (continued)

Fig. 3. Velocity field (left) and reconstructed streamlines (right) at z = 0 (K = −1) obtained from Eq. (9).

For this characteristic streaming flow, the streamline patterns
resemble closely internal circulation flows described for a
levitated drop in an acoustic field [15] or similarly for an

immersed drop in Stokes flow [16]. The measured planar flow
may be reconstructed by considering the boundary condition
∇ · us = Y 2

2 (a, θ, φ) = sin2 θ(2 cos2 φ − 1) in Eq. (7). This
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Fig. 4. Velocity field (left) and reconstructed streamlines (right) at z = 0.01 (K/U0 = 0.01) obtained from Eq. (10).

Fig. 5. Velocity field (left) and reconstructed streamlines (right) at z = 0.4 (K/U0 = −0.05) obtained from Eq. (11).

leads to the 3D velocity field:




u
v

w



 = U0




x(3x2 + 7y2 + 5z2 − 3)/2

−y(7x2 + 3y2 + 5z2 − 3)/2
−z(x − y)(x + y)



 . (12)

Evaluated at the equatorial plane (z = 0), the resulting analyti-
cal planar flow, u(x, y), captures closely the experimental flow
pattern (Fig. 6).

Finally at M = 405, the four vortices have now disappeared,
giving place to open streamlines in each quadrant of the plane
(Fig. 2, fourth row). The stagnation (saddle) point at r = 0 is
preserved and the poles remain saddle fixed points. This planar
flow may be captured by imposing the boundary condition
ωn = Z2

2(a, θ, φ) = sin2 θ(2 cos2 φ − 1)er in Eq. (7). Solving
Eqs. (5) and (6) leads to the 3D velocity field




u
v

w



 = K




−zy
−zx
2xy



 . (13)

Note again that u = v = 0 in the equatorial plane (z =
0), where only w persists. Hence, u is evaluated at z = ε,
slightly off the equatorial plane. The resulting analytical flow
field (Fig. 7) resembles closely the experimental measurement,
although here the orientation of the flow in the plane is slightly
altered with respect to Fig. 2 (fourth row). This difference may
perhaps result from the arbitrary location of the acoustic source
(i.e. loudspeaker/transducer) relative to the cavity.

4. Conclusions

We have illustrated, using PIV, an original example of low
Re boundary driven cavity flows: acoustic streaming inside
elastic spherical cavities. The generation of such flows relies
on viscous mechanisms at the solid–fluid boundary; in the bulk
of the fluid, however, velocity fields are steady and indepen-
dent of viscosity. Analytically, the measured planar flows may
be captured from the general solution of the creeping motion
equations inside a sphere. Inviscid 3D flow patterns are con-
structed from the superposition of surface harmonics, defining
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Fig. 6. Velocity field (left) and reconstructed streamlines (right) at z = 0 (U0 = 1) obtained from Eq. (12).

Fig. 7. Velocity field (left) and reconstructed streamlines (right) at z = 0.01 (K = 1) obtained from Eq. (13).

the flow boundary conditions on the surface of the sphere. The
inviscid equations of fluid motion are not used as an approxi-
mation here, but rather inviscid flow fields come as a result.
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