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General introduction

To the dear memory of Akiva Yaglom (06 March 1921-13 December 2007) and Robert Kraichnan (15 January 1928-26 February 2008)

The international conference Euler Equations: 250 Years On
(EE250) was held in Aussois, France, June 18-23, 2007, on an
initiative of the Centre National de la Recherche Scientifique,
under the patronage of the French Academy of Sciences,
the Berlin—Brandenburg Academy of Sciences, and the Swiss
Academy of Science’s Committee of the Leonhard Euler
Tercentenary, and the co-sponsorship of the International Union
of Theoretical and Applied Mechanics.

The Conference was organized by the Laboratoire Cassiopée
of the Observatoire de la Cote d’ Azur and the Wolfgang Doblin
Institute, Nice, with participation of the Jean-Victor Poncelet
Laboratory, Moscow.

Support of the Institut National Polytechnique and
the Université Joseph Fourier, Grenoble, of the Région
Rhdne—Alpes, and of the US National Science Foundation is
gratefully acknowledged.

We are very grateful to our colleagues of the EE250
Scientific Committee, listed at the Conference web site
http://www.oca.eu/etc7/EE250/, who helped with the organiza-
tion of the Conference and sometimes also with these Proceed-
ings.

We are also very grateful to the archivists of the French
Academy of Sciences and of the Berlin-Brandenburg Academy,
Florence Greffe and Wolfgang Knobloch, who have provided us
with important documents and manuscripts from Euler’s time.

Many persons have helped us in organizing this conference;
we are most grateful to Sébastien Bott, Hélene Frisch, Rafaela
Hillerbrand, Takeshi Matsumoto, Walter Pauls and Rose Pinto.
Fathi Namouni is thanked for having named the Conference.
The improvement of the scientific content of the Proceedings
owes much to Olivier Darrigol and Gleb K. Mikhailov and
to numerous anonymous referees. Many thanks are due also
to the scientific and production staff of the journal Physica D
and especially to Joceline Lega, Eline van Mourik and Gary
Anderton.

The EE250 conference, held on the occasion of the 250th
anniversary of the publication of Euler’s founding paper
of hydrodynamics ‘Principes généraux du mouvement des
fluides’, brought together about 95 invited senior researchers
and 45 selected young scientists from all over the world,
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representing various scientific communities. In loyalty to
Euler’s legacy, which embraces theory as well as applications,
the Conference covered a broad range of disciplines and
approaches. It provided a snapshot of the state-of-the-art in a
research field started in the eighteenth century and still thriving.

One of the outcomes of the EE250 conference is this
collection of papers, part of which are surveys written by
established experts whereas the rest cover active research
conducted by other participants of the Conference and in
particular by the younger generation. The Conference itself had
a number of presentations that have not led to papers in the
Proceedings and for which we refer the reader to the EE250 web
pages http://www.oca.eu/etc7/EE250/ that contain the detailed
program and slides of most presentations. We have not tried
to summarize the numerous discussion panels which were a
highlight of the Conference.

The articles are organized in seven sections corresponding to
different kinds of scientific outlooks on the Euler equations and
hydrodynamics.! To remain faithful to Euler’s vision of science,
we have avoided separating the more fundamental papers from
those devoted to applied science and engineering.

What follows is an overview of the organization and contents
of the Proceedings.

The volume starts with two of Euler’s founding papers
on hydrodynamics, ‘Principes généraux du mouvement des
fluides’ (written in 1755 and published in 1757) and ‘Principia
motus fluidorum’ (written in 1752 and published in 1761). Both
are here rendered in modern English. The former was written
in amazingly modern French, so that we decided on a faithful
translation (p. 1825); the latter uses not only Latin but a rather
heavy style which may have been easily understood 250 years
ago but whose literal translation would put some hardship on
the modern fluid dynamicist; hence we opted for a somewhat
modernized adaptation (p. 1840).

As is well known, Euler was an extremely prolific author. All
his publications are reproduced in the Opera omnia, undertaken

L At the beginning of each section the reader will find the papers having a
review character, followed by the other papers in alphabetic order.


http://dx.doi.org/10.1016/j.physd.2008.05.006
http://www.elsevier.com/locate/physd
http://www.oca.eu/etc7/EE250/
http://www.oca.eu/etc7/EE250/

xii Preface / Physica D 237 (2008) xi—xv

one century ago, in 1907, and published first by Teubner
(Leipzig/Berlin), then by Orell Fiissli (Ziirich) and now by
Birkhiuser (Basel). Scanned copies of most original papers
are available from the EULER ARCHIVE, at Dartmouth College
(http://www.math.dartmouth.edu/"euler). A guide to the Euler
bibliography, Euleriana, written by Gleb K. Mikhailov, is found
just after this General Introduction.

Next we have the modern scientific papers, beginning with
the historical perspective section. The paper of Darrigol &
Frisch (p. 1855)% shows how modern fluid dynamics was born
in the eighteenth century through the work of many important
figures, not only Euler, but also the Bernoullis and d’ Alembert.
A case study by Grimberg, Pauls & Frisch (p. 1878), based
on the d’Alembert paradox, gives evidence that quite a lot
was already understood before the availability of the modern
formulation in terms of partial differential equations. Euler
spent a quarter of a century living through peace and war in the
Berlin of Frederick the Great (Friedrich II), King of Prussia,
with whom he had increasingly strained relations. These
years come to life in the contributions of Eckert (p. 1870),
and Knobloch (p. 1887) who also demonstrate that Euler
was frequently involved in very practical matters, including
engineering problems. For lack of material we are unable to pay
similar attention to the societal context of Euler’s two Russian
periods, but this is somewhat alleviated by the Euleriana of
Mikhailov. Another historical contribution, regarding advanced
rocketry in the eighteenth century in India, was presented by
Narasimha.

Next come the many papers of the section devoted to
singularities and related questions, one of the most central
issues discussed at EE250 and among the most conspicuous
themes of this volume. The survey paper of Gibbon (p. 1894)
sets up the scene for the issue of occurrence or non-
occurrence, for incompressible three-dimensional Euler flow,
of spontaneous singularities appearing after a finite time (blow
up). More than 250 years after the Euler equations had been
written, it is still unknown if they always possess solutions
that stay smooth indefinitely when the initial data are smooth;
the available proofs of existence either are local in time or
establish global existence of weak solutions whose smoothness
is not guaranteed. In this section we also have the paper of
Constantin (p. 1926), who investigates the local geometry of the
Euler flow with an eye on the singularity problem, the paper of
Childress (p. 1921), who investigates conditions for explosive
vorticity growth, and various papers devoted to the numerical
investigation of singularities: Bustamante & Kerr (p. 1912),
Grafke et al. (p. 1932), Hou & Li (p. 1937), and Matsumoto,
Bec & Frisch (p. 1951). We note that for analytic initial data
there is now strong numerical evidence — and even a proof in
special cases as shown by Li & Sinai (p. 1945) — of the existence
of singularities in the complex space domain in both Eulerian
and Lagrangian coordinates. However for real singularities
and finite-time blow up, the current numerical results are still

2 Presentations at EE250 or papers in these Proceedings are referenced by
the last name(s) of their author(s), followed by the relevant page number where
the paper is to be found in these Proceedings.

pointing in different directions. There is also a well-known class
of non-smooth Euler flows, the vortex sheets, for which the
equivalent of the blow up issue is whether or not the shape of the
sheet, governed by the Birkhoff—Rott equation, remains regular
when sufficient regularity is assumed initially. The analyticity
of solutions of the Birkhoff-Rott equation was discussed by
Wu.3 The structure of such solutions implies very pathological
behavior of the interface, but Bardos, Linshitz & Titi (p. 1905)
show there exists a non-dissipative «-regularization which
ensures indefinite smoothness.

Actually, the topic of Euler blow up is intimately connected
with the problem of singularities in the Navier—Stokes
equations, which is one of the famous Millennium Prize
problems of the Clay Mathematics Institute. During the EE250
conference an informal poll among the participants on the
problem of finite-time singularities was conducted by C. Bardos
and E.S. Titi. The question was: how confident are you,
on a 0-10 scale, that solutions to the Euler (Navier—Stokes)
equations can develop finite-time singularities? The results are
given in the following table.

Response o 1 2 3 4 5 6 7 8 9 10 Tot
# of votes 8§ 2 2 4 2 9 0 3 3 3 7 43
(Euler)

# of votes 20 8 4 0 1 5 0 1 0 0 2 41
(N.-S.)
Highest peaks are marked in bold.

Next comes the section on weak solutions, high Reynolds
numbers and statistical mechanics, in which turbulent
or random solutions of the hydrodynamical equations are
considered. A particularly important topic concerns weak
dissipative solutions of the Euler equation; in spite of its
“singular” nature it is not necessarily related to blow up and fits
more naturally here because of strong connections with the fact
that turbulence remains dissipative even at infinite Reynolds
numbers. Actually the weak solution approach takes globally
non-smooth, everywhere densely singular, Holder continuous
solutions to the Euler equation for models of the infinitely fine
structure of turbulent flow at infinite Reynolds numbers. In the
present volume the state-of-the-art of this approach, which has
its origins in the 1940s work of Andrei Kolmogorov and Lars
Onsager pertaining to the classics of turbulence research, is
summarized in the survey of Eyink (p. 1956). Such work, which
reveals the hidden dissipative nature of the Euler equation, is
central to the current rebirth of interest in the Euler equation.
From a different point of view the relation between the inviscid
limit and totally inviscid behavior is studied numerically by
Ohkitani (p. 2020).

The weaker and broader the notion of solution is, the easier
it lends itself to mathematically rigorous investigation, but
lack of immediate relation to physics leaves this investigation
vulnerable to paradoxes. Eyink points out that one of the
open problems is how to constrain weak solutions to the

3 This work and many mathematical aspects of the Euler equations are
discussed in a review paper by C. Bardos and E.S. Titi [1].
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Euler equations, with appropriate admissibility conditions, so
that uniqueness does not fail. Such is the case with the
weak solutions obtained by adding to the 2D Euler equation
very rapidly fluctuating forces that, smeared by smooth test
functions, vanish in a suitable limit while still creating energy
[2,3]. If this kind of weak solution is permitted, a fluid at rest
may suddenly develop motion and then come to rest again
without any apparent forcing or dissipation. The contribution of
Bronzi, Lopes Filho & Nussenzveig Lopes (p. 1989) provides
a numerical model of this phenomenon which turns out to be
connected with forcing acting in a counter-entropic way at
infinitesimal scales. Another important notion of weak solution,
the Shnirelman—Brenier generalized flow [4,5], is still weaker
than solutions considered by Eyink. Brenier (p. 1982) reviews
paradoxes of the generalized flow but at the same time he shows
that it still may have physical significance of a different kind,
being similar to stratified geophysical flows in the hydrostatic
approximation. Here it is of interest to point out that C. De
Lellis and L. Székelyhidi proved, using differential inclusions,
the non-uniqueness of the solution in any space dimension for
a class of dissipative weak solutions with bounded velocity and
pressure [6].

A different kind of connection between ideal Euler dynamics
and dissipative dynamics has been discovered recently by
Cichowlas et al. [7] who showed that the 3D Euler equations
with a Galerkin truncation, chosen such that a finite but very
large number of Fourier modes survive, behaves at large and
intermediate scales just as the Navier—Stokes equations. Indeed
small-scale (high-wavenumber) modes thermalize and provide
a suitable eddy viscosity for the larger scales. Krstulovic &
Brachet (p. 2015) carry this interesting theme further (see also
Ref. [8]).

Another topic is that of the statistical mechanics of 2D
ideal turbulence, a subject pioneered by Onsager [9]. Bouchet
(p. 1976) investigates several variational formulations of this
theory, while Capel & Pasmanter (p. 1993) and Chavanis
(p- 1998) use vorticity instead of the Casimir functions to
constrain and leverage flows. Another connection between
statistical mechanics and 2D turbulence is provided by the
recent work on conformal turbulence, which was presented
by Falkovich [10]. Gallavotti reviewed dynamical-systems
perspectives in fluid turbulence and non-equilibrium statistical
mechanics and, in particular, the “chaotic hypothesis” and its
predictions for fluid experiments [11].

The most natural way to connect statistical mechanics
and hydrodynamics is of course to start from Kinetic
(molecular) theory. The mathematical foundations of the
passage from the Boltzmann equation to the Euler equation
are examined by Saint-Raymond (p. 2028). Boltzmann models
with discrete velocities, such as discussed by Chen & Shan
(p- 2003), can now give very good practical approximations to
hydrodynamical equations. A discussion session was devoted
to the use of kinetic approaches in computing high Reynolds-
number flow.

High-Reynolds number 3D fully developed turbulence
is discussed in a number of papers, mostly presented in
separate sections on Lagrangian aspects or on the influence

of boundaries (see below). Here we find papers discussing
the issues of universality and intermittency: Biferale, Lanotte
& Toschi (p. 1969) and Ching, Guo & Cheng (p. 2009). A
major breakthrough on intermittency was initiated by the so-
called Kraichnan model of passive scalar intermittency [12,13].
The subject was reviewed at the Conference in the lecture of
Lebedev.

The section on Lagrangian description and mixing gathers
papers in which one either follows idealized fluid particles
— the Lagrangian approach pioneered by Euler near the end
of his ‘Principes généraux du mouvement des fluides’ — or
tracks real particles, which tend to lag behind fluid particles
because of inertia. There is a strong renewal of interest in
Lagrangian approaches: the Lagrangian description connects
with the important problems of mixing and dispersion and new
experimental developments, involving for example ultra-fast
cameras, are about to provide us with a wealth of Lagrangian
information (this was reviewed by Mordant). Inertial particles
arise in a host of practical problems from PIV flow imaging to
spreading of pollutants in water and air. A discussion session
was devoted to the various Lagrangian problems.

Theoretical aspects of inertial particles are discussed in the
review paper of Bec et al. (p. 2037); experimental aspects are
presented by Volk et al. (p. 2084) and Xu & Bodenschatz
(p- 2095). Lagrangian aspects of vortex flow are discussed
by Branicki (p. 2056) and by Wilczek, Kamps & Friedrich
(p- 2090). Boatto & Simé (p. 2051) and Sakajo & Yagasaki
(p- 2078) discuss problems with point vortices. We also have
mathematical papers in which a Lagrangian approach plays
a role by Kambe (p. 2067) and Khesin & Lee (p. 2072).
Last, but not least, there has been much discussion at the
Conference of the magnetohydrodynamic dynamo problem,*
for example in the presentation of Cardin, that of Pinton
and also in a special discussion session with strong emphasis
on the recent breakthrough made on experimental turbulent
dynamos and magnetic field reversals (see, e.g. Refs. [14,
15]). Finally there is a paper by Burattini et al. (p. 2062),
dealing with magnetohydrodynamics in the infinite-magnetic-
diffusivity limit in the presence of a background magnetic
field, which results in an increasing anisotropy of the decaying
turbulence.

We move now to the section on geophysical and
astrophysical fluid dynamics. Arguably, studies of the Euler
equations are also motivated by the fact that they proved to
be of crucial relevance to nature and technology. This was
of course something Euler was aware of, as revealed by his
studies of naval and fluvial hydrodynamics. Busse’s review
(p- 2101) considers rotating fluid flow characteristic of stellar
and planetary interiors; Fedele (p. 2127) and the first part of
Ghil, Chekroun & Simonnet (p. 2111) deal with oceanic flow;
the second part of Ghil, Chekroun & Simonnet introduces one
of the hottest topics of current science, climate dynamics, in
the setting of the Euler equations and the wider context of

4 The dynamo problem has a loose connection to the Lagrangian structure
insofar as, at zero magnetic diffusivity, a transported magnetic field behaves as
a pair of infinitesimally close fluid particles.
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nonlinear dynamics. A separate note of Hillerbrand & Ghil
(p. 2132) raises ethical issues of climate research; if ethics
do not belong to the physicist’s perspective proper, they ought
to be part of the world outlook of any conscious scientist.
Gravity currents, within the shallow water approximations, are
discussed by Zemach & Ungarish (p. 2162).

A few decades after Euler’s work, Gaspard Monge [16]
posed the following problem: how should one optimally move
material from one place to another, knowing only its initial
and final spatial distributions, the cost being a prescribed
function of the distance travelled by ‘molecules’ of material.
This optimal transportation problem started being deeply
understood only 160 years later when Leonid Kantorovich [17]
showed that Monge’s query was an instance of the linear-
programming problem and developed for it a theory that
found numerous practical applications. Some of the current
developments of this very active area of research were triggered
by Brenier’s observation that optimal transportation can be
applied to the variational formulation of the incompressible
Euler equation [18]. More recently, cosmological applications
have been discovered, which, from the infinite-dimensional
geometric viewpoint, may be seen as the opposite of the
Euler dynamics of incompressible fluid; indeed dark matter
on scales of millions of parsecs is infinitely compressible.’
Nusser (p. 2158) discusses the current state of the variational
formulation of cosmological reconstruction introduced by Jim
Peebles [19] in which the goal is to reconstruct the past
dynamical history of the Universe from the present observable
large-scale structures of galaxies and clusters. Mohayaee &
Sobolevskii (p. 2145) and Lavaux (p. 2139) show how optimal
transportation, coupled with modern optimization algorithms
can be used very efficiently for cosmological reconstruction
on the largest scales where the dynamics are governed by
the Zel’dovich approximation [20], closely related to the 3D
Burgers equation. Here we mention that Nguyen van yen
et al. (p. 2151) develop a new wavelet filtering method which
they test on the 1D Burgers equation and which they plan to
extend to higher dimensions.

The Conference also had a general discussion on
climate issues (in the context of the recent report of
the Intergovernmental Panel on Climate Change [21]) and
presentations by Shaw on cloud physics and inertial particles,
and by Nordlund on solar hydrodynamics.

The final section on boundaries and vortical structures
gathers all the papers in which boundaries or vortices (other
than point vortices) play a decisive role. Euler himself definitely
did not ignore boundaries. For example, he was the first to
formulate the correct boundary condition at a wall for ideal
flow. However, one of his major achievements was also to free
fluid dynamics from the earlier paradigm, totally dominated
by confining vessels and mostly unable to think of pressure
as generating internal forces also. For reasons of technical
convenience the paradigm of homogeneous turbulence free of

5 Only a few presentations and papers at EE250 dealt with compressible flow,
a very active area of research, also pioneered by Euler, and which would have
deserved its own conference.

boundaries (or having just “periodic boundary conditions’)
has perhaps been excessively popular with theoreticians, but a
more balanced view has emerged in recent years. Of course
engineers never stopped studying boundary effects. As for
vortical structures, they are discussed for the first time in Euler’s
French memoir (p. 1825), after having been missed in the Latin
memoir (p. 1840). We also mention that, in the course of the
discussion of singularities, Constantin invited us to look at local
geometric structure of the flow.

This section opens with a joint review of Procaccia &
Sreenivasan (p. 2167), dealing with such topics as anisotropic
and wall-bounded turbulence, drag reduction by additives,
and superfluid turbulence. This is followed by a number of
papers discussing boundary effects: Ali et al. (p. 2184) on
aeroacoustics, Araya, Leonardi & Castillo (p. 2190) on passive
scalars in a turbulent channel, Eliasson, Henshaw & Appel6
(p- 2203) on the influence of obstacles on converging shock
waves, Schneider & Farge (p. 2228) on the influence of
boundaries on the long-time decay of 2D turbulence, Singh &
Pedley (p. 2234) on the hydrodynamics of fish motion, and
Sznitman & Rosgen (p. 2240), on creeping flow in a cavity
which, nevertheless, has inviscid steady states. We also have
papers on vortex rings by Fukumoto & Moffatt (p. 2210) and
by Krueger (p. 2218) and papers on vortex tangles (superfluid
or classical) by Barenghi (p. 2195) and by Ricca (p. 2223).

The Conference also had a survey lecture by Perrier on
multiphysics numerical simulations for complex engineering
flow, illustrated by problems in aerospace and ground
transportation, a presentation by Monkewitz on cavitation, a
subject pioneered by Euler, and one by van Heijst on the
production of vorticity near the boundaries in 2D turbulent flow.

Research on the Euler equations has been going on for
a quarter of a millennium. It is far from being over. We
are particularly glad that so many young researchers have
participated in the EE250 Conference who will carry the torch
further.
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Euleriana
A short bibliographical note

1. Leonhard Euler’s scientific heritage is immense. His
published scientific studies, numbering close to 800, comprise
about 30 000 printed pages and consist of roughly 600 papers in
periodicals and various collections of the Petersburg Academy
of Sciences, 130 papers published in Berlin and in Western
European journals, 15 memoirs, which were awarded prizes
and promoted by the Paris Academy of Sciences, and 40 books
of individual essays. A century ago a publication of Euler’s
“Complete Works” (Opera omnia) was undertaken. It was
planned to divide them into three series: I. Mathematics
(29 vols); II. Mechanics and Astronomy (31 vols); III. Physics
and Varia (12 vols). The first volume was published in 1911,
and the publication of the final two volumes, out of the planned
72, is expected in the next two or three years. In the 1970s it
was decided to publish an additional series (IVA) of the Opera
omnia that would contain Euler’s scientific correspondence.!
The first volume of ser. IVA (1975) consists of an annotated
list of the whole scientific correspondence. Of the planned
approximately ten volumes of this series only four have
been published so far. They contain Euler’s correspondence
with Johann I and Niklaus I Bernoulli (vol. IVA-2, 1998),
A.C. Clairaut, J. d’Alembert, J.L. Lagrange (vol. IVA-5,
1980), P.-L.M. Maupertuis and Friedrich II (vol. IVA-6, 1986).
Three volumes of Euler’s correspondence with Petersburg
(from 1726-1774) were published independently earlier (Die
Berliner und die Petersburger Akademie der Wissenschaften im
Briefwechsel Leonhard Eulers, 3 T. Berlin: Akademie-Verlag,
1959-1976).

A comparatively full list of Euler’s published works was
prepared by G. Enestrom: Verzeichnis der Schriften Leonhard
Eulers, in: Jahresber. Deutsch. Math.-Verein., Erginzungsb. 4,
1-2, 1-388, 1910-1913.2 Since then all Euler works are usually

L At the same time it was proposed to prepare Series IVB dedicated to
unpublished manuscripts of Euler. For a number of reasons, including lack
of funds, this idea had to be abandoned. However it is not ruled out that
the manuscripts will be made available in an electronic form, provided that
a suitable source of financing is found in the future.

2 The Enestrom list is reproduced, without detailed descriptions, in the Works
(Trudy) of the Archives of the USSR Academy of Sciences, vol. 17 (1962)
mentioned below.

The Archives of the USSR Academy of Sciences published later a volume
(vol. 20, 1965) containing some manuscripts of Euler’s early papers on
mechanics (Opera mechanica, vol. 1, ed. G.K. Mikhailov).

0167-2789/$ - see front matter (©) 2008 Elsevier B.V. All rights reserved.
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mentioned with the corresponding number of the Enestrom list
supplemented with the symbol E.

Euler’s works are commented in introductory notes of the
corresponding volumes of Opera omnia. Particularly compre-
hensive surveys of Euler’s work in continuum mechanics have
been written by Clifford A. Truesdell: Rational fluid mechanics,
1687-1765 (Editor’s introduction to Euleri Opera omnia, 11-12,
1954, pp. vii—cxxv); Editor’s introduction to Opera omnia, II-
13, 1955, pp. vii—cv; The rational mechanics of flexible or elas-
tic bodies, 1638—1788 (Opera omnia, II-11(2), 1960, 435 p.). In
the 1950s Truesdell essentially rediscovered Leonhard Euler as
the creator of rational mechanics (cf.: C. Truesdell, Essays in
the history of mechanics. Springer-Verlag, 1968).

Now Leonhard Euler’s Opera omnia, together with
the full Enestrom list, are available on the Internet:
http://www.math.dartmouth.edu/"euler.

Original minutes of the Petersburg Academy of Sciences,
written mainly in Latin and French and containing a huge
amount of information on Euler’s work, were published
at the beginning of the 20th century: Procés-verbaux des
séances de [’Académie Impériale des sciences depuis sa
fondation jusqu’a 1803. 4 t. SPb., 1897-1911. Cf. annotated
Chronicles of the Russian Academy of Sciences, 4 vols (Letopis’
Rossiiskoi Akademii nauk, 1724-1934). SPb., 2000-2004.3
Many documents concerning Euler’s work in Petersburg
(till 1750) have been published (in original languages) in
the Materials for the history of the Imperial Academy
of Sciences, 10 vols (Materialy dlya istorii Imperatorskol
Akademii nauk). SPb., 1885-1900.

A Scientific description (Nauchnoe opisanie) of all the
Euler documents from the Archives of the Russian Academy
of Sciences is published in the Works (Trudy) of the
Archives of the USSR Academy of Sciences, 1962, vol. 17:
Manuscripta Euleriana Archivi Academiae scientiarum URSS,
t. I (Rukopisnye materialy L. Etlera v Arkhive Akademii nauk
SSSR, 1 = Trudy Arkhiva AN SSSR, 17).

The Berlin Academy has not kept full texts of its minutes
for the middle of the 18th century. Only their extracts

3 Transliteration of Russian titles is according to the new (since 1983) system
of Mathematical Reviews; the Russian titles themselves are given according to
the modern (post-1918) orthography.
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exist: Die Registres der Berliner Akademie der Wissenschaften
1746—-1766. Berlin: Akademie-Verlag, 1957.

There is a published description of Euler documents
kept in the Archives of the Berlin Academy: Leonhard
Eulers Wirken an der Berliner Akademie der Wissenschaften,
1741-1766. Berlin: Akademie-Verlag, 1984.

2. The number of studies dedicated to Leonhard Euler and
his work is truly enormous.

Among special monographs on Leonhard Euler it is
necessary to mention:

L.-Gustave du Pasquier, 1927 Léonard Euler et ses amis,
Paris: Hermann.

Otto SpieB, 1929 Leonhard Euler: Ein Beitrag zur Geistes-
geschichte des XVIII. Jahrhunderts, Frauenfeld, Leipzig: Hu-
ber.

Riidiger Thiele, 1982 Leonhard Euler, Leipzig: Teubner (in
German).

Emil A. Fellmann, 1995 Leonhard Euler, Reinbek bei
Hamburg: Rowohlt (in German).

Emil A. Fellmann, 2007 Leonhard Euler, Basel: Birkhduser
(English translation by Erika Gautschi and Walter Gautschi).

Let us also mention many interesting collections of papers
associated to various Euler jubilee years:

Berliner mathematische Gesellschaft, 1907 Festschrift zur
Feier des 200. Geburtstages Leonhard Eulers, Leipzig, Berlin:
Teubner (collection of four papers in German).

Académie des sciences de I’URSS, I’Institut de 1’histoire de
la science et de la technique, 1935 Léonard Euler 1707-1783:
Recueil des articles et matériaux en commémoration du 150°
anniversaire du jour de sa mort (Leonard Eiler 1707-1783:
Sbornik statet i materialov k 150-letiyu so dnya smerti),
Moscow, Leningrad (collection of 10 papers in Russian).

M.A. Lavrent’ev, A.P. Yushkevich, A.T. Grigor’yan (eds),
1958 Sammelband der zu Ehren des 250. Geburtstages
Leonhard Eulers der Akademie der Wissenschaften der UdSSR
vorgelegten Abhandlungen (Leonard Eiler: Sbornik statet
v chest’ 250-letiya so dnya rozhdeniya, predstaviennykh
Akademii nauk SSSR), Moscow (collection of 20 papers in
Russian, with German abstracts).

Kurt Schroder (ed.), 1959 Sammelband der zu Ehren des
250. Geburtstages Leonhard Eulers der Deutschen Akademie
der Wissenschaften zu Berlin vorgelegten Abhandlungen,
Berlin: Akademie-Verlag (collection of 26 papers, mostly in
German, except one in French and one in Italian, with Russian
abstracts).

J.J. Burckhardt, E.A. Fellmann, W. Habicht (eds), 1983
Leonhard Euler 1707-1783: Beitrige zu Leben und Werk,
Basel: Birkhauser (collection of 30 papers, mostly in German,
except 6 in French and 3 in English).

E. Knobloch, 1.S. Louhivaara, J. Winkler (eds), 1984 Zum
Werk Leonhard Eulers: Vortrdige des Euler-Kolloquiums im Mai

1983 in Berlin, Basel: Birkhduser (collection of 7 papers in
German, 5 in English and one in French).

Wolfgang Engel (ed.), 1985 Festakt und wissenschaftliche
Konferenz aus Anlaf} des 200. Todestages von Leonhard Euler,
Berlin: Akademie-Verlag (collection of 13 papers, mostly in
German, except one in English).

N.N. Bogolyubov, G.K. Mikhailov, and A.P. Yushkevich
(eds), 1988 Development of Leonhard Euler’s ideas and
modern science (Razvitie idef Leonarda Eilera i sovremennaya
nauka), Moscow: Nauka (collection of 28 papers in Russian).

One can find a detailed (but, of course, not exhaustive)
bibliography of Euleriana in the Basel volume mentioned above
(1983, pp. 511-552).

The last Euler year (2007) prompted an extremely wide
jubilee activity throughout the world, both in the form of
international and national conferences and publications.

A grandiose international Euler conference was organized
in St. Petersburg (its Book of abstracts contains 470 pages!).
A separate volume with selected papers presented at the
Conference is now in print: V.N. Vasil’ev (ed.), 2008 Leonhard
Euler: On the tercentenary of his birth (Leonard Eiler: K
300-letiyu so dnya rozhdeniya), St. Petersburg: Nestor-Istoriya
(collection of about 30 papers, in Russian and in English).

The Mathematical Association of America published five
special Euler volumes:

C. Edward Sandifer, 2007 The Early Mathematics of
L. Euler, Washington, DC: Math. Assoc. Amer.

William Dunham (ed.), 2007 The Genius of Euler: Re-
flections on his life and work, Washington DC: Math. As-
soc. Amer. (collection of 30 selected papers in English on the
life and work of Euler, dating from 1872 to 2006).

C. Edward Sandifer, 2007 How Euler did it, Washington,
DC: Math. Assoc. Amer.

N.N. Bogolyubov, G.K. Mikhailov and A.P. Yushkevich
(eds), 2007 Euler and Modern Science, Washington, DC:
Math. Assoc. Amer. (English translation by Robert Burns of
the aforementioned Russian collection of 1988).

Robert E. Bradley, Lawrence A. D’ Antonio, and C. Edward
Sandifer (eds), 2007 Euler at 300: An Appreciation,
Washington, DC: Math. Assoc. Amer. (collection of 21 papers
on various aspects of Euler’s work, in English).

The Tercentenary was also marked by the publication of the
volume:

Robert E. Bradley and C. Edward Sandifer (eds), 2007
Leonhard Euler: Life, Work and Legacy, Amsterdam: Elsevier
(collection of 24 papers on Euler’s life and work, in English).

Gleb K. Mikhailov
Moscow
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1. Having established in my previous Memoir! the principles
of fluid equilibrium in their most general form, regarding both
the diverse nature of fluids and the forces that act upon them,
I now propose to deal with the motion of fluids in the same
way and to seek out the general principles on which the entire
science of fluid motion is based. It will readily be understood
that this is a much more difficult undertaking and involves
studies of incomparably greater depth. Nevertheless, I hope to
arrive at an equally successful conclusion, so that, if difficulties
remain, they will pertain not to Mechanics but purely to
Analysis, this science not yet having been brought to the
degree of perfection necessary to develop analytical equations
[formules)? that embody the principles of fluid motion.

2. The task, then, is to discover the principles by means of
which the motion of a fluid can be determined, whatever its
state and whatever the forces to which it is subjected. To this
end, we shall examine in detail all the elements which form
the subject of our research and contain quantities both known
and unknown. First of all, the nature of the fluid is assumed
to be known, in which case it is necessary to consider its
various forms since it may be compressible or incompressible.
If it is not compressible, then there are two possibilities: either
the entire mass is composed of homogeneous parts, whose
density is everywhere and always the same, or it is composed of
heterogeneous parts and in this case it is necessary to know the
density of each component and the proportions of the mixture.
If the fluid is compressible and its density is variable, we must

* This is an adaptation by U. Frisch of an English translation by Thomas
E. Burton of Euler’s memoir ‘Principes généraux du mouvement des fluides’
(Euler, 1775b). Burton’s translation appeared in Fluid Dynamics 34 (1999) pp.
801-822, Springer and is here adapted by permission. A detailed presentation
of Euler’s published work can be found in Truesdell, 1954. Euler’s work is
discussed also in the perspective of eighteenth century fluid dynamics research
by Darrigol and Frisch, 2008.

Explanatory footnotes have been supplied where necessary by G.K. Mikhailov
and a few more by U. Frisch and O. Darrigol. Euler’s memoir had neither
footnotes nor a list of references.

1 Euler, 1755a.

2 Bracketed words are from the original eighteenth century French text.

0167-2789/$ - see front matter (©) 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.02.023

know the law according to which its elasticity® depends on the
density and whether the elasticity depends only on the density
or also on some other property, such as heat,* which is proper
to each particle of fluid, at least for each instant of time.

3. It must also be assumed that the state of the fluid at a
certain moment of time is known and I shall call this the initial
state [état primitif] of the fluid. As this state is quasi-arbitrary, it
is necessary, first of all, to know the distribution of the particles
of which the fluid is composed and, unless in the initial state the
fluid is at rest, the motion impressed upon them. However, the
initial motion is not entirely arbitrary since both the continuity
and the impenetrability of the fluid impose a certain limitation
which I shall investigate below. Often, however, nothing is
known of the initial state, for example when it is a question
of determining the motion of a river, and then it is usually
only possible to seek the steady state at which the fluid finally
arrives, thereafter undergoing no further changes. Now, neither
this circumstance nor the initial state in any way will affect the
investigation to be made and the calculations will always be
the same. It is only in the integrations that they need to be taken
into account for the purpose of determining the constants which
every integration involves.

4. Thirdly, the data must include the external forces to
which the fluid is subjected. I shall call these forces external
to distinguish them from the internal forces which the fluid
particles exert on each other and which will constitute the main
topic for subsequent investigation. Thus, it could be assumed
that the fluid is not exposed to any external force, unless it be
natural gravity which is everywhere considered to be constant
in magnitude and to act in the same direction. However, to
generalize the investigation, I shall consider the fluid to be acted
upon by forces which may be directed towards one or more
centers or obey some other law with respect to both magnitude

3 By elasticity [élasticité] Euler means that property of a fluid which is
expressed in the creation of internal pressure and therefore uses the term on
an equal footing with the term “pressure” (see § 5 below).

4 Essentially, heat [chaleur] should be taken to mean temperature.
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and direction. As far as these forces are concerned, only their
accelerating action is directly known, irrespective of the masses
upon which they act. Accordingly, I shall introduce into the
calculations only the accelerative forces, from which it will be
easy to obtain the true motive forces by multiplying in each case
the accelerative forces by the masses to which they are applied.’

5. Let us now turn to those elements which contain that
which is unknown. In order to properly understand the motion
that will be imparted to the fluid it is necessary to determine,
for each instant and for each point, both the motion and the
pressure [pression] of the fluid situated there. And if the fluid
is compressible, it is also necessary to determine the density,
knowing the above-mentioned other property which, together
with the density, makes it possible to determine the elasticity.
The latter, being counterbalanced by the fluid pressure, must
be considered equal to that pressure, exactly as in the case
of equilibrium, where I have developed these ideas more
thoroughly.® Clearly, then, the number of quantities which enter
into the study of fluid motion is much greater than in the case
of equilibrium, since it is necessary to introduce letters which
denote the motion of each particle and all these quantities may
vary with time. Thus, in addition to the letters which determine
the location of each conceivable point in the fluid, another is
required which denotes the time already elapsed and which, by
virtue of its variability, can be applied to any given time.

6. Suppose (Fig. 1) that from the initial state a time ¢ has
elapsed and that the fluid is now in a state of motion which
is to be determined.” Whatever the volume that the fluid now
occupies, I begin by considering any point Z in the fluid
mass and in order to introduce the location of this point Z
into the calculations I relate it to three fixed axes, OA, OB
and OC, mutually perpendicular at the point O and having a
given position. Let the two axes OA and OB lie in the plane
represented by the page and let the third OC be perpendicular
to it. Then from the point Z we draw a perpendicular ZY to the
plane AOB and from the point Y a normal YX to the axis OA
to obtain three coordinates: OX = x, XY = y and YZ = ¢
parallel to our three axes. For each point in the fluid mass, these
three coordinates x, y and z will have specific values and by
successively giving these three coordinates all possible values,
both positive and negative, we can run through all the points of
infinite space, including those lying in the volume occupied by
the fluid at each instant of time.

7. Secondly, I shall consider the accelerative forces which
act at a given moment on the fluid particle located at Z. Now,

5 Newton distinguishes between the “accelerative” and “motive” aspects of
a force, the former being “a measure proportional to the velocity which it
generates” and the latter “a measure proportional to the quantity of motion
which it generates in a given time”. Thus, the “accelerative force” is the ratio of
the acting force to the mass of the particle on which it acts, i.e. the acceleration
which it imparts, and the “motive force” is that which, strictly speaking, we now
understand by force. The neutral term “acting forces” [forces sollicitantes], not
used by Newton, was widely employed by Euler, starting with his well-known
“Mechanics” (Euler, 1736).

6 Cf. Euler, 1755a.

71n the original publication all figures are on the fourth table following the
end (on p. 402) of the part of the volume dedicated to the Mathematics Class.
As was the rule at the time figures are devoid of captions.

Fig. 1.

whatever these forces may be, they can always be reduced to
three acting in the three directions ZP, ZQ and ZR parallel to
our three axes 0A, OB and OC. Taking the accelerative force of
natural gravity8 as the unit, we let P, Q and R be the accelerative
forces acting on the point Z in the directions ZP, ZQ and ZR,
the letters P, Q and R denoting abstract numbers [nombres
absolus).? Tf unchanging forces always act at the same point
in space Z, the quantities P, Q and R will be expressed by
certain functions of the three coordinates x, y and z. However,
if the forces also vary with time ¢, these functions will likewise
contain time ¢. I shall assume that these functions are known,
since the acting forces must be included among the known
quantities, whether they depend only on the variables x, y, z
or also on time .

8. Let r now express the heat at the point Z or that
other property which, in addition to the density, influences the
elasticity in the case of a compressible fluid. The quantity r
must also be considered to be a function of the three variables
X, y, z and time ¢, since it might vary with time ¢ at the same
point Z in space. Thus, this function may be regarded as being
known.'? Moreover, let the present density of the fluid particle
located at Z be equal to g. As the unit of density I shall take
the density of a certain homogeneous substance which I shall
use to measure pressures in terms of heights, as explained at
greater length in my memoir on the equilibrium of fluids.'! Let,
moreover, the present value of the fluid pressure at the point Z,
expressed in terms of height, be equal to p, which will thus also
denote the elasticity. Since the nature of the fluid is assumed
to be known, we will know the relation between the height p
and the quantities ¢ and r.'> Thus, p and ¢ will likewise be

8 The acceleration of gravity is intended.
9 The non-dimensionality of the values of P, Q and R is emphasized.

10 Byer is confining himself to the consideration of fluid motion in a given
temperature field.

11 Clearly, for Euler the density ¢ is non-dimensional, being divided by the
constant density pg of a certain auxiliary fluid: ¢ = p/pg. Euler defines the
pressure in the fluid as the height p of a column of this same homogeneous
auxiliary fluid. Thus, for Euler pressure is measured by a quantity with the
dimension of length — the ratio of the acting pressure to the constant quantity
pog (Where g is the acceleration of gravity). For further details see Euler, 1755a.

12 That is, the “equation of state” of the moving medium is assumed to be
known.
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functions, albeit unknown, of the four variables x, y, z and ¢;
however if the fluid is not compressible,' the pressure p will
be independent of the density g and the other property [qualité]
r will not enter into consideration at all.

9. Finally, whatever the motion corresponding at a given
time to the fluid element located at the point Z, it too can be
decomposed in the directions ZP, ZQ and ZR parallel to our
three axes. Thus, let u, v and w be the velocities of this motion
decomposed in the three directions ZP, ZQ and ZR. It is then
obvious that these three quantities must also be considered to
be functions of the four variables x, y, z and ¢. Indeed, having
found the nature of these functions, if the time ¢ is assumed
to be constant, then by varying the coordinates x, y and z the
three velocities u, v and w and hence the true motion imparted
to each element of the fluid at a given time will be known. If, the
coordinates x, y and z are assumed to be constant and only the
time ¢ is considered to be variable, we shall find the motion not
of some particular element of the fluid but of all the elements
that pass successively through the same point Z; in other words,
at each moment of time the motion of that fluid element which
is then located at the point Z will be known.

10. Let us consider what path will be described by a fluid
element now at Z during the infinitely small'# time dt; or the
point at which it will be an instant later.'> If we express the
distance as the product of velocity and time, a fluid element
currently at Z will travel a distance udt in the direction ZP,
a distance vdt in the direction ZQ and a distance wdt in the
direction ZR. Therefore, if we set

ZP = udt, 7ZQ =vdt, and ZR = wdt

and from these three sides complete the construction of the
parallelepiped, then the corner opposite to the point Z will
represent the point at which the fluid element in question will be
after the time dt and the diagonal of the parallelepiped, which is
equal to dt /(uu~+vv+ww) will give the true path described.'®
Consequently, the velocity of this true motion will be equal to
»/(uu + vv + ww) and the direction can easily be determined
from the sides of the parallelepiped since it will be inclined to
the plane AOB at an angle whose sine is equal to

w
V@wu +vv +ww)’

13 The 1757 printed version of the memoir has “not incompressible” [pas
incompressible], but a handwritten copy of the manuscript dated 1755,
henceforth cited as Euler, 1755c has “not compressible” [pas compressible]
which is obviously the correct form.

14 The differential operator d, now denoted using roman fonts, was at the time
of Euler italicized; we shall follow his usage.

15 The intuitive derivation of the equations of motion and continuity of an
ideal (inviscid and non-heat-conducting) compressible fluid proposed by Euler
is valid provided that the functions in question have bounded derivatives, up to
and including the second. The modern derivation of these equations, based on
the integral laws of conservation of mass and momentum of the fluid particles
and the use of the Gauss theorem, is free of this limitation.

16 In the 1757 printed version, which we here follow, we usually find the old
notation xx rather than x? for the square of the quantity x and /(...) rather
than /=~ for the square root of an expression. The manuscript Euler, 1755c,
which is not in Euler’s hand, uses modern notation.

to the plane AOC at an angle whose sine is equal to
v
Jwu +vv +ww)’

and, finally, to the plane BOC at an angle whose sine is equal to
u
Jwu +vv + ww)’

11. Having determined the motion of a fluid element which
at a given instant is located at the point Z, let us now also
examine that of some other infinitely close element located at
the point z with the coordinates x 4+ dx, y + dy and z 4 dz.
The three velocities of this element in the direction of the three
axes can thus be expressed by u, v, w after substituting in those
quantities x +dx, y+dy and z+dz or after adding to them their
differentials while assuming the time ¢ to be constant. Thus,
when x + dx is substituted for x, the increments of u, v and w
will be:!”

dx d_u)’ dx @), dx(d—w),
dx dx dx

and when y + dy is substituted for y, the increments will be:

d d d
dy _u k] dy _U ’ dy _w 4
dy dy dy

and the same will apply to the variation of z. Then, the three
velocities of the fluid element currently located at z will be:
in the direction OA

du du du
de (Z5 )+ ay (25 ) +az (22
" x(dx>+'y(dy>+'z<dz>

in the direction OB

tax () pay () 4a (2
v x| — — —,
dx Y dy ¢ dz

in the direction OC

dw dw dw
dx | — dy | — dz| — ) .
v x(dx>+'y(dy>+'z<dz>

12. These are the velocities corresponding to a fluid element
at the point z, which is infinitely close to the point Z and whose
position is determined by the three coordinates x + dx, y + dy
and z+dz. Thus, if we choose a point Z (Fig. 2) such that only x
changes by dx, the other two coordinates y and z remaining the
same as for the point Z, the three velocities of the fluid element
located at this point z will be:

bax (2 fax (D +dx (4
x| — v+dx | — w+dx [ —).
" dx )’ dx )’ dx

These velocities will transport the element in the time dt to
another point 7’ whose position must be determined relative to
the point Z’, namely the point to which the fluid element which
was at Z is transported in the same time dt and whose position

17 Rather than the now customary notation for partial derivatives using the
symbol 9, Euler employs only the symbol d but encloses the expressions for
partial derivatives in round brackets.
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Fig. 2.

was determined above (see § 10). For determining this point z/,
I note that if the velocities of the point z were exactly the same
as those of Z, then the point z’ would fall at the point p,' such
that the distance Z' p would be equal and parallel to the distance
Zz. Since, by hypothesis, Zz is parallel to the OA axis and equal
to dx, the segment Z' p will also be equal to dx and parallel to
the OA axis.

13. Now, since the velocity along OA is not u but u +
dx ( ) this velocity increment will transport the element in
questlon from p to ¢ in the direction Z'p, such that pg =
dtdx ( “): this element would thus be at ¢, if the other two
Velocmes were equal to v and w. However, since the velocity
along the OB axis is v + dx ( ) this increment will transport

our element from ¢ to r, through the distance gr = dtdx ( )

and parallel to the axis OB. Finally, the increment dx ( a'x)
of the velocity w will transport the element from r to 7’
through the infinitesimal distance [particule d’espace]'® rz' =
dtdx (‘lw), and parallel to the third axis OC. From this I
conclude that the fluid element which occupied the small linear
segment Zz would be transported in the time d to the segment
7’7/, inclined at an infinitely small angle to the OA axis, whose
length by virtue of the fact that Z'q = dx (1 4 dt (4*)) will be

(10 () oo () w00 ()

Thus, neglecting the terms that contain the square of dt, the
length Z'z" will not differ from Z'g and we shall have: Z'7' =
dx (1+dt (Z—)‘ﬁ)) For the inclination of this line to the OA axis,
it will suffice to note that it is an infinitely small quantity of the
first order and can be expressed as adr.

14. If the small segment Zz had been taken equal to dy
and parallel to the OB axis, by the same reasoning it could
have been shown that the fluid which occupied that segment
would have been transported to another segment Z'z’ =

dy (1 + dt (2—;)), and which would have been inclined to the

18 Byler frequently uses the same notation for different quantities. Thus, both
here and later on, the letters p and ¢, which in this article are mainly employed
to denote pressure and density, are used to denote certain auxiliary points.

19 The 1757 printed version of the memoir has “through the particle” [par
la particule], but Euler, 1755¢ has “through the particle of distance” [par la
particule d’espace].

Fig. 3.

OB axis at an infinitely small angle. And if we had taken the
segment Zz = dz, and parallel to the third axis OC, the fluid
which occupied it would have have been transported to another
segment Z'7' = dz (l + dt (‘2—’;)), and which would have been
inclined to the OC axis at an infinitely small angle. Thus, if
we consider a rectangular parallelepiped ZPQRzpgr (Fig. 3)
formed by the three sides ZP = dx, ZQ = dy, ZR = dz, the
fluid occupying that volume would be transported in the time
dt to fill a volume Z'P'Q'R'Z' p’q’r’ differing infinitely slightly
from a rectangular parallelepiped whose three sides would be

Z'P = dx (1 +dt (d—”)) ;
dx
d
camoisa(®)
dy
d
7R = dz (1 +di (—w>> .
dz

Since the sides ZP, ZQ, ZR go over into Z'P’, Z'Q’, Z'R/, there
is no doubt that the fluid contained in the first volume will be
transported into the other in the time dt.

15. We can now judge whether the volume of fluid
occupying the parallelepiped Zz has increased or decreased
in the time dt. For this we need only to find the volume or
the capacity of each of these two solids. Since the first is a
parallelepiped formed by the sides dx, dy, dz, its volume is
equal to dxdydz. As for the other, whose plane angles differ
infinitely slightly from a right angle, I note that its volume
can also be found by multiplying its three sides, since the
error due to the infinitesimal distortion of the angles will enter
into terms which contain the square of the time element dt
and can therefore be neglected. Thus, the volume Z'z’ can be
represented by the expression:

du dv dw
dxdydz (1+d d d
xyz<+t<d)+ t(d>+ t(dz))

Anyone still harboring doubts about the reasonableness of this
conclusion need only consult my Latin paper Principia motus
Sfluidorum in which I calculate this volume without neglecting
anything.?”

20 See Euler, 1756-1757. This memoir was originally entitled De motu
Sfluidorum in genere, but the final title has been used here.
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16. Thus, if the fluid is not compressible, these two volumes
should be equal, since the mass occupying the volume Zz would
not fit into either a larger or a smaller volume. However, since
I propose to examine the problem in the most general possible
form and have denoted the density at Z by ¢, considering g to
be a function of the three coordinates and time, I note that to
find the density at Z' it will first be necessary to increase the
time ¢ by its differential dr; then, as the point Z' is different
from Z, the quantities x, y, z will have to be increased by the
small increments udt, vdt, wdt; whence the density at Z/ will
be:

dq dq dq dq
d udt d wd
q+ t<d>+ (d>+vt<dy)+ t<dZ

and since the density is inversely proportional to the volume,
this quantity will be to ¢ as dxdydz to

dxdydz (1+dr (D) +ar () +ar (2©
rayaz dx dy dz

Thus, dividing by d¢, we find that consideration of the density
leads to the following equation:

() =)+ () (2)
o) e () ()

17. Here, then, is a very remarkable condition which already
establishes a certain relation between the three velocities u, v
and w and the fluid density g. Now this equation can be reduced

to a simpler form.?! Thus, u (?’) is no different from ( ZZ)

since this form of expression must be taken to mean that in
differentiating g only the quantity x is taken to be a variable,
and similarly g (94) = (¢4“); from which it follows that

du dq udq + qdu d.qu
g\ = )tul\7—=)=\—"")=\—75"):
dx dx dx dx

the differential of the product qu being so understood that
only the quantity x is regarded as a variable. Accordingly, the
equation obtained can be reduced to the following:

() () () (52 -

If the fluid was not compressible, the density ¢ would be the
same at both Z and Z’ and for this case we would have the
equation:

() (5)(&)=>

which is also that on which I based my Latin memoir mentioned
above.?

21'1n Buler’s subsequent exposition the use of round brackets goes beyond the
scope of simple partial derivative notation, but the meaning of the operations is
still clear, in Euler’s notation d.qu = d(qu), etc.

22 See Euler, 1756-1757.

18. This equation, obtained by considering the continuity
of the fluid, already contains a certain relation which must
exist between the quantities u, v, w and g. The other relations
must be obtained by considering the forces to which each
fluid particle is subjected. Thus, in addition to the accelerative
forces?® P, Q, R, which act on the fluid at Z, the fluid is also
subjected to the pressure [pression] exerted from all sides on
the fluid element contained at Z. Combining these two forces,
we obtain three accelerative forces in the direction of the three
axes. Since the accelerations themselves can be determined
by considering the velocities u, v and w, we can derive three
equations which, together with that which we have just found,
will contain everything that relates to the motion of fluids, so
that we shall then have the general and complete laws of the
entire science of fluid motion.

19. In order to find the accelerations undergone by a fluid
element at Z, we need only compare the velocities u, v, w
which currently correspond to the point Z with the velocities
corresponding to the point Z' after the lapse of the time
dt. Thus, a double change takes place: with respect to the
coordinates x, y, z, which receive the increments udt, vdt,
wdt, as well as with respect to time, which increases by dr.
Hence it follows that the three velocities at the point Z' are:
in the direction OA

du du du du
d d d dt| — ) ,
u+t(d>+ut(dx)+vt<dy)+wt(dz)

in the direction OB

dv dv dv dv
dt udt vdt dt| — ) ,
- <d>+ <d>+ (dy)“’ (dz)

in the direction OC

dw dw dw dw
dt udt vdt wdt ,
v (d >+ (dx)+ (dy>+ (dz)

and hence the accelerations, expressed in terms of the
velocity increments divided by the time element d¢, will be:
in the direction OA

() oo () e () e ()

in the direction OB
dv n dv + dv n dv
ar ) " \ax ) TP\ ) TV ez )

in the direction OC

dw u dw n dw n dw

— v | — wl|l—) .

dt dx dy dz

20. We will now seek the accelerative forces acting in these
same directions due to the pressure exerted by the fluid on
the parallelepiped Zz, whose volume is equal to dxdydz, the
mass of the fluid occupying that volume thus being equal to
qdxdydz. Since the pressure at the point Z is expressed in
terms of the height p, the motive force acting on the face

23 Concerning the concept of “accelerative” (body) forces, see footnote 5.
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ZQRp is equal to pdxdydz. For the opposite face zqgrP with
the area dydz, the height p is increased by its differential

dx (Z—i) obtained on the assumption that only x is variable.
Accordingly, this fluid mass Zz is driven in the direction AO
by the motive force dxdydz (Z—i) or by the accelerative force

% (j—’;). Similarly, we find that the fluid mass Zz is subjected to

the action of the accelerative force 5 (%) in the direction BO

and to that of the accelerative force 5 (fl—[;) in the direction CO.

To these forces we add the given forces P, Q, R, and the total
accelerative forces will be:

1 /d
in the direction OA: P — — (_p)
q \dx

. . 1 (dp
in the direction OB: Q — — | —
g \dy

1
R__C@)
g \dz

21. Thus, it only remains to equate these accelerative forces
with the actual accelerations which we have just found. We then

obtain the following three equations:>*

()= () () 5) ()
o (8)- () () () (2)
L (E)-(5) () () ().

If we add to these three equations, first, that obtained from
considering the continuity of the fluid, namely

dq d.qu d.qu d.qw
= —— ) =0
(m)+<dx>+<dy>+(dz |

and then the equation” which gives the relation between the
elasticity p, the density g and the other property » which, in
addition to the density g influences the elasticity p, we shall
have five equations encompassing the entire Theory of the
motion of fluids.

22. Whatever be the nature of the forces P, Q, R, provided
that they are real, it should be noted that Pdx + Qdy + Rdz
is always a total [réel] differential of a certain finite and
determinate quantity,”® assuming the three coordinates x, y and

in the direction OC:

24 Despite the outward resemblance between Euler’s equations and modern
notation, they have been written here in dimensionless form. As mentioned
above, the pressure p is measured as the ratio of the acting pressure to the
specific weight pgg of a certain homogeneous auxiliary fluid, the density ¢
is dimensionless (g = p/pgp), the components of the body forces have been
divided by the acceleration of gravity g, the transition from the Eulerian
velocities u, v, w to the real velocities U, V, W is effected by means of a
transformation of the form u +— U/,/g and the transition from Eulerian time
to real time by means of the transformation ¢ +— T ,/g. (For further details
concerning Euler’s system of physical units, see Mikhailov, 1999.)

25 What we now call the equation of state.

26 Buler is thinking here of real body forces possessing a potential (more
correctly, a force function). By “finite” quantities (functions) Euler means
quantities that do not contain differentials.

z to be variables. Thus, we will always have:

dP\  (dQY dP\ (dR) dQ\ (dR
dy) \dx )’ dz) \dx)’ dz )] \dy)’
and if we set this finite quantity equal to S, then, we have

dS = Pdr + Qdy + Rdz,

assuming the time ¢ to be constant for the case in which the
forces P, Q, R also vary with time at the same points. The
quantity S expresses what I shall call the effort [/’effort] of the
acting forces?’ and is equal to the sum of the integrals of each
force multiplied by the elementary interval in the direction of
that force or by the small distance through which it would drag
a body subjected to its action. This notion of effort is of the
utmost importance for the entire theory of both equilibrium and
motion, since it makes it possible to see that the sum of all
the efforts is always a maximum or a minimum. This excellent
property fits in admirably with the splendid principle of least
action whose discovery we owe to our illustrious President, Mr.
de Maupertuis.?

23. The equations just obtained contain four variables x, y,
z and ¢ which are absolutely independent of each other since
the variability of the first three extends to all elements of the
fluid and that of the fourth to all times. Therefore, for the
equations to continue to hold, the other variables u, v, w, p
and ¢ must be certain functions of the former. For although a
differential equation with two variables®” is always possible,’
we know that a differential equation containing three or more
variables is possible only under certain conditions, by virtue of
which a certain relationship must exist between the terms of the
equation. Therefore, before we can begin solving the equations,
we need to know what sort of functions of x, y, z and ¢ must be
used to express the values of u, v, w, p and ¢ in order for these
same equations to be possible.

24. We now multiply the first of the three equations obtained
by dx, the second by dy and the third by dz, and since

dx (Z—’;) + dy (Z,—’y’) + dz (‘é—?) represents the differential of

p, assuming only time 7 to be constant, we obtain’!

d
ds — L
q

du du du du
dx [ 2L dx (£ dx (£ dx (£
+x<m>+”x<w>+”x(w>+wx<w)

vy (P uay (&
dvy o4V
(7, y

tdz (2 udz () +vae () + waz (P
Zdl Mde UZdy wzdz.

27 Buler’s “effort” is equivalent to the modern notion of potential.

28 Maupertuis was president of the Berlin Academy at the time.

29 Here, by variable Euler means both independent variables and their
functions.

30 We would now say “soluble”.

31 The first term on the r.h.s. is correct in the manuscript Euler, 1755¢ but

misprinted as dz (%) in the printed version.
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It is now a question of finding the integral of this equation in
which time is assumed to be constant. It should be noted that
this single equation contains the three equations of which it is
composed and that as soon as it is satisfied the conditions of
all three will be fulfilled. Thus, if the expression dS — ‘2—” is
equal to the three lines, where x, y and z are variables, the
portion of dS — dq—p due to the variability of x alone, namely

Pdx — %x (Z—f:) must necessarily be equal to the first line, and
similarly for the other two. The terms (%)’ (‘é—‘l’), and (‘fl—’f),

found by assuming the variability of time 7, since they denote
certain finite functions, do not prevent time ¢ from now being
taken to be constant.

25. Suppose that this equation has already been solved and
the quantities u, v, w, ¢ and p have been found as certain finite
functions of x, y, z and 7. The substitution of these functions in
the differential equation, with time ¢ assumed constant, yields
an identity. Since after this substitution we will have three types
of terms, the first associated with dx, the second with dy and
the third with dz, the identity leads us to three equations whence
it is clear that although only one differential equation is being
considered, it actually has the force of three and determines
three of our unknowns. What is also clear is that a differential
equation with three variables, such as Ldx + Mdy 4+ Ndz = 0,
cannot be solved unless a certain relationship exists between the
quantities L, M and N. However, since very little work has yet
been done on solving these three-variable equations, we cannot
hope to obtain a complete solution of our equation until the
limits of Analysis have been extended much further.

26. The best approach would therefore be to ponder well on
the particular solutions of our differential equation that we are
in a position to obtain, as this would enable us to judge which
path to follow in order to arrive at a complete solution. I have
already pointed out’? that where the density ¢ is assumed to
be constant a very elegant solution can be obtained when the
velocities u, v and w are such that the differential expression
[formule] udx + vdy + wdz can be integrated. Suppose, then,
that W is that integral, being any function of x, y, z and time 7,
and that its differentiation, also including ¢ as a variable, gives

dW = udx + vdy + wdz + Ildt.

Then the quantities u, v, w and IT will be related as follows:33

()= () (&)=(z) (2)=(5)
()= (@) @)-(5) (@)-(%)

27. Using these equalities, we can reduce our differential
equation to the following form:

32 Buler, 1756-1757: §§ 60-67.

331n modem terminology, the function introduced by Euler W =
W(x,y, z,t) is the velocity potential; here, the equality of the cross derivatives
of W with respect to the coordinates (condition of integrability of dW) is the
condition of absence of vorticity.

d
ds -2

q

d du du du
dx | — dx [ — dx | — dx | —
" x<dx>*ﬁtx<dx> "x<dy)+“)x(dz>
dIl dv dv
+dy| — ) +udy| — ) +vdy| — |+ wdy
dy x y
td drIl 4 ud dw +vd dw 4 wd dw
Z i udz I vdz & wdz )

Since here time ¢ is assumed to be constant, using the same
hypothesis we will have

drIl dTl dTl
d —_— d —_ dz| — ) =dIl
"(dx)+ y(dy)+ Z(dz)

du du du
dx [ — dy | — dz| — | =d
x<dX)+ y<dy)+ Z<dZ> “

+

Thus, our equation will become

d
dS——p:dl'Izudu—i—vdv—l—wdw,
q

or
dp =q (dS —dIl — udu — vdv — wdw) .

Hence, if the density of the fluid is everywhere the same, or
g = g, as a result of integration we obtain:>*

1 1 1
p=g<C+S—H—§uu—§vv—§ww>.

28. For brevity, let us set
1 1 1
C+S—-II1—-—-uu——-vv— -ww=V,
2 2 2

where it should be noted that the constant C may well contain
the time ¢, since it is considered to be constant in this integration
and, as dp = gdV, it is clear that the hypothesis

dW = udx + vdy + wdz + I1dt,

also makes our differential equation possible, when the
elasticity p depends in any way on the density g only or g is
any function of p. It will also become possible if the fluid is
not compressible but the density ¢ varies in such a way that it
is an arbitrary function of the quantity V. And in general, if the
elasticity p depends both on the density ¢ and on some other
quantity represented by the letter r, the hypothesis may also be
satisfied provided that r is a function of V. In all these cases, for
the motion to exist under this hypothesis it is also necessary for
the following condition to be satisfied:

()« ()« (5)+ ()=

29. This hypothesis is so general that it seems that there is
not a single case that is not included and hence that, generally

34 The subsequent equation, which generalizes the Bernoulli integral, is
usually associated with the names of Cauchy and Lagrange.
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speaking, the equation dp = ¢dV, together with the other
equations which present hardly any difficulty, incorporates all
the foundations of the Theory of the motion of fluids. Thus,
I concerned myself exclusively with this case in my Latin
memoir on the laws of fluid motion® in which I considered
incompressible fluids only and showed that all the cases
previously considered, in which the fluid moves through pipes
of arbitrary shapes, are contained in this supposition and that
the velocities u, v and w are always such that the differential
expression udx + vdy + wdz is integrable. However, I have
since noted that there are also cases, even when the fluid is
incompressible and everywhere homogeneous, in which this
condition does not hold, which is enough to convince me that
the solution I have just given is only a particular one.>®

30. To give an example of a real motion which would be
perfectly consistent with all the equations that follow from the
laws of Mechanics, but without the expression udx +vdy+wdz
being integrable, let us assume that the fluid is incompressible
and everywhere homogeneous, i.e. that ¢ is constant and equal
to g, and that there are no forces acting on the fluid, so that
P=0,Q=0and R = 0. Then, let w = 0, v = Zx and
u = —Zy, where Z denotes any function of /(xx + yy). It
is now obvious that the expression udx + vdy + wdz, which
takes the form —Zydx + Zxdy, is integrable only in the case
7= )#yy However, these values>’ satisfy all our formulas so
that the possibility of this motion cannot be questioned. Since Z
is a function of /(xx + yy), its differential will have the form
dZ = Lxdx + Lydy, where L will again be any function of
Vxx + yy).

31. Using these values of u, v and w, we obtain:

du dv
— =0 — =0
() ()
_ dv

and since dS = 0, assuming time ¢ to be constant, we have the
following differential equation:

dp
— = LZxyydx — ZZxdx
8

—LZxyydx —ZZydy — LZxxydy + LZxxydy
= —7Z7Z(xdx + ydy).

Consequently dp = gZZ(xdx + ydy), since Z is assumed to
be a function of /(xx 4 yy), this equation will definitely be
possible and will yield the integral p = g [ ZZ(xdx + ydy).
We see that the differential equation would also be possible

35 See Euler, 1756-1757.

36 Here, Euler recognizes that his previous memoir on fluid motion was too
restricted, in so far as it ignored what we now call vorticity.

37 The corresponding values of u, v and w.

if the fluid were subjected to the action of certain arbitrary
forces P, Q, R, provided that the expression Pdx + Qdy + Rdz
was a total [possible] differential equal to dS, since then p =
8S+ g [ZZ(xdx + ydy).

32. As these values u = —Zy, v = Zx and w = 0 satisfy
our differential equation, they can also be seen to satisfy the

condition contained in the equation:3%

()« () + (55) () =

By virtue of the fact that ¢ = g, this equation goes over into

—gLlxy +glxy =0

which, being an identity, satisfies the required conditions. Thus,
it is quite possible for a fluid to have a motion such that the
velocities of each of its elements are u = —Zy, v = Zx
and w = 0, although the differential expression udx + vdy +
wdz is not possible;39 this confirms that there are cases in
which fluid motion is possible without this condition, which
seemed general, being fulfilled. Thus, the assumption that the
differential expression udx + vdy + wdz is possible yields only
a particular solution of the equations we have found.

33. Clearly, the motion corresponding to this case reduces to
a rotational motion about the axis OC and since what has been
said about the axis OC can be applied to any other fixed axis,
we may conclude that it is possible for a fluid acted upon by
any forces whose effort*” is equal to S to have a motion about a
fixed axis such that the rotational velocities are proportional to
any function of the distance to that axis. Thus, if the distance
to that axis is denoted by s and the rotation velocity at that
distance by 8,4 then since xx + yy = ss and ZZss = 88, the
pressure there will be expressed by the height p = gS +
gf ‘% Thus, such a motion, which corresponds to that of
a vortex [tourbillon], is just as possible as those contained in
the expression udx + vdy + wdz when the latter is integrable.
No doubt there is an infinity of other motions, which satisfying
our equations, are also equally possible.

34. Let us now return to our general formulas and, since
they are somewhat too complicated, introduce, for greater
conciseness, the notation:

() (5 () (3) -
() () () (5)
() (2 (2) - (5)

38 Strictly speaking, it cannot be said that the values of u, v and w assumed in
§ 30 also satisfy the equation of motion from § 31; in reality, this equation
determines the corresponding pressure p = p(s) (s = /(xx + yy), the
continuity equation being satisfied irrespective of the equations of motion.

39 That is a total differential.

40 See footnote 27.

41 1n modern terms Z is the angular velocity at the radial distance s and 8 = Zs
is the tangential velocity.
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Whatever the nature of the three accelerative forces P, Q and R,
granted that*> dS = Pdx +Qdy+Rdz, the differential equation

P _p_Xydx+(Q-Y)dy + R —2)dz.

in which ¢ is assumed to be constant must be satisfied.
Moreover, the continuity of the fluid requires that:

(50) + (%) (%) () o

In whatever manner these two equations are satisfied, there will
always be a motion which can actually take place in the fluid.

35. If the fluid is everywhere incompressible and
homogeneous, i.e. the density ¢ is constant and equal to g, then,
clearly, the differential equation cannot be satisfied unless the
differential

P — X)dx + (Q — Y)dy + R — Z)dz,

is possible or total, i.e. unless it can be obtained as a result of
the actual differentiation of some finite function of the variables
x, y and z, which may also contain the time 7, although in the
differentiation the latter is assumed to be constant. It is also
obvious that this differential expression must be soluble or total
when the fluid is compressible and the density g is expressed
in terms of any function of the elasticity p. In both cases, if we
denote by V the finite quantity whose differential has the form:

=P-X)dx+Q-=Y)dy+ R —2)dz,

our differential equation will yield either £ E=Vor f v,
In addition, however, for the motion to be possible the other
condition derived from the continuity must also be fulfilled.

36. If the fluid is not incompressible, but its density ¢ is
variable and can be expressed in terms of any function of
position, i.e. of the three coordinates x, y, z and time ¢, it is
not sufficient for the expression

(P —X)dx + (Q — Y)dy + (R — Z)dz = dV,

to be integrable; in addition, the integral V must be a function
of ¢. Since %” =dV ordp = qdV, it is clear that the pressure
p cannot have a definite value unless the expression gdV can
be integrated. However, it should also be noted that in this case
it is not necessary that the expression

(P—X)dx + (Q—Y)dy + (R — Z)dz

be integrable, only that on being multiplied by a certain function
U it becomes integrable. Thus, let

UP—-X)dx +UQ —Y)dy + UR — Z)dz = dW,

since dp = dw ,ordp = %W for this equation to be possible it

is sufﬁ01ent that W be a function of %, or that W be a function
of zero dimension of the quantities ¢ and U.*3

42 Here, Euler assumes that all real body forces have a potential S =
S(x, y, 2).

43 This latter expression is equivalent, in 18th century terminology, to the
condition that W should depend only on the ratio ¢/ U.

37. In general, however the elasticity p depends on the
density g or on some other property denoted by r which is any
function of the coordinates x, y, z that could also contain time
t, it is clear from our equation ¢ = dV P that the differential dp
must always be divisible by dV, where dV denotes not so much
a total differential than the expression

(P—X)dx + (Q — V)dy + (R — Z)dz,

and this so much that, as a result of division the differentials dx,
dy and dz are entirely eliminated from the calculations, because
both p and ¢ must always be expressed in terms of finite
functions of the variables x, y and z, without their differentials
entering into these functions. Now this could not be so unless
there were a function U, multiplication by which rendered the
expression dV integrable: indeed, setting [ UdV = W, clearly,
p must be a function of W in order for the expression dp to take
a definite value corresponding to the density q.

38. Since UdV = dW, we have ¢ = 2—‘\1,\’,’. Consequently,
if we choose W to be any function of the coordinates x, y and
z, which contains time ¢ among the constants, and if we set p
equal to any function of W, namely44 = ¢, W,and dp =
dW.¢', W, we will have ¢ = U.¢/, W, whence U = /qw
Thus, in whatever way the density ¢ is expressed in terms of
the elasticity p and some other function r of the coordinates
x, y and z, we obtain the value U = ﬁ and, consequently,

/
the value dV = dW'T‘”’W
equation:

, which then gives us the following

dW.¢',W dp

P
This will yield the values of X, Y, Z, from which we must then
look for the values of the velocities u, v and w: and when the
latter also satisfy the continuity condition, we shall have a case
of possible motion of the fluid.

39. The question of the nature of the expression (P —X)dx +
(Q—Y)dy+ (R—Z)dz then reduces to the following. When the
density ¢ is constant or depends only on the elasticity p, this
expression must be absolutely integrable and to this end one
must determine suitable values of the three velocities u, v and
w.When the density g depends on a given function of place and
time,* the expression must be such that it becomes integrable
on multiplication by some given function U. In both cases, then,
the velocities u, v and w must be such that the equation

P—X)dx+(Q—V)dy+ R—-2)dz =

P-Xdx+Q-Y)dy+R—-2)dz=0

be soluble;*® and we know the conditions under which a
differential equation with three variables is soluble; having

44 For representing the functional dependence, now denoted f(x), Euler used
the notation f, x or f : x. For example Euler’s ¢, W and ¢’, W would now be
denoted ¢(W) and ¢’ (W). In Euler, 1755c, the comma is omitted.

45 The function r.

46 Indeed, if @(x, y, z) = Cnst. is the general integral of this equation, then
the form (P — X)dx + (Q — Y)dy + (R — Z)dz must vanish whenever the
differential d ¢ vanishes; hence the two forms are proportional, which means
that there exists an integrating factor for the first form.
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satisfied these conditions, it remains to satisfy that imposed by
continuity.

40. These are the conditions which restrict the functions
expressing the three velocities u#, v and w, and the study of
the motion of fluids reduces to determining, in general form,
the nature of those functions such that the conditions of our
differential equation and of continuity be fulfilled. Since the
quantities X, Y and Z depend not only on the velocities u, v
and w themselves but also on their variability with respect to
each of the coordinates x, y and z and, moreover, on time ?,
this study would appear to be the most far-reaching of those to
be encountered in the field of Analysis, and if we are unable to
achieve a complete understanding of the motion of fluids, it is
not Mechanics or the inadequacy of the known laws of motion
but Analysis itself that is to blame, given that the entire Theory
of the motion of fluids has just been reduced to the solution of
analytical equations.

41. Since a general solution must be deemed impossible due
to the shortcomings of Analysis, we must content ourselves
with the consideration of certain particular cases, especially
as the study of several cases seems to be the only means of
perfecting our knowledge. Now the simplest case imaginable
is, no doubt, that in which the three velocities u, v and w are
set equal to zero, namely the case in which the fluid remains at
perfect rest and which I dealt with in my previous Memoir.*’
The formulas we have obtained for motion in general also
include the case of equilibrium, since when X = 0, Y = 0 and
7Z = 0 we have: dq—p = Pdx + Qdy + Rdz, and (‘;—{f) =0,
from which it follows, first of all, that the density g cannot
depend on time ¢, i.e. should remain always the same at the
same place. Furthermore, the forces P, Q and R must be such
that the differential expression Pdx 4+ Qdy 4+ Rdz either is
integrable, when ¢ is constant or depends only on the elasticity
p, or becomes integrable upon being multiplied by a suitable
function.

42. In my Memoir on fluid equilibrium*® I only considered
cases of the acting forces P, Q, R for which the differential
expression Pdx + Qdy + Rdz is integrable, since this seemed
to be the only case that could occur in Nature. In fact, if the
density ¢ is either constant or depends only on the pressure p,
the fluid could never be in equilibrium unless this condition
relating to the acting forces is satisfied. However, if it were
possible for the acting forces to obey some other law, there
could be equilibrium provided that the forces were such that
there existed some function U which when multiplied by the
expression Pdx + Qdy + Rdz made that expression integrable,
or, equivalently, provided that the differential equation Pdx +
Qdy + Rdz = 0 were integrable; for then if the density ¢ is
equated to this function U or to the product of this function
U and some arbitrary function of the elasticity p, equilibrium
may also exist. However, since these cases may not be possible,
I shall not consider them in greater detail.

47 Euler, 1755a.
48 Euler, 1755a.

43. After the case of equilibrium, the simplest state that
could exist in a fluid is that in which the entire fluid is in
uniform motion in the same direction. Let us see, then, how this
state is described by our two formulas. In this case, the three
velocities being constant, we set u = a, v = b and w = c; we
have X =0, Y = 0 and Z = 0. Then our two equations assume
the form:

dp
— =Pdx + Qdy + Rdz,
q

dq dq dq dq
i ) pp (L ) =,
(m)+“(w>+ (w)+c<w

and hence it is clear that if the density ¢ is constant, the
condition of the second equation is satisfied; however, the first
equation cannot be satisfied unless the expression Pdx + Qdy +
Rdz admits integration, just as if the fluid were at rest. Of
course, such motion can have no effect on the pressure.

44. If, however, the density ¢ is not constant, let us first see
what function of x, y, z and ¢ it must be for the second equation
to be satisfied. This leads us to the curious analytical question
of what function of the variables x, y, z and # must be taken for
q in order that:

() (1) () () -

This would appear to be very difficult to answer if formulated
in its broadest possible form. However, since when a = 0,
b = 0, c = 0 the quantity ¢ is any function of x, y, z that
does not contain time ¢, if we reduce this case* to that of
rest by imposing on the volume an equal and opposite motion,
then, clearly, after time ¢ the coordinates x, y and z will be
transformed by the change into x —at, y — bt, z — ct. From this
we conclude that our equation will be satisfied if as g we take
any function of the three quantities x —at, y —bt, z — ct.>° And
in fact it is easy to see that such a function satisfies the equation,
since

dg = L(dx — adt) +M(dy — bdt) + N(dz — cdt),

and, consequently,

d d
YY) - _gL—pM—cN: (ZL) =L
dt dx

dq dq
— | =M; d — ) =N.
(@) o <ﬂ>

45. Now, as I have already noted, in order to satisfy the
first equation it is necessary that after multiplication by some
function U the differential expression Pdx + Qdy + Rdz be
integrable. Therefore let f UPdx + Qdy + Rdz) = W, where
the constant of integration also in some way contains time z.
Clearly, the expression Pdx +Qdy+Rdz will also be integrable
if it is multiplied by Uf, W,’! where U and W are known
functions, since the acting forces are assumed to be known.

49 The case of motion.
50 Here Euler performs a Galilean transformation.
51 The equivalent modern notation would be U f (W), cf. footnote 44.



L. Euler / Physica D 237 (2008) 1825-1839 1835

Thus, if g does not depend on p, then necessarily g = U f, W,
whence the function of the three quantities x — at, y — bt and
z — ct must be so determined that it can be reduced to the
form U f, W. If, however, ¢ depends only on p, the expression
Pdx 4+ Qdy + Rdz must be absolutely integrable or U = 1;
then, since p will be found in the form of a function of W, the
density g will likewise be a function of W, which must also be
a function of the quantities x — at, y — bt and z — ct, and from
this we can deduce the nature of this function.

46. However, it can be seen that, in general, the pressure
p must always be a function of W, since otherwise the density
could not be a finite function. Therefore let p = f, W and dp =
dW.f’, W, then, by virtue of the fact that Pdx + Qdy + Rdz =
%, we obtain ¢ = Uf’, W. Consequently, this case could not
arise unless the density ¢ was proportional to the product of the
quantity U and a function of the pressure p or to the product
of the quantity Ugp, W and any function of p, where ¢, W is
used to denote a given function of W. For example, let ¢ =
ppUp, W; we then have f/, W = YW — (1 w)2p, W52
whence we find that the unknown function f, Wis composed of
W, for in this example we have f_ =— [dW,pW = ; and
hence p can be expressed in terms of W and thus, the quantity ¢
will also be known. When the latter can be reduced to the form
of a function of x — at, y — bt and z — ct, the assumed state
of the fluid will be possible and we shall know the pressure and
the density at any time and at any point.

47. An example® will throw more light on these operations
which, as they are not yet sufficiently familiar, might appear
overly obscure. Thus, let P = y, Q = —x and R = 0; since
dq—l’ = ydx — xdy, we obtain U = - and W = 2 4T,
where T is any function of time z. Moreover, let ¢ = %' since

d—pzM we shall obtain 1 = @ — £, and p = 52—

Where the constant ® also contains time ¢. As a result, we ave

q = (@y_x)z, and this expression must be a function of x — at

and y — bt, since z does not enter into it and this is only possible
. _ __bb —_ _by

when ® = £; we then have ¢ = PR and p = ay_)bx.

Thus, neither the pressure nor the density depends on time and
at a given point will be always the same. This example shows
how the calculations should be performed in other cases that
might be imagined.

48. Having dealt with this case in which the three velocities
are constant, let us now assume that two velocities u and v
vanish, which corresponds to the case in which all the fluid
particles move in the direction of the OA axis, so that the
trajectory described by each is a straight line>* parallel to the
OA axis; this case differs from the previous one, since the
velocity u is assumed to vary with respect to both place and
time. Since

X=("Y4u(®)., vy=0 z=0
“\ar dx 7 -

52 The equivalent modern form would be f'(W) = df(W)/dW =
FEW)e(W).
In this example forces are considered which do not derive from a potential
and the integrating factor U is found for these forces.

54 This is the case of the so-called shear flow.

our two equations will take the form:

dp du du
— =Pdx +Qdy + Rdz — dx o —udx | — ),
q

dq d.qu
& — =0.
(@)« (%)

This latter equation tells us, first of all, that the expression
gdx — qudt must be integrable, the quantities y and z being
considered constant with respect to this integration. Thus, the
product of g and dx — udt must be a total differential, i.e. must
be integrable.

49. If the density of the fluid is everywhere and always the
same, i.e. if ¢ is a constant equal to g, then, since (d ) =0,it
is clear that the velocity u must be independent of the variable
x. Let u be any function of the two coordinates y, z and time ¢.
Then our differential equation will take the form:

d_p =Pdx 4+ Qdy + Rdz — dx (d—u>,

q dt

where time 7 is assumed to be constant; thus, this expression
must be integrable. Accordingly, if the expression Pdx +Qdy +
Rdz obtained from considering the acting forces is integrable
in itself, then dx (d”) must also be integrable. The expression

( ) does not contain x, but if it were to contain y and z, the

expression dx (4%) could not be integrable. Thus, (4%) must

not contain y and z. Let Z be any function of y and z, and
T any function of time ¢ only; then the quantity u = Z + T
will satisfy this condition, whence by virtue of the fact that
Pdx + Qdy + Rdz = dV and (Z—’;) = (”Z;) we obtain the
following integral: g =V—x (%) + Chnst.

50. As a further clarification of this case, it should be noted
that each fluid particle Z moves exclusively in the direction
ZP parallel to the ZA axis and hence the motion of each fluid
element will describe a straight line parallel to that axis, so
that for the same element there is no change in the values
of the two coordinates y and z. Thus, the motion of each
particle will either be uniform or will vary with time in such
a way that at each instant all the particles undergo the same
changes in their motions, which is obvious from the equation
u = Z 4+ T. As to the state of pressure, given that we have p =
gV — gx (4T) + Cnst. where the constant has any dependence
on time ¢, it depends not only on the effort>™ V but also on the
change of velocity undergone by each element of the fluid; and,
moreover, it may vary in any way with time.

51. This case provides me with an opportunity to deal with
certain questions which naturally arise and whose clarification
is of the utmost importance for the theory of both fluid
equilibrium and fluid motion. First of all, surprisingly, a change
in the velocity of the fluid can occur without the acting forces P,
Q, R helping to produce it. Since such a change could take place
even when the acting forces vanish, it is reasonable to inquire
how it is produced. Next, it also seems paradoxical that the
pressure can vary arbitrarily at any instant, and that irrespective

55 See footnote 27.
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of the aforesaid change to which the motion is subjected. The
latter difficulty remains even in the state of equilibrium. Thus,
letting the three velocities u, v, w vanish, for incompressible
fluids we have the integral § = V + Cnst., where the constant
may contain the time ¢ in any way.

52. To understand this more clearly, one need only imagine a
certain mass enclosed in a vessel. Clearly, the state of pressure
depends not only on the acting forces but also on any extraneous
forces which might be exerted on the vessel. For, even if there
were no acting forces, by means of a piston applied to the fluid
one could successively produce every possible state of pressure
without the equilibrium being disturbed. This is precisely what
we can conclude from our formula, which in this case shows
that f is a function of time ¢. From this we see that the state of
pressure may vary at any instant, irrespective of the equilibrium.
However, if for each instant of time the pressure at any point
is known, then the pressures at all the other points can be
determined, and since the force applied to the piston might
now increase and now decrease, the calculations must reflect
all these possible changes. The same variability should also be
observed when the fluid is subjected to the action of arbitrary
accelerative forces, so that at each instant the state of pressure
is indeterminate and depends on the force then acting on the
piston.

53. Here, then, is a vital difference between the accelerative
forces, which act on all the elements of the fluid, and the force
of a piston that presses on the fluid. Only the accelerative
forces enter into our differential equation, while the piston
force enters into the calculations only after integration and only
affects the constant of integration. Consequently, in each case
the constant must be so determined that at the point at which
the piston acts the pressure is exactly equal to the force driving
the piston at each instant, and it is for this reason that the
constant contains time, so that it can be varied with time at
will, as the circumstances require. This variability can always
be represented by the action of a piston since, whatever the
nature of the case considered, for it to be determined it must
always be assumed that at one point at least in the fluid the
pressure is known at every instant, and it is precisely this which
makes it possible to determine the constant introduced into the
calculations through the integration of our differential equation.

54. However, in our case of the motion considered in § 49, let
us also assume that the accelerative forces vanish, i.e. that V =
0, and to make this case perfectly determinate, let us assume
that u = a + ay + B1.°° Then the equation for the pressure
will take the form f = Cnst. — Bx. Let us assume, moreover,

that this constant is equal to y + 8¢, so that £ = y + §t — Bx,
and let us see under what conditions this motion can take place.
Since each fluid element moves in the direction of the OA axis,
the motion could only take place in a cylindrical pipe laid in the
same direction. Let ABIO (Fig. 4) be that pipe and initially, at
t = 0, let the fluid occupy the portion ABCD bounded by cross
sections AB and CD perpendicular to the pipe. We will reckon

561 Euler, 1755b the symbol B is used in the r.h.s. of this equation; in the
printed version it is replaced by a symbol resembling a capital C with curled
ends.

Fig. 4.

the abscissas from the point A along the straight line Al and let
the pressure p be equal to yg everywhere along the base AB
and to yg — Bg. AC along the other base CD. In the interior of
the fluid, however, at any point Z with the coordinates AP = x,
PZ =y, the pressure will be equal to y g — Bgx. Consequently,
it is impossible to consider the fluid in the pipe beyond CD,
taking AC = % so that the pressure at CD does not become
negative.

55. Let us set for this determinate fluid mass the length
AC = b and the width AB = CD = ¢, the height not
entering into consideration since neither the velocities nor the
pressures depend on the third coordinate z; when y = Bb, in
the initial state ABCD the pressure is equal to Sbg on the base
AB and zero on the base CD, while at any point Z it is equal to
Bg(b — x) = Bg.CP. We will assume that in this state the fluid
has a motion in the direction of the pipe such that the velocity
on the line AC is equal to a and that on the line BD equal to
a+ac, while on any line QR parallel to the direction of the pipe
it is equal to @ + «y, where AQ = CR = y. Thus, we believe
that something has caused this motion to be impressed on the
fluid and that, at the initial instant, the surface AB is subjected
to the said force Bbg, exerted by means of a piston, while the
other base CD is not subjected to any pressure. However, at
subsequent moments of time the forces acting on the end faces
could vary arbitrarily. Now this variability is determined by the
hypotheses we have just established. Therefore let us see how
by virtue of these hypotheses the motion of the fluid will be
continued.

56. After the lapse of a time ¢, all the fluid elements on
the line QR will have a velocity in that same direction equal
to a + ay + Bt, as a result of which in the time d¢ they will
travel a distance (a + oy + Bt)dt; thus, from the beginning of
the motion they will have traveled a distance at 4+ oyt + % Btt;
and the alignment of fluid particles®’ initially at QR will now
have advanced to gr, having traversed the distance Qg =
at + ayt + %ﬂtt. Thus, the thread AC will have arrived at ac,
having traveled a distance Aa = ar + % Btt, while the thread
BD will have arrived at bd, having traveled a distance Bb =
at + act + % pBit, so that the fluid mass will now be bounded
by the faces ab and cd, which are straight but inclined to the
direction of the pipe. The pressure on the face ab at g must now

be g(Bb + 5t — B.Qq) = g(Bb + 8t — Bat — afyt — 3pPt1),

57 Buler uses “filée du fluide” where “filée” is a somewhat poetic variant of
“file” (alignment, file) or “fil” (thread); this is just a line of fluid elements and
not what is now called a fillet of fluid, the latter having also an infinitesimal
width, a concept introduced by Euler, 1745 (see Grimberg et al., 2008).
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and on the face cd at r it must now be g(8b + 6t — B.Qr) =
g(6t —Bat —afyt — %,B,Btt). Thus, we need to visualize pistons
which act with these forces on the two end faces ab and cd, and
since the pressures are not the same over the entire length of
these faces, the pistons must be imagined as being flexible and
pliable enough to exert such pressures.

57. This motion would remain the same if in integrating the
pressure p we were to take any function of ¢ instead of &z, but
then the state of pressure in the fluid mass would be different
at each instant of time, even though the assumed motion of the
fluid itself would not be affected in any way. Thus, let us set
8t = Bat+afBct+ %ﬂﬁtt; after a time ¢ the pressure at any point
q on the face ab will be g[Bb 4 af(c — y)t], and at any point
z on the line gr it will be equal to g[B8b + efB(c — y)t — B.qz];
therefore the pressure at the other end r will be ¢Bg(c — y)t.
Hence, on the face ab the pressure will be equal to Sg(b + act)
at a and to Bgb at b, while on the other face cd the pressure will
be equal to afgct at ¢ and to zero at d. Moreover, each thread
QR will move in its own direction with uniform acceleration,
i.e. will receive equal increments of velocity in equal times.
The study of this particular case could serve to elucidate the
calculations to be made in all other cases.

58. Let us now return to the case proposed (§ 48) and
assume the density g to be constant and equal to g, while
making the forces P, Q, R such that the fluid could never be in
equilibrium. To this end, let P = 0, Q = —jl—‘ and R = —;—‘
and let u = b + (y:—Z)t, so that we have (%) = 0 and
dp _ _xdy+xdz _ ydx+zdx 58

g a a ’
2 — Cpst. — xvaﬂ where the constant may contain time in
any way. Thus, it is not possible for the entire fluid mass ever
to remain at rest, since even if we set » = 0 in order to have
the fluid at rest at the outset when ¢t = 0, immediately after
that first instant it would be agitated and only the elements for
whichy = 0orz = 0or y + z = 0 would remain at rest; all
the others would be set in motion either forward or backward,
depending on whether y 4+ z was positive or negative. It is
also easy to determine the pressures required to maintain the
assumed motion.

59. Let, however, the density be no longer constant but
variable, i.e. let the fluid be compressible. Then in order for
the expression gdx — qudt to be a total differential we can take
for u any function of the variables x, y, z and ¢. Here, since
only x and ¢ are regarded as variable, while y and z are taken
constant, it will always be possible to assign a quantity s such
that s(dx — udt) is integrable. Let S be that integral; then this
condition will be satisfied if we take ¢ = sf : S.%° Furthermore,
it is now necessary that the following differential be integrable:

dp du du
— =Pdx+Qdy+Rdz—dx|— ) —udx{— ).
q dt dx

Note that if the forces P, Q, R were to vanish, the pressure p
would become a function of x and ¢ and hence the quantity

whence by integration we obtain

58 In the printed version the two fractions in the r.h.s. have a minus instead of
a correct plus in the numerator; in the manuscript Euler, 1755c, the handwritten
notation is ambiguous.

59 This equation would now be written g = s£(S).

g (%) + u (44)) would only involve the two variables x and
t, from which the nature of the function # must be determined,
insofar as it involves y and z.

60. Although I have assumed that v = 0 and w = 0, these
formulas cover all the cases in which all the fluid particles
always move in the same direction, the only requirement being
that the OA axis be taken in that direction. Therefore we will
also be able to solve our equations when the direction of motion
is inclined to the three axes, which cannot fail to throw further
light on the analysis. To this end, let us consider the true
velocity of any fluid particle Z and let that velocity be equal to 8,
and since its direction is given with respect to the three axes, the
velocity components will hold certain ratios to it. Let u = a®,
v = B8 and w = y¥; setting d8 = Kdt + Ldx + Mdy + Ndz,
we shall have

X =aK+ aal + oM + ayN
Y = K+ aBL + BBM + ByN
Z=yK+ayL+ ByM+ yyN.

Consequently, if, for conciseness, we write K + oL + M +
yN = O, having X = a0, Y = O, Z = yO, our equations
will take the form:

d
f = Pdx + Qdy + Rdz — O(adx + Bdy + ydz)

dq d.g8 d.gq8 d.gsy
(E)*“(W)WW)”(TZ) =0

61. First, let the density ¢ = g. As we have seen in § 44, in
order to satisfy the equation « (%) + B8 (%) +y (%) =0
the quantity 8 must be any function of the quantities oy — Bx
and oz — yx or Bz — yy and, in addition, may in an arbitrary
way contain time ¢. Thus, let 8 be any function of the quantities
ay — Bx, az — yx, and ¢, since the expression 8z — yy
has already been formed from the other two. From this it is
easy to see that at each instant the velocity of particles on
the same straight line parallel to the direction of motion will
be everywhere the same, just as the nature of the hypothesis
requires. Hence the differential of 8 will have the following
form:

ds = Fdt + G(ady — Bdx) + H(adz — ydx),

sothat K = F; L = -G — yH; M = «G; and N = «H.
Consequently, O = F is a function of oy — Bx, oz — yx and of
t. Hence the differential equation, which remains to be solved,
will be :

d
?” — Pdx + Qdy + Rdz — F(adx + Bdy + ydz).

62. The time 7 being here assumed constant, if the expression
Pdx +Qdy +Rdz = dV is integrable in itself, the other part of
the equation F(adx + Bdy + ydz) must be likewise, and this
could not be so unless F were a function of ax + By + yz and
of time ¢. In addition, however, F must must also be a function
of the quantities «y — Bx, oz — yx and time ¢; consequently,
since the expression ax + By + yz cannot be formed from the
expressions oy — fx and oz — yx, it is clear that the quantity
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F must be a function of time ¢ only. Consequently, the velocity
8 will have the form 8 = Z 4 T, where Z denotes an arbitrary
function of the two quantities @y — Bx and oz — yx that does
not contain time ¢, while T is an arbitrary function of time ¢
only, so that dT = Fdt. Hence the integral of our differential
equation will be % =V —F(ax + By + yz) + Cnst., where the
constant may contain time ¢ in an arbitrary way. Together with
the relation 8 = Z+ T, this integral contains everything relating
to the motion in the case in question.

63. But if the density ¢ is not constant, it will be important
to obtain the solution of the following equation:

dq d.q8 d.q8 d.gs\
(z>+“(27)+ﬂ(2?)+y(??)—0

However difficult this may appear, reduction to the previous
case shows that the velocity 8 can be an arbitrary function of
the four variables x, y, z and ¢, while the value of g must be
determined as follows. Let us consider, generally, an expression

s(ldx +mdy + ndz —8dt) = dS,

which has become integrable after multiplication by s, and let
g = sf : S;then, if wesetd.f : S = dS.f : S,° our
expression will take the form

d
f:S(d—j>—sf/:S.sts
ds ds ,
4asf:S{— ) +a8f:S|— ) +aBsf :S.Us
dx dx

ds ds
+ Bsf : S( >+,Bt5f S(

) + Bsf’ : S.ms
dy

+ysf: S(Z)—i—yuf S(j)—i—ytisf S.ns

which must be equal to zero.

64. First of all, we equate to zero the terms containing f” : S
as a result of which we obtain 1 = «al + Bm + yn; after division
by f’ : S the remaining terms give

ds d.sg d.sg d.sg _0
(a)+“(57)+ﬁ(57)+y(2?)—’

which is indeed similar to the expression proposed; however,
it should be noted that the integrability of the quantity dS is
conditioned by:

dsgy dls\ dsgy d.ms'\
(%) --(&) (&)%)
dssy d.ans\
(F)--(F)
whence we obtain: (‘j—i) (1 —al — pm — yn) = 0,%! which
is consistent with the previous condition. Thus, provided that

al+Bm+yn = 1, and s is a function such that s (Idx +mdy +
ndz —8dt) = dS, or integrable, our equation will be satisfied

60 Here, g = sf : Sandd.f : S = dS.f' : S would now be denoted
q = sf(S) and df (S) = dS f'(S), respectively.

The r.h.s. = 0 is missing both in the printed version and in Euler, 1755c.

if we take ¢ = sf : S, or £ equal to any function of S. The
quantities [, m and n do not have to be constant, but then the
following must hold

(@) (T)+ (7) =

a condition already contained in the equation 1 = a/+8m+yn.

65. In addition, /, m and n must be functions such that the
differential equation /dx + mdy + ndz — 8dt = 0 becomes
possible, since without this condition it would be impossible to
find a multiplier s which made the equation integrable. Thus,
if we arbitrarily choose some value for [, the values of m and
n will be already determined and we can avoid having to find
them. We will set el = 1 orl = é; then, necessarily, fm +
yn = 0 and it remains only to find the factor s for which the
expression s (2 — Bdt) is integrable, the two quantities y and
z being regarded as constants. Thus, let S = f s (%" — Udt),
so that y and z are contained in S as constants; we can now
take ¢ = sf : S, which gives us the same solution as if we had
changed the position of the three axes so much that one of them
coincided with the direction of motion of all the fluid elements.
Hence we see that this apparent restriction in no way diminishes
the generality of the solution.

66. In the same way it would be possible to study several
other particular cases of sometimes greater and sometimes
lesser scope, but we would not find a case more general than
that in which the three velocities u, v and w are such that the
expression udx + vdy +wdz becomes integrable.®® Let S be an
integral which also contains time ¢ and let its total differential
be dS = udx + vdy + wdz + Tldt. Since we have

()= (%) (@)=() (3)=(%)
()= (@)-(5) (@)-(5)

we shall have
)

|§§|§ =|2

QU

X = al +u du + +
~ ax dx ) TP \ax )Y
Yo dIl N du ‘o dv n
u w
dy dy dy
(%)
and our differential equation now becomes:
dp

7 drl n du ‘o
= _— u _—
dz dz
— =Pdx + Qdy + Rdz — dIl — udu — vdv — wdw
q

621n §8§ 30-33 above, Euler has already pointed out the possibility and given
examples of non-potential fluid flows. Truesdell, 1954 considers that Euler
based § 66 of his memoir on his previous work (Euler, 1756-1757) which was
completed before he had discovered the existence of non-potential flows. This
seems all the more likely in that, as Truesdell points out, Euler here denotes the
velocity potential not by W, as in § 26, but by S, as in his earlier study.
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(the last member of which is absolutely integrable), while the
other equation remains as before:

()« ()« () + () =0

67. Thus, everything reduces to finding suitable values for
the three velocities u, v and w that satisfy our two equations,
which contain everything we know about the motion of fluids.
For if these three velocities are known, we can determine the
trajectory described by each element of the fluid in its motion.
Let us consider a particle which at a given instant is located
at the point Z; for finding the trajectory which it has already
described and which it has yet to describe, since its three
velocities u, v and w are assumed to be known, for its position
at the next instant we have dx = udt, dy = vdt and dz = wdt.
Eliminating time ¢ from these three equations, we obtain two
more equations in the three coordinates x, y and z which will
determine the unknown trajectory of the fluid element now at Z
and, in general, we shall know the path which each particle has
traveled and has yet to travel.

68. The determination of these trajectories is of the utmost
importance and should be used to apply the Theory to each case
considered. If the shape of the vessel in which the fluid moves
is given, the fluid particles which touch the surface of the vessel
must necessarily follow its direction; therefore the velocities u,
v and w must be such that the trajectories derived therefrom
lie on that same surface.®® This makes it quite clear how far
removed we are from a complete understanding of the motion of
fluids and that my exposition is no more than a mere beginning.
Nevertheless, everything that the Theory of Fluids contains is
embodied in the two equations formulated above (§ 34), so that
it is not the laws of Mechanics that we lack in order to pursue
this research but only the Analysis, which has not yet been

63 Here, Euler is drawing attention to the fact that in order to calculate the
motion of a fluid, in addition to the equations of motion, continuity and state
and the initial conditions, we also need the boundary conditions, namely the
vanishing of the normal component of the velocity.

sufficiently developed for this purpose. It is therefore clearly
apparent what discoveries we still need to make in this branch
of Science before we can arrive at a more perfect Theory of the
motion of fluids.
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Abstract

The elements of the theory of the motion of fluids in general are treated here, the whole matter being reduced to this: given a mass of fluid,
either free or confined in vessels, upon which an arbitrary motion is impressed, and which in turn is acted upon by arbitrary forces, to determine the
motion carrying forward each particle, and at the same time to ascertain the pressure exerted by each part, acting on it as well as on the sides of the
vessel. At first in this memoir, before undertaking the investigation of these effects of the forces, the Most Famous Author! carefully evaluates all
the possible motions which can actually take place in the fluid. Indeed, even if the individual particles of the fluid are free from each other, motions
in which the particles interpenetrate are nevertheless excluded, since we are dealing with fluids that do not permit any compression into a narrower
volume. Thus it is clear that an arbitrary small portion of fluid cannot receive a motion other than the one which constantly conserves the same
volume; even though meanwhile the shape is changed in any way. It would hold indeed, as long as no elementary portion would be compressed at
any time into a smaller volume; furthermore? if the portion expanded into a larger volume, the continuity of the particles was violated, these were
dispersed and no longer clung together, such a motion would no longer pertain to the science of the motion of fluids; but individual droplets would
separately perform their motion. Therefore, this case being excluded, motion of the fluids must be restricted by this rule that each small portion
must retain for ever the same volume; and this principle restricts the general expressions of motion for elements of the fluid. Plainly, considering an
arbitrary small portion of the fluid, its individual points have to be carried by such a motion that, when at a moment of time they arrive at the next lo-
cation, until then they occupy a volume equal to the previous one; thus if, as usual, the motion of a point is decomposed parallel to fixed orthogonal
directions, it is necessary that a certain established relation hold between these three velocities, which the author has determined in the first part.

In the second part the author proceeds to the determination of the motion of a fluid produced by arbitrary forces, in which matter the whole
investigation reduces to this that the pressure with which the parts of the fluid at each point act upon one another shall be ascertained; which
pressure is denoted most conveniently, as customary for water, by a certain height; this is to be understood thus, that each element of the fluid
sustains a pressure the same as if were pressed by a heavy column of the same fluid, whose height is equal to that amount. Thus, in such way
in each point of the fluid the height referring to the state of the pressure will be given; since it is not equal to the one in the neighbourhood, it
will perturb the motion of the elements. But this pressure depends as well on the forces acting on each element of the fluid, as on those, acting in
the whole mass; thus, by the given forces, the pressure in each point and thereupon the acceleration of each element — or its retardation — can be
assigned for the motion, all which determinations are expressed by the author through differential formulas. But, in fact, the full development of
these formulas mostly involves the greatest difficulties. But nevertheless this whole theory has been reduced to pure analysis, and what remains to
be completed in it depends solely upon subsequent progress in Analysis. Thus it is far from true that purely analytic researches are of no use in
applied mathematics; rather, important additions in pure analysis are now required.
© 2008 Published by Elsevier B.V.

I. First part

* This is an English adaptation by Walter Pauls of Euler’s memoir ‘Principia

motus fluidorum’ (Euler, 1756-1757). Updated versions of the translation may
become available at http://www.oca.eu/etc7/EE250/texts/euler1761eng.pdf.
For a detailed presentation of Euler’s fluid dynamics papers, cf. Truesdell,
1954, which has also been helpful for this translation. Euler’s work is discussed
in the perspective of eighteenth century fluid dynamics research by Darrigol
and Frisch (2008). The help of O. Darrigol, U. Frisch, G. Grimberg and G.
Mikhailov is also acknowledged. Explanatory footnotes and references have
been supplied where necessary; Euler’s memoir had neither footnotes nor a list
of references.

! Summaries, which at that time were not placed at the beginning of the
corresponding paper, were published under the responsibility of the Academy;

0167-2789/$ - see front matter (©) 2008 Published by Elsevier B.V.
doi:10.1016/j.physd.2008.04.019

1. Since liquid substances differ from solid ones by the fact
that their particles are mutually independent of each other, they
can also receive most diverse motions; the motion performed by
an arbitrary particle of the fluid is not determined by the motion

the presence of the words “Most Famous Author”, rather common at the time,
cannot be taken as evidence that Euler usually referred to himself in this way.

21n the original, we find “verum quoniam”; the literal translation “since
indeed” does not seem logically consistent.
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of the remaining particles to the point that it cannot move in
any other way. The matter is very different in solid bodies,
which, if they were inflexible, would not undergo any change
in their shape; in whatsoever way they be moved, each of their
particles would constantly keep the same location and distance
with respect to other particles; it thus follows that, the motion
of two or, if necessary, three of all the particles being known,
the motion of any other particle can be defined; furthermore
the motion of two or three particles of such a body cannot be
chosen at will, but must be constrained in such a way that these
particles preserve constantly their positions with respect to each
other.?

2. But if, moreover, solid bodies are flexible, the motion
of each particle is less constrained: because of bending, the
distance as well as the relative position of each particle can
be subject to change. However, the manner itself of bending
constitutes a certain law which various particles of such a body
have to obey in their motion: certainly what has to be taken
care of is that the parts that experience in their neighbourhood
such a strong bending with respect to each other are neither torn
apart from the inside nor penetrate into each other. Indeed, as
we shall see, impenetrability is demanded for all bodies.

3. In fluid bodies, whose particles are united among
themselves by no bond, the motion of each particle is much
less restricted: the motion of the remaining particles is not
determined from the motion of any number of particles. Even
knowing the motion of one hundred particles, the future motion
permitted to the remaining particles still can vary in infinitely
many ways. From which it is seen that the motion of these
fluid particles plainly does not depend on the motion of the
remaining ones, unless it be enclosed by these so that it is
constrained to follow them.

4. However, it cannot happen that the motion of all particles
of the fluid suffers no restrictions at all. Furthermore, one
cannot at will invent a motion that is conceived to occur for
each particle. Since, indeed, the particles are impenetrable,
it is immediately clear that a motion cannot be maintained
in which some particles go through other particles and,
accordingly, penetrate each other: also, because of this reason
such motion certainly cannot be conceived to occur in the fluid.
Therefore, infinitely many motions must be excluded; after their
determination the remaining ones are grouped together. It is
seen worthwhile to define them more accurately regarding the
property which distinguishes them from the previous ones.

5. But before the motion by which the fluid is agitated at any
place can be defined, it is necessary to see how every motion,
which can definitely be maintained in this fluid, be recognized:
these motions, here, I will call possible, which I will distinguish
from impossible motions which certainly cannot take place. We
must then find what characteristic is appropriate to possible
motions, separating them from impossible ones. When this is
done, we shall have to determine which one of all possible
motions in a certain case ought actually to occur. Plainly we
must then turn to the forces which act upon the water, so that

3 Here Euler refers to the motion of rigid solid bodies treated previously in
Euler, 1750.

the motion appropriate to them may be determined from the
principles of mechanics.

6. Thus, I decided to inquire into the character of the possible
motions, such that no violation of impenetrability can occur
in the fluid. I shall assume the fluid to be such as never to
permit itself to be forced into a lesser space, nor should its
continuity be interrupted. Once the theory of fluids has been
adjusted to fluids of this nature, it will not be difficult to extend
it also to those fluids whose density is variable and which do
not necessarily require continuity.*

7. If, thus, we consider an arbitrary portion in such a fluid,
the motion, by which each of its particles is carried has to be set
up so that at each time they occupy an equal volume. When this
occurs in separate portions, any expansion into a larger volume,
or compression into a smaller volume is prohibited. And, if
we turn attention to this only property, we can have only such
motion that the fluid is not permitted to expand or compress.
Furthermore, what is said here about arbitrary portions of the
fluid, has to be understood for each of its elements; so that the
volume of its elements must constantly preserve its value.

8. Thus, assuming that this condition holds, let an arbitrary
motion be considered to occur at each point of the fluid;
moreover, given any element of the fluid, consider the brief
translations of each of its boundaries. In this manner the
volume, in which the element is contained after a very short
time, becomes known. From there on, this volume is posed to
be equal to the one occupied previously, and this equation will
prescribe the calculation of the motion, in so far as it will be
possible. Since all elements occupy the same volumes during
all periods of time, no compression of the fluid, nor expansion
can occur; and the motion is arranged in such a way that this
becomes possible.

9. Since we consider not only the velocity” of the motion
occurring at every point of the fluid but also its direction, both
aspects are most conveniently handled, if the motion of each
point is decomposed along fixed directions. Moreover, this de-
composition is usually carried out with respect to two or three
directions®: the former is appropriate for decomposition, if the
motion of all points is completed in the same plane; but if their
motion is not contained in the same plane, it is appropriate to
decompose the motion following three fixed axes. Because the
latter case is more difficult to treat, it is more convenient to be-
gin the investigation of possible motions with the former case;
once this has been done, the latter case will be easily completed.

10. First I will assign to the fluid two dimensions in such a
way that all of its particles are now not only found with certainty
in the same plane, but also their motion is performed in it.
Let this plane be represented in the plane of the table (Fig. 1),
let an arbitrary point [ of the fluid be considered, its position
being denoted by orthogonal coordinates AL = x and LI = y.
The motion is decomposed following these directions, giving a

4 See the English translation of “General laws of the motion of fluids” in
these Proceedings.

5 Meaning here the absolute value of the velocity.

6Depending on the dimension: Euler treats both the two- and the three-
dimensional cases.
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Fig. 1.

velocity Im = u parallel to the axis AL and /n = v parallel to
the other axis AB: so that the true future velocity of this point
is o/(uu 4 vv), and its direction with respect to the axis AL is
inclined by an angle with the tangent .

11. Since the state of motion, presented in a way which suits
each point of the fluid, is supposed to evolve, the velocities
u and v will depend on the position ! of the point and will
therefore be functions of the coordinates x and y. Thus, we put
upon a differentiation

du=Ldx +1ldy and dv=Mdx + mdy,

which differential formulas, since they are complete,’ satisfy
furthermore % = % and ‘i};{[ = ‘51_’;1' Here it is noted that
in such expression d—y, the differential of L itself or dL, is
understood to be obtained from the variability with respect to y;
in similar manner in the expression d! /dx, for d! the differential
of [ itself has to be taken, which arises if we take x to vary.

12. Thus, it is in order to be cautious and not to take in
such fractional expressions ‘é];, ji s dM and dm d’" the numerators
dL, dl, dM, and dm as denoting tﬁe complete differentials
of the functions L, [, M and m; but they designate such
differentials constantly that are obtained from variation of
only one coordinate, obviously the one, whose differential
is represented in the denominator; thus, such expressions
will always represent finite and well defined quantities.

Furthermore, in the same way are understood L = zz, [ = Z:

M = Z—; and m = Z—;; which notation of ratios has been used

for the first time by the most enlightened Fontaine,® and I will
also apply it here, since it gives a non negligible advantage of
calculation.

13. Since du = Ldx + ldy and dv = Mdx + mdy, here it
is appropriate to assign a pair of velocities to the point which is

7 Exact differentials.

8 A paper “Sur le calcul intégral” containing the notation % for the partial
derivative of f with respect to x was presented by Alexis Fontaine des
Bertins to the Paris Academy of Sciences in 1738, but it was published only
a quarter of a century later (Fontaine, 1764). Nevertheless, Fontaine’s paper
was widely known among mathematicians from the beginning of the 1740s,
and, particularly, was discussed in the correspondence between Euler, Daniel
Bernoulli and Clairaut; cf. Euler, 1980: 65-246.

at an infinitely small distance from the point /; if the distance
of such a point from the point / parallel to the axis AL is dx,
and parallel to the axis AB is dy, then the velocity of this point
parallel to the axis AL will be u + Ldx + [dy; furthermore,
the velocity parallel to the other axis AB is v + Mdx + mdy.
Thus, during the infinitely short time dt this point will be
carried parallel to the direction of the axis AL the distance
dt(u + Ldx + ldy) and parallel to the direction of the other
axis AB the distance dt (v + Mdx + mdy).

14. Having noted these things, let us consider a triangular
element /mn of water, and let us seek the location into which
it is carried by the motion during the time df. Let Im be the
side parallel to the axis AL and let In be the side parallel to
the axis AB: let us also put Im = dx and In = dy; or let the
coordinates of the point m be x + dx and y; the coordinates of
the point n be x and y + dy. It is plain, since we do not define
the relation between the differentials dx and dy, which can be
taken negative as well as positive, that in thought the whole
mass of fluid may be divided into elements of this sort, so that
what we determine for one in general will extend equally to all.

15. To find out how far the element /mn is carried during
the time dt due to the local motion, we search for the points
P, q and r, to which its vertices, or the points /, m and n are
transferred during the time d¢. Since

of point/ of pointm  of pointn
Velocity w.r.t. AL=  u u+ Ldx u+ldy
Velocity w.r.t. AB= v v+ Mdx v+ mdy

in the time dt the point / reaches the point p, chosen such that:

AP — AL =udt and Pp — Ll = vdt.

Furthermore, the point m reaches the point ¢, such that

AQ — AM = (u + Ldx)dt and
Qq — Mm = (v + Mdx)dt.

Also, the point 7 is carried to 7, chosen such that

AR — AL = (u +ldy)dt and Rr —Ln = (v + mdy)dt.

16. Since the points /, m and n are carried to the points p,
q and r, the triangle Imn made of the joined straight lines pgq,
pr and gr, is thought to be arriving at the location defined by
the triangle pgr. Because the triangle /mn is infinitely small,
its sides cannot receive any curvature from the motion, and
therefore, after having performed the translation of the element
of water Imn in the time dt, it will conserve the straight and
triangular form. Since this element /mn must not be either
extended to a larger volume, nor compressed into a smaller one,
the motion should be arranged so that the volume of the triangle
pqr is rendered to be equal to the area of the triangle Imn.

17. The area of the triangle /mn, being rectangular at [, is
%dxdy, value to which the area of the triangle pgr should be
put equal. To find this area, the pair of coordinates of the points
P, q and r must be examined, which are:

AP = x + udt; AQ = x +dx + (u + Ldx)dt,
AR = x 4+ (u +Idy)dt; Pp = y+ vdt
Qg = y+ (v+Mdx)dt, Rr = y+dy+ (v+ mdy)dt.
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Then, indeed, the area of the triangle pgr is found from the area
of the succeeding trapezoids, so that

pqr = PprR 4+ RrgQ — PpqQ.

Since these trapezoids have a pair of sides parallel to and
perpendicular to the base AQ, their areas are easily found.

18. Plainly, these areas are given by the expressions
1
PprR = EPR(Pp + Rr)
1
RrgQ = ERQ(Rr + Qq)

1
PpgQ = EPQ(Pp +Qq).

By putting these together we find:

1 1 1

Apgr = =PQ.Rr — —RQ.Pp — =PR.Qq.
2 2 2

Let us set for brevity

AQ=AP+Q; AR=AP+R; Q¢ =Pp+gq; and
Rr=Pp+r,

so that PQ = Q, PR = R, and RQ = Q — R, and we have
Apgr = 3Q®Pp +r) — 3(Q — R)Pp — JR(Pp + ¢) or
Apgr = %Q.r — %R.q.

19. Truly, from the values of the coordinates represented
before it follows that

Q =dx + Ldxdt; g = Mdxdt
R =ldydt; r =dy+ mdydt,

upon the substitution of these values, the area of the triangle is
obtained

1 1

pqr = dedy(l + Ldt)(1 + mdt) — EMI dxdydtz, or
1

pgr = 5dxdy(l +Ldt +mdt + Lmdt* — Mldt?).

This should be equal to the area of the triangle /mn, that is
= Ldxdy; hence we obtain the following equation

Ldt + mdt + Lmdt> —Mldt> =0 or
L +m + Lmdt — Mldt = 0.

20. Since the terms Lmdt and MIdt are negligible for finite
L and m, we will have the equation L + m = 0. Hence, for the
motion to be possible, the velocities u and v of any point [ have
to be arranged such that after calculating their differentials

du =Ldx +1dy, and dv=Mdx+ mdy,

one has L+m = 0. Or, since L= Z—z and m = j—; the velocities
u and v, which are considered to occur at the point / parallel to
the axes AL and A B, must be functions of the coordinates x
and y such that Z—)’ﬁ + Z—;’, = 0, and thus, the criterion of possible

Fig. 2.

motions consists in this that Z—)’j + Z—; = 0:° and unless this
condition holds, the motion of the fluid cannot take place.

21. We shall proceed identically when the motion of the fluid
is not confined to the same plane. Let us assume, to investigate
this question in the broadest sense, that all particles of the
fluid are agitated among themselves by an arbitrary motion,
with the only law to be respected that neither condensation nor
expansion of the parts occurs anywhere: in the same way, we
seek which condition should apply to the velocities that are
considered to occur at every point, so that motion be possible:
or, which amounts to the same, all motions that are opposed to
these conditions should be eliminated from the possible ones,
this being the criterion of possible motions.

22. Let us consider an arbitrary point of the fluid A. To
represent its location we use three fixed axes AL, AB and AC
orthogonal to each other (Fig. 2). Let the triple coordinates
parallel to these axes be AL = x, LI = y and /X = z; which
are obtained if firstly a perpendicular Al is dropped from the
point A to the plane determined by the two axes AL and AB;
and then a perpendicular /L is drawn from the point / to the
axis AL. In this manner the location of the point X is expressed
through three such coordinates in the most general way and can
be adapted to all points of the fluid.

23. Whatever the later motion of the point A, it can be
resolved following the three directions Au, Av, Lo, parallel to
the axes AL, AB and AC. For the motion of the point A we set

the velocity parallel to the direction Au = u,

the velocity parallel to the direction Av = v,

the velocity parallel to the direction Ao = w.

Since these velocities can vary in an arbitrary manner for
different locations of the point A, they will have to be considered
as functions of the three coordinates x, y and z. After
differentiating them, let us put to proceed

du =Ldx +1ldy + Adz

dv =Mdx +mdy + pdz

dw = Ndx + ndy + vdz.

9 This is the two-dimensional incompressibility condition, which in a slightly

different form has already been established by D’Alembert, 1752; cf. also
Darrigol and Frisch, 2008:§11I1.
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Henceforth the quantities L, [, A, M, m, u, N, n, v will be
functions of the coordinates x, y and z.

24. Because these formulas are complete differentials, we
obtain as above

dL dl  dL dx dl di
dy ~dx’ dz  dx dz  dy
dM dm dM du dm du
dy " dx’ dz  dx’ dz  dy
dN dn dN dv dn dv
dy ~dx’ dz  dx dz dy
where it is assumed that the only varying coordinate is that
whose differential appears in the denominator.'?
25. Thus, this point A will be moved in the time d¢ by this

threefold motion, which is considered to take place at the point
X; hence it moves

parallel to the axis AL the distance = udt
parallel to the axis AB the distance = vdt
parallel to the axis AC the distance = wdt.

The true velocity of the point A, denoted by V, which clearly
arises from the composition of this triple motion, is given in
view of orthogonality of the three directions by V = /(uu +
vv + ww) and the elementary distance, which is travelled in
time dt through its motion, will be Vdt.

26. Let us consider an arbitrary solid element of the fluid to
see whereto it is carried during the time dt; since it amounts to
the same, let us assign a quite arbitrary shape to that element,
but of a kind such that the entire mass of the fluid can be divided
into such elements; to investigate by calculation, let the shape
be a right triangular pyramid, bounded by four vertices A, u, v
and o, so that for each one there are three coordinates

of point A of point u of pointv  of point o
wrt. AL x x +dx x X
w.rt. AB y y y+dy y
wrt. AC  z Z Z Z+dz.

Since the base of this pyramid is Auv = Imn = %dxdy and
the hight Ao = dz, its volume will be = %dxdydz.

27. Let us investigate, whereto these vertices A, i, v and o
are carried during the time d¢: for which purpose their three
velocities parallel to the directions of the three axes must be
considered. The differential values of the velocities u, v and w
are given by

Velocity of point A of point ©  of point v  of point o
wrt. AL u u+ Ldx u—+ldy u+rdz
wrt. AB v v+Mdx v+mdy v+ pudz
wrt. AC  w w+Ndx w4ndy w+Hodz

28. If we let the points A, u, v and o be transferred to
the points 7w, @, p and o in the time dt, and establish the
three coordinates of these points parallel to the axes, the small
displacement parallel to these axes will be

10 Tpe partial differential notation was so new that Euler had to remind the
reader of its definition.

AP — AL = udt
AQ—AM = (u+Ldx)dt
AR —-AL = (u+Ildy)dt

AS— AL = (u+rdz)dt
Pp —LI = vdt

Qg—Mm = (v+Mdx)dt
Rr—Ln = (v+mdy)dt
Ss — LI = (W4 pndz)dt
pr — I = wdt

q®—mpu = (w+ Ndx)dt
rp —nv = (w—+ndy)dt
so —lo = (w+vdz)dt.

Thus the three coordinates for these four points 7, @, p and
o will be
AP = x 4 udt;
pr =z + wdt
RQ =x +dx + (u + Ldx)dt;
q® = z+ (w+ Ndx)dt
AR = x + (u + ldy)dt;
rp =z + (w + ndy)dt
AS = x + (u + Adz)dt;
so =z4+dz+ (w+ vdz)dr.

Pp =y + vdi;
Qg =y + (v + Mdx)dt;
Rr =y +dy + (v + mdy)dt;

Ss =y + (v + udz)dt;

29. Since after time dt has elapsed the vertices A, i, v and
o of the pyramid are transferred to the points 7, @, p and o,
7 $po defines a similar triangular pyramid. Due to the nature
of the fluid the volume of the pyramid & ¢ po should be equal to
the volume of the pyramid Auvo put forward, that is %dxd ydz.
Thus, the whole matter is reduced to determining the volume of
the pyramid 7w @ po. Clearly, it remains a pyramid, if the solid
pqr Ppo is removed from the solid pgrm @po; the latter
solid is a prism orthogonally incident to the triangular basis
pqr, and cut by the upper oblique section p P.

30. The other solid pgrm @po can be divided by similarly
into three prisms truncated in this manner, namely

Lpgrst ®o; Il.prsmpo; Il.grs®po.

This has to be accomplished in such a way that
1
gdxdydz = pgqsw Po + prswpo + qrsPpo — pgrm Pp.

Since such a prism is orthogonally incident to its lower base,

and furthermore has three unequal heights, its volume is found

by multiplying the base by one third of the sum of these heights.
31. Thus, the volumes of these truncated prisms will be

1

pqst o = gpqs(pn +q®+s0)
1

prswpoc = gprs(prr +rp+so)
1

qrsPpo = gqrs(qd5 +rp+so)

1
pqre dp = gpqr(pﬂ +qP+rp).
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Since pgr = pgs+ prs+qrs, the sum of the first three prisms
will definitely be small, or

1 1 1 1 1
gdxdydz = —gpn.qrs — gq d.prs — gr,o.pqs + gsa.pqr,
or

dxdydz = 2pqr.soc —2pgs.rp —2prs.q® — 2qrs.pmw.

32. Thus, it remains to define the bases of these prisms: but
before we do this, let us put

AQ=AP+Q; Qg =Pp+gq; q9 = pr + &;
AR = AP+R; Rr =Pp+r; rpo = pr+ p;
AS = AP+S; Ss =Pp+s; so = pr+o,

in order to shorten the following calculations. After the
substitution of these values, the terms containing pm will
annihilate each other, and we shall have

dxdydz = 2pqr.c —2pgs.p — 2prs. ®
so that the value of the bases to be investigated is smaller.

33. Furthermore the triangle pgr is obtained by removing
the trapezoid PpgQ from the figure PprqQ, the latter being the

sum of the trapezoids PprR and RrqQ; from which it follows
that

1 1 1
Apgr = PR(Pp +Rr) + SRQRr +Qq) = 5PQ(Pp +Qq);

or, because of PR = R; RQ = Q — R; and PQ = Q we shall
have

Apgr = 'R(Pp —Qq) + 1QRr —Pp) = Lor — 1R
r= - — - — = -Qr — =Rg.
rq > 14 q > r 14 5 r 5 q
In the same manner we have
1 1
Apgs = EPS(Pp + Ss) + ESQ(SS + Qq)
1
- EPQ(PP +Qq),
or
1 1
Apgs = ES(PP + Ss) + E(Q —S)(Ss + Qq)
1
- gQ(PP + Qq),
from where it follows that:
1 1 1 1
A ==-SPp — —Q(Ss —Pp) = -Qs — =S¢.
pgs =3 (Pp Qq)+2Q( s —Pp) 2Qs 554
And finally
1 1 1
Aprs = EPR(Pp + Rr) + ERS(Rr + Ss) — EPS(Pp + Ss),
or
1 1 1
Aprs= ER(PP +Rr) + E(S —R)(Rr + Ss) — ES(PP + Ss)
from where it follows that

1 1 1 1
Aprs = ER(P‘D — Ss) + ES(Rr —Pp) = ESr - ERS.

34. After the substitution of these values we will obtain
dxdydz = (Qr —Rg)o + (Sq — Qs)p + (Rs — Sr) @;
thus the volume of the pyramid 7 ®po will be

1 1 1

E(Qr —Rg)o + E(Sq —Qs)p + E(RS —Sr)o.

From the values of the coordinates presented above in §. 28
follows

Q=dx +Ldxdt q =Mdxdt ¢ =Ndxdt
R =ldydt r =dy+mdydt p = ndydt
S =MAdzdt s =pdzdt o =dz+vdzdt.

35. Since here we have

Qr —Rq = dxdy(1 + Ldt + mdt + Lmdt*> — Midt?)
Sq — Qs = dxdz(—updt — Ludt® + Mrdt?)
Rs — Sr = dydz(—Adt — madt* + lpdt?)

the volume of the pyramid 7 ®po is found to be expressed as

1 +Ldr +Lmdt> +Lmvds
+mdt —-Mldt*> —Mivdr
1 +vdt +Lvdr®> —Lnpds’
gdxdydz tmvdt®  AMnrde [
—nudt2 —Nmidt®
—NAdt?>  +Nlpde?

which (volume), since it must be equal to that of the pyramid
Apvo = %dxdydz, will satisfy, after performing a division by

dt the following equation'!.

O=L+m+4+v+dt(Lm+Lv+mv—Ml —NA—nu)
+dt2(Lmv+MnA+Nl/L —Lnu —Mlv — Nip).

36. Discarding infinitely small terms, we get this equation:'?
L +m 4+ v = 0, through which is determined the relation
between u, v and w, so that the motion of the fluid be possible.
Since L = %, m = Z—" and v = ‘2—'2’, at an arbitrary point of
the fluid A, whose position is defined by the three coordinates
x, y and z, and the velocities u, v and w are assigned in the
same manner to be directed along these same coordinates, the

criterion of possible motions is such that

du dv dw

dx + dy + dz

This condition expresses that through the motion no part of the
fluid is carried into a greater or or lesser space, but perpetually
the continuity of the fluid as well as the identical density is
conserved.

37. This property is to be interpreted further so that at the
same instant it is extended to all points of the fluid: of course,
the three velocities of all the points must be such functions of
the three coordinates x, y and z that we have % + Z—; + ”é—’; =0

11 This is the calculation to which Euler refers in his later French memoir
Euler, 1755.

12 This is the three-dimensional incompressibility condition.
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in this way the nature of those functions defines the motion
of every point of the fluid at a given instant. At another time
the motion of the same points may be howsoever different,
provided that at an arbitrary point of time the property holds for
the whole fluid. Up to now I have considered the time simply as
a constant quantity.

38. If however, we also wish to consider time as variable so
that the motion of the point A whose position is given by the
three coordinates AL = x, LI = y and /A = z has to be defined
after the elapsed time ¢, it is certain that the three velocities
u, v and w depend not only on the coordinates x, y and z but
additionally on the time ¢, that is they will be functions of these
four quantities x, y, z and ¢; furthermore, their differentials are
going to have the following form

du = Ldx + ldy + Adz + £dt;
dv = Mdx + mdy + udz + 9Mdt,
dw = Ndx + ndy + vdz + Ndt;

Meanwhile we shall always have L + m + v = 0, having in
view that at every arbitrary instant the time ¢ is considered to
be constant, or dt = 0. Howsoever the functions u, v and w
vary with time ¢, it is necessary that at every moment of time
the following holds:

du n dv N dw
dx dy dz
Since the condition expresses that any arbitrary portion of the
fluid is carried in a time dt into a volume equal to itself, the

same will have to happen, due to the same condition, in the next
time interval, and therefore in all the following time intervals.

II. Second part

39. Having presented what pertains to all possible motions,
let us now investigate the nature of the motion which can really
occur in the fluid. Here, besides the continuity of the fluid and
the constancy of its density, we will also have to consider the
forces which act on every element of the fluid. When the motion
of any element is either non-uniform or varying in its direction,
the change of motion must be in accordance with the forces
acting on this element. The change of motion becomes known
from known forces, and the preceding formulas contain this
change; we will now deduce new conditions'® which single out
the actual motion among all those possible up to this point.

40. Let us arrange this investigation in two parts as well; at
first let us consider all motions being performed in the same
plane. Let AL = x, LI = y be, as before, the defining
coordinates of the position of an arbitrary point /; now, after
the elapsed time ¢, the two velocities of the point / parallel to
the axes AL and AB are u and v: since the variability of time
has to be taken into account, # and v will be functions of x, y
and ¢ themselves. In respect of which we put

du =Ldx +1dy + £dt and dv = Mdx + mdy + 9Mdt

13 Here Euler probably has in mind the condition of potentiality, which he
will obtain in §§. 47 and 54 for the two-dimensional case and in §. 60 for the
three-dimensional case.

and we have established above that because of the former
condition encountered above, we have L + m = 0.

41. After an elapsed small time interval d¢ the point / is
carried to p, and it has travelled a distance udt parallel to the
axis AL, a distance vdt parallel to the other axis AB. Hence,
to obtain the increments in velocities # and v of the point /
which are induced during time d¢, for dx and dy we must
write the distance udt and vdt, from which will arise these true
increments of the velocities

du = Ludt + lvdt + £dt and dv = Mudt + mvdt +9Ndt.

Therefore the accelerating forces, which produce these
accelerations are

Accel. force wrt. AL =2(Lu + v + £)
Accel. force w.r.t. AB = 2(Mu + mv + 9ON)

to which therefore the forces acting upon the particle of water
ought to be equal.'*

42. Among the forces which in fact act upon the particles of
water, the first to be considered is gravity; its effect, however,
if the plane of motion is horizontal, amounts to nothing. Yet if
the plane is inclined, the axis AL following the inclination, the
other being horizontal, gravity generates a constant accelerating
force parallel to the axis AL, let it be «. Next we must not
neglect friction, which often hinders the motion of water, and
not a little. Although its laws have not yet been explored
sufficiently, nevertheless, following the law of friction for solid
bodies, probably we shall not wander too far astray if we set the
friction everywhere proportional to the pressure with which the
particles of water press upon one another. '

43. First, must be brought into the calculation the pressure
with which the particles of water everywhere mutually act upon
each other, by means of which every particle is pressed together
on all sides by its neighbours; and in so far as this pressure is
not everywhere equal, to that extent motion is communicated
to that particle.'® The water simply will be put everywhere
into a state of compression similar to that which still water
experiences when stagnating at a certain depth. This depth is
most conveniently employed for representing the pressure at an
arbitrary point / of the fluid. Therefore let that height, or depth,
expressing the state of compression at /, be p, a certain function
of the coordinates x and y, and should the pressure at/ vary also
with the time, the time will also enter into the function p.

44. Thus let us set dp = Rdx + rdy + Pdt, and let us
consider a rectangular element of water, /mno, whose sides are
Im = no = dx and In = mo = dy, whose area is dxdy
(Fig. 3). The pressure at [ is p, the pressure at m is p + Rdx,
atnitis p +rdy and at o itis p + Rdx + rdy. Thus the side
Im is pressed by a force = dx(p + %Rdx), while the opposite

side no will be pressed by a force = dx(p + %Rdx + rdy);

14 The unusual factors of 2 in the previous equations have to do with a choice
of units which soon became obsolete; cf. Truesdell, 1954; Mikhailov, 1999.

I5ytis actually not clear why Euler takes the friction force proportional to the
pressure.

16 Here Euler makes full use of the concept of internal pressure, cf. Darrigol
and Frisch, 2008.
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Fig. 3.

therefore by these two forces the element /mno will be impelled
in the direction In by a force = —rdxdy. Moreover, in a similar
manner from the forces dy(p+%rdy) and dy(p+Rdx+%rdy),
which act on the sides /n and mo will result a force = —Rdxdy
impelling the element in the direction Im.

45. Thus will originate an accelerating force parallel to Im =
—R and an accelerating force parallel to /n = —r, of which the
one directed along the force of gravity « gives o« — R. Having
ignored friction so far, we obtain the following equations'”:

R=o—2Lu —2lv—-2¢
r = —2Mu — 2mv — 29N

o —R=2Lu+2v+28£ or
—r  =2Mu +2mv + 290 and

from which we gather that
dp = adx —2(Lu + v + £)dx — 2(Mu + mv +M)dy + Rdt,

a differential which must be complete or integrable.

46. Because the term « dx is integrable by itself and nothing
is determined for R, from the nature of complete differentials
it is necessary that the following holds in the notation already
employed:

dLu—+Ilv+ £ _ dMu +mv + M

dy dx
Since Z—z =L, % =1 Z—z =M, and Z—‘y’ = m it follows that
Ll gy A4Sy 1w
dy dy dy dx
+mM + vd_m = @
dx dx

which is reduced to this form:

LC+md-M)+
dL dM dl  dm dg dm
u|l———»,+v|{———)+——-——=0

dy dx dy dx dy dx

47. In fact, since we knew Ldx + ldy + £dt and Mdx +
mdy + Mdt to be complete differentials,
dL _dl  dm dM_ df di
dy dx’ dx dy’ dy dt

dM  dM
dx — dt

17 Here the so-called Euler equations of incompressible fluid dynamics appear
for the first time, but the notation and the units are not very modern, in contrast
to the memoir he will write three years later (Euler, 1755).

after the substitution of which values we have the following
equation

L+m(I—-M) +

dl —dM dl —dM dl —dM
Uu{——— | +v + =0.
dx dy dt

Plainly, this is satisfied if / = M: so that % = Z—z. Since this

condition requires that % = Z—;,ls it appears finally that the

differential formula udx + vdy must be complete; in this lies
the criterion of actual motion.

48. This criterion is independent from the preceding one,
which was provided by the continuity of the fluid and its
uniform constant density. Therefore even if the fluid in motion
changes its density, as happens in the motion of elastic fluids
such as air, this property will hold nonetheless, namely udx +
vdy has to be a complete differential. In other words, the
velocities # and v must always be functions of the coordinates
x and y, together with time ¢, in such a way that when the time
is taken constant the formula udx 4 vdy admits an integration.

49. We shall now determine the pressure p itself, which is
absolutely necessary for perfectly determining the motion of
the fluid. Since we have found that M =/ we have

dp = adx —2u(Ldx +1dy) —2v(ldx + mdy) —2Ldx
—2Mdy + Rdt.

Moreover Ldx + ldy = du — £dt; ldx + mdy = dv — 9Mdt;

hence we have

dp = adx —

2udu — 2vdv + 2Ludt + 2Mudt — 2Ldx — 29Ndy + Rdt.

Therefore, if we wish to ascertain for the present time the

pressure at each point of the fluid, with no account of its
variation in time, we shall have to consider this equation

dp = adx — 2udu — 2vdv — 2Ldx — 29Mdy,

and in our notation £ = % and 9N = ‘;—';.19 Hence
du dv

dp = adx —2udu — 2vdv — 2—dx — 2—dy,

p = adx udu vdv ’r x T y

in the integration of which the time is to be taken constant.

50. This equation is integrable by hypothesis, and is indeed
understood as such, if we consider the criterion of the motion
which, as we have seen, consists in that udx + vdy be a
complete differential when the time ¢ is taken constant. Let
therefore S be its integral, which consequently will be a
function of x, y and ¢ themselves. For dt = (0 we obtain
dS = udx + vdy, while assuming the time ¢ variable as well,

18 Here there are two problems. The minor problem is a typographical error in
the published version ( g—; instead of g—;), which is not present in a 1752 copy
of the manuscript (not in Euler’s hand), henceforth referred to as Euler, 1752.
A more serious problem is that Euler here repeats the mistake of D’ Alembert,
1752 who confused a sufficient condition — the vanishing of the vorticity — with

anecessary one.

19 The printed version has L = % instead of £ = % Euler, 1752 is correct.
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let us write

dS = udx + vdy + Udt,

on which account we obtain ‘;ll—’t‘ = fl—g and ‘fi—‘t’ = ‘(’1—[;. Then, in
fact U = %.
51. After inserting these values we will obtain
d d du du
—u.dx & dy = —.dx+ —.dy
dt dt dx dy

and this differential formula is manifestly integrated at constant
time ¢ to give U. For this to become clearer, let us set dU =
Kdx + kdy; thus 4 = K and 43 = k, so that 9.dx + 45 =

Kdx + kdy = dU. Since its integral is U = %, we shall have

dp = adx — 2udu — 2vdv — 2dU
from where it appears by integration:

2dS
p = Const. + ax — uu — vv — ar

with a given function S of the coordinates x, y and ¢ themselves,
whose differential, for dr = 0 is udx + vdy.

52. In order to understand better the nature of these formulas,
let us consider the true velocity of the point /, which is V =
A/(uu + vv). And the pressure will be: p = Const. + ax —
VV — %: in which the last term dS denotes the differential of
S = f (udx + vdy) itself, where the time 7 is allowed to vary.

53. If we now wish to also take friction into account, let us
set it proportional to the pressure p. While the point [ travels
the element ds, the retarding force arising from the friction is
= %; so that, setting % = U, our differential equation will be
for constant ¢

dp = adx — ?ds — VdV - 24U,

from where we obtain by integration, taking e for the number
whose hyperbolic?® logarithm is = 1,

p:eT/e%((xdx—ZVdV—%lV) or
1 = s
p:otx—VV—ZU—?ef[ef(otx—VV—ZU)ds.

54. The criterion of the motion which drives the fluid in
reality consists in this that, fixing the time ¢, the differential
udx + vdy has to be complete: also continuity and constant
uniform density demand that % + g—; = 0, hence it follows

too that this differential udy — vdx will have to be complete.?!
From where both velocities # and v jointly must be functions of
the coordinates x and y with the time ¢ in such a way that both
differential formulas udx + vdy and udy — vdx>? be complete
differentials.

55. Let us set up the same investigation in general, giving
the point XA three velocities directed parallel to the axes AL,

20 Natural.
21 The published version has udx + vdy, a mistake not present in Euler, 1752.
22 previous mistake repeated in the published version.

AB, AC. Let u, v, w denote these functions, which depend on
coordinates x, y, z, besides t. After a differentiation we obtain

du =Ldx +1dy 4+ rdz + £dt
dv = Mdx + mdy + pdz + 9Ndt
dw = Ndx + ndy + vdz + Ndt.

Although here the time 7 is also taken as variable, nonetheless
for the motion to be possible, by the preceding condition®® we
have L 4+ m 4+ v = 0, or, which reexpresses the same

du dv dw

il W =0,
dx+dy

dz
a condition on which the present examination does not depend.

56. After the passage of time interval d¢ the point A is carried
to 7, and it travels a distance udt parallel to the axis AL, a
distance vdt parallel to the axis AB and a distance wdt parallel
to the axis AC. Thus the three velocities of the point which has
moved from A to r will be:

parallel to AL = u + Lu dt 4+ lvdt + Aw dt 4 £dt;
parallel to AB = v + Mu dt + mv dt + pw dt + M dt;
parallel to AC = w + Nudt + nvdt +vwdt + Ndt,

and the accelerations parallel to the same directions will be

par. AL = 2(Lu + lv 4+ Aw + £);
par. AB = 2(Mu + mv + pw + 9M);
par. AC = 2(Nu + nv + vw 4+ ).

57. If we take the axis AC to be vertical, in such a way that
the remaining two AL and AB are horizontal, the accelerating
force due to gravity arises parallel to the axis AC with the
value —1. Then indeed, denoting the pressure at A by p, its
differential, at constant time is

dp =Rdx +rdy + pdz,
from which we obtain the three accelerating forces

par. AL =R; par. AB=—r; par. AC=—p

which are in fact easily collected in the same manner as was
done in §§. 44 and 45, so that it is not necessary to repeat the
same computation. Hence we obtain the following equations*

R=-2Lu+1lv+iw+ L)
r = —2Mu +mv + pw + M)
p = —1=2MNu+nv+vw +N).

58. Since the differential formula dp = Rdx + rdy + pdz
has to be a complete differential, we have

dR dr dR dp_ dr dp
dy dx’ dz dx’ dz dy’
23 From Part L.

24 These are the three dimensional Euler equations.
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After a differentiation and a division by —2 the following three
equations are obtained?

udL+vdl+wd)»+d£+Ll+l 4
_ — + — 4+ — m n=
I dy dy dy dy
udM + vdm + wdp + dim—i—ML—f— M+ uN
dx dx dx dx " H
udlL vdl wdr d£

—F— 4+ —+ —+ LA+ ilp+rv=
nl dz dz dz dz
udN+vdn+wdv+d‘ﬁ+NL+ M 4 vN

—_— — v

dx dx dx dx "

udM n vdm  wdp Lo am M+ n

m V=
dz dz dz dz pop
udN+vdn+wdv+d‘ﬁ+Nl+ n
—_—t —t — + — nm + vn.
dy dy dy dy

59. Moreover, because of the nature of the complete
differentials, we have

III

dL _dl dm dM dr _ dl
dy dx’ dx dy dy dz’
du_dM'dE lydim dm

dx — dz ' d dt’ dx  dt
dL _ d) d? d»_dn _dN

dz dx dz _dy dx _ dy’
dv _dN df dr dn _dN

dx  dz’ dz dx  dt’
am d,u dN dn_ dm dp

dz _dx’ dy dx dz dy’
dv. dn_d 331 d,uv. an  dn

dy _dz’ dz _di’ dy _dr’
after substituting of which values those three equations will be
transformed into these”®

dl —dM n dl —dM n dl —dM n
dt dx dy

dl —dM

dr—dN\  (di—dN (dh—dNY
di “\ax N\ ay

dr — dN
w(d—)+(A—N)(L+U)+l,u,—nM:O,
z

du—dn du —dn diu —dn
() = () - (F57)+
du —dn
Z

60. Now it is manifest that these three equations are satisfied
by the following three values

[ =M;

5

A=N;, u=n
in which is contained the criterion furnished by the
consideration of the forces. Here therefore follows that in the

25 The printed version contains mistakes not present in Euler, 1752: in the
formula labelled II, instead of L there is £ in the formula labelled III there is a
v instead of u.

26 These are the equations for the vorticity.

notation chosen we have?’
du dv du dw dv dw
dy dx’ dz dx' dz dy
these conditions moreover are the same as those which are
required in order that the formula udx + vdy + wdz be a
complete differential. From which this criterion consists in that
the three velocities u, v and w have to be functions of x, y and
7 together with ¢ in such a manner that for fixed constant time
the formula udx + vdy + wdz admits an integration.

61. Taking the time ¢ constant or dt = 0, we have

du = Ldx +Mdy + Ndz
dv = Mdx 4+ mdy + ndz
dw = Ndx + ndy + vdz

moreover, for R, r and p the values are

R = -2(Lu + Mv + Nw + £)
r = —2Mu + mv + nw + M)
o =—1—=2Nu+nv+vw+N).

Regarding the pressure p, we obtain the following equation

dp = —dz

—2u(Ldx + Mdy + Ndz) =
—2v(Mdx 4+ mdy + ndz)
—2w(Ndx + ndy + vdz)
—28dx — 29Mdy — 2Ndz.

—dz — 2udu — 2vdv — 2wdw
—28dx — 29 — 2Ndz

62. Since in truth £ = ‘é—’;; M = fj—f; N = ‘Z—’f, we obtain by
integration

du dv dw
=C—z—uu—vv—ww—2 dx+ Zay+ 4
p Z— Uu — Vv — ww /(d +d y+d z)
By the previously ascertained condition udx + vdy + wdz
is integrable. Let us denote its integral by S, which can also
involve the time ¢; taking also the time ¢ variable, we have

dS = udx + vdy + wdz + Udt,

_dU.dv _ dU. dw _ dU H
and we have 4 dt =T dr = aydr = dz.From where, with

time generally taken constant, it can be assumed in the above
integral that
dUu du

du
—dx + —dy—l——dz—dU
dx

and we obtain?8

p=C—z—uu—vv—ww—-2U, or
c 2d S
—Z—uu— v —ww—2—.
P= ¢ dt
63. Thus, uu 4+ vv + ww is manifestly expressing the square
of the true velocity of the point A, so that, if the true velocity of

27 Here Euler repeats the mistake of assuming that the only solution is zero-
vorticity flow; in Euler, 1755 this will be corrected.

28 The published version has a ds in the denominator, instead of the correct
dt, found in Euler, 1752.
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this point is denoted V, the following equation is obtained for
the pressure?’

2dS
p=C—-z-VV TR
To use this, firstly one must seek the integral S of the
formula udx + vdy + wdz which should be complete. This
is differentiated again, taking only the time ¢ as variable. After
division by dt, one obtains the value of the formula %, which
enters into the expression for the state of the pressure p.

64. But before we may add here the previous criterion,
regarding possible motion, the three velocities u, v and w must
be such functions of the three coordinates x, y and z, and of
time ¢ that, firstly, udx + vdy + wdz be a complete differential
and, secondly, that the condition % + Z—; + ‘é—’; = 0 holds.
The whole motion of fluids endowed with invariable density is
subjected to these two conditions.

Furthermore, if we take also the time ¢ to be variable, and
the differential formula udx 4 vdy + wdz + Udt is a complete
differential, the state of the pressure at any point X, expressed
as an altitude p, will be given by

p=C—z—uu—vv—ww-—-2U0,

if only the fluid enjoys the natural gravity and the plane BAL is
horizontal.

65. Suppose we had attributed another direction to the
gravity or even adopted arbitrary variable forces acting on the
particles of the fluid. Differences would arise in the values of
the pressure, but the law which the three velocities of the fluid
have to obey would not suffer any changes. Thus, whatever the
acting forces, the three velocities u, v and w have to satisfy the
conditions that the differential formula udx + vdy + wdz be
complete and that Zl—)’j + Zl—; + ‘fi—’; = 0 should hold. Therefore,
the three velocities u, v and w can be fixed in infinitely many
ways while satisfying the two conditions; and then it is possible
to prescribe the pressure at every point of the fluid.°

66. However, much more difficult would be the following
question: given the acting forces and the pressure at all places,
to determine the motion of the fluid at all points. Indeed, we
would then have some equations®!' of the form p = C — z —
uu — vv — ww — 2U, from which the relation of the functions
u, v and w would have to be defined in such a way that not
only the equations themselves would be satisfied, but also the
previously contributed rules’> would have to be obeyed; this
work would certainly require the greatest force of calculation.
It is fitting therefore to inquire in general into the nature of
functions proper to satisfy both criteria.

67. Most conveniently therefore let us begin with the
characterization of the integral quantity S, whose differential
is udx 4+ vdy + wdz, when time is held constant. Let thus

29 This is basically the Bernoulli pressure law for potential flow.

30 Many statements in this paragraph are rendered invalid by the generally
incorrect assumption of potential flow.

31 The plural is here used probably because this relation has to be satisfied at
all points.

32 Incompressibility and potentiality.

S be a function of x, y and z, the time ¢ being contained in
constant quantities. When S is differentiated, the coefficients
of the differentials dx, dy and dz are the velocities u, v and
w which at the present time suit the point of fluid A, whose
coordinates are x, y and z. The question thus arises here to find
the functions S of x, y and z such that du | Z—; + ‘é—’;’ = 0; now,

dx
i — ds — 4s — dS ;
since we have u = o V= @ and w = 7 it follows that

ddS ddS ddS 0.33

a Ty T ar =
68. Since it is not plain how this can be handled in general, I
shall consider certain rather general cases. Let

S = (Ax + By + C2)".

We have
ds
T =nA(Ax +By+ Cz)" ! and
x
ddS
— =n(n — )AA(Ax + By + Cz)" 2
dx?
and the expressions for ‘é—‘;? and % will be similar. Thus we

have to satisfy
n(n — 1)(Ax + By +Cz)"2(AA+BB +CC) =0

which is plainly satisfied when either n = 0 or n = 1. Thus we
have the solutions S = Const. and S = Ax + By + Cz, where
the constants A, B and C are arbitrary.

69. But if n is neither 0, nor 1, we necessarily have: AA +
BB + CC = 0: and then S is given by

S = (Ax + By + Cz)"

for any value of the exponent n; even the time ¢ itself will
possibly enter in n. Furthermore we can add up arbitrarily many
such S and obtain yet another solution.>* The function

S=a+Bx+yy+d8z+e(Ax +By+C2)" +
((A/x + B/y + C/Z)n’ + 77(A”x + B//y + C//Z)n” +
9(A”’x + B///y + C///Z)n”’ etc.

will satisfy the condition only if we have:
AA+BB+CC=0; A'A+BB +CC =0;
A//A// + B//B// + C//c// — 0 etc

70. Here suitable values are given for S in which the
coordinates x, y, z have either one, or two, or three, or four
dimensions®

I.S=A
II. S=Ax+By+Cz
II. S = Axx +Byy + Czz 4+ 2Dxy + 2Exz + 2Fyz with A 4
B+C=0

33 This is what will later be called Laplace’s equation.

34 1n modern terms, Euler is here using the linear character of the Laplace
equation.

35 In modern terms we would say “which are polynomials in x, y, z of degrees
up to four”.
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IV. S = Ax®+By3+Cz3+3Dxxy+3Fxxz+Hyyz+6Kxyz+
3Exyy+3Gxzz+3lyzz with A+E+G =0; B+D+I1=
0;C+F+H=0

V.
+ Ax* 4+ 6Dxxyy +4Gx>y + 4Hxy? + 12Nxxyz
S = +By* + 6Bxxzz + 4Ixz + 4Kxz® 4+ 120xyyz
+Cz* + 6Fyyzz + 4Ly3z + 4Myz? + 12Pxyzz

with

A+D+E=0 G+H+P=0
B+D+F=0 I+K+0=0
C+E+F=0 L+M+N=0.

71. Hence it is clear how these formulas are to be obtained
for any order. First, simply give to the various terms the
numerical coefficients which belong to them from the law of
permutation, or, equivalently, which arise when the trinomial
x + y + z is raised to that same power. Let indefinite letters
A, B, C, etc., be adjoined to the numerical coefficients. Then,
ignoring the coefficients, observe whenever there occur three
terms of the type LZx> + MZy? + NZz? having a common
factor Z formed from the variables. Whenever this occurs, set
the sum of the literal coefficients L + M + N equal to zero. For
example, for the fifth power we have

S = Ax> +5Dx*y 4+ 50x*z + 10Gx3yy + Bx3zz +
20Kx3yz + 30Nxyyzz +
Bx® + 5Ex*y + 5¢x*z + 10Hx3yy + Hx3zz +
20Lx3 vz +300xyyzz
+Cxd + 5Fx4y + 5%tz + 101x3yy +Ix3zz +
20Mx3yz + 30Pxyyzz

and the following determinations of the coefficient letters are
obtained

A+G+®=0, D+H+0=0;, ©4+I14+P=0;
B+H+$9=0, E4+G+N=0; &+F+P=0;
K+L+M=0;

C+I+3=0;, F+B6+N=0; F+H+0=0.

In the same way for the sixth order such determinations will
give 15, for the seventh 21, for the eighth 28 and so on.

72. In the very first formula S = A the coordinates x, y and z
are clearly not intertwined. Thus the three velocities u, v and w
are equal to zero, and hence this describes a quiet state of fluid.
Also the pressure at an arbitrary point for different times will
be able to vary in an arbitrary manner. Indeed A is an arbitrary
function of time and, for a given time ¢, the pressure at the point
risp =C— % — z. Through this formula is revealed the
state of the fluid, when it is subjected at an arbitrary instant to
arbitrary forces, which nevertheless balance each other, so that
no motion in the fluid can arise from them: where it happens, if
the fluid is enclosed in a vase from which it can nowhere escape,
it is also compressed by suitable forces inside.

73. Moreover, the second formula S = Ax 4+ By + Cz, after
differentiation, gives these three velocities to the point A:

u=A; v=B and w=C.

Thus simultaneously, all points of the fluid are carried by an
identical motion in the same direction. From which the whole
fluid moves in the same manner as a solid body, carried only
by a forward motion. But at different times the velocities as
well as the direction of this motion are able to be varied in an
arbitrary way, depending on what the extrinsic driving forces
require. Therefore, the pressure at the point X at the time ¢ on
which A, B, C depend, is*® p = C — 7 — AA — BB — CC —
2x% — Zy% — 2z%.

74. The third formula S = Axx + Byy + Czz 4+ 2Dxy +
2Exz 4+ 2Fyz, where A + B 4 C = 0, gives the following
three velocities®’ of the point A: u = 2Ax + 2Dy + 2Ez;
v = 2By + 2Dx + 2Fz; w = 2Cz 4+ 2Ex + 2Fy, or w =
2Ex + 2Fy — 2(A + B)z. Here, at a given instant, different
points of the fluid are carried by different motions; moreover,
in the time development an arbitrary motion of a given point
is permitted, because A, B, D, E, F can be arbitrary functions
of the time ¢. Finally, a much greater variety can take place, if
more elaborate values are given to the function S.

75. In the second case the motion of the fluid was
corresponding to the forward motion of a solid body in which,
plainly, at any instant the different parts are carried by a motion
equal and parallel to itself. In other cases the motion of the
fluid could be suspected to correspond to solid-body motion,
either rotational or anomalous. It suffices to put forward such
a hypothesis — beyond the second case — to find that it cannot
take place. Indeed, in order to happen, not only would it be
necessary that the pyramid 7 $po would be equal,*® but also
similar to the pyramid Auvo, or that the following holds

n®=ru=dx=(QQ+qq+ ?P)

7p =2 =dy = /RR~+rr+ pp)

7o =20 =dz =./(SS+ss+00)

Pp =y = \/(dxz +dy?) =
VIQ=R?+ (g =+ (®—-p)?

$o = o = J(dxz +dz%) =

VIQ =87 +(q =57+ (2 —0)?)

po =vo = J/(dy* +dz*) =

VIR =8+ (=)’ + (0 — )7,

where we applied the values taken from §. 32.

76. Then the three latter equations, combined with the
former, are reduced to these:

QR +gr+ Pp =0; QS+ gs + 0 =0 and
RS +rs+ po =0.

36 The printed version, but not Euler, 1752, has a missing BB in the formula.

37 In both the printed version and in Euler, 1752, the first velocity component
is mistakenly denoted by «.

38 In volume.
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Moreover, if the values assigned in §. 34 are substituted for the
letters Q, R, S, g, r, s, @, p, o and the higher-order terms for
the rests are neglected, the three former will give

1=1+4+2Ldt; [+M=0;

1=14+2mdt; A+N=0;

1=1+42vdt; p+n=0,

sothat wehave L=0m =0andv =0,M = —/, N = —X and
n=—u.

77. Thus, the three velocities of this point A would have to
be compared to the condition that the following hold*®

du =ldy + \dz;
dv = —ldx + ndz;
dw = —\dx — udy.

But the second condition demands a motion of the fluid such
that / = M, A = N and n = u; hence all the coefficients |,
XA and p vanish; also the velocities u#, v and w will take the
same value everywhere in the fluid. Therefore it is plain that
the motion of the fluid cannot correspond to solid-body motion
other than pure translational.

78. To ascertain the effect of the forces which act from the
outside upon the fluid, it is first necessary to determine those
forces* which are required for effecting the motion which we
have assumed to exist in the fluid. These are equivalent to the
forces which in fact work upon the fluid; furthermore we have
seen above in §. 56 that three accelerating forces are required,
which are here repeated. If an element of fluid is conceived
here, whose volume, or mass is dxdydz, the moving forces
required for the motion are

par. AL = 2dxdydz(Lu + v+ Aw + £) =
du du du du
2dxdyd — — — 4+ —
Ty Z(”dx vyt T dt)
par. AB = 2dxdydz(Mu + mv + pw + 9) =
dv dv dv dv
2dxdyd — — —+—
ey Z<udx Tyt Tt dt)
par. AC = 2dxdydz(Nu + nv +vw +MN) =
dw dw dw dw
2dxdyd — — —+—,
Ty Z<udx vy TV T dt)
so that by triple integration the components of the total forces
which must act on the whole mass of fluid may be obtained.
79. But since the second condition requires that udx +vdy+
wdz be a complete differential, whose integral is S, let us put as
before, with time allowed to vary, dS = udx+vdy+wdz+Udt.

’

’

; du _ dv.du _ dw.du _ dU i
Since O = dod = diddt = dx those three moving forces
emerge“:

d d d du
par. AL = 2dxdydz <u utv v;—w w )
X

39 In the printed version, but not in Euler, 1752, there are several sign
mistakes.

40 Here, internal forces are meant.
41 There is a misprint in the printed version, w instead of +.

d d d dU
par.AB:dedydz(uu+v vt wdw + )

dy
udu + vdv + wdw + dU
dz '
80. Let us set now uu + vv + ww +2U = T. The function T

depends on the coordinates x. y, z; take it at a given instant of
time 7:42

par. AL = 2dxdydz <

dT = Kdx + kdy + «dz.

The three moving forces of the element dxdydz are*?

par. AL = Kdxdydz
par. AB = kdxdydz
par. AC = kdxdydz

and by triple integration these formulas ought to be extended
throughout the mass of the fluid; thus forces equivalent to all**
and their directions may be obtained. Truly this discussion is
for a later investigation, which I shall not deepen here.

81. Furthermore, the quantity T = uu+vv+ww+2U, which
is analyzed in this calculation, furnishes a simpler formula for
expressing the pressure through the height p; we have indeed
p = C — z — T when the particles of the fluid are pressed
upon solely by the gravity. But if an arbitrary particle A is
acted upon by three accelerating forces which are Q, q and &,
acting parallel to the directions of the axes AF, AB and AC,
respectively, after a calculation similar to the previous one has
been carried out, the pressure will be given by

p=C+/(de+qdy+Q§dz)—T.

Thus it is plain that the differential Q + gdy + ®dz must
be complete, as otherwise a state of equilibrium, or at least
a possible one, could not exist. That this condition must be
imposed on the acting forces Q, g and ¢ was shown very clearly
by the most famous Mr. Clairaut.*>

82. Here are, therefore, the principles of the entire doctrine
of the motion of fluids, which, even if they at first sight
may seem insufficiently fruitful, nevertheless embrace almost
everything treated both in hydrostatics and in hydraulics, so that
these principles must be regarded as having very broad extent.
For this to appear more clearly, it is worthwhile to show how
the precepts learned in hydrostatics and hydraulics follow.

83. Let us therefore consider first a fluid in a state of rest, so
that we have u = 0, v = 0 and w = 0; in view of T = 2U, the
pressure in an arbitrary point A of the fluid is

p=C+/(de+qdy+@dz)—2U.

Here, U is a function of the time ¢ itself which we take as
constant. Indeed, we investigate the pressure at a given time;

42 There is a misprint: u instead of «.

43 Here is again a misprint: k instead of «.
44 The pressure forces.

43 Clairaut, 1743.



L. Euler / Physica D 237 (2008) 1840-1854 1853

the quantity U can be included in the constant C, so that we
obtain

p=C+/(de+qdy+d5dz)

where Q, g an @ are the forces acting on the particle of water
A, parallel to the axes AL, AB and AC.

84. The pressure p can only depend on the position of
the point A that is on the coordinates x, y and z; it is thus
necessary that [(Qdx + gdy + @dz) be a prescribed function
of them, which therefore admits integration. Thus it is firstly
clear that in the manner indicated the fluid cannot be sustained
in equilibrium, unless the forces acting on each element of the
fluid are such that the differential formula Qdx 4 gdy + ®dz is
complete. Thus, if its integral is denoted P, the pressure at A will
be p = C + P. Therefore, if the only force present is gravity,
impelling parallel to the direction CA, we shall have p = C—z;
hence, if the pressure is fixed at one point A, the constant C can
be obtained. From which the pressure at a given time will be
defined completely at all points of the fluid.

85. However, with time passing, the pressure at a given place
can change; and this plainly occurs, if variability is assumed
for the forces impelling on the water, whose calculation cannot
be made from those forces which are assumed to act on each
element of the fluid,*® but in such a way that they keep each
other in equilibrium and produce no motion. But if, moreover,
these forces are not subject to any change, the letter C will
indeed denote a constant quantity, not depending on time ¢;
and at a given location A we will always find the same pressure
p=C+P.

86. It is possible to determine the extremal shape of a fluid
in a permanent state, when it is not subjected to any force.*’
Certainly, at the extreme surface of the fluid at which the fluid
is left to itself and not contained within the walls of the vase
in which it is enclosed, the pressure must be zero. Thus we
shall obtain the following equation: P = const; the shape of
the external surface of the fluid is then expressed through a
relation between the three coordinates x, y and z. And if for the
external circumference held P = E, since C = —E, in another
arbitrary internal location A the pressure would be p = P — E.
In this manner, if the particles of the fluid are driven by gravity
only, and because p = C — z, the following will hold at for the
external surface z = C; from which the external free surface is
perceived to be horizontal.

87. Next, everything which has so far been brought out
concerning the motion of a fluid through tubes is easily derived
from these principles. The tubes are usually regarded as very
narrow, or else are assumed to be such that through any section
normal to the tube the fluid flows across with equal motion:
from there originates the rule, that the speed of the fluid at any
place in the tube is reciprocally proportional to its amplitude.
Let therefore A be an arbitrary point of such a tube, of which
the shape is expressed by two equations relating the three

46 That is the internal pressure forces.

47 Here, Euler will comment on the shape of the free (extreme) surface of a
fluid contained in an open vessel.

coordinates x, y and z, so that thereupon for any abscissa x
the two remaining coordinates y and z can be defined.

88. Let henceforth the cross section of this tube at A be rr; in
another fixed location of the tube, where the cross-sectionis ff,
let the velocity at the present time be T; now after time dt has
elapsed, let the velocity become & + di, so that I3 is a function

of time ¢, and similarly with dtj . Hence the true velocity of the

fluid at A will be at the present time V = £ rfr s Since now y and
z are obtained from the shape of the tube, we have dy = ndx
and dz = 6dx; thus the three velocities of the point A in the
fluid, parallel to directions AL, AB and AC, are

_ fftj 1 _ fftj n
rr /(A +nn +99) rr /(1 +nn +99)
ffo 0

e J( 4+ +60)

and hence, uu + vv + ww = VV = ! &j :and rr is function
of x itself, thus of the dependent Varlables y and z.

89. Since udx + vdy + wdz must be a complete differential,
the integral of which is denoted = S, we have:

ffodx(1+ nn-+60) fftj

ds = 11° dx /(1 + 0y + 66
rr JA+n+00)  rr V(L +06).

Moreover, dx./(1 + nn + 00) expresses the element of the
tube itself; if we denote it by ds, we shall obtain dS = £L24.
although & is a function of the time,*8 here we fix the time and,
furthermore, the quantities s and rr do not depend on time but

only on the shape of the tube; thus we have S = & [ ££45,

90. Turning now to the pressure p which is found at the point
of the tube A, the quantity U has to be considered; it arises
from the differentiation of the quantity S, if the time only is
considered as variable, so that we have U = %. Thus, since
the integral formula [ £L L f 45 does not involve time 7, on the one
hand we shall have 43 = U = dU = [ Lrds f 45 " and on the other

dr
hand it will follow from §. 80 that

f4t5t5 2dt5 ffds
,,4

T=

Therefore, after introducing arbitrary actions of forces Q, g and
&, the pressure at A will be

f4t5t5 2dt§ f fds

p=C+f(de+qdy+<ﬁdZ)

This is that same formula which is commonly written for the
motion of a fluid through tubes; but now much more widely
valid, since arbitrary forces acting on the fluid are assumed
here, while this formula is commonly restricted to gravity
alone. Meanwhile it is in order to remember that the three
forces Q, ¢ and @ must be such that the differential formula
Qdx + qgdy + @ dz be complete, that is, admit integration.

48 A5 was stated in §. 88.
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Abstract

The Euler equations of hydrodynamics, which appeared in their present form in the 1750s, did not emerge in the middle of a desert. We shall
see in particular how the Bernoullis contributed much to the transmutation of hydrostatics into hydrodynamics, how d’Alembert was the first
to describe fluid motion using partial differential equations and a general principle linking statics and dynamics, and how Euler developed the
modern concept of internal pressure field which allowed him to apply Newton’s second law to infinitesimal elements of the fluid.
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Quelques sublimes que soient les recherches sur les fluides, dont nous sommes
redevables a Mrs. Bernoullis, Clairaut, & d’Alembert, elles découlent si
naturellement de mes deux formules générales : qu’on ne scauroit assés admirer
cet accord de leurs profondes méditations avec la simplicité des principes, d’ou
j’ai tir€ mes deux équations, & auxquels j’ai été conduit immédiatement par les
premiers axiomes de la Mécanique‘l

(Leonhard Euler, 1755)

1. Introduction

Leonhard Euler had a strong interest in fluid dynamics and
related subjects during all his adult life. In 1827, at age twenty,
he published an important paper on the theory of sound. In
that paper, he gave a quantitative theory of the oscillations
of the column of air in a flute or similar instruments. On
a slate found after his death on 7 September 1783 he had

* The present article includes large sections of Chapter 1 of Darrigol, 2005,
thanks to the kind permission of Oxford University Press. We mention that one
of the authors (OD) is a theoretical physicist by early training who became a
historian of science some twenty years ago, while the other one (UF) is a fluid
dynamicist interested in Euler’s equations since the seventies.

* Corresponding author. Tel.: +33 4 92003035; fax: +33 4 92003058.

E-mail address: uriel @obs-nice.fr (U. Frisch).

1 Euler, 1755¢: 316[original publication page]/92[omnia page]: However
sublime the researches on fluids that we owe to Messrs Bernoullis, Clairaut,
and d’Alembert may be, they derive so naturally from my two general formulas
that one could not cease to admire this agreement of their profound meditations
with the simplicity of the principles from which I have drawn my two equations
and to which I have been immediately driven by the first axioms of Mechanics.

0167-2789/$ - see front matter (©) 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.08.003

developed a theory of aerostatic balloons, having just learned
about the first manned ascent of a balloon designed by the
Montgolfier brothers. Altogether, he published more than forty
papers or books devoted to fluid dynamics and applications.
After his arrival in Saint-Petersburg in 1727, and perhaps
before, Euler was planning a treatise on fluid mechanics based
on the principle of live forces. He recognized the similarity
of his project with Daniel Bernoulli’s and left the field open
to this elder friend. During the fourteen years of his first
Petersburg stay, Euler was actively involved in establishing the
theoretical foundations of naval science, thereby contributing
to the ongoing effort of the Russian state in developing a
modern and powerful fleet. His Sciencia Navalis, completed by
1738 and published in 1749, contained a clear formulation of
hydrostatic laws and their application to the problem of ship
stability. It also involved a few Newtonian considerations on
ship resistance. Soon after his move to Berlin in 1741, he edited
the German translation of Benjamin Robins’s New Principles of
Gunnery, as a consequence of Frederick II’s strong interest in
the science of artillery. Published in 1745, this edition included
much innovative commentary on the problem of the resistance
of the air to the motion of projectiles, especially regarding the
effects of high speed and cavitation.?

2Euler, 1727, [1784] (balloons), 1745, 1749. For general biography, cf.

Youschkevitch, 1971; Knobloch, 2008 and references therein. On Euler and
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Today’s fluid dynamics cannot be conceived without the
fundamental basis of Euler’s equations, as they appear in
“Principes généraux du mouvement des fluides”, presented to
the Académie Royale des Sciences et Belles-Lettres (Berlin)
on 4 September 1755 and published in 1757. In Euler’s own
notation, they read:

2] £2)-(5:(2)-
() () () ()
-3 (2)
() () ()0 (2)
()

() () (5) ()

Here, P, O, and R are the components of an external force, such
as gravity. The modern reader with no special training in the
history of science will nevertheless recognize these equations
and be barely distracted by the use of ¢ instead of p for density,

of (%) instead of g—z and of d.qu instead of 3(qu).’

Euler’s three memoirs on fluid dynamics written in 1755
contain, of course, much more than these equations. They are
immediately intelligible to the modern reader, the arguments
being strikingly close to those given in modern treatises. They
mark the emergence of a new style of mathematical physics
in which fundamental equations take the place of fundamental
principles formulated in ordinary or geometrical language.
Euler’s equations are also the first instance of a nonlinear field
theory and remain to this day shrouded in mystery, contrary for
example to the heat equation introduced by Fourier in 1807 and
the Maxwell equations discovered in 1862.

Our main goal is to trace the development and maturation
of the physical and mathematical concepts, such as internal
pressure, which eventually enabled Euler to produce his
memoirs of the 1750s.* The emergence of Euler’s equations
was the result of several decades of intense work involving
such great figures as Isaac Newton, Alexis Clairaut, Johann
and Daniel Bernoulli, Jean le Rond d’Alembert ... and Euler
himself. It is thus also our goal to help the reader to see how
such early work, which is frequently difficult because it is not
couched in modern scientific language, connects with Euler’s

hydraulics, cf. Mikhailov, 1983. On sound, cf. Truesdell, 1955: XXIV-XXIX.
On the early treatise on fluids, cf. Mikhailov, 1999, and pp. 61-62, 80 in Euler,
1998. On naval science, cf. Nowacki, 2006; Truesdell, 1954: XVII-XVIII,
1983. On gunnery, cf. Truesdell, 1954: XXVIII-XLI.

3 Euler, 1755b.

4 Detailed presentations of these may be found in Truesdell’s 1954 landmark
work on Euler and fluid dynamics.

maturing views on continuum mechanics and his papers of the
1750s.

Section 2 is devoted to the first applications of Newtonian
mechanics to fluid flow, from Newton to the Bernoullis.
Whereas Isaac Newton treated a few particular problems
with heteroclite and ad hoc methods, Daniel and Johann
Bernoulli managed to solve a large class of problems through
a uniform dynamical method. Section 3 shows how Jean le
Rond d’Alembert’s own dynamical method and mathematical
creativity permitted a great extension of the investigated class
of flows. Despite its now antiquated formulation, his theory
had many of the key concepts of the modern theory of
incompressible flows. In Section 4 we discuss Euler’s memoirs
of the 1750s. Finally, a few conclusions are presented in
Section 5. Another paper in these Proceedings focuses on
Euler’s 1745 third remark (Theorem 1) & propos Robins’s
Gunnery. This remark, which actually constitutes a standalone
paper of eleven pages on the problem of steady flow around
a solid body, is at the crossroads of eighteenth-century fluid
dynamics: it uses many ideas of the Bernoullis to write the
equations in local coordinates and has been viewed, correctly
or not, as a precursor of d’ Alembert’s derivation of the paradox
of vanishing resistance (drag) for ideal flow.

2. From Newton to the Bernoullis
2.1. Newton’s principia

Through the eighteenth century, the main contexts for
studies of fluid motion were water supply, water-wheels,
navigation, wind-mills, artillery, sound propagation, and
Descartes’s vortex theory. The most discussed questions were
the efflux of water through the short outlet of a vessel, the
impact of a water vein over a solid plane, and fluid resistance
for ships and bullets. Because of its practical importance and
of its analogy with Galilean free-fall, the problem of efflux got
special attention from a few pioneers of Galilean mechanics. In
1644, Evangelista Torricelli gave the law for the velocity of the
escaping fluid as a function of the height of the water level; in
the last quarter of the same century, Edme Mariotte, Christiaan
Huygens, and Isaac Newton tried to improve its experimental
and theoretical foundations of this law.°

More originally, Newton devoted a large section of his
Principia to the problem of fluid resistance, mainly to disprove
the Cartesian theory of planetary motion. One of his results, the
proportionality of inertial resistance to the square of the velocity
of the moving body, only depended on a similarity argument.
His more refined results required some drastically simplified
models of the fluid and its motion. In one model, he treated
the fluid as a set of isolated particles individually impacting
the head of the moving body; in another, he preserved the
continuity of the fluid but assumed a discontinuous, cataract-
like motion around the immersed body. In addition, Newton

5 Grimberg, Pauls and Frisch, 2008. Truesdell, 1954: XXXVIII-XLI.

6 Cf. Truesdell, 1954: IX-XIV; Rouse and Ince, 1957: Chaps. 2-9;
Garbrecht, 1987; Blay, 1992, Eckert, 2005: Chap. 1.
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Fig. 1. Compound pendulum.

investigated the production of a (Cartesian) vortex through the
rotation of a cylinder and thereby assumed shear stresses that
transferred the motion from one coaxial layer of the fluid to
the next. He also explained the propagation of sound through
the elasticity of the air and thereby introduced the (normal)
pressure between successive layers of the air.’

To sum up, Newton introduced two basic, long-lasting con-
cepts of fluid mechanics: internal pressure (both longitudinal
and transverse), and similarity. However, he had no general
strategy for subjecting continuous media to the laws of his new
mechanics. While his simplified models became popular, his
concepts of internal pressure and similarity were long ignored.
As we will see in a moment, much of the prehistory of Euler’s
equation has to do with the difficult reintroduction of internal
pressure as a means to derive the motion of fluid elements. Al-
though we are now accustomed to the idea that a continuum
can be mentally decomposed into mutually pressing portions,
this sort of abstraction long remained suspicious to the pioneers
of Newtonian mechanics.

2.2. Daniel Bernoulli’s hydrodynamica

The Swiss physician and geometer Daniel Bernoulli was
the first of these pioneers to develop a uniform dynamical
method to solve a large class of problems of fluid motion. His
reasoning was based on Leibniz’s principle of live forces, and
modeled after Huygens’s influential treatment of the compound
pendulum in his Horologium oscillatorium (1673).8

Consider a pendulum made of two point masses A and B
rigidly connected to a massless rod that can oscillate around
the suspension point O (Fig. 1). Huygens required the equality
of the “potential ascent” and the “actual descent,” whose
translation in modern terms reads:

ma(vy/28) + mp(vg/28)
ma + mp

2G> 2

where m denotes a mass, v a velocity, g the acceleration of
gravity, and zg the descent of the gravity center of the two

7 Cf. Smith, 1998. Newton also discussed waves on water and the shape of a
rotating fluid mass (figure of the Earth).

8 Bernoulli, 1738; Huygens, 1673.

Fig. 2. Parallel-slice flow in a vertical vessel.

masses measured from the highest elevation of the pendulum
during its oscillation. This equation, in which the modern reader
recognizes the conservation of the sum of the kinetic and
potential energies, leads to a first-order differential equation for
the angle 6 that the suspending rod makes with the vertical. The
comparison of this equation with that of a simple pendulum
then yields the expression (a’ma + bsz)/(amA + bmp) for
the length of the equivalent simple pendulum (with a = OA
and b = OB).”

As D. Bernoulli could not fail to observe, there is a close
analogy between this problem and the hydraulic problem of
efflux, as long as the fluid motion occurs by parallel slices.
Under the latter hypothesis, the velocity of the fluid particles
that belong to the same section of the fluid is normal to
and uniform through the section. If, moreover, the fluid is
incompressible and continuous (no cavitation), the velocity in
one section of the vessel completely determines the velocity in
all other sections. The problem is thus reduced to the fall of a
connected system of weights with one degree of freedom only,
just as is the case of a compound pendulum.

This analogy inspired D. Bernoulli’s treatment of efflux.
Consider, for instance, a vertical vessel with a section S
depending on the downward vertical coordinate z (Fig. 2). A
mass of water falls through this vessel by parallel, horizontal
slices. The continuity of the incompressible water implies that
the product Sv is a constant through the fluid mass. The equality
of the potential ascent and the actual descent implies that at

every instant'’
21 2 21

/ (Z)S(z)dz=/ z8(z)dz, 3)
20 Zg 20

where zo and z; denote the (changing) coordinates of the two
extreme sections of the fluid mass, the origin of the z-axis

9ct. Vilain, 2000: 32-36.
10Bern0ulli, 1738: 31-35 gave a differential, geometric version of this
relation.
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Fig. 3. Idealized efflux through small opening (without vena contracta).

coincides with the position of the center of gravity of this mass
at the beginning of the fall, and the units are chosen so that
the density of the fluid is one. As v(z) is inversely proportional
to the known function § of z, this equation yields a relation
between zo and v(zg) = zo, which can be integrated to give the
motion of the highest fluid slice, and so forth. D. Bernoulli’s
investigation of efflux amounted to a repeated application of
this procedure to vessels of various shapes.

The simplest sub-case of this problem is that of a broad
container with a small opening of section s on its bottom
(Fig. 3). As the height & of the water varies very slowly, the
escaping velocity quickly reaches a steady value u. As the
fluid velocity within the vessel is negligible, the increase of the
potential ascent in the time dr is simply given by the potential
ascent (u2/2g)sudr of the fluid slice that escapes through the
opening at the velocity u. This quantity must be equal to the
actual descent hsudt. Therefore, the velocity u of efflux is the
velocity 4/2gh of free fall from the height 7, in conformity with
Torricelli’s law.!!

D. Bernoulli’s most innovative application of this method
concerned the pressure exerted by a moving fluid on the walls
of its container, a topic of importance for the physician and
physiologist he also was. Previous writers on hydraulics and
hydrostatics had only considered the hydrostatic pressure due
to gravity. In the case of a uniform gravity g, the pressure per
unit area on a wall portion was known to depend only on the
depth £ of this portion below the free water surface. According
to the law enunciated by Simon Stevin in 1605, it is given by
the weight gh of a water column (of unit density) that has a unit
normal section and the height 4. In the case of a moving fluid,
D. Bernoulli defined and derived the “hydraulico-static” wall
pressure as follows. !>

The section S of the vertical vessel ABCG of Fig. 4 is
supposed to be much larger than the section s of the appended
tube EFDG, which is itself much larger than the section & of

1 Bernoulli, 1738: 35. This reasoning assumes a parallel motion of the
escaping fluid particle. Therefore, it only gives the velocity u beyond the
contraction of the escaping fluid vein that occurs near the opening (Newton’s
vena contracta): cf. Lagrange, 1788: 430-431; Smith, 1998.

12 Bernoulli, 1738: 258-260. Mention of physiological applications is found
in D. Bernoulli to Shoepflin, 25 Aug 1734, in Bernoulli, 2002: 89: “Hydraulico-
statics will also be useful to understand animal economy with respect to the
motion of fluids, their pressure on vessels, etc.”

Fig. 4. Daniel Bernoulli’s figure accompanying his derivation of the velocity-
dependence of pressure (1738: plate).

the hole 0. Consequently, the velocity u of the water escaping

through o is 4/2gh. Owing to the conservation of the flux, the

velocity v within the tube is (¢/s)u. D. Bernoulli goes on to
13

say:

If in truth there were no barrier FD, the final velocity of the water in the same
tube would be [ s/¢ times greater]. Therefore, the water in the tube tends to a
greater motion, but its pressing [nisus] is hindered by the applied barrier FD.
By this pressing and resistance [nisus et renisus] the water is compressed [com-
primitur], which compression [compressio] is itself kept in by the walls of the
tube, and thence these too sustain a similar pressure [pressio]. Thus it is plain
that the pressure [pressio] on the walls is proportional to the acceleration. . . that
would be taken on by the water if every obstacle to its motion should instanta-
neously vanish, so that it were ejected directly into the air.

Based on this intuition, D. Bernoulli imagined that the tube
was suddenly broken at ab, and made the wall pressure P
proportional to the acceleration dv/dr of the water at this
instant. According to the principle of live forces, the actual
descent of the water during the time d¢ must be equal to the
potential ascent it acquires while passing from the large section
S to the smaller section s, plus the increase of the potential
ascent of the portion EabG of the fluid. This gives (the fluid
density is one)

v? v?
hsvdt = —svdt +bsd | — |, @
28 <28 )

where b = Ea. The resulting value of the acceleration dv/d¢
is (gh — v2/2)/b. The wall pressure P must be proportional to
this quantity, and it must be identical to the static pressure gh
in the limiting case v = 0. It is therefore given by the equation

P=gh— =2, 5)

13 Bernoulli, 1738: 258259, translated in Truesdell, 1954: XXVIL The
compressio in this citation perhaps prefigures the internal pressure later
introduced by Johann Bernoulli.
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Fig. 5. Effects of the velocity-dependence of pressure according to Bernoulli
(1738: plate).

which means that the pressure exerted by a moving fluid on the
walls is lower than the static pressure, the difference being half
the squared velocity (times the density). D. Bernoulli illustrated
this effect in two ways (Fig. 5): by connecting a narrow vertical
tube to the horizontal tube EFDG, and by letting a vertical jet
surge from a hole on this tube. Both reach a water level well
below AB.

The modern reader may here recognize Bernoulli’s law. In
fact, D. Bernoulli did not quite write Eq. (5), because he chose
the ratio s /e rather than the velocity v as the relevant variable.
Also, he only reasoned in terms of wall pressure, whereas
modern physicists apply Bernoulli’s law to the infernal pressure
of a fluid.

There were other limitations to D. Bernoulli’s considera-
tions, of which he was largely aware. He knew that in some
cases, part of the live force of the water went to eddying motion,
and he even tried to estimate this loss in the case of a suddenly
enlarged conduit. He was also aware of the imperfect fluidity of
water, although he decided to ignore it in his reasoning. Most
importantly, he knew that the hypothesis of parallel slices only
held for narrow vessels and for gradual variations of their sec-
tions. But his method confined him to this case, since it is only
for systems with one degree of freedom that the conservation of
live forces suffices to determine the motion.'*

To summarize, by means of the principle of live forces,
Daniel Bernoulli was able to solve many problems of quasi-
onedimensional flow and thereby related wall pressure to
fluid velocity. This unification of hydrostatic and hydraulic
considerations justified the title Hydrodynamica which he gave
to the treatise he published in 1738 in Strasbourg. Besides
the treatment of efflux, this work included all the typical
questions of contemporary hydraulics except fluid resistance
(which D. Bernoulli probably judged as being beyond the scope
of his methods), a kinetic theory of gases, and considerations on
Cartesian vortices. It is rightly regarded as a major turning point
in the history of hydrodynamics, because of the uniformity and

14 Bernoulli, 1738: 12 (eddies), 124 (enlarged conduit); 13 (imperfect fluid).

rigor of its dynamical method, the depth of physical insight, and
the abundance of long-lasting results. >

2.3. Johann Bernoulli’s hydraulica

In 1742, Daniel’s father Johann Bernoulli published his
Hydraulica, with an antedate that made it seem anterior to his
son’s treatise. Although he had been the most ardent supporter
of Leibniz’s principle of live forces, he now regarded this
principle as an indirect consequence of more fundamental laws
of mechanics. His asserted aim was to base hydraulics on an
incontrovertible, Newtonian expression of these laws. To this
end he adapted a method he had invented in 1714 to solve the
paradigmatic problem of the compound pendulum.

Consider again the pendulum of Fig. 1. According to
J. Bernoulli, the gravitational force mpg acting on B is
equivalent to a force (b/a)mpg acting on A, because according
to the law of levers two forces that have the same moment have
the same effect. Similarly, the “accelerating force” mphé of the
mass B is equivalent to an accelerating force (b/a)mpbf =
mp(b/a)?ab at A. Consequently, the compound pendulum is
equivalent to a simple pendulum with a mass ma + (b/a)*mp
located on A and subjected to the effective vertical force ma g+
(b/a)ympg. It is also equivalent to a simple pendulum of length
(azmA + bsz)/(amA + bmp) oscillating in the gravity g,
in conformity with Huygens’ result. In sum, Johann Bernoulli
reached his equation of motion by applying Newton’s second
law to a fictitious system obtained by replacing the forces
and the momentum variations at any point of the system with
equivalent forces and momentum variations at one point of the
system. This replacement, based on the laws of equilibrium
of the system, is what J. Bernoulli called “translation” in the
introduction to his Hydraulica.'®

Now consider the canonical problem of water flowing by
parallel slices through a vertical vessel of varying section
(Fig. 2). J. Bernoulli “translates” the weight gSdz of the
slice dz of the water to the location z; of the frontal section
of the fluid. This gives the effective weight S;gdz, because
according to a well-known law of hydrostatics, a pressure
applied at any point of the surface of a confined fluid is
uniformly transmitted to any other part of the surface of the
fluid. Similarly, J. Bernoulli translates the “accelerating force”
(momentum variation) (dv/dr)Sdz of the slice dz to the frontal
section of the fluid, with the result (dv/d¢)S;dz. He then obtains
the equation of motion by equating the total translated weight
to the total translated accelerating force as:

S/Zl d SfZl dvy (6)
1 g4z = V1 —dz.
z o df

0 0

For J. Bernoulli the crucial point was the determination of the
acceleration dv/d¢. Previous authors, he contended, had failed

15 On the Hydrodynamica, cf. Truesdell, 1954: XXII-XXXI; Calero, 1996:
422-459; Mikhailov, 2002.

16Bernoulli, 1714; 1742: 395. In modern terms, J. Bernoulli’s procedure
amounts to equating the sum of moments of the applied forces to the sum of

moments of the accelerating forces (which is the time derivative of the total
angular momentum). Cf. Vilain, 2000: 448-450.
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to derive correct equations of motion from the general laws of
mechanics because they were only aware of one contribution
to the acceleration of the fluid slices: that which corresponds
to the instantaneous change of velocity at a given height z,
or dv/dt in modern terms. They ignored the acceleration due
to the broadening or to the narrowing of the section of the
vessel, which J. Bernoulli called a gurges (gorge). In modern
terms, he identified the convective component v(dv/dz) of the
acceleration. Note that his use of partial derivatives was only
implicit: thanks to the relation v = (Sp/S)vg, he could split v
into a time dependent factor vg and a z-dependent factor Sp/S
and thus express the total acceleration as (Sp/S)(dvo/dt) —
(v383/8*)(dS/dz)."”

Thanks to the gurges, J. Bernoulli successfully applied Eq.
(6) to various cases of efflux and retrieved his son’s results.'8
He also offered a novel approach to the pressure of a moving
fluid on the side of its container. This pressure, he asserted,
was nothing but the pressure or vis immaterialis that contiguous
fluid parts exerted on one another, just as two solids in contact
act on each other:!”

The force that acts on the side of the channel through which the liquid flows. . . is
nothing but the force that originates in the force of compression through which
contiguous parts of the fluid act on one another.

Accordingly, J. Bernoulli divided the flowing mass of water
into two parts separated by the section z = ¢. Following the
general idea of “translation”, the pressure that the upper part
exerts on the lower part is:

¢
P() =/ (g — dv/di)dz. )
20

More explicitly, this is:

¢ 1Y ¢ v
P(¢) =/ gdz—f v—dz—/ —dz
2 v 90z 20 Of
¢

1 1
=g —z20) — §v2(§) + zvz(zo) - %/ vdz.  (8)

20

In a widely different notation, J. Bernoulli thus obtained a
generalization of his son’s law to non-stationary parallel-slice
flows.?0

iy Bernoulli, 1742: 432-437. He misleadingly called the two parts of
the acceleration the “hydraulic”and the “hydrostatic” components. Truesdell
(1954: XXXIII) translates gurges as “eddy” (it does have this meaning in
classical latin), because in the case of sudden (but small) decrease of section
J. Bernoulli imagined a tiny eddy at the corners of the gorge. In his treatise
on the equilibrium and motion of fluids (1744: 157), d’Alembert interpreted
J. Bernoulli’s expression of the acceleration in terms of two partial differentials.

18 b’ Alembert later explained this agreement: see below, pp. 7-8.

19 Bernoulli, 1742: 442.

20 Bernoulli, 1742: 444. His notation for the internal pressure was 7. In the
first section of his Hydraulica, which he communicated to Euler in 1739, he
only treated the steady flow in a suddenly enlarged tube. In his enthusiastic
reply (5 May 1739, in Euler, 1998: 287-295), Euler treated the accelerated
efflux from a vase of arbitrary shape with the same method of “translation,”
not with the later method of balancing gravity with internal pressure gradient,
contrary to Truesdell’s claim (1954: XXXIII). J. Bernoulli subsequently wrote
his second part, where he added the determination of the internal pressure to
Euler’s treatment.

J. Bernoulli interpreted the relevant pressure as an internal
pressure analogous to the tension of a thread or the mutual
action of contiguous solids in connected systems. Yet, he did
not rely on this new concept of pressure to establish the
equation of motion (6). He only introduced this concept as a
short-cut to the velocity-dependence of wall-pressure.?!

To summarize, Johann Bernoulli’s Hydraulica departed
from his son’s Hydrodynamica through a more direct reliance
on Newton’s laws. This approach required the new concept
of a convective derivative. It permitted a generalization of
Bernoulli’s law to the pressure in a non-steady flow. J. Bernoulli
had a concept of internal pressure, although he did not use it in
his derivation of his equation of fluid motion. Like his son’s,
his dynamical method was essentially confined to systems with
one degree of freedom only, so that he could only treat flow by
parallel slices.

3. D’Alembert’s fluid dynamics
3.1. The principle of dynamics

In 1743, the French geometer and philosopher Jean le
Rond d’ Alembert published his influential Traité de dynamique,
which subsumed the dynamics of connected systems under
a few general principles. The first illustration he gave of
his approach was Huygens’s compound pendulum. As we
saw, Johann Bernoulli’s solution to this problem leads to the
equation of motion:

mag sinf + (b/a)ympg sin® = maab + (b/a)mghé, 9)
which may be rewritten as
a(magsin® —maab) + b(mpg sin@ — mgbdl) = 0. (10

The latter is the condition of equilibrium of the pendulum
under the action of the forces mag — may , and mpg —mpy p
acting respectively on A and B. In d’Alembert’s terminology,
the products mag and mpg are the motions impressed (per
unit time) on the bodies A and B under the sole effect of
gravitation (without any constraint). The products may 5 and
mpyp are the actual changes of their (quantity of) motion (per
unit time). The differences mag — may 4 and mpg — mpy p
are the parts of the impressed motions that are destroyed by the
rigid connection of the two masses through the freely rotating
rod. Accordingly, d’Alembert saw in Eq. (10) a consequence
of a general dynamic principle following which the motions
destroyed by the connections should be in equilibrium.??
D’Alembert based his dynamics on three laws, which
he regarded as necessary consequences of the principle of
sufficient reason. The first law is that of inertia, according to
which a freely moving body moves with a constant velocity
in a constant direction. The second law stipulates the vector

21 For a different view, cf. Truesdell, 1954: XXXIII; Calero, 1996: 460-474.
22 D’Alembert, 1743: 69-70. Cf. Vilain, 2000: 456-459. D’Alembert
reproduced and criticized Johann Bernoulli’s derivation on p. 71. On

Jacob Bernoulli’s anticipation of d’Alembert’s principle, cf. Lagrange, 1788:
176-177, 179-180; Dugas, 1950: 233-234; Vilain, 2000: 444-448.



O. Darrigol, U. Frisch / Physica D 237 (2008) 1855—1869 1861

superposition of motions impressed on a given body. According
to the third law, two (ideally rigid) bodies come to rest after
a head-on collision if and only if their velocities are inversely
proportional to their masses. From these three laws and further
recourse to the principle of sufficient reason, d’Alembert
believed he could derive a complete system of dynamics
without recourse to the older, obscure concept of force as cause
of motion. He defined force as the motion impressed on a
body, that is, the motion that a body would take if this force
were acting alone without any impediment. Then the third law
implies that two contiguous bodies subjected to opposite forces
are in equilibrium. More generally, d’ Alembert regarded statics
as a particular case of dynamics in which the various motions
impressed on the parts of the system mutually cancel each
other.”3

Based on this conception, d’ Alembert derived the principle
of virtual velocities, according to which a connected system
subjected to various forces remains in equilibrium if the work of
these forces vanishes for any infinitesimal motion of the system
that is compatible with the connections.>* As for the principle
of dynamics, he regarded it as a self-evident consequence of
his dynamic concept of equilibrium. In general, the effect of
the connections in a connected system is to destroy part of
the motion that is impressed on its components by means
of external agencies. The rules of this destruction should be
the same whether the destruction is total or partial. Hence,
equilibrium should hold for that part of the impressed motions
that is destroyed through the constraints. This is d’Alembert’s
principle of dynamics. Stripped of d’Alembert’s philosophy
of motion, this principle stipulates that a connected system in
motion should be at any time in equilibrium with respect to the
fictitious forces f — my, where f denotes the force applied on
the mass point m of the system, and p is the acceleration of this
mass point.

3.2. Efflux revisited

At the end of his treatise on dynamics, d’Alembert
considered the hydraulic problem of efflux through the vessel
of Fig. 2. His first task was to determine the condition of
equilibrium of a fluid when subjected to an altitude-dependent
gravity g(z). For this purpose, he considered an intermediate
slice of the fluid, and required the pressure from the fluid above
this slice to be equal and opposite to the pressure from the fluid
below this slice. According to a slight generalization of Stevin’s
hydrostatic law, these two pressures are given by the integral of
the variable gravity g(z) over the relevant range of elevation.
Hence the equilibrium condition reads:>

¢ Z1
S(@) / ¢(2)dz = —S(¢) / ¢(2)dz, (11
20 ¢

23 >’ Alembert, 1743: xiv—xv, 3. Cf. Hankins, 1968; Fraser, 1985.

24 The principle of virtual velocities was first stated generally by Johann
Bernoulli and thus named by Lagrange (1788: 8-11). Cf. Dugas, 1950:
221-223, 320. The term work’ is, of course, anachronistic.

25D Alembert, 1743: 183-186.

or

/ ' e()dz = 0. (12)

0

According to d’ Alembert’s principle, the motion of the fluid
under a constant gravity g must be such that the fluid is in
equilibrium under the fictitious gravity g(z) = g—dv/dt, where
dv/dr is the acceleration of the fluid slice at the elevation z.
Hence comes the equation of motion

/Zl< dv)d
g——|]dz=0, (13)
2 dr

which is the same as Johann Bernoulli’s equation (6). In
addition, d’Alembert proved that this equation, together with
the constancy of the product Sv, implied the conservation
of live forces in Daniel Bernoulli’s form (Eq. (3)). In his
subsequent treatise of 1744 on the equilibrium and motion
of fluids, d’ Alembert provided a similar treatment of efflux,
including his earlier derivations of the equation of motion and
the conservation of live forces, with a slight variant: he now
derived the equilibrium condition (13) by setting the pressure
acting on the bottom slice of the fluid to zero.2® Presumably, he
did not want to base his equations of equilibrium and motion
on the concept of internal pressure, in conformity with his
general avoidance of internal contact forces in his dynamics.
His statement of the general conditions of equilibrium of a
fluid, as found at the beginning of his treatise, only required the
concept of wall-pressure. Yet, in a later section of his treatise
d’ Alembert introduced “the pressure at a given height”:

¢
P(&) :/ (g — dv/dr)dz, (14)
20

just as Johann Bernoulli had done, and for the same purpose of
deriving the velocity dependence of wall-pressure.?’

In the rest of his treatise, d’Alembert solved problems
similar to those of Daniel Bernoulli’s Hydrodynamica,
with nearly identical results. The only important difference
concerned cases involving the sudden impact of two layers of
fluids. Whereas Daniel Bernoulli still applied the conservation
of live forces in such cases (save for possible dissipation into
turbulent motion), d’Alembert’s principle of dynamics there
implied a destruction of live force. Daniel Bernoulli disagreed
with these and a few other changes. In a contemporary letter
to Euler, he expressed his exasperation over d’Alembert’s
treatise:>8

I have seen with astonishment that apart from a few little things there is nothing
to be seen in his hydrodynamics but an impertinent conceit. His criticisms are
puerile indeed, and show not only that he is no remarkable man, but also that
he never will be.2

26 1’ Alembert, 1743: 19-20.
27 1’ Alembert, 1743: 139.
28 D. Bernoulli to Euler, 7 Jul 1745, quoted in Truesdell, 1954: XXX VIIn.

29 This is but an instance of the many cutting remarks exchanged between
eighteenth-century geometers; further examples are not needed here.
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3.3. The cause of winds

In this judgment, Daniel Bernoulli overlooked that
d’Alembert’s hydrodynamics, being based on a general
dynamics of connected systems, lent itself to generalizations
beyond parallel-slice flow. D’Alembert offered striking
illustrations of the power of his approach in a prize-winning
memoir published in 1747 on the cause of winds.? As thermal
effects were beyond the grasp of contemporary mathematical
physics, he focused on a cause that is now known to be
negligible: the tidal force exerted by the luminaries (the Moon
and the Sun). For simplicity, he confined his analysis to the
case of a constant-density layer of air covering a spherical globe
with uniform thickness. He further assumed that fluid particles
originally on the same vertical line remained so in the course
of time and that the vertical acceleration of these particles
was negligible (owing to the thinness of the air layer), and
he neglected second-order quantities with respect to the fluid
velocity and to the elevation of the free surface. His strategy
was to apply his principle of dynamics to the motion induced
by the tidal force f and the terrestrial gravity g, both of which
depend on the location on the surface of the Earth.3!

Calling y the absolute acceleration of the fluid particles, the
principle requires that the fluid layer should be in equilibrium
under the force f + g 4+ y (the density of the air is one
in the chosen units). From earlier theories of the shape of
the Earth (regarded as a rotating liquid spheroid), d’ Alembert
borrowed the equilibrium condition that the net force should
be perpendicular to the free surface of the fluid. He also
required that the volume of vertical cylinders of fluid should
not be altered by their motion, in conformity with his constant-
density model. As the modern reader would expect, from these
two conditions d’Alembert derived some sort of momentum
equation, and some sort of incompressibility equation. He did
so in a rather opaque manner. Some features, such as the lack
of specific notation for partial differentials or the abundant
recourse to geometrical reasoning, disconcert modern readers
only.’?> Others were problematic to his contemporaries: he
often omitted steps and introduced special assumptions without
warning. Also, he directly treated the utterly difficult problem
of fluid motion on a spherical surface without preparing the
reader with simpler problems.

30 As a member of the committees judging the Berlin Academy’s prizes on
winds and on fluid resistance (he could not compete as a resident member),
Euler studied d’Alembert’s submitted memoirs of 1747 and 1749. The subject
set for the first prize, probably written by Euler, was “to determine the order
& the law wind should follow, if the Earth were surrounded on all sides by the
Ocean; so that one could at all times predict the speed & direction of the wind
in all places.” The question is here formulated in terms of what we now call
Eulerian coordinates (“all places”), cf. Grimberg, 1998: 195.

31 D’Alembert, 1747. D’ Alembert treated the rotation of the Earth and the
attraction by the Sun and the Moon as small perturbing causes whose effects
on the shape of the fluid surface simply added (D’Alembert, 1747: xvii, 47).
Consequently, he overlooked the Coriolis force in his analysis of the tidal
effects (in D’ Alembert, 1747: 65, he writes he will be doing as if it were the
luminary that rotates around the Earth).

32 Alembert used a purely geometrical method to study the free oscillations
of an ellipsoidal disturbance of the air layer.

Fig. 6. Spherical coordinates for d’Alembert’s atmospheric tides. The fat line
represents the visible part of the equator, over which the luminary is orbiting.
N is the North pole.

Suppose, with d’Alembert, that the tide-inducing luminary
orbits above the equator (with respect to the Earth).3* Using
the modern terminology for spherical coordinates, call 6 the
colatitude of a given point of the terrestrial sphere with respect
to an axis pointing toward the orbiting luminary, ¢ the longitude
measured from the meridian above which the luminary is
orbiting (this is not the geographical longitude), n the elevation
of the free surface of the fluid layer over its equilibrium
position, vy and vy the - and ¢-components of the fluid
velocity with respect to the Earth, & the depth of the fluid in
its undisturbed state, and R the radius of the Earth (see Fig. 6).

D’Alembert first considered the simpler case when ¢ is
negligibly small, for which he expected the component vy also
to be negligible. To first order in n and v, the conservation of
the volume of a vertical column of fluid yields:

1. 1 dvg Vg
7" R0 T Rans °
which means that an increase of the height of the column is
compensated for by a narrowing of its basis (the dot denotes the
time derivative at a fixed point of the Earth surface). Since the
tidal force f is much smaller than the gravity g, the vector sum
f 4+ g — y makes an angle (fy — y»)/g with the vertical. To first
order in 1, the inclination of the fluid surface over the horizontal
is (dn/06)/R. Therefore, the condition that f + g — p should
be perpendicular to the surface of the fluid is approximately
identical to**

15)

g o
= —_———, 16
Yo = fo R 30 (16)

As d’Alembert noted, this equation of motion can also be
obtained by equating the horizontal acceleration of a fluid slice

33 The sun and the moon actually do not, but the variable part of their action
is proportional to that of such a luminary.

34 D’Alembert, 1747: 88-89 (formulas A and B). The correspondence with
d’Alembert’s notation is given by: 6 +— u, vg — ¢q,91n/960 — —v, R/hw — ¢,
R/gK +— 3S/4pd3 (with f = —K sin20).
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to the sum of the tidal component fy and of the difference
between the pressures on both sides of this slice. Indeed, the
neglect of the vertical acceleration implies that at a given height,
the internal pressure of the fluid varies as the product gn.
Hence, d’Alembert was aware of two routes to the equation
of motion, through his dynamic principle, or through an
application of the momentum law to a fluid element subjected
to the pressure of contiguous elements. In some sections he
favored the first route, in others the second.?®

In his expression of the time variations 7 and g, d’ Alembert
considered only the forced motion of the fluid for which the
velocity field and the free surface of the fluid rotate together
with the tide-inducing luminary at the angular velocity —w.
Then the values of 1 and vy at the colatitude 6 and at the time
t + dt are equal to their values at the colatitude 6 + wdt and at
the time ¢. This gives
. dvg i an
Vg = W =
D’Alembert equated the relative acceleration vy with the
acceleration yy, for he neglected the second-order convective
terms, and judged the absolute rotation of the Earth as
irrelevant (he was aware of the centripetal acceleration, but
treated the resulting permanent deformation of the fluid surface
separately; and he overlooked the Coriolis acceleration). With
these substitutions, his Eqs. (15) and (16) become ordinary
differential equations with respect to the variable 6.

D’Alembert eliminated n from these two equations, and
integrated the resulting differential equation for Newton’s value
—K sin20 of the tide-inducing force fp. In particular, he
showed that the phase of the tides (concordance or opposition)
depended on whether the rotation period 27 /w of the luminary
was smaller or larger than the quantity 27 R/+/gh, which he
had earlier shown to be identical with the period of the free
oscillations of the fluid layer.3®

In another section of his memoir, d’ Alembert extended his
equations to the case when the angle ¢ is no longer negligible.
Again, he had the velocity field and the free surface of the
fluid rotate together with the luminary at the angular velocity
—w. Calling R,,4; the operator for the rotation of the angle wdt
around the axis joining the center of the Earth and the luminary
and v(P, t) the velocity vector at point P and at time 7, we have:

a7

v(P, 1 +df) = Rya:V(Rwa P, 1). (18)

Expressing this relation in spherical coordinates, d’ Alembert
obtained:

35 D’Alembert, 1747: 88-89. He represented the internal pressure by the
weight of a vertical column of fluid. In his discussion of the condition
of equilibrium (1747: 15-16), he introduced the balance of the horizontal
component of the external force acting on a fluid element and the difference
of weight of the two adjacent columns as “another very easy method” for
determining the equilibrium. In the case of tidal motion with ¢ ~ 0, he directly
applied this condition of equilibrium to the “destroyed motion” f + g — . In
the general case (D’ Alembert, 1747: 112-113), he used the perpendicularity of
f + g — y to the free surface of the fluid.

36 The elimination of n leads to the easily integrable equation
(gh — R2w?)dvg + ghd(sin#)/ sin® — R2wK sinfd(sind) = 0.

a dvg si
Vg = w ﬁcos — ﬁsm¢> — Vg singsiné |, (19)
a0 d¢ tan6
) vy " vy sin¢+ in ¢ sin 0 (20)
Vp = ——cos¢p — ——— + vy singsinb | .
¢ =Y\ %0 9¢ tan6 | ¢

For the same reasons as before, d’Alembert identified these
derivatives with the accelerations yy and y,. He then applied
his dynamic principle to get:

8 9n
=fo—=—, 21
vo=Jo— g0 21
g o
=— —. 22
Y¢ = T Rsin6 3¢ @2)
Lastly, he obtained the continuity condition:
on an sin ¢
n=w|=—cos¢— —
00 d¢ tan 6
dvg Vg 1 dvg
— (2= — 2, 23
(39 +tan9+sin9 a¢p (23)

in which the modern reader recognizes the expression of a
divergence in spherical coordinates.”

D’Alembert judged the resolution of this system to be
beyond his capability. The purpose of this section of his memoir
was to illustrate the power and generality of his method for
deriving hydrodynamic equations. For the first time, he gave
the complete equations of motion of an incompressible fluid in
a genuinely two-dimensional case. Thus emerged the velocity
field and partial derivatives with respect to two independent
spatial coordinates. Although Alexis Fontaine and Euler had
earlier developed the needed calculus of differential forms,
d’ Alembert was first to apply it to the dynamics of continuous
media. His notation of course differed from the modern one:
where we now write df/dx, Fontaine wrote df/dx, and
d’ Alembert often wrote A, withd f = Adx + Bdy + - --.

3.4. The resistance of fluids

In 1749 d’Alembert submitted a Latin manuscript on the
resistance of fluids for another Berlin prize, and failed to win.
The Academy judged that none of the competitors had reached
the point of comparing his theoretical results with experiments.
D’ Alembert did not deny the importance of this comparison
for the improvement of ship design. But he judged that the
relevant equations could not be solved in the near future, and
that his memoir deserved consideration for its methodological
innovations. In 1752, he published an augmented translation of
this memoir as a book.

37 D’Alembert, 1747: 111-114 (Egs. E, F, G, H, I). To complete the
correspondence given in note (36), take ¢ > A, vy > 1, v > T, Yy > @,
g/R +— p, on/d0 — —p, In/dp +— —o, dvg/d0 +— r, dvg/dp +— A,
vy /00 +— y, dvgy/d¢ > B. D’Alembert has the ratio of two sines instead
of the product in the last term of Egs. (19) and (20). An easy, modern way
to obtain these equations is to rewrite (18) as Vv = [(w X r) - VIV + @ X v,
with v = (0, vy, vg), r = (R, 0, 0), ® = w(sinf sinp, cos O sin ¢, cos ¢), and
V = (dr, d9/R, dp/(R sin0)) in the local basis.

38 D’Alembert, 1752: xxxviii. For an insightful study of d’Alembert’s work
on fluid resistance, cf. Grimberg, 1998 (which also contains a transcript of
the Latin manuscript submitted for the Berlin prize). See also Calero, 1996:
Chapter 8.
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Compared with the earlier treatise on the equilibrium and
motion of fluids, the first important difference was a new
formulation of the laws of hydrostatics. In 1744, d’ Alembert
started with the uniform and isotropic transmissibility of
pressure by any fluid (from one part of its surface to another).
He then derived the standard laws of this science, such as
the horizontality of the free surface and the depth-dependence
of wall-pressure, by qualitative or geometrical reasoning. In
contrast, in his new memoir he relied on a mathematical
principle borrowed from Alexis-Claude Clairaut’s memoir of
1743 on the shape of the Earth. According to this principle, a
fluid mass subjected to a force density f is in equilibrium if
and only if the integral [ f - dl vanishes over any closed loop
within the fluid and over any path whose ends belong to the
free surface of the fluid.>*

D’ Alembert regarded this principle as a mathematical ex-
pression of his earlier principle of the uniform transmissibility
of pressure. If the fluid is globally in equilibrium, he reasoned,
it must also be in equilibrium within any narrow canal of sec-
tion ¢ belonging to the fluid mass. For a canal beginning and
ending on the free surface of the fluid, the pressure exerted by
the fluid on each of the extremities of the canal must vanish. Ac-
cording to the principle of uniform transmissibility of pressure,
the force f acting on the fluid within the length dl of the canal
exerts a pressure f - dl that is transmitted to both ends of the
canal (with opposite signs). As the sum of these pressures must
vanish, so does the integral f f-dl. This reasoning, and a similar
one for closed canals, establish d’Alembert’s new principle of
equilibrium.*

Applying this principle to an infinitesimal loop, d’ Alembert
obtained (the Cartesian-coordinate form of) the differential
condition

Vxf=0, (24)

as Clairaut had already done. Combining it with his principle
of dynamics, and confining himself to the steady motion
(av/dt = 0, so that y = (v - V)v) of an incompressible fluid,
he obtained the two-dimensional, Cartesian-coordinate version
of

V x [(v:-V)V] =0, (25)

which means that the fluid must formally be in equilibrium with
respect to the convective acceleration. D’ Alembert then showed
that this condition was met whenever V x v = 0. Confusing a
sufficient condition with a necessary one, he concluded that the
latter property of the flow held generally.*!

39 D’Alembert, 1752: 14-17. On the early history of theories of the figure of
the Earth, cf. Todhunter, 1873. On Clairaut, cf. Passeron, 1995. On Clairaut’s
principle and Newton’s and MacLaurin’s partial anticipations, cf. Truesdell,
1954: XIV-XXII.

40 As is obvious to the modern reader, this principle is equivalent to the
existence of a single-valued function (P) of which f is the gradient and which
has a constant value on the free surface of the fluid. The canal equilibrium
results from the principle of solidification, the history of which is discussed in
Casey, 1992.

41 D’Alembert, 1752: art. 78. The modern hydrodynamicist recognizes in Eq.
(25) a particular case of the vorticity equation. The condition V x v = 0 is that
of irrotational flow.

Fig. 7. Flow around a solid body according to D’ Alembert (1752: plate 13).

This property nonetheless holds in the special case of motion
investigated by d’Alembert, that is, the stationary flow of an
incompressible fluid around a solid body when the flow is
uniform far away from the body (Fig. 7). In this limited case,
d’ Alembert gave a correct proof of which a modernized version
follows.*?

Consider two neighboring lines of flow beginning in the
uniform region of the flow and ending in any other part of
the flow, and connect the extremities through a small segment.
According to d’ Alembert’s principle together with the principle
of equilibrium, the integral 9§ (v-V)v-dr vanishes over this loop.
Using the identity

(v-V)v=V (%vz) —vx (VxV), (26)

this implies that the integral f (V x v) - (v x dr) also vanishes.
The only part of the loop that contributes to this integral is that
corresponding to the little segment joining the end points of
the two lines of flow. Since the orientation of this segment is
arbitrary, V x v must vanish.

D’ Alembert thus derived the condition

Vxv=0 27

from his dynamical principle. In addition, he obtained the
(incompressibility) condition

V.ov=0 28)

by considering the deformation of a small parallelepiped of
fluid during an infinitesimal time interval. More exactly, he

42 For a more literal rendering of d’Alembert’s proof, cf. Grimberg,
1998: 43-48.
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Fig. 8. D’Alembert’s drawing for a first proof of the incompressibility
condition. He takes an infinitesimal prismatic volume NBDCC’N’B’D’ (upper
figure). The faces NBDC and N’B’D’C’ are rectangles in planes passing
through the axis of symmetry AP; after an infinitesimal time dr the points
NBDC have moved to nbdc (lower figure). Expressing the conservation
of volume and neglecting higher-order infinitesimals, he obtains Eq. (29).
From the 1749 manuscript in the Berlin-Brandeburgische Akademie der
Wissenschaften; courtesy Wolfgang Knobloch and Gérard Grimberg.

obtained the special expressions of these two conditions in the
two-dimensional case and in the axially-symmetric case. In the
latter case, he wrote the incompressibility condition as:
dg dp _p
dx + dz 7’ )
where z and x are the radial and axial coordinates and p and
q the corresponding components of the velocity. D’ Alembert’s
1749 derivation (repeated in his 1752 book) is illustrated by a
geometrical construction (Fig. 8).%3

In order to solve the system Eqs. (27) and (28) in the two-
dimensional case, d’Alembert noted that the two conditions
meant that the forms udx + vdy and vdx — udy were exact
differentials (u and v denote the velocity components along
the orthogonal axes Ox and Oy). This property holds, he
ingeniously noted, if and only if (u — iv)(dx + idy) is an
exact differential. This means that # and —v are the real and
imaginary parts of a (holomorphic) function of the complex
variable x 4 iy. They must also be such that the velocity
is uniform at infinity and at a tangent to the body along
its surface. D’Alembert struggled to meet these boundary
conditions through power-series developments, to little avail.**

31t thus would seem appropriate to use “d’Alembert’s condition” when
referring to the condition of incompressibility, written as a partial differential
equation.

44 D’Alembert, 1752: 60-62. D’Alembert here discovered the
Cauchy—Riemann condition for # and —v to be the real and imaginary
components of an analytic function in the complex plane, as well as a
powerful method to solve Laplace’s equation Au = 0 in two dimensions. In
1761: 139, d’Alembert introduced the complex potential ¢ + iy such that

The ultimate goal of this calculation was to determine the
force exerted by the fluid on the solid, which is the same as the
resistance offered by the fluid to the motion of a body with a
velocity opposite to that of the asymptotic flow.*> D’ Alembert
expressed this force as the integral of the fluid’s pressure over
the whole surface of the body. The pressure is itself given
by the line integral of —dv/d¢ from infinity to the wall, in
conformity with d’Alembert’s earlier derivation of Bernoulli’s
law. This law still holds in the present case, because —dv/d¢ =
—(v - V)v = —V(V2/2). Hence the resistance could be
determined, if only the flow around the body was known.*0

D’Alembert was not able to solve his equations and to
truly answer the resistance question. Yet, he had achieved
much on the way: through his dynamical principle and his
equilibrium principle, he had obtained hydrodynamic equations
for the steady flow of an incompressible axisymmetrical flow
that we may retrospectively identify as the incompressibility
condition, the condition of irrotational flow, and Bernoulli’s
law. The modern reader may wonder why he did not try
to write general equations of fluid motion in Cartesian-
coordinate form. The answer is plain: he was following an
older tradition of mathematical physics according to which
general principles, rather than general equations, were applied
to specific problems.

D’ Alembert obtained his basic equations without recourse
to the concept of pressure. Yet, he had a concept of internal
pressure, which he used to derive Bernoulli’s law. Curiously,
he did not pursue the other approach sketched in his theory of
winds, that is, the application of Newton’s second law to a fluid
element subjected to a pressure gradient. Plausibly, he favored
a derivation that was based on his own principle of dynamics
and thus avoided the kind of internal forces he judged obscure.

It was certainly well known to d’Alembert that his
equilibrium principle was nothing but the condition of uniform
integrability (potentiality) for the force density f. If one then
introduces the integral, say P, one obtains the equilibrium
equation f = VP that makes P the internal pressure! With
d’Alembert’s own dynamical principle, one then reaches the
equation of motion

d
f— oy — VP, (30)
dt

(u —iv)(dx +1idy) = d(¢ +iy). The real part ¢ of this potential is the velocity
potential introduced by Euler in 1752; its imaginary part ¥ is the so-called
stream function, which is a constant on any line of current, as d’Alembert
noted.

45 D’ Alembert gave a proof of this equivalence, which he did not regard as
obvious.

46’ Alembert had already discussed fluid resistance in part III of his treatise
of 1744. There, he used a molecular model in which momentum was transferred
by impact from the moving body to a layer of hard molecules. He believed,
however, that this molecular process would be negligible if the fluid molecules
were too close to each other — for instance when fluid was forced through the
narrow space between the body and a containing cylinder. In this case (1744:
205-206), he assumed a parallel-slice flow and computed the fluid pressure on
the body through Bernoulli’s law. For a head-tail symmetric body, this pressure
does not contribute to the resistance if the flow has the same symmetry. After
noting this difficulty, d’ Alembert invoked the observed stagnancy of the fluid
behind the body to retain only the Bernoulli pressure on the prow.
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which is nothing but Euler’s second equation. But d’ Alembert
did not proceed along these lines, and rather wrote equations of
motion not involving internal pressure.*’

4. Euler’s equations

We finally turn to Euler himself, for whom we shall be
somewhat briefer than we have been with the Bernoullis and
d’Alembert (whose papers are not easily accessible to the
untrained modern reader; not so with Euler). “Lisez Euler, lisez
Euler, c’est notre maitre a tous” (Read Euler, read Euler, he is
the master of us all) as Pierre-Simon Laplace used to say.*8

4.1. Pressure

After Euler’s arrival in Berlin, he wrote a few articles
on hydraulic problems, one of which was motivated by his
participation in the design of the fountains of Frederick’s
summer residence Sanssouci. In these works of 1750-51, Euler
obtained the equation of motion for parallel-slice pipe flow by
directly relating the acceleration of the fluid elements to the
combined effect of the pressure gradient and gravity. He thus
obtained the differential version

dv dpP
- 31
a 8 (31)

dz
of Johann Bernoulli’s equation (7) for parallel-slice efflux.
From this, he derived the generalization (8) of Bernoulli’s
law to non-permanent flow, which he applied to evaluate the
pressure surge in the pipes that would feed the fountains of
Sanssouci.

Although d’Alembert had occasionally used this kind of
reasoning in his theory of winds, it was new in a hydraulic
context. As we saw, the Bernoullis did not rely on internal
pressure in their own derivations of the equations of fluid
motion. In contrast, Euler came to regard internal pressure as
a key concept for a Newtonian approach to the dynamics of
continuous media.

In a memoir of 1750 entitled “Découverte d’un nouveau
principe de mécanique,” he claimed that the true basis of
continuum mechanics was Newton’s second law applied to the
infinitesimal elements of bodies. Among the forces acting on
the elements he included “connection forces” acting on the
boundary of the elements. In the case of fluids, these internal
forces were to be identified to the pressure.”’

Euler’s first attempt to apply this approach beyond the
approximation of parallel-slices was a memoir on the motions

47 In this light, d’ Alembert’s later neglect of Euler’s approach should not be
regarded as a mere expression of rancor.

48 Reported by Libri, 1846: 51.

49 Euler, 1752. On the hydraulic writings, cf. Truesdell, 1954:
XLI-XLV; Ackeret, 1957. On Euler’s work for the fountains of Sanssouci, cf.
Eckert, 2002, 2008. As Eckert explains, the failure of the fountains project and
an ambiguous letter of the King of Prussia to Voltaire have led to the myth of
Euler’s incapacity in concrete matters.

50 Euler, 1750: 90 (the main purpose of this paper was the derivation of the
equations of motion of a solid).

of rivers written around 1750-1751. There he analyzed steady
two-dimensional flow into fillets and described the fluid motion
through the Cartesian coordinates of a fluid particle expressed
as functions of time and of a fillet-labeling parameter (a partial
anticipation of the so-called Lagrangian picture). He wrote
partial differential equations expressing the incompressibility
condition and his new principle of continuum dynamics.
Through a clever combination of these equations, he obtained
for the first time the Bernoulli law along the stream lines of an
arbitrary steady incompressible flow. Yet he himself judged that
he had reached a dead end, for he could not solve any realistic
problem of river flow in this manner.>!

4.2. The Latin memoir

An English translation of the Latin memoir will be included
in these Proceedings.

This relative failure did not discourage Euler. Equipped with
his new principle of mechanics and probably stimulated by the
two memoirs of d’Alembert, which he had reviewed, he set
out to formulate the equations of fluid mechanics in their full
generality. A memoir entitled “De motu fluidorum in genere”
was read in Berlin on 31 August 1752 and published under the
title “Principia motus fluidorum” in St. Petersburg in 1761 as
part of the 1756—1757 proceedings. Here, Euler obtained the
general equations of fluid motion for an incompressible fluid in
terms of the internal pressure P and the Cartesian coordinates
of the velocity v.>2

In the first part of the paper, he derived the incompressibility
condition. For this, he studied the deformation during a time
dr of a small triangular element of water (in two dimensions)
and of a small triangular pyramid (in three dimensions). The
method here is a slight generalization of what d’ Alembert did in
his memoir of 1749 on the resistance of fluids. Euler obtained,
in his own notation:

du dv dw

— 4+ — =0. 32
D (32)

dz

In the second part of the memoir, he applied Newton’s
second law to a cubic element of fluid subjected to the gravity
g and to the pressure P acting on the cube’s faces. By a now
familiar bit of reasoning, this procedure yields (for unit density)
in modern notation:

v
ot

Euler then eliminated the pressure gradient (basically by taking
the curl) to obtain what we now call the vorticity equation:

+(v-V)v=g—-VP. (33)

[%+(V.V)i| (Vxv)—[(Vxv)-V]v=0, (34)

51 Euler, 1760, Truesdell, 1954: LVITI-LXIL.

52 Euler, 1756-1757. Cf. Truesdell, 1954: LXII-LXXYV. D’Alembert’s role
(also the Bernoullis’s and Clairaut’s) is acknowledged by Euler somewhat
reluctantly in a sentence at the beginning of the third memoir cited in epigraph
to the present paper.
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in modern notation. He then stated that “It is manifest that
these equations are satisfied by the following three values
[V x v = 0], in which is contained the condition provided
by the consideration of the forces [i.e. the potential character
of the r.h.s. of (33)]”. He thus concluded that the velocity was
potential, repeating here d’Alembert’s mistake of confusing
a necessary condition with a sufficient condition. This error
allowed him to introduce what later fluid theorists called the
velocity potential, that is, the function ¢(r) such that v = V.
Eq. (33) may then be rewritten as:

3 I/
5#V@+§V<v>_g—VP. (35)

Spatial integration of this equation yields a generalization of
Bernoulli’s law:

1
P=g-r 2v 8t+C’ 36)
wherein C is a constant (time-dependence can be absorbed in
the velocity potential). Lastly, Euler applied this equation to the
flow through a narrow tube of variable section to retrieve the
results of the Bernoullis.

Although Euler’s Latin memoir contained the basic
hydrodynamic equations for an incompressible fluid, the form
of exposition was still in flux. Euler frequently used specific
letters (coefficients of differential forms) for partial differentials
rather than Fontaine’s notation, and he measured velocities
and accelerations in gravity-dependent units. He proceeded
gradually, from the simpler two-dimensional case to the fuller
three-dimensional case. His derivation of the incompressibility
equation was more intricate than we would now expect. And
he erred in believing in the general existence of a velocity
potential. These characteristics make Euler’s Latin memoir
a transition between d’Alembert’s fluid dynamics and the
fully modern foundation of this science found in the French
memoirs.>>

4.3. The French memoirs

An English translation of the second French memoir will be
included in these Proceedings.

The first of these memoirs “Principes généraux de 1’état
d’équilibre des fluides” is devoted to the equilibrium of fluids,
both incompressible and compressible. Euler realized that his
new hydrodynamics contained a new hydrostatics based on
the following principle: the action of the contiguous fluid on
a given, internal element of fluid results from an isotropic,
normal pressure P exerted on its surface. The equilibrium of
an infinitesimal element subjected to this pressure and to the
force density f of external origin then requires:

f—VvP=0. 37)

As Euler showed, all known results of hydrostatics follow from
this simple mathematical law.>*

53 Cf. Truesdell, 1954: LXTI-LXXV.
54 Euler, 1755a.

The second French memoir, “Principes généraux du
mouvement des fluides,” is the most important one. Here, Euler
did not limit himself to the incompressible case and obtained
the “Euler’s equations” for compressible flow:

dqp+V-(pv) =0, (38)

v+ (v-V)v= l(f— VP), (39)
0

to which a relation between pressure, density, and heat must be
added for completeness.>

The second French memoir is not only the coronation of
many decades of struggle with the laws of fluid motion by
the Bernoullis, d’Alembert and Euler himself, it also contains
much new material. Among other things, Euler now realized
that V x v needed not vanish, as he had assumed in his Latin
memoir, and gave an explicit example of incompressible vortex
flow in which it did not.”® In a third follow-up memoir entitled
“Continuation des recherches sur la théorie du mouvement des
fluides,” he showed that even if it did not vanish, Bernoulli’s law
remained valid along any stream line of a steady incompressible
flow (as he had anticipated on his memoir of 1750-1751 on
river flow). In modern terms: owing to the identity

w-wv=v<%ﬁ)—vx(va, (40)

the integration of the convective acceleration term along a line
of flow eliminates V x v and contributes the v?/2 term of
Bernoulli’s law.>’

In his second memoir, Euler formulated the general problem
of fluid motion as the determination of the velocity at any time
for given values of the impressed forces, for a given relation
between pressure and density, and for given initial values of
fluid density and the fluid velocity. He outlined a general
strategy for solving this problem, based on the requirement
that the form (f — pv) - dr should be an exact differential (in
order to be equal to the pressure differential). Then he confined
himself to a few simple, soluble cases — for instance uniform
flow (in the second memoir), or flow through a narrow tube
(in the third memoir). In more general cases, he recognized the
extreme difficulty of integrating his equations under the given
boundary conditions:®

We see well enough ...how far we still are from a complete knowledge of
the motion of fluids, and that what I have explained here contains but a feeble
beginning. However, all that the Theory of fluids holds, is contained in the two
equations above [Eq. (1)], so that it is not the principles of Mechanics which
we lack in the pursuit of these researches, but solely Analysis, which is not yet
sufficiently cultivated for this purpose. Thus we see clearly what discoveries
remain for us to make in this Science before we can arrive at a more perfect
Theory of the motion of fluids.

55 Euler, 1755b: 284/63, 286/65. Cf. Truesdell, 1954: LXXXV-C.

36 As observed by Truesdell, 1954: XC-XCI), in Section 66 Euler reverts to
the assumption of non-vortical flow, a possible leftover of an earlier version of
the paper.

57 Buler, 1755¢: 345/117.

58 Euler, 1755b: 315/91.
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5. Conclusions

In retrospect, Euler was right in judging that his “two
equations” were the definitive basis of the hydrodynamics of
perfect fluids. He reached them at the end of a long historical
process of applying dynamical principles to fluid motion. An
essential element of this evolution was the recurrent analogy
between the efflux from a narrow vase and the fall of a
compound pendulum. Any dynamical principle that solved
the latter problem also solved the former. Daniel Bernoulli
appealed to the conservation of live forces; Johann Bernoulli
to Newton’s second law together with the idiosyncratic concept
of translatio; d’Alembert to his own dynamical principle of
the equilibrium of destroyed motions. With this more general
principle and his feeling for partial differentials, d’ Alembert
leapt from parallel-slice flows to higher problems that involved
two-dimensional anticipations of Euler’s equations. Although
his method implicitly contained a general derivation of these
equations in the incompressible case, his geometrical style and
his abhorrence of internal forces prevented him from taking this
step.

Despite d’ Alembert’s reluctance, another important element
of this history turns out to be the rise of the concept of internal
pressure. The door on the way to general fluid mechanics
opened with two different keys, so to speak: d’Alembert’s
principle, or the concept of internal pressure. D’Alembert
(and Lagrange) used the first key, and introduced internal
pressure only as a derivative concept. Euler used the second
key, and ignored d’ Alembert’s principle. As Euler guessed (and
as d’Alembert suggested en passant), Newton’s old second
law applies to the volume elements of the fluid, if only
the pressure of fluid on fluid is taken into account. Euler’s
equations derive from this deceptively simple consideration,
granted that the relevant calculus of partial differentials is
known. Altogether, we see that hydrodynamics rose through
the symbiotic evolution of analysis, dynamical principles, and
physical concepts. Euler pruned the unnecessary and unclear
elements from the abundant writings of his predecessors,
and combined the elements he judged most fundamental in
the clearest and most general manner. He thus obtained an
amazingly stable foundation for the science of fluid motion.

The discovery of sound foundations only marks the
beginning of the life of a theory. Euler himself suspected
that the integration of his equations would in general be a
formidable task. It soon became clear that their application
to problems of resistance or retardation led to paradoxes.
In the following century, physicists struggled to solve these
paradoxes by various means: viscous terms, discontinuity
surfaces, instabilities. A quarter of a millennium later, some
very basic issues remain open, as many contributions to this
conference amply demonstrate.

Acknowledgments
We are grateful to G. Grimberg, W. Pauls and two

anonymous reviewers for many useful remarks. We also
received considerable help from J. Bec and H. Frisch.

References

Ackeret, Jakob 1957 ‘Vorrede’, in L. Euler, Opera omnia, ser. 2, 15, VII-LX,
Lausanne.

Bernoulli, Daniel 1738 Hydrodynamica, sive de viribus et motibus fluidorum
commentarii, Strasbourg.

Bernoulli, Daniel 2002 Die Werke von Daniel Bernoulli, vol. 5, ed. Gleb K.
Mikhailov, Basel.

Bernoulli, Johann 1714 ‘Meditatio de natura centri oscillationis.” Acta
Eruditorum Junii 1714, 257-272. Also in Opera omnia 2, 168-186,
Lausanne.

Bernoulli, Johann 1742 ‘Hydraulica nunc primum detecta ac demonstrata
directe ex fundamentis pure mechanicis. Anno 1732 Also in Opera
omnia 4, 387-493, Lausanne.

Blay, Michel 1992 La naissance de la mécanique analytique: La science du
mouvement au tournant des XVII¢ et XVIII® siécles, Paris.

Calero, Julidn Simén 1996 La génesis de la mecdnica de los fluidos
(1640-1780), Madrid.

Casey, James 1992 ‘The principle of rigidification.” Archive for the history of
exact sciences 43, 329-383.

D’ Alembert, Jean le Rond 1743 Traité de dynamique, Paris.

D’Alembert, Jean le Rond 1744 Traité de I'équilibre et du mouvement des
fluides. Paris.

D’Alembert, Jean le Rond 1747 Réflexions sur la cause générale des vents,
Paris.

D’ Alembert, Jean le Rond [1749] Theoria resistenciae quam patitur corpus in
fluido motum, ex principiis omnino novis et simplissimis deducta, habita
ratione tum velocitatis, figurae, et massae corporis moti, tum densitatis
& compressionis partium fluidi; manuscript at Berlin-Brandenburgische
Akademie der Wissenschaften, Akademie-Archiv call number: [-M478.

D’ Alembert, Jean le Rond 1752 Essai d’une nouvelle théorie de la résistance
des fluides, Paris.

D’Alembert, Jean le Rond 1761 ‘Remarques sur les lois du mouvement des
fluides.” In Opuscules mathématiques vol. 1 (Paris, 1761), 137-168.

Darrigol, Olivier 2005 Worlds of flow: A history of hydrodynamics from the
Bernoullis to Prandtl, Oxford.

Dugas, René 1950 Histoire de la mécanique. Paris.

Eckert, Michael 2002 ‘Euler and the fountains of Sanssouci. Archive for the
history of exact sciences 56, 451-468.

Eckert, Michael 2005 The dawn of fluid mechanics: A discipline between
science and technology, Berlin.

Eckert, Michael 2008 ‘Water-art problems at Sans-souci — Euler’s involvement
in practical hydrodynamics on the eve of ideal flow theory, in these
Proceedings.

Euler, Leonhard 1727 ‘Dissertatio physica de sono’, Basel. Also in Opera
omnia, ser. 3, 1, 183—-196, [Enestrom index] E002.

Euler, Leonhard 1745 Neue Grundsditze der Artillerie, aus dem englischen des
Herrn Benjamin Robins itibersetzt und mit vielen Anmerkungen versehen
[from B. Robins, New principles of gunnery (London,1742)], Berlin. Also
in Opera ommia, ser. 2, 14, 1-409, E77.

Euler, Leonhard 1749 Scientia navalis seu tractatus de construendis ac
dirigendis navibus, 2 volumes (St. Petersburg 1749) [completed by 1738].
Also in Opera ommia, ser. 2, 18 and 19, E110 and E111.

Euler, Leonhard 1750 ‘Découverte d’un nouveau principe de mécanique.’
Académie Royale des Sciences et des Belles-Lettres de Berlin, Mémoires
[abbreviated below as MASB], 6 [printed in 1752], 185-217. Also in Opera
omnia, ser. 2, 5, 81-108, E177.

Euler, Leonhard 1752 ‘Sur le mouvement de 1’eau par des tuyaux de conduite.’
MASB, 8 [printed in 1754], 111-148. Also in Opera omnia, ser. 2, 15,
219-250, E206.

Euler, Leonhard 1755a ‘Principes généraux de 1’état d’équilibre d’un fluide.’
MASB, 11 [printed in 1757], 217-273. Also in Opera omnia, ser. 2, 12,
2-53, E225.

Euler, Leonhard 1755b ‘Principes généraux du mouvement des fluides’ MASB,
11 [printed in 1757], 274-315. Also in Opera omnia, ser. 2, 12, 54-91,
E226.

Euler, Leonhard 1755c¢ ‘Continuation des recherches sur la théorie du
mouvement des fluides.” MASB, 11 [printed in 1757], 316-361. Also in
Opera omnia, ser. 2, 12, 92-132, E227.



O. Darrigol, U. Frisch / Physica D 237 (2008) 1855-1869 1869

Euler, Leonhard 1760 ‘Recherches sur le mouvement des rivieres’[written
around 1750-1751]. MASB, 16 [printed in 1767], 101-118. Also in Opera
omnia, ser. 2, 12, 272-288, E332.

Euler, Leonhard 1756-1757 ‘Principia motus fluidorum’ [written in 1752]. Novi
commentarii academiae scientiarum Petropolitanae, 6 [printed in 1761],
271-311. Also in Opera omnia, ser. 2, 12, 133-168, E258.

Euler, Leonhard [1784] ‘Calculs sur les ballons aérostatiques, faits par le feu
M. Euler, tels qu’on les a trouvés sur son ardoise, aprés sa mort arrivée
le 7 septembre 1783°, Académie Royale des Sciences (Paris), Mémoires,
1781 [printed in 1784], 264-268. Also in Opera omnia, ser. 2, 16, 165-169,
E579.

Euler, Leonhard 1998 Commercium epistolicum, ser. 4A, 2, eds. Emil Fellmann
and Gleb Mikhajlov (Mikhailov). Basel.

Fraser, Craig 1985 ‘D’Alembert’s principle: The original formulation
and application in Jean d’Alembert’s Traité de dynamique (1743).”
Centaurus 28, 31-61, 145-159.

Giinther Garbrecht (ed.), 1987 Hydraulics and hydraulic research: A historical
review, Rotterdam.

Grimberg, Gérard 1998 D’Alembert et les équations aux dérivées partielles en
hydrodynamique, These. Université. Paris 7.

Grimberg, Gérard; Pauls, Walter and Frisch, Uriel 2008 In these Proceedings.

Hankins, Thomas 1968 Introduction to English transl. of d’Alembert 1743
(New York, 1968), pp. iXx—xxxVi.

Huygens, Christiaan 1673 Horologium oscillatorium, sive, de motu pendulorum
ad horologia aptato demonstrationes geometricae. Paris.

Knobloch, Eberhard 2008 In these Proceedings.

Lagrange, Joseph Louis 1788 Traité de méchanique analitique. Paris.

Libri, Gugliemo (della Somaia) 1846 ‘Correspondance mathématique et
physique de quelques célebres géometres du XVIII® siecle, ...." Journal
des Savants (1846), 50-62.

Mikhailov, Gleb K. 1983 Leonhard Euler und die Entwicklung der
theoretischen Hydraulik im zweiten Viertel des 18. Jahrhunderts.

In Johann Jakob Burckhardt and Marcel Jenni (eds.), Leonhard Euler,
1707-1783: Beitrige zu Leben und Werk. Gedenkband des Kantons Basel-
Stadt (Basel: Birkhduser, 1983), 229-241.

Mikhailov, Gleb K. 1999 ‘The origins of hydraulics and hydrodynamics in the
work of the Petersburg Academicians of the 18th century.” Fluid dynamics,
34, 787-800.

Mikhailov, Gleb K. 2002 Introduction to Die Werke von Daniel Bernoulli 5, ed.
Gleb K. Mikhailov (Basel), 17-86.

Nowacki, Horst 2006 ‘Developments in fluid mechanics theory and ship
design before Trafalgar.” Max-Planck-Institut fiir Wissenschaftsgeschichte,
Preprint 308 (2006). Proceedings, International Congress on the
Technology of the Ships of Trafalgar, Madrid, Universidad Politécnica
de Madrid, Escuela Técnica Supérior de Ingenieros Navales. Available
at http://www.mpiwg-berlin.mpg.de/en/forschung/Preprints/P308.PDF (in
press).

Passeron, Iréne 1995 Clairaut et la figure de la Terre au XVIII¢, These.
Université Paris 7.

Rouse, Hunter and Ince, Simon 1957 History of hydraulics, Ann Arbor.

Smith, George E. 1998 ‘Newton’s study of fluid mechanics.’ International
Journal of engineering science. 36, 1377-1390.

Todhunter, Isaac 1873 A history of the mathematical theories of attraction and
the figure of the Earth, London.

Truesdell, Clifford 1954 ‘Rational fluid mechanics, 1657-1765.” In Euler,
Opera omnia, ser. 2, 12 (Lausanne), IX—-CXXV.

Truesdell, Clifford 1955 “The theory of aerial sound, 1687-1788." In Euler,
Opera omnia, ser. 2, 13 (Lausanne), XIX-LXXII.

Truesdell, Clifford 1983 ‘Euler’s contribution to the theory of ships and
mechanics.” Centaurus 26, 323-335.

Vilain, Christiane 2000 ‘La question du centre d’oscillation” de 1660 a 1690;
de 1703 a 1743. Physis 37, 21-51, 439-466.

Youschkevitch, Adolf Pavlovitch 1971 ‘Euler, Leonhard.” In Dictionary of
scientific biography 4, 467-484.


http://www.mpiwg-berlin.mpg.de/en/forschung/Preprints/P308.PDF

Available online at www.sciencedirect.com

ScienceDirect

PHYSIGA [

www.elsevier.com/locate/physd

ELSEVIER

Physica D 237 (2008) 1870-1877

Water-art problems at Sanssouci—Euler’s involvement in practical
hydrodynamics on the eve of ideal flow theory

M. Eckert™

Deutsches Museum, Forschungsinstitut, D 80306 Munich, Germany

Available online 14 September 2007

Abstract

Frederick the Great blamed Euler for the failure of fountains at his summer palace Sanssouci. However, what is regarded as an example for
the proverbial gap between theory and practice, is based on dubious evidence. In this paper I review Euler’s involvement with pipeflow problems
for the Sanssouci water-art project. Contrary to the widespread slander, Euler’s ability to cope with practical challenges was remarkable. The
Sanssouci fountains did not fail because Euler was unable to apply hydrodynamical theory to practice, but because the King ignored his advice
and employed incompetent practitioners. The hydrodynamics of the Sanssouci problem also deserves some interest because it happened on the
eve of the formulation of the general equations of motion for ideal fluids. Although it seems paradoxical, the birth of ideal flow theory was deeply

rooted in Euler’s involvement with real flow problems.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Hydrodynamics; Euler; Euler equation

1. Introduction

Since the beginning of his career as an academician in
St. Petersburg, Euler dealt with practical problems of fluid
dynamics, from ballistics to naval architecture. When the
Prussian King, Frederick II, called him to Berlin as director of
the mathematical class of the Prussian Academy of Science,
founded under the motto theoria cum praxi, Euler was eager
to display his disposedness for practical affairs. In 1744, for
example, Euler recommended the translation of an English
treatise on ballistics into German because of its practical value
for the artillery. He intended to add “suitable remarks to perfect
the usefulness of the matter”, and therefore offered himself as
a translator. He accomplished this task in 1745 and dedicated
the translation to the King. According to Clifford A. Truesdell,
the editor of Euler’s treatises on hydrodynamics, it changed
the character of the English original from a “little budget
of rules, experiments, and guesses” into “the first scientific
work on gunnery”. A historian of ballistics remarked that
Euler revealed with this work ““a highly perceptive engineering
mentality that illustrates the depths of his technical knowledge”.

* Tel.: +49 89 2179538; fax: +49 89 2179273.
E-mail address: m.eckert@deutsches-museum.de.

0167-2789/$ - see front matter (©) 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.09.006

With regard to the history of fluid dynamics, Euler’s treatise
on ballistics deserves particular interest because it contains a
consideration of fluid resistance which led Euler to closely
anticipate “d’ Alembert’s paradox”.!

During the years prior to his formulation of the general
theory in 1755, Euler reported to the academy every year at
least once on practical matters involving one or another aspect
of fluid motion. In May 1749, for example, Euler investigated
the navigability of a canal which connected two rivers north of
Berlin. The inspection of the canal may well have contributed
to shape his thoughts on the forces which act on a fluid element
under free-surface flow conditions; two years later, on 6 May
1751, he communicated to the academy a memoir on ‘Research
concerning the flow of rivers’, in which he studied the balance
of forces along streamlines. Euler did not arrive at a general
solution (for this reason he probably regarded it to be of

1Robins, 1742; Euler to Frederick II, undated, in Opera omnia, ser. 4a,
6: p. 309; Euler, 1745; Truesdell, 1954: p. XXXVIII; Steele, 2006: p. 290;
Szabd, 1987: pp. 243-245; Darrigol, 2005: p. 103; Eckert, 2006: pp. 13-15;
Darrigol, Frisch, 2008. However, the early derivation of the “Euler—d’ Alembert-
paradox”—as it was labeled by Szabé —should not be interpreted uncritically
as an anticipation of d’Alembert’s paradox because Euler combined his
derivation with dubious considerations about momentum transfer in fluids; I
thank Olivier Darrigol for this clarification.
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minor value and published it only much later). “In any case
it is likely”, Truesdell argued, “that Euler then threw aside the
manuscript on rivers and started afresh on a new plan”. At about
the same time, in 1750, Euler formed his thoughts about how
to apply Newton’s Second Law more generally to contiguous
infinitesimal volume elements. This combined effort to solve
practical problems on the basis of general principles led him to
the famous 1755 memoirs, the ‘Principes généraux’.>

Shortly after the canal investigation in summer 1749, did
Euler become also involved in the Sanssouci water-art project.
If the canal project brought him into contact with open channel
flow, the Sanssouci project confronted him with pipeflow
problems. In contrast to his manuscript concerning river flow,
Euler regarded his pipeflow study not as provisional. He solved
the equations of motion for water which is pumped through
a pipeline to an elevated reservoir. In this study, as well as
in others concerning pumps and mills, Euler combined a deep
theoretical insight with a “good feel” for practice, as the editor
of Euler’s hydraulic work attested.’

Why, then, became Euler a role model of the pure scientist
divorced from the practice to which his scholarship was
supposed to refer? In popular books on the history of physics
and mathematics Euler is portrayed as a “‘second rate physicist”
and blamed for “letting his mathematics run away with his
sense of reality”. One physicist mused: “When Euler applied
his equations to design a fountain for Frederick the Great of
Prussia, it failed to work,” and he offered as a cause for Euler’s
mishap: “Unfortunately, he omitted the effects of friction, with
embarrassing practical consequences”.*

At first sight such a verdict does not seem implausible.
The water-art in the Park at Sanssouci, as conceived in the
18th century, indeed was malfunctioning. As early as in 1783,
Euler’s contemporary, the Marquis de Condorcet, wrote in
an obituary, addressed to the Paris Academy, that Euler at
times “appeared only to enjoy the pleasures of calculation”
and “only wished to exhibit the power of his art”; he was
full of praise for Euler as a mathematical genius, but “Mr.
Euler the Metaphysician or even the Physicist was not as
great as the Geometer”.> Was Euler, as Condorcet suggested,
using practical applications only as a pretext to “enjoy the
pleasures of calculation”—without real concern about the
physical problems? Even more support for this view comes
from the King himself. In 1778 Frederick II wrote in a letter
to Voltaire®:

“I wanted to make a fountain in my Garden; the Cyclop Euler calculated the
effort of the wheels for raising the water to a basin, from where it should fall

2 Eichler, 1974: Appendix, pp. 243-251; Frederick to Euler, 30 April 1749,
Euler et al. 1749 to Frederick, 14 May 1749, in Opera omnia, ser. 4a, 6,
311-316; Euler, 1760; Truesdell, 1954: p. LXII; Euler, 1750; Euler, 1755a,b

3 Ackeret, 1957: p. LVL

4 Hermann, 1991: p. 81, Bell, 1937: p. 168; Perkovitz, 1999: p. 38.

5 Condorcet, 1783.

6 Frederick to Voltaire, 25 January 1778, in Besterman, 1976: pp. 184—186.
(“Je voulus faire un jet-d’eau en mon Jardin; le Ciclope Euler calcula I’effort
des roties, pour faire monter ’eau dans un bassin d’ou elle devoit retomber
par des Canaux, afin de jaillir 2 Sanssouci. Mon Moulin a été éxécuté
géométriquement, et il n’a pu élever une goutte d’eau a Cinquante pas du
Bassin. Vanité des Vanités; Vanité de la géométrie”.)

down through canals, in order to form a fountain jet at Sanssouci. My mill
was constructed mathematically, and it could not raise one drop of water to a
distance of fifty feet from the basin. Vanity of Vanities! Vanity of geometry.”

The derogative tenor in this letter (“le Ciclope Euler”)’
already hints at tensions in the relationship between Euler
and Frederick II. Euler had left Berlin in 1766 after he
was repeatedly neglected by the King as a candidate for
the presidency of the academy. Euler’s biographers report a
growing alienation between Euler and Frederick II. Therefore,
the King’s utterance, made almost thirty years after Euler’s
involvement in the Sanssouci project, is of dubious value as a
historical evidence. Yet it became the widely accepted source
for the slander against Euler—a slander which accompanied
Euler like a symbol for the gulf which separates ideal from
real flows. Even Truesdell, who was otherwise very critical
with regard to the slander against Euler, did not cast doubt on
Euler’s alleged mishap: The King “expected Euler to supervise
the laying of aqueducts. Unfortunately Euler was willing and
able to undertake such tasks, thus giving Frederick occasion for

the complaint that the work was not well done”.?

2. Euler’s involvement at Sanssouci

In order to sort out historical fact from anecdotes and myths,
it is necessary to reconstruct the circumstances of Euler’s
involvement in the Sanssouci project from other sources than
eulogies and biased recollections. When was Euler’s advice
for the water-art project solicited? What was the particular
problem? Did Euler’s advice misdirect the project so that the
King lost confidence in Euler’s ability to combine theory with
practice?

The water-art project at Sanssouci had started in 1748,
shortly after the inauguration of the King’s new summer palace.
The design foresaw a system with several fountains; the major
fountain close to the palace was supposed to have a jet with a
height of at least 30 m, higher than the jets of the fountains at
Versailles. Water from the Havel river should be raised to an
elevated reservoir at a distance of about one kilometer on top
of a hill 50 m above the river level in order to provide for the
required pressure for the fountain jets in the Park underneath.
The water had to be guided first by a canal from the river to the
site of a windmill connected to pumps which would press the
water through a pipeline into the reservoir. Other pipes would
connect the reservoir with the fountains. By the end of 1748,
the canal from the Havel to the pump station, the windmill and
the pumps were accomplished; so far the project progressed
according to the expectations. But problems arose as soon as
water was pumped into the elevated reservoir. The tubes for the
pipeline had been constructed from wooden boards, each 24
feet long, which were put together like barrels and strengthened

7n 1738, Euler lost the sight in his right eye as a consequence of a
severe illness; in the 1760s a cataract in his left eye further deteriorated his
remaining visual faculty; in his later years Euler was almost completely blind.
For biographical details see Fellmann, 2007.

8 Truesdell, 1954: p. XC.
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by iron bands. The pipeline was assembled from eight hundred
such tubes. But when water was pumped into this pipeline, it
reached only about halfway up to the reservoir before the pipes
at the lower end began to burst. After this failure the barrel-like
tubes were replaced by entire spruce tree trunks whose cores
had been drilled out. Between March and December of 1749,
the new pipeline was assembled—but it experienced the same
mishap: the pipes burst.”

At this stage, Euler became involved. Frederick trusted
Euler as an expert whom he could ask for advice whenever
problems of a mathematical, physical or technical nature arose.
In the summer of 1749, for example, shortly after the canal
investigation, the King requested Euler’s advice also on a
number lottery which had been recently introduced in Italian
cities and which Frederick considered as an additional source
of income for the state’s treasury. Like with the lottery and the
canal issues, Euler responded swiftly. On 18 September 1749
he informed the academy’s president, Pierre Louis Maupertuis,
“that I sent my researches about the projected lottery yesterday
to the King, and that I hope to accomplish within a couple
of days those about the hydraulic machine”. Three days later
he sent Maupertuis the first results concerning “la Machine
Hydraulique de Sans Soucy”. With regard to the mighty
fountain jet he cautioned already in this first response “that it
would require a huge effort to make it as high as the King
wishes”. A week later, Euler expressed severe doubts about
the present design, in particular concerning the dimensions of
the pipes. He complained that the architect “does not give any
rule for estimating the pressure which the conduit pipes have
to sustain: apparently he believes that these pipes would have
to sustain the weight of the water column which corresponds
the state of rest”. Euler surveyed the literature on water-
art hydraulics and suspected that the dynamically increased
pressure due to the action of the pumps had never been taken
into account before. Nevertheless, practitioners elsewhere had
usually chosen thick metal tubes rather than wooden tubes for
pipelines where high pressures were to be expected. In view
of a lack of theoretical methods for calculating the strength
of materials Euler referred to the experiences made by Edme
Mariotte in Versailles where it was shown “that a lead pipe
with a diameter of 12 in., and a wall thickness of 2 lignes (1
ligne = 2.2558 mm), is able to sustain a 100 feet high water
column,” but cautioned to simply extrapolate: “But if Mariotte’s
experience was wrong, or corrupted by a misprint, I would not
know how to determine the thickness of the pipes for the case
in question other than making new experiments about the force
which the lead pipes are able to sustain. For one would risk too
much if the determination of the thickness of the pipes would

be made only haphazardly”.!?

9 Manger, 1789: vol. 1, pp. 91-106.

10 Byler to Maupertuis, 18 September, 21 September and 30 September 1749,
in Opera omnia, ser. 4a, 6: pp. 135-138. (“Mais en cas que I’expérience de
Mariotte ne fit pas juste, ou gatée par une faute d’impression, je ne saurois
rien déterminer sur 1’épaisseur des tuyaux dans le cas dont il s’agit, 2 moins
qu’on ne fit de nouveau des expériences sur la force que des tuyaux de plomb
sont capables de soutenir. Car on risqueroit trop si I’on vouloit confier au seul
hazard la détermination de 1’épaisseur des tuyaux”.)

From this letter it is obvious that Euler was not resorting
to mere theoretical considerations. He referred explicitly to
Bernard Forest de Bélidor and Edme Mariotte, whose treatises
Architecture hydraulique and Traité du mouvement des eaux et
des autres corps fluides contained the contemporary empirical
knowledge of hydraulic constructions. A good deal of this
knowledge was derived from experiments undertaken upon
request of the Paris Academy and motivated, among other
practical interests, by the constructions of the water-art system
for Versailles.!! The major theoretical part to which Euler could
contribute useful considerations concerned the magnitude of the
pressure which the pipeline had to sustain under the action of
the driving pumps. The motion of the pump’s pistons resulted
in a nonstationary pipeflow. Euler’s theory (see next section)
provided a formula from which the maximal pressure in the
pipeline could be estimated if the dimensions of the tubes and
the driving force of the pumps (delivered by a wind mill or
horse power) were given. On 21 October 1749, he explained to
Maupertuis why the wooden pipeline was doomed to burst'?:

“The true cause of this awkward accident was only due to the fact that
the capacity of the pumps was too big, and if one does not reduce it very
considerably, either by diminishing their diameter or their height, or the number
of cycles per one turn of the mill, the machine will not be in the state to raise
one drop of water into the reservoir.”

Two days later, Euler presented his theory ‘On the motion of
water in conduits’ to the academy. At subsequent meetings of
the academy, on 20 November 1749 and 5 February 1750, he
drew a number of practical consequences ‘concerning different
methods with which to raise water through pumps with the

greatest effectiveness’ and ‘the most advantageous arrangement

of the machines used to raise water via pumps’.'3

Euler did not content himself with academic presentations.
On 17 October 1749 he communicated a summary of his results
together with related problems concerning windmills to the
King. Like in his letter to the president of the academy, Euler

left no doubt that he regarded the present design as doomed to

failure unless major changes were made'*:

“For in the state in which they are at present it is quite certain that one will never
raise one drop of water to the reservoir, and the entire force would be employed
only for the destruction of the machine and the pipes.”

Frederick II thanked Euler for the “remarks you have made
concerning your calculations about the pumps and pipes of the

11 Bélidor, 1737-1739; Mariotte, 1718; for the role of the Paris Academy see
Blay, 1986.

leuler to Maupertuis, 21 October 1749, in Opera omnia, ser. 4a, 6: pp.
139-140. (“La veritable cause de ce facheux accident consistoit uniquement
en ce que la capacité des pompes étoit trop grande, et 2 moins qu’on ne la
diminue trés considerablement, ou en diminuant leur diametre ou leur hauteur,
ou le nombre des jeux qui repond a un tour de moulin, la machine ne sera pas
en etat de fournir une seule goutte d’eau dans le reservoir”.)

13 Euler, 1752a,b,c.

14Euler to Frederick, 17 October 1749, in Opera omnia, ser. 4a, 6: p. 322
(“Car sur le pied qu’elles se trouvent actuellement, il est bien certain, qu’on
n’éleveroit jamais une goutte d’eau jusqu’ au reservoir, et toute la force ne seroit
employée qu’a la destruction de la machine et des tuyaux”.). He also elaborated
his related treatises on windmills as academy memoirs: Euler, 1758a,b.
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machine of Sanssouci. They have been very agreeable to me,
and I am very obliged to you for the effort which you have
made for it”.!> Beyond this exchange of letters in autumn 1749,
and the subsequent presentation of the related memoirs to the
academy, there is no evidence for any further involvement of
Euler with the water-art project at Sanssouci.

What happened thereafter at Sanssouci? According to the
available historical evidence, no consequences were drawn
from Euler’s advice. The bungling in the Park at Sanssouci
proceeded unabatedly. No experiments were undertaken to
determine the wall thickness of lead pipes, as Euler had
recommended in his letters in September 1749. Although Euler
regarded the choice of lead pipes as obvious for pipelines
that had to sustain high pressure, the practitioners in the Park
continued to use wooden pipes for a second trial—with the
same mishap: the pipes burst again. Only in summer 1752,
more than two years after Euler had presented his advice, the
wooden pipes were replaced by metal pipes. But the pipes were
not properly dimensioned. As one could have anticipated from
Euler’s analysis, the new pipeline was rather inefficient. By
Spring 1754, a little amount of water was raised to the reservoir,
so that the King was given a demonstration. But the fountain
jet rose to only about half the expected height, and after an
hour the reservoir was empty. Two years later, the Seven Years’
War broke out and caused an interruption of the bungling at
Sanssouci. In 1763, new efforts were started, but the King was
unwilling to afford the high costs involved with the replacement
of the inappropriate installations. A few years later, the project
was stopped, and those materials of the dysfunctional water-art
which had not been rotten in the meantime were used for other
purposes. In 1841, under the reign of another King, the water-
art project at Sanssouci was started anew. With pumps driven
by a steam engine and properly dimensioned pipes the project
was successfully completed within only two years.

3. Nonstationary pipeflow theory

Although Euler’s advice was ignored, and thus had no
impact on the further developments of the water-art project at
Sanssouci, it is interesting to study his pipeflow theory which
he presented to the Berlin academy as a result of his short-
termed involvement. Euler introduced his academy memoir
with references to Johann and Daniel Bernoulli, as well as to
Jean le Rond d’Alembert, but regarded the “hydraulic theory”

13 Frederick to Euler, 21 October 1749, in Opera omnia, ser. 4a, 6: p. 330 (*...
remarques, que vous avez fait sur vos calculs sur les pompes et les tuyaux de
la Machine de Sanssouci. Elles M’ont été fort agréables, et Je vous suis bien
obligé de la peine que vous en avez pris”.)

16 Although the archival material about the constructions at Sanssouci was
largely destroyed in World War II, the bungling by the practitioners is well-
documented in several accounts, most comprehensively in Manger, 1789 and
Artelt, 1893. Heinrich Ludewig Manger served as architect under Frederick II;
Paul Artelt’s account was written at the occasion of the fiftieth birthday of the
steam engine at Sanssouci. In both accounts, written from the perspective of
practitioners, Euler’s name is not even mentioned—which is plausible because
of the short period of his involvement in autumn 1749 and the long duration of
mishaps. If there had been the slightest reason to blame Euler for the failures,
the authors of these accounts would surely not have missed the opportunity to
elaborate on Euler’s role as a consultant.

Fig. 1. Euler’s pump-pipeline arrangement: DX = x and XY = y are the
Cartesian coordinates of the centerline of the pipeline, specified by a curve
s = s(x,y); z = z(s) is the inner diameter of the pipe; AB = a and AC = b
is the inner diameter of the pump cylinder and its height; M N indicates an
intermediate position of the piston at time ¢ when it is at b — r above the
ground, with r = r(¢) and r(0) = O; within dr the piston moves down by
dr to the new position mn; the driving pump force is represented by the weight
of an equivalent water column of height k exerted on the piston.

still too general for practical application. Without explicitly
mentioning the Sanssouci project, he chose the case of water
rising to an elevated reservoir by means of a piston pump
in order to demonstrate what theory could do for practical
applications. But he mentioned at the outset that he employed
a different method compared to those which had been used
before, with the explicit goal “to facilitate the researches which
one has still to undertake in this Science”.!”

In a nutshell, Euler’s approach was based on the internal

pressure gradient which is involved in the balance of forces on a
slice of water in the tube; Euler succeeded to derive from there
an expression for the pressure at an arbitrary location of the
pipeline (Fig. 1).
Unfortunately, the originality of his approach is obscured by the use of a
notation that makes it difficult to follow from a modern perspective. But in
order to understand both the conceptual problems with which 18th century
pipeflow theories were confronted, and the merits of Euler’s memoir for
practical applications, it is useful to transmit a flavor for Euler’s memoir in
the original notation before it is adapted to our modern vantage point.

Euler expressed the force on the piston of the pump in terms of an equivalent
water column of height k; for the velocity of the piston he wrote dr/dt = /v,
where v indicates the height from which a falling weight would acquire the
corresponding velocity. The equation of continuity allowed him to express the
velocities at the corresponding locations Y Z and Y’Z’ of the tube in terms of
the piston velocity v. Euler assumed the diameter z of the tube as variable,

17 Euler, 1752a: pp. 222-223 (“ce qui ne manquera pas de faciliter les
recherches qu’on a encore a entreprendre dans cette Science”.)
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Fig. 2. Nonstationary pipeflow in Johann Bernoulli’s Hydraulica. For the
derivation of Bernoulli’s formula and its relation to (2) see Szabd, 1987: pp.
181-185.

which further complicated his analysis. For the velocity of the water in the tube
at Y'Z’, which corresponds to the piston velocity /(v + dv) at mn, he obtained

2

4 Jw+dv)

o+ G Sdr

with § = dz/ds accounting for the variation of the diameter of the tube. Euler
derived from this expression an incremental velocity increase along the passage
YY’, expressed in equivalent height of fall, as

4 6

4
a4 dv — LSvdr
Z7

74

corresponding to an accelerating force (exerted by the pump’s piston) which
Euler balanced with the force due to the pressure gradient and the weight upon
the infinitesimal slice of water Y Zzy: “Now one has to find the accelerating
force which acts on the section Y Z,” he introduced this stage of his analysis.
The crucial passage of Euler’s analysis reads in the originallgz

“Adjacent to this slice from the side Y Z acts the pressure of the water which
follows, and from the side yz the pressure from the preceding water; and if
these two pressures would be equal, one would destroy the effect of the other,
and no acceleration or retardation would result therefrom. Be the height p the
expression for the pressure of the water on the surface Y Z, and p a function of
x or s; then the pressure on the surface yz is expressed by the height p 4+ dp”.

The balance of forces finally yielded the result:
ads dv

4a*Sds
dp+dy=——~—
p+dy T ot

v

where the left-hand side contained the action of the pressure gradient and
gravity, and the right-hand side the accelerating force due to the pump. After
integration Euler obtained for the pressure at Y Z 19,

atdv [ ds 4 1
p:C—y—T - —avg.

18 Euler, 1752a: p. 227 (“Outre cela cette couche se trouve du coté YZ
sollicitée par la pression de 1’eau suivante, et du coté yz de la pression de 1’eau
précédente; et si ces deux pressions étoient égales, 1’'une détruiroit I’effet de
I’autre, et il n’en résulteroit aucune accélération ou retardation. Que la hauteur
p exprime la pression de I’eau sur la surface Y Z, et p étant une fonction de x
ou s, la pression sur la surface yz sera exprimée par la hauteur p + dp”.)

19 Buler, 1752a: p. 230.

Determining the integration constant by considering the pressure at y = 0,
Euler obtained the final result for the pressure at an arbitrary location Y Z:

r b ) (1 dv a’dv ds n 1 a*
=k—vy —r - - —+v|l——].
p Y dr dr 72 74

So much for the flavor of the contemporary work. In modern
notation the result may be rewritten as’

1 2 at
p(y)ng(k+b—r—y)+§pw I—Z—4

dw [ a?
0 (b r+ m = ds) (1)
p is the density of the fluid, g the acceleration of gravity; w
instead of v is used here for the velocity of the piston in modern
notation in order to avoid confusion with Euler’s velocity /v;
the integral is taken along s from the pump to the location at y.
(1) is equivalent to the “Bernoulli equation” for nonstationary
pipeflow:

1, D ow 1,
L+ 5wl + gy +p | —=ds = po+ Spwy+ pgyo (2)
0

where the subscripts 0 and 1 refer to different locations along
a streamline (or, to put it less anachronistically, along the
centerline of an arbitrarily shaped cylindrical pipe). Formulae
for nonstationary pipeflow, which imply (2), had been obtained
earlier; when Johann Bernoulli sent Euler the first part of his
Hydraulica in 1739, Euler responded by calculating a formula
for the vertical efflux of water from an arbitrarily shaped vase
through a hole in the bottom.!

Johann Bernoulli elaborated the theory of nonstationary
pipeflow in the second part of his treatise for the more general
case of a flow through an arbitrarily oriented pipe (Fig. 2): by a
rather complicated procedure he obtained a formula which may
be transformed with hindsight directly into (2).22

Johann Bernoulli’s Hydraulica had appeared in 1742. Why
did not Euler start from (2) and merely specify the variables at
location 0 and 1 for the particular pump—pipeline configuration
(as modern hydraulic engineers would do)? Such reasoning
ignores that Johann Bernoulli did not write (1) in its modern
form, and that the earlier methods used for nonstationary
pipeflow became the subject of heated debates among the
Bernoullis and d’Alembert. Euler, presumably, regarded the
older methods with some suspicion and therefore chose a novel
approach—an approach in which “for the first time in the
history of fluid mechanics, the pressure p in its modern sense
has made its appearance”, as Truesdell remarked about Euler’s

20 For the conversion of Euler’s units see Truesdell, 1954: pp. XLIII-XLIV
and Ackeret, 1957: pp. XIX-XXI.

21 Darrigol, Frisch, 2008: Footnote 21; Euler, 1998: pp. 287-304; for earlier
unpublished work by Euler and Daniel Bernoulli on nonstationary pipeflow see
Gleb Mikhailov’s introduction in Euler, 1998: pp.60—62; for the priority dispute
between Johann and Daniel Bernoulli see Mikhailov, 1999, 2002.

22 Szabd, 1987: pp. 175-185. With hindsight, Szabé also interpreted Johann
Bernoulli’s somewhat mysterious notion of “gurges” merely as a sort of
construct which enabled Bernoulli the application of the momentum principle
for the motion of a parallel slice of fluid from a wider to a narrower passage.
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Fig. 3. Euler’s example for the pressure increase caused by the action of the
pump, compared with the pressure in the hydrostatic case.

pipeflow memoir.?> From this perspective, Euler’s pipeflow
memoir may be regarded as a turning point in the history of
hydrodynamics because the new method of balancing forces on
a fluid volume element by using internal pressure gradients also
yielded the general “Euler equations” a few years later.

However, this is another retrospective evaluation. Euler’s
memoir was not motivated by a concern about the foundations
of fluid mechanics but by the desire to solve practical
problems. Once he had derived (1) it was straightforward (but
tedious) to calculate the technically important quantities of the
pump-pipeline assembly.* Euler could have left this effort to
lesser geometers if he had been interested only in foundational
matters or mathematical challenges. But he proceeded to derive
formulae for the quantities of practical interest, particularly the
pressure at the lower end of the pipeline and the discharge
flow, and he explained in great detail their practical relevance.
His formula for the pressure at the lower end of the pipeline
made particularly clear how much the dynamical action of the
pump added to the hydrostatic pressure (corresponding to the
height difference between the level of the pump and the elevated
reservoir):

0.256a’bl
PeEtT—ar

23 Truesdell, 1954: p. XLV. This statement, however, seems exaggerated, see
Darrigol, Frisch, 2008 for earlier appearances of internal pressure.

24 Ackeret, 1957; Eckert, 2002.

Note again, that in Euler’s notation the pressure is expressed
in length units; g is the vertical height difference (not to
be confused with the acceleration of gravity in our modern
notation), / the length of the pipeline, and c its inner diameter
(assumed to be constant, i. €. z = ¢); ¢ is the time within which
the piston moves from the upper to the lower position in the
pump.?

Euler formulated the practical lessons from this result not
only in the language of mathematics but also as “rules”:
“For the same force acting on the pistons of the pumps being able to deliver a
maximal amount of water into the reservoir, one must make the rising pipe as
wide as possible (...). In order to deliver a maximal quantity of water into the

reservoir by the same force acting on the pistons, one must make the rising pipe
as short as possible.”

He concluded his memoir with a numerical example (Fig. 3):
For a discharge of 6701 cubic feet per hour, pumped to a height
of 60 feet through a 3000 feet long pipeline, the pressure at
the lower end of the pipeline amounted to an equivalent height
of a 330 feet high water column. If the pipeline would have
been designed to withstand only the hydrostatic pressure, Euler
warned, “it would inevitably have burst”.?’” In his letter to
the King on 17 October 1749, Euler had presented the same
lesson—here with direct reference to the mishap at Sanssouci
(which he did not mention in his memoir) when the pipes burst
at the first trials®®:

“Having made the calculation about the first trials of this machine, where the
wooden pipes have burst as soon as the water was raised to a height of 70 feet, I
find that the pipes actually experienced the pressure of a more than 300 feet high

water column: this is a certain indication that the disposition of the machine is
still very far from its perfect state.”

4. Conclusion

Despite its practical goals, Euler’s pipeflow theory was not
meant as an engineering blueprint for the pumps, pipelines
and fountains at Sanssouci. The neglect of friction, of course,
would not be permissible if the theory would have had to
predict detailed power and discharge values. But to demand
such a theory in 1750 would not only be anachronistic; it
also ignores that even without taking friction into account
Euler’s theory correctly explained why the Sanssouci water-
art system was doomed to fail. As an exposition of a tangible
nonstationary-flow problem, it could well have helped to
correct the deficiencies of the initial design. Metal pipes
and a shorter distance from the pumps to the elevated
reservoir would have sufficed to turn the failure into success.

25 Buler, 1752a: pp. 247-248.

26 Euler, 1752a: pp. 240-242. (“Pour que la meme force qui agit sur les
pistons des pompes soit en état de fournir dans le réservoir la plus grande
quantité d’eau, il faut avoir soin de faire le tuyau montant aussi large qu’il
sera possible (...) Pour fournir une plus grande quantité d’eau dans le réservoir
par la meme force qui agit sur les pistons, il faut rendre le tuyau montant aussi
court qu’il sera possible”.)

27 Euler, 1752a: pp. 249-250 (il seroit crevé infalliblement”.)

28 Euler to Frederick, 17 October 1749, in Opera omnia, ser. 4a, 6: p. 322
(“Ayant fait le calcul sur les premiers essais de cette machine, ot les tuyaux de
bois sont crevés, des que 1’eau fut élevée a la hauteur de 70 pieds, je trouve que
les tuyaux ont alors effectivement souffert la pression d’une colonne d’eau de
plus de 300 pieds de hauteur: ce qui est une marque certaine, que la disposition
de la machine étoit encore fort éloignée de son état de perfection™.)
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Water-raising installations elsewhere, for example in mines
or for the water supply of cities, tacitly followed Euler’s
rules: In the pits of mines or in water towers the pipelines
rose vertically upwards—thus resulting in the shortest possible
distance between pumps and water reservoirs. The fact that such
widespread contemporary practice was ignored at Sanssouci,
and that even after Euler’s explicit warning the bungling
proceeded unabatedly, renders further speculations, such as
about the neglect of friction, superfluous.

Why was Euler’s advice ignored? One reason may be that
Frederick II had little understanding of mathematics. In contrast
to poetry, music and philosophy, for which he had high esteem,
mathematics and natural sciences were alien to him. In his
later years his ignorance turned into outspoken contempt, as
the diary entries of a frequent guest at the King’s dinner
table, Girolamo Marchese Lucchesini, illustrate: “Because he
understands nothing of mathematics,” Lucchesini entered after
a conversation on 19 June 1782 in his diary, “he has difficulties
to acknowledge that representatives of this science merit great
renown. It caused him little worry to see Euler depart, and he
does not regard Lagrange’s merits very high”.?® Furthermore,
the King seems to have been unwilling to afford the high costs
for changing the original design. He employed inexperienced
personnel who must have felt constantly under pressure to
use cheap materials. “Economizing is a virtue for everyone;
but if it is exaggerated, it loses its meaning; and nowhere is
exaggerated economizing so damaging as with constructions,”
the last architect of Frederick II complained about the stinginess
of his King.’® Perhaps both traits of Frederick’s character,
contempt for mathematics and stinginess, combined when he
chose in his letter to Voltaire, quoted in the introduction, Euler
as a scapegoat for the failure at Sanssouci. With biting sarcasm,
he perverted into derision what Euler had meant as warning
(“Mon Moulin a été éxécuté géométriquement, et il n’a pu
élever une goutte d’eau a Cinquante pas du Bassin. Vanité des
Vanités; Vanité de la géométrie”.)—using almost Euler’s own
words (“qu’on n’éleveroit jamais une goutte d’eau jusqu’au
réservoir...”).

Apart from the injustice against Euler, the uncritical
acceptance of the King’s slander has misguided some scientists,
historians of science and technology and popular writers to
misrepresent 18th century science as utterly remote from
practical applications. Although there are certainly cases which
confirm a deep gulf between theory and practice, the Sanssouci
case definitely does not fall into this category. The fountains
did not fail because the theory was remote from practice, but
because the practical men at Sanssouci ignored the standards of
contemporary practice. Water-art installations elsewhere could
have served as role models. Euler’s pipeflow theory was as
practical as a theory could be at the time; further mishaps could
have been avoided if the lessons from Euler’s theory had been
taken into account. With regard to the history of fluid dynamics,
Euler’s pipeflow memoir also deserves more than a cursory

29 Bischoff, 1885. Other examples of Frederick’s “intellectual insufficiency”
are given in Fellmann, 2007: pp. 92-93.

30 Manger, 1789: vol. 3, p. 547.

mentioning: It illustrates that Euler approached the general
theory from practical corners. He had solved a number of
special flow problems in naval architecture, ballistics, hydraulic
machinery and pipeflow, before he arrived at the general
equations of fluid motion. His famous ‘Principes généraux du
mouvement des fluides’ did not emerge in a single stroke of
genius but in several stages, mediated through his involvement
in practical affairs, among which the Sanssouci project was not
the least important one. Although it seems paradoxical, Euler’s
ideal flow theory was deeply rooted in real flow problems.
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Abstract

We show that the issue of the drag exerted by an incompressible fluid on a body in uniform motion has played a major role in the early
development of fluid dynamics. In 1745 Euler came close, technically, to proving the vanishing of the drag for a body of arbitrary shape; for this
he exploited and significantly extended the existing ideas on decomposing the flow into thin fillets; he did not however have a correct picture of
the global structure of the flow around a body. Borda in 1766 showed that the principle of live forces implied the vanishing of the drag and should
thus be inapplicable to the problem. After having at first refused the possibility of a vanishing drag, d’Alembert in 1768 established the paradox,
but only for bodies with a head—tail symmetry. A full understanding of the paradox, as due to the neglect of viscous forces, had to wait until the

work of Saint-Venant in 1846.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The first hint of d’ Alembert’s paradox — the vanishing of the
drag for a solid body surrounded by a steadily moving ideal
incompressible fluid — had appeared even before the analytical
description of the flow of a “perfect liquid”! was solidly
established. Leonhard Euler in 1745, Jean le Rond d’ Alembert
in 1749 and Jean-Charles Borda in 1766 came actually very
close to formulating the paradox, using momentum balance
(in an implicit way) or energy conservation arguments, which
actually predate its modern proofs.> D’ Alembert in 1768 was
the first to recognize the paradox as such, although in a
somewhat special case. Similarly to Euler and Borda, his
reasoning did not employ the equations of motion directly,

* Corresponding author. Tel.: +33 4 92003035; fax: +33 4 92003058.
E-mail addresses: gerard.emile@terra.com.br (G. Grimberg),
uriel @obs-nice.fr (U. Frisch).

I Kelvin’s name of an incompressible inviscid fluid.
2 See, e.g. Serrin, 1959 and Landau and Lifshitz, 1987.

0167-2789/$ - see front matter (©) 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2008.01.015

but nevertheless used a fully constituted formulation of the
laws of hydrodynamics, and exploited the symmetries he
had assumed for the problem. A general formulation of
d’Alembert’s paradox for bodies of an arbitrary shape was
given in 1846 by Adhémar Barré de Saint-Venant, who pointed
out that the vanishing of the drag can be due to not taking into
account viscosity. Other explanations of the paradox involve
unsteady solutions, presenting for example a wake, as discussed
by Birkhoff.?

Since the early derivations of the paradox did not rely on
Euler’s equation of ideal fluid flow, it was not immediately
recognized that the idealized notion of an inviscid fluid motion
was here conflicting with the physical reality. The difficulties
encountered in the theoretical treatment of the drag problem
were attributed to the lack of appropriate analytical tools rather
than to any hypothetical flaws in the theory. In spite of the great
achievements of Daniel and Johann Bernoulli, of d’Alembert

3 Euler, 1745; D’ Alembert, [1749]; Borda, 1766; Saint-Venant, 1846, 1847,
Birkhoff, 1950: Chap. 1, §9.
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and of Euler* the theory of hydrodynamics seemed beset with
insurmountable technical difficulties; to the contemporaries it
thus appeared of little help, as far as practical applications were
concerned. There was a dichotomy between, on the one hand,
experiments and the everyday experience and, on the other hand
the eighteenth century’s limited understanding of the nature
of fluids and of the theory of fluid motion. This dichotomy is
one of the reasons why neither Euler nor Borda nor the early
d’Alembert were able to recognize and to accept the possibility
of a paradox.

We shall also see, how the problem setting became more
and more elaborated in the course of time. Euler, in his early
work on the drag problem appeals to several physical examples
of quite different nature, such as that of ships navigating
at sea and of bullets flying through the air. D’Alembert’s
1768 formulation of the drag paradox is concrete, precise
and much more mathematical (in the modern sense of the
word) than Euler’s early work. This is how d’Alembert was
able to show — with much disregard for what experiments or
(sometimes irrelevant) physical intuition might suggest — that
the framework of inviscid fluid motion necessarily leads to a
paradox.

For the convenience of the reader we begin, in Section 2, by
recalling the modern proofs of d’ Alembert’s paradox: one proof
— somewhat reminiscent of the arguments in Euler’s 1745 work
— relies on the calculation of the momentum balance, the other
one — connected with Borda’s 1766 paper — uses conservation
of energy. In Section 3 we describe Euler’s first attempt, in
1745, to calculate the drag acting on a body in a steady flow
using a modification of a method previously introduced by
D. Bernoulli.’ In Section 4 we discuss d’Alembert’s 1749
analysis of the resistance of fluids. In Section 5 we review
Euler’s contributions to the drag problem made after he had
established the equations of motions for ideal fluid flow.
Section 6 is devoted to Borda’s arguments against the use of
a live-force (energy conservation) argument for this problem.
In Sections 7 and 8 we discuss d’Alembert’s and Saint-
Venant’s formulation of the paradox. In Section 9 we give the
conclusions.

Finally, we mention here something which would hardly be
necessary if we were publishing in a journal specialized in the
history of science: the material we are covering has already
been discussed several times, in particular by such towering
figures as Saint-Venant and Truesdell.® Our contributions can
only be considered incremental, even if, occasionally, we
disagree with our predecessors.

2. Modern approaches to d’Alembert’s paradox

Let us consider a solid body K in a steady potential flow
with uniform velocity U at infinity. In the standard derivation
of the vanishing of the drag’ one proceeds as follows: Let

4 See, e.g., Darrigol, 2005; Darrigol and Frisch, 2008.
5 Bernoulli, 1736.

6 Truesdell, 1954; Saint- Venant [1888].

7 See, e.g., Serrin, 1959.

{2 be the domain bounded in the interior by the body K
and in the exterior by a sphere S with radius R (eventually,
R — 00). The force acting upon K is calculated by writing
a momentum balance, starting from the steady incompressible
3D Euler equation

v-Vv=—-Vp, V.v=0. @))

The contribution of the pressure term gives the sum of the force
acting on the body K and of the force exerted by the pressure
on the sphere S. It may be shown, using the potential character
of the velocity field, that the latter force vanishes in the limit
R — oo. The contribution of the advection term can be written
as the flux of momentum through the surface of the domain
{2: the flux through the boundary of K vanishes because of the
boundary condition v - n = 0; the flux through the surface of
S vanishes because the velocity field is asymptotically uniform
(v ~ U for R — ©0). From all this it follows that the force on
the body vanishes. This approach proves the vanishing of both
the drag and the lift.®

Alternatively, one can use energy conservation to show the
vanishing of the drag.® Roughly, the argument is that the work
of the drag force, due to the motion with velocity U, should be
balanced by either a dissipation of kinetic energy (impossible in
ideal flow when it is sufficiently smooth) or by a flow to infinity
of kinetic energy, which is also ruled out for potential flow. This
argument shows only the vanishing of the drag.

A more detailed presentation of such arguments may be
found in the book by Darrigol.'?

In the following we shall see that many technical aspects of
these two modern approaches were actually discovered around
the middle of the eighteenth century.

3. Euler and the new principles of Gunnery (1745)

In 1745 Euler published a German translation of Robins’
book “New Principles of Gunnery” supplemented by a series
of remarks whose total amount actually makes up the double of
the original volume. In the third remark of the first proposition
(Dritte Anmerkung zum ersten Satz) of the 2nd Chapter Euler
attempts to calculate the drag on a body at rest surrounded by a
steadily moving incompressible fluid.!!

In 1745 the general equations governing ideal incompress-
ible fluid flow were still unknown. Nevertheless, Euler managed
the remarkable feat of correctly calculating the force acting on
an element of a 2D steady flow around a solid body. For this, as
we shall see, he borrowed and extended the results obtained by
D. Bernoulli a few years earlier.!?

8 The lift need not vanish if there is circulation.
9 See, e.g., Landau and Lifshitz, 1987: §11.

10 Darrigol, 2005: Appendix A.

11 For the German original of the third remark, cf. Euler, 1745: 259-270
(of Opera omnia which we shall use for giving page references); an
English version, taken from Hugh Brown’s 1777 translation is available at
www.oca.eu/etc7/EE250/texts/euler1745.pdf. We shall sometimes use our own
translations.

12 Bemoulli, 1736, 1738.
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Fig. 1. Figure 14 of Euler, 1745: 263: this figure represents a fillet of fluid
aAMm, deflected by the solid body, but the shape of the body is not fully
specified.

Euler begins by noting that instead of calculating the drag
acting on a body moving in a fluid one can calculate the drag
acting on a resting body immersed in a moving fluid. Thus, he
considers a fluid moving into the direction AB!3 (cf. Figs. 1 and
3), past a solid body CD.'# Then Euler continues by describing
the motion of fluid particles and establishes a relation between
the trajectory and velocity of each fluid particle and the force
which is acting on this particle. He observes that, instead of
determining the force on the body, one can evaluate the reaction
on the fluid:

But since all parts of the fluid, as they approach the body, are deflected
and change both their speed and direction [of motion], the body has to
experience a force of strength equal to that needed for this change in
speed as well as direction of the pal’ticles.15

Thus, one has to determine the force which is applied at
each point of the fluid. Euler chooses a fillet'® AaMm of fluid
with an infinitesimal width and observes that the velocity!” v
of the particles passing through the section Mm is inversely
proportional to its (infinitesimal) width Mm = §z; so that
v 8z = vg 820, where 8zp = Aa and vg are the width of the fillet
and the velocity at the reference point A.'® For later reference
let us call this relation mass conservation. Euler assumes that
the particles passing through the section Aa follow the fillet
AaMm. This is equivalent to assuming that the velocity in each
section Mm along the trajectory depends only on the location

13 Here, contrary to the usage in Eulers’ memoir, all geometrical points will
be denoted by roman letters, leaving italics for algebraic quantities.

14 These are Euler’s own words; examination of various of his figures and of
the scientific context shows that the body extends below CD and, perhaps also
above.

15 Euler, 1745: 263. Weil aber alle Theile der fliiligen Materie, so bald sich
dieselben dem Korper nahen, gendthiget werden auszuweichen, und so wohl
ihre Geschwindigkeit, als ihre Richtung zu verdndern, so mufl der Korper eine
eben so grofie Kraft empfinden, als zu dieser Verinderung so wohl in der
Geschwindigkeit, als der Richtung der Theilchen, erfordert wird.

16 Byler uses the word “Canal” (channel).

7 Following early eighteenth century notation, Euler represents a velocity by
the corresponding height of free fall to achieve the given velocity, starting a
rest; in modern notation this would be /2gh. In the 1745 paper Euler takes
mostly g = 1 — but occasionally g = 1/2 — and denotes the height by v. In
order not to confuse the reader, we shall here partially modernize the notation
and in particular denote the velocity by v.

18 Euler denotes our 8z, §zg and vg by z, a and +/2b, respectively.

Fig. 2. Figure 1 of Bernoulli, 1736. A centripetal argument is used to calculate
the normal force acting along a fillet of fluid represented here just by the curve
BD (changes in width are ignored).

of the point M and not on time, in modern terms a stationary
flow. Here the concepts of streamline and of stationarity in two
dimensions appear for the first time explicitly.

With the above assumption, Euler defines

AP = x, PQ =dx, PM =y, ON =dy,
(2)
p =dy/dx, MN = /dx2 +dy? = dx,/1 + p2.

Since the force exerted by the body on the fluid is oriented
upward, we prefer orienting the vertical axis upward. Hence
y and p will be negative in what follows. Otherwise we shall
mostly follow Euler’s notation. Euler calculates the normal and
tangential components, d Fy and d Fr, of the infinitesimal force
acting on the element of fluid fillet MNnm (see Fig. 1).!°

With the assumed unit density, the mass of fluid in MNnm is

8z X MN = 8zdx,/1 + p2. 3)

The normal acceleration dFy in the direction MR is
calculated by Euler as a centripetal acceleration, i.e., given by
the product of the square of the velocity v and the curvature

(1 + p?)?dp/dx. Euler may here be following D. Bernoulli.2’
The latter, in a paper concerned among other things with jets
impacting on a plane, had developed an analogy between an
element of fluid following a curved streamline and a point mass
on a curved trajectory (cf. Fig. 2). Multiplying the acceleration
by the elementary mass and using mass conservation,>! Euler
then obtains

dFx = vodzovdp/(1 + p?), 4)

in which the velocity v along the fillet is considered to be a
function of the slope p.

19 The notation dFN and d Fr is ours.
20 Bernoulli, 1736 and 1738: Section XIII, §13.
21 Bernoulli, 1738: 287 assumed a fillet of uniform width (fistulam

implantatam esse uniformis quidem amplitudinis) and thus did not use mass
conservation to relate the varying width and velocity.
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To obtain the tangential force d Fr in the direction mS on the
element of fillet, Euler writes

8zdxy/1 + p2d(v?/2) = —dFr dxy/1 + p2, 5)
and thus
dFp = —8zd(v?/2) = —8z0(vo/v)d(v?/2). (6)

For the case of Fig. 1 the force is oriented in the direction mS,
because the fluid is moving more slowly at N than at M. Euler
does not elaborate on how he derives (5) but this seems typically
a “live-force” argument of a kind frequently used at that time,
for example by the Bernoullis.?? Indeed the Lh.s. is the variation
of the live force (kinetic energy) and the r.h.s. is what we would
now call the work of the tangential force per unit mass.

So as to later determine the drag, that is the force on the body
in the vertical direction, Euler adds these normal and tangential
elementary forces, projected onto the vertical axis oriented in
the direction BA. He thus obtains the following elementary
vertical force on the fluid:

dr = 196z + (7
BA = V0020
a1+ pz); V1i+p

Here a “miracle” happens: the rh.s. of (7) is the exact
differential of

vp
V1+p?

Finding the exact form of the function v(p), as we now know,
requires the solution of a non-trivial boundary value problem.
The exact form does however not matter for the integrability
property and — from a modern perspective — can be related to the
global momentum conservation property of the Euler equation.
In 1745 Euler did not comment on the miracle. It is worth
stressing that it does not survive if any error is made regarding
the numerical factors appearing in the normal and tangential
forces.

Euler is now able to exactly integrate the elementary force
along a fillet from its starting point A, assumed to be far
upstream (p = —00), to a point m with a finite slope p. Noting
that —p/+/1 + p? is the cosine of the angle MSB, he obtains
the following force on the body, due to the fillet:

®)

V0820

Fap = —USSZ() (1 — l COSMSB> . (9)
vo

Note that this is a force from a given fillet of infinitesimal
width which must still be integrated over a set of fillets
encompassing the whole fluid. More important here is where
to terminate the fillet. It is clear that the relevant fillets start far
upstream in the vertical direction; but where do they lead after
having come close to the solid body? Euler considers various
possibilities, such as a 90° deflection. He then envisages a very
interesting case:

22¢f, e.g., Darrigol, 2005: Chap. 1.

Fig. 3. Figure 15 of Euler, 1745: 268 from which he tries to explain that the
drag should be calculated using only the portion AM of the fillet.

It remains therefore only to fix upon the point which is to be esteemed
the last of the canal. If we go so far that the fluid may pass by the body,
and attain its first direction and velocity then shall §z = §z(, and the
angle mSB vanish, and therefore its cosine = 1, then shall the force
acting on the body in the direction AB = —v%ézo(l — 1) =0, and the

body suffers no resistance. 23

From a technical point of view Euler’s 1745 derivation of
the vanishing of the drag force has many features of the modern
proof. However Euler refuses here to see a paradoxical property
of the model of ideal fluid flow (for which the equations are not
even completely formulated). He accepts the possibility that the
vanishing of the drag applies to certain exotic fluids which are
“infinitely fluid . ..and also compressed by an infinite force”?*
such as the hypothetical ether surrounding celestial bodies
(called by him “subtle heavenly material”), but he firmly rejects
it for water and air. Indeed, immediately after the previous
citation he writes:

Hence it appears, that for air or water, we are not to take the point of the
canal for last, where the motion behind the body corresponds exactly
with that at the beginning of the canal. 2

Euler then explains why in his opinion the “last point”
should not at all be taken far downstream, but rather near the
inflection point M where the angle MSB achieves its maximum
value, as shown in Fig. 3.2 As pointed out to us by Olivier
Darrigol, in Euler’s opinion the portion AM of the canal AD is
the only one that exerts a force on the body, the alleged reason

23 Euler, 1745: 267. Hier kommt es also nur darauf an, wo das Ende des
Canals angenommen werden soll. Geht man so weit, bif} die fliiBige Materie um
den Korper vollig vorbey geflossen, und ihren vorigen Lauf wiederum erlanget
hat, so wird ..., und der Winkel mSB verschwindet, dahero der Cosinus
desselben = 1 wird. In diesem Fall wiirde also die auf den Korper nach der
Direction AB wiirkende Kraft ... und der Korper litte gar keinen Wiederstand.

24 Euler, 1745: 268-269. ...unendlich fliiig ...und von einer unendlichen
Kraft zusammen gedruckt ...

25 Euler, 1745: 267. Woraus erhellet, dal man fiir Wasser und Luft nicht
denjenigen Punkt des Canals, wo die Bewegung hinter dem Korper mit der
ersten wiederum vollig iibereinkommt, fiir den letzten annehmen konne.

26 Truesdell, 1954: XL writes that “Euler supposes that the oncoming fluid
turns away from the axis, leaving a dead-water region ahead of the body”;
actually, Euler does not assume any dead-water region in his Third Remark.
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being that the force caused by the deflection in the portion MD
is not directed toward the body:

The other part DM produces a force which is opposite to the first, and
would cause the body to move back in the direction BA. Now, as only
a true pressure [a positive one] can set a body into motion, the latter
force can only act on the body insofar as the pressure of the fluid matter
from behind is strong enough to move the body forwards 2

Hence he departed from strict dynamical reasoning to follow a
dubious intuition of the transfer of force through the fluid.?®

To sum up, Euler performed a real four de force by deriving
the correct expression for the force on a fillet of fluid without
having the equations of motion but practically he was not
able to reach much beyond Newton’s impact theory when
considering the global interaction between the fluid and the
body.

4. d’Alembert and the treatise on the resistance of fluids
(1749)

In a treatise® written for the prize of the Berlin Academy
of 1749 whose subject was the determination of the drag a
flow exerts upon a body, d’ Alembert gives a description of the
motion of the fluid analogous to that of Euler. It is not clear
if d’Alembert knew about Euler’s “Commentary on Gunnery”.
As noted by Truesdell,>° some figures in d’Alembert’s treatise
are rather similar to those found in the Gunnery but there
are also arguments in the Gunnery which would have allowed
d’Alembert, had he been aware of them, to extend his 1768
paradox to cases not possessing the head-tail symmetry he
had to assume. Anyway, d’Alembert was fully aware of D.
Bernoulli’s work on jet impact in which, as we already pointed
out, a similar figure is found.

In the treatise d’Alembert described the motion of an
incompressible fluid in uniform motion at large distance,
interacting with a localized axisymmetric body. He observed
that the streamlines and the velocity of the fluid at each point
in space are time-independent. The velocity a of the fluid far
upstream of the body is directed along the axis of symmetry
(which he takes for the abscissa); the other axis is chosen to be
perpendicular to this direction. In this frame a point M of the
fluid is characterized by the cylindrical coordinates (x, z) and
the corresponding velocity has the components av, and av,.>!

D’Alembert’s first aim is to derive the partial differential
equations which determine the motion of the fluid, and the
appropriate boundary conditions with which they must be

27 Euler, 1745: 268. Aus dem andern Theil DM aber ensteht eine Kraft,
welche jener entgegen ist, und von welcher des Korper nach der Direction
BA zuriick gezogen werden sollte. Da nun kein Korper anders, als durch einen
wiirklichen Druck in Bewegung gesetzt werden kann, so kann auch die letztere
Kraft nur in so ferne auf den Korper wiirken, als der Druck der fliiBigen Materie
von hinten stark genug ist, den Korper vorwirts zu stossen.

28 Darrigol, private communication, 2007.
29 p’ Alembert, [1749], 1752.
30 Truesdell, 1954: LIL

31D’ Alembert uses a similarity argument to prove that the velocity field
around a body of a given shape is proportional to the incoming velocity a
(D’ Alembert, [1749]: §42-43, 1752: §39).

supplemented. He observed that, in order to determine the drag
on the body, one must first determine

... the pressure of the fillet of Fluid which glides immediately on the
surface of the body. For this it is necessary to know the velocity of the
particles of the fillet. 32

By considering the motion of fluid particles during an
infinitesimal time interval, d’Alembert is able to find the
expressions of the two components of the force acting on an
element of fluid:

dv ov
y: =d’ (—vxa—xz - ”a_z) (10)
and
ov Jdv
2 X X
= —vy— —p,— ). 11
Vx a(”xax Uzaz> (11)

From this d’Alembert derived for the first time the partial
differential equations for axisymmetric, steady, incompressible
and irrotational flow, but he does not use such equations in
considering the problem of “fluid resistance”.33

How does d’Alembert calculate the drag? From an
assumption about the continuity of the velocity he infers,
contrary to Euler, that there must be a zone of stagnating fluid
in front of the body and behind it, bordered by the streamline
TFMDLa which attaches to the body at M and detaches at L
(see Fig. 4).3*

In his calculation of the drag d’ Alembert used an approach
which differed from that of Euler in the Gunnery: instead
of calculating the balance of forces acting on the fluid he
considered the pressure force exerted on the body by the fluid
fillet in immediate contact with it. D’ Alembert noted first that,
for each surface element of the body, the force exerted by the
fluid particles is perpendicular to this surface, because of the
vanishing of the tangential forces, characterizing the flow of an
ideal fluid. >

In conformity with Bernoulli’s law, d’Alembert expressed
the pressure along the body as a? (1 — v)% - vzz). With ds denoting
the element of curvilinear length along the sections of the body
by an axial plane such as that of Fig. 4, the infinitesimal element
of surface of revolution of the body upon which this pressure is
acting is 2w zds. The component along the axis of the pressure
force exerted is

2wa*(1 —v? — vzz)zdz. (12)

Further integration along the profile AMDLC yields the vertical
component of the drag.

Then came a very important remark. D’ Alembert noted that
in the case of a body which is not only axisymmetric but has

32 D’Alembert, 1752: xxxi. ...la pression du filet de Fluide qui glisse
immédiatement sur la surface du corps. Pour cela il est nécessaire de connoitre
la vitesse des particules de ce filet.

33 Cf. Truesdell, 1954: LIII, Grimberg, 1998: 4446, Darrigol, 2005: 20-21.

34 Alembert, [1749]: §39, 1752: §36.

35 D’Alembert, [1749]: §40, 1752: §37. This vanishing, as we know,
characterizes an ideal fluid; d’Alembert did not relate it to the nature of the
fluid.
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Fig. 4. Figure 14 of D’ Alembert, [1749] redrawn. Not all elements shown here
are used in our arguments.

a head—tail symmetry,3® the contributions to the drag from two
symmetrically located points would be equal and of opposite
sign and thus cancel.>’ In order to avoid the vanishing of the
drag, he assumed that the attachment point M and the separation
point L are not symmetrically located:

From there it follows that the arcs LD and DM cannot be equal;
because, if they were, the quantity— f 2 ydy( p2 +q2) would be equal
to zero so that the body would not experience any force from the fluid:
which is contrary to experiments.38

This stress on “experiments”, already present in the 1749
manuscript and which will not reappear in d’ Alembert’s 1768
paradox paper, seems to reflect just common sense. It cannot be
explained by d’ Alembert’s hypothetical desire to adhere to late
recommendations by the Berlin Academy which emphasized
comparisons with experiments for the 1750 prize on resistance
of fluids. D’Alembert did not seem pleased with such late
changes and these recommendations were probably formulated
only in May 1750.%°

D’Alembert’s new idea, compared to Euler, is to consider
the drag as the resultant of the pressure forces directed along
the normal to the surface of the body over its entirety. But for
d’ Alembert it is still unimaginable to obtain a vanishing drag.

5. Euler and the ‘Dilucidationes’ (1756)

The Dilucidationes de resistentia fluidorum (Enlightenment
regarding the resistance of fluids) have been written in 1756,

361n d’Alembert [1752] this additional symmetry is explicitly assumed;
in d’Alembert, [1749] the language used only suggests such a symmetry.

37D’ Alembert, [1749]: §62, 1752: §70.

38 D’ Alembert, 1752: §70. Dela il s’ensuit que les arcs LD, DM ne sauroient
étre égaux ; car s’ils I’étoient, alors la quantité — [ 2 ydy (p2 +q2) seroit égale
a zéro de maniere que le corps ne souffriroit aucune pression de la part du
fluide : ce qui est contre 1’expérience.

39 D’Alembert, 1752: xxxviii; Yushkevich and Taton, 1980: 312-314; Grim-
berg, 1998: 9.

one year after Euler established his famous equations in their
final form.* In his review of previous efforts to understand the
drag problem for incompressible fluids, Saint-Venant*! writes
the following about the Dilucidationes:

And it is obvious that, when the flow is assumed indefinite or very
broad, the theory of the Dilucidationes can only be and actually is just

areturn to the vulgar theory, .... 42

Here, Saint-Venant understands by “vulgar theory” the
impact theory which goes back to the seventeenth century.
Actually, in 1756 Euler was rather pessimistic regarding the
applicability of his equations to the drag problem:

But the results which I have presented in several previous memoirs
on the motion of fluids do not help much here. Because, even though
I have succeeded in reducing everything that concerns the motion
of fluids to analytical equations, the analysis has not reached the
sufficient degree of completion which is necessary for the solving of

such equations.43

Truesdell discusses the Dilucidationes in detail.** Actually
this paper is quite famous because of a remark Euler
made on the cavitation that arises from negative pressure in
incompressible fluids. Truesdell is also rightly impressed by
Euler’s success in doing something non-trivial with his equation
for flows around a parabolic cylinder; for this Euler uses a
system of curvilinear coordinates based on the streamlines and
their orthogonal trajectories.

The Dilucidationes are however not contributing much to
our understanding of drag. In Section 15, Euler expresses his
doubts regarding the applicability of his 1745 calculation to
both the front and the back of a body (which would result in
vanishing drag):

... the boat would be slowed down at the prow as much as it would be
pushed at the poop ... »

We must mention here that, because of a possible non-
vanishing transfer of kinetic energy to infinity, the modern
theory of the d’ Alembert paradox does not apply to flow with a
free surface, such as a boat on the sea.

Thus, in the Dilucidationes we find a first attempt to
introduce a new analytical treatment of streamlines unrelated
to the previous theories and coming closer to the modern
description of a fluid flow. Nevertheless, Euler does not succeed
in using his 1755 equations to improve our understanding of the
drag problem.

40 Euler, 1755, 1756.

4 Saint-Venant, [1888], probably mostly written around 1846.

42 Saint-Venant, [1888]: 35. Et il est évident que, lorsque le courant est
supposé indéfini ou tres large, la théorie des Dilucidationes d’Euler ne peut
&tre et n’est réellement qu’un retour pur et simple a la théorie vulgaire,

43 Euler, 1760: 200. Quae ego etiam nuper in aliquot dissertationibus de
motu fluidorum exposui, nullum subsidium huc afferunt. Etiamsi enim omniam
quae ad motum fluidorum pertinent, ad aequationes analyticas reduxi, tamen
ipsa Analysis minime adhuc ita est exculta, ut illis aequationibus resoluendis
sufficiat.

44 Truesdell, 1954: C-CVIL

45 Euler, 1760: 206 ...puppis nauis paecise tanta vi propelleretur, quanta
prora repellitur. . ..



1884 G. Grimberg et al. / Physica D 237 (2008) 1878—1886

6. Borda’s memoir (1766)

In his memoir Borda, a prominent French “Geometer” and
experimentalist, studies the loss of “live force” (energy) in
incompressible flows, in particular in pipes whose section is
abruptly enlarged.*® At the end of his memoir Borda gives
an example of what would be, in his opinion, “a bad use” of
the principle of conservation of live forces. This is precisely
the problem of determining the drag force that a moving fluid
exerts upon a body at rest. The particles of the fluid in the
neighborhood of the body “delineate curved lines or rather
move in small curved channels”; the pressure force acting
upon the body has to be determined. But the channels become
narrower at certain locations similarly to a siphon, so that the
principle of live forces cannot be used. To prove this point he
then presents the following argument for the vanishing of the
drag:

...suppose that the body D moves uniformly through a quiescent fluid,
driven by the action of the weight P. According to this principle [of
live forces], the difference of the live force of the fluid must be equal to
the difference of the actual descent of the weight; however, since the
motion is supposed to have reached uniformity, the difference of the
live forces equals zero. Therefore, the difference of the actual descent
is also zero, which cannot happen unless the weight P is itself zero. As
the weight P measures the resistance of the fluid, the supposition of the

principle [of live forces] necessarily leads to a vanishing resistance.*’

This constitutes the first derivation of the d’Alembert
paradox using an energy dissipation argument. Borda’s
explanation of why the live-force conservation argument is
inapplicable rests on the aforementioned analogy with the
siphon problem. This is illustrated by a figure*® not reproduced
here because of its poor quality. There one sees a fillet of
fluid narrowing somewhat as it approaches the body. The
modern concept of dissipation in high-Reynolds-number flow
being confined to regions with very strong velocity gradients is
definitely not what Borda had in mind.

Borda’s reasoning is correct, but like Euler in 1745 and
d’Alembert in 1749, he does not formulate the vanishing of
the drag as a paradox. In his remarks Borda addresses neither
the question of the nature of the fluid, nor the consequences of
having stationary streamlines, nor the problem of the contact
between the fluid and the body (absence of viscosity in the
case of ideal flow) which, as we know, are quite central to the
understanding of the paradox.

46 Borda, 1766.

47 Borda, 1766: 604-605. ...supposons que le corps D se meuve
uniformément dans un fluide tranquille, entrainé par I’action du poids P: on
sait que suivant le principe, la différence de la force vive du fluide devra étre
égale a la descente actuelle du poids P; mais puisque le mouvement est censé
parvenu a I’uniformité, la différence des forces vives = 0; donc la différence de
la descente actuelle sera aussi = 0, ce qui ne se peut pas a moins que le poids
P ne soit lui-méme = 0: or le poids P marque la résistance du fluide : donc la
supposition du principe dont il s’agit, donne toujours une résistance nulle.

43 Borda, 1766: Figure 14, found at the end of the 1766 volume on p. 847.

7. D’Alembert’s memoirs on the paradox (1768 and 1780)

In Volume V of his “Opuscules” published in 1768, a
part of a memoir is entitled “Paradox on the resistance of
fluids proposed to geometers.”*® D’ Alembert considers again
an axisymmetric body, but now with a head—tail symmetry.
More precisely, he assumes a plane of symmetry perpendicular
to the direction of the incompressible flow at large distance and
dividing the body into two mirror-symmetric pieces. To avoid
the problem of possible separation of streamlines upstream and
downstream of the body, he assumes that the front part and
the rear part of the body have needle-like endings. First of all
he asserts that the velocities at every location in the fluid are
perfectly symmetric in front/rear of the body, and that

...under this assumption the law of the equilibrium and the
incompressibility of the fluid will be perfectly obeyed, because, the
rear part of the body being similar and equal to its front part, it
is easy to see that the same values of p and ¢ [i.e. the velocity
components] which will give at the first instant the equilibrium and
incompressibility of the fluid at the front part will give the same results

for the rear part. 30

This statement is directly related to the remark in Section 70
of d’Alembert’s 1752 treatise. In fact, the assumption used by
d’Alembert in 1749 and 1752 to avoid a paradox is here lifted,
since no separation of streamlines occurs except at the needle-
like end points. D’ Alembert here assumes that the solution with
mirror symmetry is the only one: “The fluid has only one way
to be moved by the encounter of the body.” The pressure forces
at the front and rear part of the body are then also axisymmetric
and mirror symmetric. Hence they combine into a force of
resistance (drag) which vanishes. D’ Alembert concluded:

Thus I do not see, I admit, how one can satisfactorily explain by
theory the resistance of fluids. On the contrary, it seems to me that the
theory, developed in all possible rigor, gives, at least in several cases, a
strictly vanishing resistance; a singular paradox which I leave to future
Geometers to elucidate. >!

Itis clear that d’ Alembert’s argument is less general than that
of Borda, since he is restricting the formulation of the paradox
to bodies with a head—tail symmetry. Nevertheless, d’ Alembert
is the first one to seriously propose the vanishing of the drag as a
paradox. Twelve years later in Volume VIII of his “Opuscules”
d’ Alembert revisits the paradox in the light of a letter received
from “a very great Geometer” who is not named and who
points out that, when considering the flow inside or around a

49 D’Alembert, 1768. In the eighteenth century “Geometer” was frequently
used to mean “mathematician” (pure or applied).

50 D’Alembert, 1768: 133. ...dans cette supposition les loix de 1’équilibre
& de I'incompressibilité du fluide seront parfaitement observées; car la partie
postérieure étant (hyp.) semblable et égale a la partie antérieure, il est aisé de
voir que les mémes valeurs de p & de ¢; qui donneront au premier instant
I’équilibre & 1’incompressibilité du fluide a la partie antérieure, donneront les
mémes résultats a la partie postérieure.

51 D’Alembert, 1768: 138. Je ne vois donc pas, je I’avoue, comment on peut
expliquer par la théorie, d’'une maniere satisfaisante, la résistance des fluides.
11 me paroit au contraire que cette théorie, traitée & approfondie avec toute la
rigueur possible, donne, au moins en plusieurs cas, la résistance absolument
nulle ; paradoxe singulier que je laisse a éclaircir aux Géometres [sic].
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symmetric body, there may be, in addition to the symmetric
solution, another one which does not possess such symmetry
and to which d’Alembert’s argument for the vanishing of the
resistance does not apply.>> D’ Alembert concurs and discussed
the issue at length. It should however be noted that a breaking of
the symmetry was already assumed by him in his early work on
the resistance when he assumed that the (hypothetical) points
of attachment and detachment of the streamline following the
body are not symmetrically located (see Section 4).

Thus d’Alembert was definitely the first to formulate the
vanishing of the drag as a paradox within the accepted model
of that time, namely incompressible fluid flow, implicitly taken
as ideal.’®> He was however formulating it only for bodies with
head—tail symmetry, not realizing that techniques introduced by
Euler and Borda could have allowed him to obtain the paradox
for bodies of arbitrary shapes.

8. Saint-Venant and the first precise formulation of the
paradox (1846)

In three notes published in 1846 and then in a memoir
published in 1847, Saint-Venant gives for the first time a
general formulation of the paradox. A detailed write-up, mostly
dating from the same period, was published only posthumously
in 1888 and contains also a very interesting discussion of
previous work.>* Saint-Venant’s memoir marks the beginning
of the modern theory of the d’Alembert paradox which was
to flourish, in particular with major contributions by Ludwig
Prandtl.”’

We here give only a very brief description of the key
results of Saint-Venant. He first specified the properties of
the incompressible fluid: the pressure force is normal to the
surface element on which it is acting and therefore equal in
all directions. The fluid moves steadily around a body at rest.
He gives a derivation of the paradox, closely related to Borda’s.
Indeed, it suffices to establish the equation for the live forces
acquired by the fluid to see that the live-force (energy) loss of
the system is zero:

If the motion has reached, as one always assumes, a steady state, the
live force acquired by the system at every instant is zero; the work
performed by the exterior pressures is also zero and the same applies to
the work of the interior actions of the fluid whose density is assumed to

be unchanging. Thus, the work of the impulse of the fluid on the body,

and, consequently, the impulse itself, is necessarily equal to zero. 36

52 D’ Alembert, 1780: 212; Birkhoff, 1950: 21-22.

53 The idea of viscosity ripened only in the XIXth century, see e.g. Darrigol,
2005; in the eighteenth century there was only a concept of tenaciousness,
e.g. resistance to the introduction of a body into fluid, which was still a long
way from actual viscosity.

54 Saint-Venant, 1846, 1847, [1888].

55 Cf., e.g. Darrigol, 2005: Chap. 7.

56 Saint-Venant, 1847: 243-244. Si le mouvement est arrivé, comme on le
suppose toujours, a I’état de permanence, la force vive, acquise a chaque instant
par le systeme, est nulle ; le travail des pressions extérieures est nul aussi, et il
en est de méme du travail des actions intérieures du fluide dont nous supposons
que la densité ne change pas. Donc le travail de I'impulsion du fluide sur le
corps, et, par conséquent, cette impulsion elle-méme, est nécessairement zéro.

He adds that the situation is different for a real fluid made of
molecules in which there is friction at the contact between two
neighboring fluid elements:

But one finds another result if, instead of an ideal fluid — object of
the calculations of the geometers of the last century — one uses a real
fluid, composed of a finite number of molecules and exerting in its
state of motion unequal pressure forces or forces having components
tangential to the surface elements through which they act; components
to which we refer as the friction of the fluid, a name which has been
given to them since Descartes and Newton until Venturi.”’

Thus, d’ Alembert’s paradox is explained by Saint-Venant for
the first time as a consequence of ignoring viscous forces. Of
course, a precise formulation of the paradox would not have
been possible without a clear distinction between ideal and
viscous fluids.

9. Conclusion

The problem of the resistance of bodies moving in fluids
was — and still is — of great practical importance. It was thus
naturally one of the first non-trivial problems tackled within
the nascent eighteenth century hydrodynamics. Euler, who was
not only a great “Geometer” but a person acutely aware of
the needs of gunnery and ship building, tried — as we have
seen — reaching beyond the old impact theory of Newton—
and failed. He was lacking both the concept of viscous forces
and a deep understanding of the global aspects of the topology
of the flow around a body. His “failure” — as is frequently
the case with major scientists — was however very creative:
born was the idea of analyzing a steady flow into a set of
fluid fillets of infinitesimal and non-uniform section; he also
managed to calculate the forces acting on such fillet several
years before there was any representation of the dynamics in
terms of partial differential equations. Borda, being both a
Geometer and an experimentalist, felt compelled to qualify as
non-sensical a very simple live-force argument discovered by
himself and which predicted a vanishing drag for bodies of
arbitrary shape. D’ Alembert, another brilliant Geometer, was
probably less constrained by experimental considerations, and
dared eventually to present the paradox known by his name. His
proof reveals a very good understanding of the global topology
of the flow but otherwise is very simple and limited intrinsically
to bodies with a head—tail symmetry.

We must stress that the statement as a paradox is very much
tied to the type of analytical representation of an ideal flow.
From this point of view, experiments on flow past bodies,
be they real or thought experiments, have rather been an
obstacle to grasping the distinction between an ideal fluid and
a real one. The same kind of epistemological obstacle has

57 Saint-Venant, 1847: 244. Mais on trouve un autre résultat si, au lieu du
fluide idéal, objet des calculs des géometres du siecle dernier, on remet un
fluide réel, composé de molécules en nombre fini, et exercant dans 1’état du
mouvement, des pressions inégales ou qui ont des composantes tangentielles
aux faces a travers desquelles elles agissent; composantes que nous désignons
par le nom de frottement du fluide, qui leur a ét€ donné depuis Descartes et
Newton jusqu’a Venturi.
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accompanied the earlier birth of the principle of inertia, which
no experiment could at that time truly reveal; it was necessary to
distance oneself from real conditions and to find an appropriate
mathematical representation. Finding such representations for
fluid dynamics was a painfully slow process: a full century
elapsed between Euler’s fragmentary results on drag and Saint-
Venant’s full understanding of the d’ Alembert paradox.
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1. Introduction

The Irish satirist Jonathan Swift once said':
Elephants are drawn always smaller than life, but a flea always larger.

Whoever would like to speak about Euler has to solve
exactly this problem: How to do justice to this mathematician,
“universal, richly detailed and inexhaustible”?? The following
essay is meant to emphasize some less well-known details of
Euler’s unusual life and work, especially his pioneering work
in celestial mechanics regarding the three-body problem.

2. The fast-rising scientist

1720 13 years old, Leonhard Euler enrolls at the University of
Basel;

1721 14 years old, he obtains the Bachelor’s degree;

1722 still 14 years old, he is for the first time opponent in an
appointment procedure for a professorship (of logic);

1722 15 years old, he is for the second time opponent in an
appointment procedure for a professorship (of history of
law);
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1 Cf. Fellmann, 2007: p. XIII.
2 Simmons, 2007: p. 168.
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1723 16 years old, he obtains his Master’s degree (A.L.M. =
Artium Liberalium Magister);

1726 18 years old, he publishes his first (faulty) paper on
isochronic curves?;

1726 19 years old, he submits his paper on ship’s masts, thus
gaining an honourable mention by the French Academy
of sciences*;

1727 19 years old, he submits his habilitation thesis without
having obtained the Ph.D. degree’;

1727 20 years old, he begins his work in St. Petersburg.

Euler submitted the thesis in order to receive the vacant
professorship of physics at the University of Basel. Its complete
title reads®:

Q.F.F.Q.S.7 Physical dissertation on sound which Leonhard Euler, Master of
the liberal arts submits to the public examination of the learned in the juridical
lecture-room on February 18, 1727 at 9 o’clock looking at the free professorship

of physics by order of the magnificent and wisest class of philosophers whereby

3 Sandifer, 2007: p. 5.
4 Euler, 1728.
S Buler, 1727.

6 Euler, 1727: p. 181 (“Q.FF.Q.S. [=Quod felix faustumque sit] Dissertatio
physica De sono, quam annuente numine divino jussu magnifici et sapientissimi
philosophorum ordinis pro vacante professione physica ad d. 18. Febr. A.
MDCCXXVIIL In Auditorio Juridico hora 9. Publico Eruditorum Examini
subjicit Leonhardus Eulerus A.L.M. Respondente Praestantissimo Adolescente
Ernesto Ludovico Burcardo Phil. Cand.”).

7 Quod felix faustumque sit (May it bring you happiness and good fortune).
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the divine will is nodding assent. The most eminent young man Ernst Ludwig
Burchard, candidate of philosophy, is responding.

But all imploring was in vain: Euler did not get the position.
In the appendix he raised the following problem: What would
happen if a stone dropped into a straight tunnel drilled to the
center of the earth and onward to the other side of the planet?
According to Euler it reaches infinite velocity at the center
and immediately returns to the same point from which it had
fallen down. Only in his Mechanica did Euler justify this false
solution saying®:

This seems to differ from truth ... . However that may be, here we have to
confide more in the calculation than in our judgement and have to confess that
we do not understand at all the jump if it is done from the infinite into the finite.

Euler’s result was the consequence of his mathematical
modelling of the situation (a non-permitted commutation of
limits). Benjamin Robins put it as follows”:

When y, the distance of the body from the center, is made negative, the terms
of the distance expressed by y”, when n may be any number affirmative,
or negative, whole number or problem are sometimes changed with it. The
centripetal force being as some power of the fraction; if, when y is supposed
negative, y" be still affirmative, the solution gives the velocity of the body in its
subsequent ascent from the center; but if y” by this supposition becomes also
negative, the solution exhibits the velocity, after the body has passed the center,
upon condition, that the centripetal force becomes centrifugal; and when on this
supposition y” becomes impossible, the determination of the velocity beyond

the center is impossible, the condition being so.

Such mistakes are not uncommon in the writings of great
men. Curiously, Euler never recanted.

3. Euler’s publications and posthumous works

Euler published more than 800 books or papers, mainly in
Latin or French, some in German or Russian. His posthumous
works are kept in the archives of the Russian Academy
of Sciences in St. Petersburg. The Euler Archives in Basel
dispose of microfilms of all preserved Eulerian manuscripts.
They are described in a volume published in Moscow and
Leningrad.!'? The twelve mathematical notebooks covering the
period 1725 to 1783 are of special interest. They consist of 2300
sheets of paper written nearly exclusively in Latin. Russian,
German, and English surveys appeared in 1988, 1989, and
2007, respectively.!! The notebooks will not be published in
the Opera omnia. Their digitization is planned.

Euler dealt with all aspects of pure and applied mathematics
and likewise with philosophy and theology.!? Differential and
integral calculus; logarithmic, exponential, and trigonometric

8Eu]er, 1736: p. 88. (“Hoc quidem veritati minus videtur consentaneum;
... Quicquid autem sit, hic calculo potius quam nostro iudicio est fidendum
atque statuendum, nos saltum, si fit ex infinito in finitum, penitus non
comprehendere.”)

9 Robins, 1739: p. 12.
10 Kopelevic, Krutikova, Mikhailov, Raskin, 1962.
1 Knobloch, 1988, 1989, 2007.
12 ¢, Varadarajan, 2006: p. 2.

functions; ordinary and partial differential equations; elliptic
functions and integrals; hypergeometric integrals; classical
geometry (theorem on polyhedra); number theory; algebra;
continued fractions; Zeta and other (Euler) products; infinite
series and products (Basel problem); divergent series;
mechanics of particles and solid bodies; calculus of variations;
theory and practice of optics; hydrostatics; hydrodynamics;
astronomy; lunar and planetary motions; topology; graph
theory (Konigsberg bridge problem); philosophy; theology;
shipbuilding; engineering; music theory.

The following enumeration gives a survey of Euler’s most
important monographs or textbooks. They are chronologically
ordered according to the date of publication and assigned
to Euler’s three stays in St. Petersburg (1727-1741), Berlin
(1741-1766), and again in St. Petersburg (1766—1783).

3.1. St. Petersburg (1727—1741)13

e Mechanics or the science of motion set forth analytically,
1736 (so-called First Mechanics)

e Introduction to the art of arithmetic for the use of the
high school at the Imperial Academy of Sciences in St.
Petersburg, 1738

e Essay of a new theory of music set forth clearly according to
the most certain principles of harmony, 1739

e Naval science or treatise on the construction and navigation
of ships, 1749 (so-called First naval theory, already written
in 1738 while still in St. Petersburg).

3.2. Berlin (1741-1766)"

e Method of finding curvilinear lines having a property to a
highest or smallest degree or solution of the isoperimetric
problem understood in the largest sense, 1744

e Theory of the motion of planets and comets, 1744

e New principles of gunnery, 1745

e Introduction into the analysis of the infinite, 1748

e Theory of the motion of the moon, setting forth all of
its inequalities, 1753 (so-called First lunar theory; its
publication was paid for by the Russian Academy of
Sciences)

e Elements of instruction of the differential calculus together
with its application in the analysis of the finite and theory
of series, 1755 (its publication was paid for by the Russian
Academy of Sciences)

e Theory of the motion of solid or rigid bodies stabilized
according to the first principles of our cognition and
accommodated to all motions that can fall in such bodies,
1765 (so-called Second Mechanics)

e Letters to a German princess on diverse subjects of physics
and philosophy, 1768-1772 (already written in the years
1760-1762 while still in Berlin)

e Elements of instruction of the integral calculus, 1768-1770,
1794 (already written in 1763 while still in Berlin)

13 Ruler, 1736, 1738, 1739, 1749.

14Euler, 1744a,b, 1745, 1748, 1753, 1755a, 1765¢, 1768-1772, 1794.
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3.3. St. Petersburg (1766-1783)"

e Dioptrics, 1769-1771

e Complete introduction to algebra, 1770

e Theory of the motions of the moon dealt with by a new
method together with astronomical tables, 1772 (so-called
Second lunar theory)

e Complete theory of the construction and navigation of ships,
1773 (so-called Second naval theory).

Through these textbooks Euler became Europe’s teacher not
only in his own time, but also for mathematicians of the 19th
centulry.16

4. The troubles of daily life

In spite of all intellectual flights of fancy Euler had to
manage the problems of daily academic and private life. Three
examples may illustrate this aspect of his activities.

4.1. The quadrature of the circle

In his capacity as director of the mathematical class of the
Berlin Academy he had to evaluate mathematical writings and
projects, for example the writing of a certain Thibault from
Avignon about the quadrature of the circle.!” The report dates
from the 15th of March, 1750 (cf. Fig. 1). It begins by saying'®:

After reading the writing of Mr. Thibault where he pretends to have found the
quadrature of the circle, I doubt very much that one has ever seen a paper on

this subject being just as absurd as this one.
The report ends by saying!:

This suffices to demonstrate that the author not only does not have the slightest
notion of the question he is dealing with but that he does not know either

anything about the first elements of geometry.

4.2. The supply of dead bodies

Since the departure of Maupertuis from Berlin Euler was
his proxy. He had to inform the administrator David Kohler
of the Academy’s financial affairs to pay the due honorarium
to the widow of the grave-digger Schiinemann for supplying
the Anatomy with dead bodies.”’ The Anatomical Theatre had
been constructed in 1713.

15 Buler, 1769-1771, 1770, 1772, 1773.
16 SpieB, 1929: p. 206.
17w, Knobloch, 1984: p. 27, no. 64. Publication of the following citations by

courtesy of the Archives of the Berlin-Brandenburg Academy of Sciences and
Humanities.

13 “Ayant lu I’écrit de Mr. Thibault, ot il prétend d’avoir trouvé la quadrature
du cercle, je doute fort qu’on ait jamais vu une piece aussi absurde sur ce sujet
que celle-cy.”

19 «Cela suffit pour faire voir, que I’ Auteur n’a non seulement aucune idée de
la question, dont il s’agit, mais qu’il est méme enticrement ignorant dans les
premiers élémens de Géométrie.”

20 W. Knobloch, 1984: p. 252, no. 1430; p. 270, no. 1553; p. 315, no.
1857-1860.

Fig. 1. Euler’s report on Thibault’s quadrature of the circle dating from March
15, 1750; Archives of the Berlin-Brandenburg Academy of Sciences and
Humanities I-M 101, sheet 1.

4.3. The plundering of Euler’s estate

During the Seven Years War between England and Prussia
on the one side, Russia, Austria, and France on the other side,
Euler’s estate in the village Lietzow (outside of but near to
Berlin in those days) was plundered by Saxon troops, allies
of the Russians. The still existing list of damages elaborated
by the mayor of Lietzow enumerates 1 Wispel, 5 Scheffel rye
(1 Wispel = 24 Scheffel, 1 Scheffel = 54,73 1), 1 Wispel,
6 Scheffel barley/oat, 30 metric hundred-weights, two horses,
thirteen cows, seven pigs, twelve sheep (cf. Fig. 2).!

In his letter to the Russian secretary Gerhard Friedrich
Miiller in St. Petersburg Euler spoke of four horses thus
doubling the damage.??

5. Euler’s work in celestial mechanics

When Euler published his Mechanica in 1736, it was
preceded by the copperplate engraving presented in Fig. 3.

The head of the celestial deity carries the sun revolved by
the six planets that can be seen with the naked eye. The planet
Uranus discovered only in 1781 is still absent. In the right
hand the deity holds an opened book. The figures represent
the whole or partial elliptic orbit of a planet. The message is
clear: Celestial mechanics is a part of mechanics wherein the
Newtonian law of gravitation plays the crucial role.

21 Brandenburgisches Landeshauptarchiv, Kurmirkische Kriegs- und
Doménenkammer, Stidte-Registratur: De anno 1760, Nr. S 3498; reproduction
by courtesy of these archives.

22 Fellmann, 2007: p. 101f.
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Fig. 2. List of damages regarding the village Lietzow. It was elaborated by
the mayor of Lietzow dating from October 24, 1760. Lietzow was plundered
by Saxon troops commanded by a Russian general. The fourth line of the list
enumerates “Prof. Euler’s” damages. Brandenburgisches Landeshauptarchiv
Potsdam, Rep. 2 Kurmirkische Kriegs- und Doménenkammer Nr. S 3498.

Fig. 3. Copperplate in Euler’s Mechanics (published in 1736) at the beginning
of the dedication to Johann Albert Korff (Euler 1736: p. 5).

The message on the right part of the copperplate is not so
evident. Euler himself does not give any explanation. Yet, a boy
obviously throws rings into a water basin by means of a sling
that he holds in his left hand. He observes the curved line the
rings are describing sinking to the ground of the water basin.
This might be an illustration of a motion in a resisting medium
as dealt with in the second volume of Euler’s Mechanica.

When Euler came to Berlin in 1741, he at once elaborated
a corresponding research program for astronomy at the Berlin

Academy of Sciences. He defined the true theory of astronomy

as follows?3:

The true theory of astronomy mainly consists of a thorough understanding of
the so-called Newtonian philosophy which does not only explain all already
known celestial motions but it also shows the reason why one makes more and
more new discoveries in the long run and recognizes more precisely the true
motions of all celestial bodies. By this science an astronomer can relate all of

his observations to a final aim and derive all kinds of profit from them.

Euler’s own contributions to celestial mechanics can be
divided into three groups: 1. Planetary perturbations, 2. Lunar
theories, 3. Three-body problem. The first two subjects have
been dealt with by Curtis Wilson very recently.?* Hence this
section will confine itself to the third subject.

First trials to solve the three-body problem where the bodies
are moving in the same plane are to be found in Euler’s
mathematical notebooks dating from 1750 to 1755.25 In his
publications he emphasized the importance of the problem
saying that we have to solve the famous three-body problem in
order to arrive at the culmination of astronomy.’® The solution
turned out to be extremely difficult. Yet, Euler did not question
the solvability. He only stated that first we have to study special
cases, to introduce certain restrictions before we can hope to
solve the general problem.?’ Euler was indeed “the first to
investigate restricted forms of the three-body problem with a
view to obtaining exact integrals”.?® He considered two special
cases: the problem of two gravitational centers and the collinear
configuration.

5.1. The problem of two gravitational centers

It can be explained in the following way: Two fixed bodies
A, B of masses a, b act on a third body Z according to the
Newtonian law of gravitation. What will be the curve described
by Z?

Euler dealt with it in three papers.?® In the first two of them
he presupposed that the curve described by Z lies in the same
plane as the two centers of gravitation. In the third paper he
dropped this restriction (cf. Fig. 4).

His method of solving the problem consisted of four steps:

23 Kirsten, 1977: p. 9 (“Die wahre Theorie der Astronomie bestehet
aber hauptsédchlich in einer griindlichen Erkenntniil der sogenannten
Newtonianischen Philosophie, als welche nicht nur alle schon erkannten Motus
Coelestes sehr herrlich erkléret, sondern auch Anla8 gibt in der Astronomie je
langer je mehr Entdeckungen zu machen, und die wahren Bewegungen aller
Himmlischen Corper genauer zu erkennen. Durch diese Wissenschaft wird
ein Astronom in Stand gesetzt, nicht nur alle seine Observationen auf einen
gewissen Endzweck zu dirigiren, sondern daraus auch allen moglichen Nutzen
zu ziehen.”)

24 Wilson, 2007.

25 Kopelevic/Krutikova/Mikhailov/Raskin 19621965, vol. 1: no. 401, fol.
76v; no. 402, fol. 49r—50r, 78v, 93v.

26 Euler, 1765b: p. 281.

27 Buler, 1764b, 1765b.

28 Wilson, 1994: p. 1054; cf. Subbotin, 1958; Volk, 1983.
29 Euler, 1760, 1764a, 1765a.

30 This is explained in Euler, 1760.
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Fig. 4. The configuration of the problem of two gravitational centers as dealt
with by Euler in Euler, 1765a: p. 248. A, B are the gravitational centers, the
moving body Z describes a curve that does not lie in the same plane as the two
centers.

1. Find the general differential equations of the second order
which determine the motion of the body.

2. Integrate these equations in order to obtain differential
equations of the first order.

3. Apply separation of variables to these equations in order to
construct the solution.

4. Determine the cases where the described curve becomes
algebraic.

Eventually, he was able to deduce an equation with two
elliptic integrals with separated variables, and recognized
the advantage of introducing the sum and difference of the
distances v, u of the centers A, B from Z as new variables. If
Z moves in a plane where A, B are to be found, the curve is an
ellipse or a hyperbola. Dropping this condition Euler discussed
the case where the curve lies on a hyperbolic conoid or on an
elliptic spheroid.

He elaborated the first paper’! in 1759, in my opinion
presumably because he was stimulated by Clairaut’s paper
published exactly in this year.?? Therein Clairaut abandoned the
plan of finding the complete solution of the three-body problem
in favour of approximative solutions:

Now integrate who will be able to do it! I have found the six equations which
I have just found since the first times that I have considered the three-body
problem. But I made only few efforts to solve them because they always seemed
to me to be hardly manageable.

In 1762, Euler, too, was inclined to set aside exact integrals
and worked out an iteration method based on series expansions
praising its simplicity, practicality, and generality.>3

On the 9th of November of the same year, Euler wrote to
Lagrange about his relative researches on the subject:

I am utmost delighted, Sir, that my investigations on the motion of a body
attracted by two fixed centers of force have deserved your attention. But you

have only seen what has been inserted into the Memoirs of Berlin and what

31 Euler, 1764a.

32 Clairaut, 1759: p. 566. (“Inteégre maintenant qui pourra ! J’ai trouvé les six
équations que je viens de trouver des les premiers temps que j’ai envisagé le
probléeme des trois corps, mais je n’ai jamais fait que peu d’efforts pour les
résoudre, parce qu’elles m’ont toujours paru peu traitables.”)

33 Euler, 1763a.

Fig. 5. The configuration of the problem of two gravitational centers as dealt
with by Lagrange in Lagrange, 1766—1769a: p. 73.

mainly regards the algebraic curves included in my solution. Yet, I have written
still two other memoirs on that subject. One of them is to be found in the 10th

volume of our Commentaries and the other in the 11th volume.

Only in 1767 did Lagrange come back to this problem, when
all three Eulerian papers had already been printed.>* In his own
paper>> Lagrange at once considered the generalized case dealt
with in Euler’s third paper and used v 4 u, v — u as variables
(cf. Fig. 5). Apparently in order to avoid unpleasant suspicions,
he claimed that he had written his paper before he knew Euler’s
third paper. The reader will be able to judge whose method was
more direct or simpler.3°

5.2. The collinear configuration

The three bodies A, B, C with masses a, b, ¢ remain on a
straight line that turns uniformly around itself.

Euler investigated this collinear case in four papers.’’ It
presents the first particular solution of the three-body problem.
Either the two distances between A, B and B, C remain con-
stant. Then they can be determined thanks to the quintic equa-
tion

2

l—2x+x>—mx>=xX3+2u*—x =0 @))]

withm = @ = constant, ¢ mean distance of the ‘moon’ from
the ‘earth’, n:1 ratio of the mean motion of the ‘moon’ to the
mean motion of the ‘sun’, d mean distance between ‘sun’ and
‘earth’.

Or the ratio n of the distances p, g between the three
bodies remains constant. On the understanding that an arbitrary
angular velocity is given, the mutual distances are periodical
functions of time and can be determined thanks to the quintic

34 Euler to Lagrange, November 9, 1762, in Euler, Opera omnia, ser. 4A,
5, p- 450 (“Je suis extrémement ravi, Monsieur, que mes recherches sur le
mouvement d’un corps attiré a deux centres de forces fixes aient mérité votre
attention; mais vous n’en avez vu que ce qui a été inséré dans les Mémoires de
Berlin et qui regarde principalement les courbes algébriques que ma solution
renferme. Or j’en ai composé encore deux autres mémoires, dont 1’un se trouve
dans le Xe Volume de nos Commentaires et 1’autre dans le XIe.”); Lagrange to
Euler, October 29, 1767, in Euler, Opera omnia, ser. 4A, 5, p. 460.

35 Lagrange, 1766-1769a, 1766-1769b.
36 Lagrange, 1766-1769a: p. 94.
37 Euler, 1764b, 1765b, 1763b, 1785.
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equation
(a+ b)n® + Ba + 2b)n* + 3a + b)n®
—(b+3cm2—2b+3c)n—b—c=0. 2)

Euler derived Eq. (1) in his first paper, Eq. (2) in all three
subsequent papers.

When in 1771 Lagrange submitted his famous prize ‘Essay
on the three-body problem’,*® he did not employ a new method
(as he claimed), using only the distances between the three
bodies in order to determine the orbits. He applied Euler’s
method to a more general case than Euler had considered.

He investigated the two cases that the distances remain
constant or that they maintain a constant ratio. Both conditions
can only be fulfilled again in two cases: the bodies move
along the same straight line (collinear case) or they form an
equilateral triangle (triangular solution). No wonder that he
derived again Euler’s quintic equation for a constant ratio in
the collinear case.

Nowadays we know that the triangular configuration is
approximately realized in the solar system by the sun, Jupiter,
and the Trojan group of the asteroids Achilles, Patrocles,
Hector, and Nestor.

One might say that Euler paved the way, Lagrange gathered
the fruits. The three-body problem demonstrates how he
initiated new inquiries. Other fields of knowledge could
demonstrate how he invented new methods (Zeta-function),
defended new ideas (divergent series), developed new theories
(theory of music). In his eyes mathematical problems were
solvable. If necessary they have to be formulated in such a way
that they become solvable. Or to put it as Eduard Fueter in 1941:
“For where mathematical reason did not suffice, for Euler began
the kingdom of God.”*

6. Conclusion

Fueter’s affirmation is especially true, too, of Euler’s
epochal contributions to hydromechanics that were compre-
hensively described by Truesdell in 1954.4° In 1983, Gleb
Mikhailov*! analysed the complicated relationship between
Daniel Bernoulli’s, John Bernoulli’s, and Euler’s achievements
in this respect. Euler praised John Bernoulli’s Hydraulica
printed in 1742 (it appeared only in 1743) because therein
Bernoulli had calculated the force acting on an infinitesimal el-
ement. This essential idea helped Euler to create his general
theory of fluids. Euler completed and perfected classical hy-
dromechanics. His Scientia navalis begins with the fundamen-
tal lemma that the pressure which the water exerts upon a sub-
merged body in its several points is normal to the surface of
the body. A long series of papers followed wherein Euler rein-
troduced internal pressure as a means to derive the motion of

38 Lagrange, 1772.
39 Fellmann, 2007: p. 172.
40 Tryesdell, 1954.
41 Mikhailov, 1983.

fluid elements. This series culminated in the three French writ-
ten treatises forming the core of Euler’s general theory of fluids.
They appeared in 1757. The second treatise Principes généraux
du mouvement des fluides (General principles of the motion of
fluids)*? first introduced the famous Euler equations of fluid
motion. The 250th anniversary of its publication gave rise to
the conference that took place in Aussois. The history of this
development is thoroughly analysed and reconstructed by Dar-
rigol and Frisch.*3
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results of numerical experiments that have been attempted. A different line of endeavour focuses on work concerning the pressure Hessian and how
it may be used and modelled. The Euler equations are finally discussed in terms of their membership of a class of general Lagrangian evolution

equations. Using Hamilton’s quaternions, these are reformulated in an elegant manner to describe the motion and rotation of fluid particles.
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1. Introduction

The Apocryphal book Ecclesiasticus says [1]

Let us now praise famous men, and our fathers that begat us.
... All these were honoured in their generations, and were the
glory of their times . ..

and goes on to conclude in the same passage

There be of them that have left a name behind them, that their
praises might be reported.

Leonhard Euler was certainly honoured in his own generation
and has left a name behind him in manifold and diverse ways.
Not only has his star shone ever more brightly, but the equations
of inviscid fluid dynamics that bear his name have also stood the
test of a quarter of a millennium of investigation and still stand
proudly today as a challenge to the mathematical, physical and
engineering sciences [2]. The incompressible Euler equations
have a deceptively innocent simplicity about them; indeed their
siren song has tempted many young scientists, somewhat like
Ulysses, towards the twin rocks called Frustration and Despair.
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After a career spent in puzzlement, the sadder but wiser
researcher is forced to admit how subtle and difficult they are.

They can be expressed as a set of partial differential
equations relating the velocity vector field u(x,t) to the
pressure p(x, t)

Du_ g, (1)
D¢

b_3 +u-v, 2)
D¢ at

where divae = 0 is an incompressibility condition. Applying
this condition to (1) and (2) forces the pressure to satisfy an
elliptic equation —Ap = u; ju;; that involves products of
velocity gradients. This can also be re-expressed in terms of
the strain matrix S;; = %(u,',j +uj;)

1
—Ap = uijuj; =Tr (8?) - S 3)

The vorticity @ = curl u obeys the Euler equations in their
vorticity form


http://dx.doi.org/10.1016/j.physd.2007.10.014
http://www.elsevier.com/locate/physd
mailto:j.d.gibbon@ic.ac.uk

J.D. Gibbon / Physica D 237 (2008) 1894—1904 1895

On a domain {2, the energy [, lu|2dV, the circulation Jou-dr
and the helicity f oU - @dV are all conserved; for historical
observations on these quantities see [3].

Given the large volume of work on the two- and three-
dimensional Euler equations, it would be vacuous to attempt
to cover every aspect, but there are certain significant areas |
wish to mention before moving on to other material in more
detail. It is appropriate at this point to pay tribute to Viktor
Yudovich who died in the Spring of 2006 and whose work
on establishing weak solutions in the two-dimensional case
made him one of the fathers of modern Euler analysis [4].
Unfortunately these solutions have no such counterpart in the
three-dimensional case for arbitrary initial data in L?, which
would be the analogue of Leray solutions [5]. Their absence
creates difficulties for the mathematician who wishes to make
each step rigorous. In these terms, standard manipulations of
the three-dimensional Euler equations have to be undertaken
in a formal way. Along-side this, but closer in spirit to two-
dimensional Euler analysis, is a sizable literature on weak and
distributional formulations of vortex sheets and the numerical
methods needed to describe their roll-up. These areas have their
own specialist literature which can be found in the book by
Majda and Bertozzi [6].

A particular area deserving of special mention is what is now
referred to as “topological fluid dynamics”. Inspired by ideas
based on the conservation of helicity [7-9], Moffatt [10] studied
the Euler equations and those of ideal magneto-hydrodynamics
through the respective tangling and knotting of vortex lines
and of magnetic field lines. Together with the book by Arnold
and Khesin [11], which takes a more general mathematical
approach, the distillation of almost 40 years of literature in
references [10,12—15] should be read by every graduate student
wishing to study this area.

2. The difference between the three- and two-dimensional
cases

2.1. Vortex stretching

Let us formally consider the vortex stretching term @ - Vu
in (4) in more detail for the three-dimensional case. Splitting
the velocity gradient matrix Vu = {u; ;} into its symmetric and
anti-symmetric parts gives

1
(Vu)h = Sh + zw x h, ®))

where h is an arbitrary 3-vector. It is then easy to see thatif h =
 then the anti-symmetric part plays no role and (4) becomes

Do
Dt
At first glance this appears to be a deceptively simple eigen-
value problem, except the three eigenvalues {A1, Ay, A3} of S

are functions of space-time and are subject to the divergence-
free constraint A1 4+A+A3 = 0. Rapid changes of size and sign

Sw. (6)

in X;, subject to this constraint, could violently stretch or com-
press the vorticity field in various directions, thereby produc-
ing the fine-scale vortical structures that are so familiar in the
graphical output of three-dimensional numerical computations.

In two dimensions, however, @ is perpendicular to the plane
in which the gradient lies, and so the vortex stretching term
® - Vu = 0. This observation illustrates the fact that the
absence or presence of the vortex stretching term makes a
huge difference to the vortical behaviour and suggests that the
two and three-dimensional cases are fundamentally different
equations with significantly different properties.

As its title suggests, this paper concentrates mainly on
the three-dimensional case, but some short remarks on the
two-dimensional and two-and-a-half-dimensional cases are
nevertheless in order.

2.2. The two-dimensional Euler equations

Because @ - Vu = 0 in two-dimensions, (4) becomes

Deo
Dt
and thus w is a constant of the motion. One difficult and subtle
problem is the evolution of a two-dimensional patch of vorticity
with an initially smooth closed boundary, inside which @ =
const. Whether the boundary of the patch remains smooth if it
starts smooth, or whether it develops a cusp in a finite time, was
once a long-standing open question until Chemin [16] proved
that if an initial boundary Iy is smooth (C” for » > 1) then [;
must remain smooth. The bounds are parameterized by a double
exponential in time so it is possible that numerical computations
might suggest the development of a cusp even though the proof
rules one out. An alternative proof using methods of harmonic
analysis by Bertozzi and Constantin [17] can also be seen in [6].

=0, )

2.3. The two-and-a-half-dimensional Euler equations

The class of solutions of the three-dimensional Euler
equations that take the form

Usp(x,y,z,t) ={ulx, y, 1), zy(x,y, )} 8

are usually referred to as being of “two-and-a-half-dimensional
type” because the predominant two-dimensional part in the
cross-section is stretched linearly into a third dimension. This
class of solutions generalizes those investigated some years
ago by Stuart [18] who found a class of solutions in which
two independent spatial variables were taken to be linear. The
resulting partial differential equation has solutions that develop
a singularity in a finite time. Eq. (8) suggests that an appropriate
domain should be infinite in z with a circular periodic cross-
section A of radius L. The two-dimensional velocity field
u(x,y,t)in Eq. (8) satisfies

Du v ©)
pr 7

while divu = —y. The fact that divu # 0 means thatu(x, y, t)
does not fully satisfy the two-dimensional Euler equations and
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that fluid particles in any one cross-section are allowed to move
through any other. y (x, y, t) itself satisfies
Dy, -

+y =

2

While the above formulation can be found in Ohkitani and
Gibbon [19], it turns out a time-independent form of these
equations was written down long ago by Oseen in an appendix
to a double paper [20]. He took the idea no further, however.
Ohkitani and Gibbon [19] showed numerically y — —oo in a
finite time. Later, using Lagrangian arguments, Constantin [21]
proved analytically that y — =o00. In other words, the blow-
up is two-sided and occurs in different parts of the cross-
section 4. An important point to note is that this blow-up
does not represent a true singularity in the fluid, for this
would need infinite energy to draw particles from infinity.
More realistically, it suggests the full system will not sustain
a solution of the form of (8) beyond the singular time. Before
this singular time, the solution physically represents a class of
stretched Burgers vortices: when y — +oo the vortex is tube-
like but when y — —oo the vortex is ring-like [19]. This
orthogonal pair of vortices, locked non-linearly together, has
only a finite lifetime and is destroyed by the two-sided blow-up.
Moreover, the finite lifetime of these vortices is consistent with
experimental observations in turbulent flows where, among the
collective set, individual tubes squirm around and then vanish
after a short period [22-24]. A class of analytical singular
solutions of a special case of (8)—(10) has been found using
the method of characteristics [25].

3. The three-dimensional Euler singularity problem

One of the great open questions in mathematical fluid dy-
namics today is whether the incompressible three-dimensional
Euler equations develop a singularity in the vorticity field in a
finite time. Opinion is largely divided on the matter with strong
positions taken on each side. That the vorticity accumulates
rapidly from a variety of initial conditions is not under dispute,
but whether the accumulation is sufficiently rapid to manifest
singular behaviour or whether the growth is merely exponen-
tial, or double-exponential, has not been answered definitively.
The interest in singularities comes from many directions. Phys-
ically their formation may signify the onset of turbulence and
may be a mechanism for energy transfer to small scales: see the
companion article in this issue by Eyink [26]. Numerically they
require very special methods and are thus a challenge to com-
putational fluid dynamics. Finally, the question is of interest to
mathematicians because of the question of global existence of
solutions. This section reviews some of the theoretical and com-
putational work of the last 25 years.

3.1. The Beale—Kato—Majda Theorem

Work on the existence of solutions culminated in what
is known as the Beale-Kato—-Majda Theorem [27]. It was
originally proved on an infinite domain with solutions decaying
sufficiently rapidly at infinity but the domain {2 could easily be

taken to be periodic instead. We refer the reader to the recent
review by Bardos and Titi [28]. There are various ways of
stating the result but the following form will be used:

Theorem 1. There exists a global solution of the 3D Euler
equations u € C([0, oo]; H*) N C([0, oo]; H*™1) for s = 3 if,
forevery T >0

T
/0 loC, D)l Lo dr < oo. (11)

Ferrari [29] has also proved a version of this result on boundary
conditions where u - i = 0. Kozono and Taniuchi [30] have
more recently proved a version of this theorem in the BMO-
norm (bounded mean oscillations) which is weaker than the
L -norm. For literature on variations of the BKM theorem see
Ponce [31] and Chae [32-35].

There are several other points to note about this important
result which settled several outstanding questions. First it says
that only one object, the maximum norm, needs to be monitored
in a numerical calculation. Second, this object is different
from the point-wise enstrophy |||l 2. Having the latter
bounded guarantees the regularity of the three-dimensional
Navier—Stokes equations but this is not enough for Euler; it
is theoretically possible that ||@|[[;2(g;) could remain finite but
l@ll Lo (g2 blow up.

Third, the result also says something subtle about the nature
of singular behaviour in numerical experiments. For instance,
say that a numerical integration of the three-dimensional Euler
equations produces data that suggests that the maximum norm
grows like (8 > 0)

(-, )l ooy ~ (T —1)7F. (12)

The theorem says that the solution remains regular, including
l@ll Lo () itself, if the time integral in (11) is finite. If the
observed value of 8 lies in the range 0 < 8 < 1, however, the
time integral of (12) is finite and thus the theorem contradicts
the numerical result. The observed singularity is likely to be an
artefact of the numerics. The theorem contains no information
on whether a singularity occurs but it does say that 8 must
satisfy 8 > 1 for the singularity to be genuine.

3.2. Numerical search for singularities

There have been many numerical experiments over the last
quarter of a century that have attempted to determine, from
specific initial data, whether the vorticity field in the three-
dimensional Euler equations develops a singularity in a finite
time. At this stage I would like to pay tribute to Richard
Pelz (1957-2002), who was a much-valued and gentlemanly
member of our community. His interests lay in the potential
development of Euler singularities under Kida’s high-symmetry
conditions [36]. His work and that with his collaborators is
referenced in the list below. Shigeo Kida has also edited a
volume in his memory [37]. The list is a revised and up-
dated version of one originally compiled by Rainer Grauer
of Bochum. The “yes/no” in each item refers to whether the
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authors detected the development of a singularity from their
initial data. Except for item 2 all calculations refer to the 3D
Euler equations.

1. Morf, Orszag and Frisch [38—40]: complex time singular-
ities of the 3D Euler equations were studied using Padé-
approximants. Singularity; yes.

2. Pauls, Matsumoto, Frisch and Bec [41]: this paper is a
recent study of complex singularities of the 2D Euler
equations and contains a good list of references for the
student.

3. Chorin [42]: Vortex—method. Singularity; yes.

4. Brachet, Meiron, Nickel, Orszag and Frisch [43]:
Taylor—Green calculation. Singularity; no.

5. Siggia [44]: Vortex—filament method; became anti—parallel.
Singularity; yes.

6. Pumir and Siggia [45]: results from their adaptive
grid method showed a tendency to develop quasi-two-
dimensional structures with exponential growth of vorticity.
Singularity; no.

7. Bell and Marcus [46]: the evolution of a perturbed vortex
tube was studied using a projection method with 128> mesh
points; amplification of vorticity by 6. Singularity; yes.

8. Brachet, Meneguzzi, Vincent, Politano and Sulem [47]:
pseudospectral code, Taylor-Green vortex, with a resolu-
tion of 8643. They achieved an amplification of vorticity by
5. Singularity; no.

9. Kerr [48,49]: Chebyshev polynomials with anti—parallel
initial conditions; resolution 512 x 256. Amplification of
vorticity by 18. Observed vorticity growth [|@|ze0) ~
(T — )~ L. Singularity; yes.

10. Between 1994-2001 Boratav and Pelz [50,51], Pelz and
Gulak [53] and Pelz [52,54] performed a series of
10243 grid-point simulations under Kida’s high-symmetry
condition. Singularity; yes.

The recent memorial issue for Pelz [37] contains:
(a) Cichowlas and Brachet [55]: Singularity; no.
(b) Gulak and Pelz [56]: Singularity; yes.
(c) Pelz and Ohkitani [57]: Singularity; no.

11. Grauer, Marliani and Germaschewski [58]: using an
adaptive mesh refinement of the Bell and Marcus initial
condition [46] with 20483 mesh points, they achieved an
amplification factor of vorticity of 21. Singularity; yes.

12. Hou and Li [59]: A 1536 x 1024 x 3072 pseudo-spectral
calculation agreed with Kerr [48] until the final stage and
then the growth slowed; the vorticity grew no faster than
double-exponential in time. Singularity; no.

13. Germaschewski and Grauer (2001, unpublished): revisited
the Boratav-Pelz simulations but observed strong vortex
flattening that halted singular growth. This is consistent
with the results of Hou and Li [59]. Singularity; no.

14. Orlandi and Carnevale [60]: using Lamb dipoles as
initial conditions, they performed a 1024> finite difference
calculation with two symmetry planes. They found a period
of rapid growth of vorticity consistent with ||@||z00) ~
(T —t)~': Singularity; yes.

The interested reader may wish to consult the other articles in
this volume written by Hou [61], Bustamente and Kerr [62] and
Grauer [63] which contain more references on this topic.

3.3. Results on the direction of vorticity

The yes/no aspect of the results in Section 3.2 is deceptive
because the list may have hidden the fact that while a result may
have been “no” the vorticity growth may nevertheless have been
very strong. It is easy to overlook the directional mechanisms
that induce strong early growth even if that growth slows during
the final stage. Thus it is important to consider the direction of
vorticity growth in its own right [64]. The reader is referred to
the companion article in this volume by Constantin [65].

The pioneering paper by Constantin, Fefferman and
Majda [66] contains a discussion on the idea of how vortex lines
may be considered to be “smoothly directed” in a region of their
greatest curvature. A digest of their results is the following:
consider the three-dimensional Euler equations with smooth
localized initial data and assume the solution is smooth on
0 < t < T. The velocity field defines particle trajectories
X(x0, t) that satisfy
DX X 13
o = ulX, 1, (13)
where X(xg, 0) = xo. The image W, of a set Wy is given by
W; = X(Wy, t). Then the set W) is said to be smoothly directed
if there exists a length p > O andaball0 < r < % p such that
the following conditions are satisfied: (i) @(-, t) has a Lipschitz
extension to the ball By, of radius 4p centred at X (xo, 1); (i1) if
the velocity is finite in a ball By,; (iii) if

t
Tim, S;ffo IVOC, D)7 (s,,)dT < 00 (14)
One needs a chosen neighbourhood that captures large and
growing vorticity which does not overlap with another similar
region. Under these circumstances, there can be no singularity
at time 7. Cordoba and Fefferman [67] have weakened
condition (ii) in the case of vortex tubes to

T
/0 (-, $)llLoo(2yds < o0. 5)

A result a decade later by Deng, Hou and Yu [68,69] follows in
the same spirit; they take the arc length L(z) of a vortex line L;
with 72 the unit normal and « the curvature. Let0 < B < 1 — A,
and C( be a positive constant with M (¢) defined as

M(t) = max (|V - &l lIkllzer,)) - (16)

They prove that there will be no blow-up at time T if

Up() + Uz (1) S (T — )74, (17)
M(t)L(t) < Co, (18)
L(1t) > (T —n?. (19)

U,;(t) is the maximum value of the tangential velocity of the
difference between any two points x and y on the vortex
line length L,; likewise for Uy (f) with respect to the normal
velocity.
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4. The pressure Hessian
4.1. Ertel’s Theorem and its consequences

The traditional view in fluid mechanics has taken the
velocity vector field u# as the dominant variable with the
pressure p considered as an auxiliary. Given that there exists
no evolution equation for p, which must be determined
from the elliptic equation (3), there is much to be said for
this philosophy. Following Leray, this is normally put into
practice in Navier—Stokes and Euler analysis by projection onto
divergence-free vector fields, thus covertly hiding the pressure.
An alternative route is to avoid this projection process and
make a virtue of openly keeping the pressure in the calculation.
The key to this route is to use what is generally called Ertel’s
theorem, which is stated as the following formal result [71]:

Theorem 2. If @ satisfies the three-dimensional incompress-
ible Euler equations then any arbitrary differentiable |1 satisfies
Du

D
5 @ Vi) =w~V(E>. (20)

The proof is a simple exercise: consider @ - Viu = w;

D Dw; Du
E(wi,u,i) = Dy i + w; Dr ) T Ukiltk

1
s

Du
®i |\ o \ +A{wjuijni — oiugin i

The last term is zero under summation. Another way of
expressing this result is that D/D¢ and ® - V commute

D Vi=0 21
oo ] = e

In Lie-derivative form this means that @ - V(¢) = @ - V(0) is a
Lagrangian invariant and is “frozen in”.

In geophysical fluid dynamics, if u is chosen as the density
p in a Boussinesq fluid then

b _g
Dt
implies that @ - Vp (potential vorticity) is a constant of the
motion [70]. Credit is normally given to Ertel [71] although the
general result has been known for much longer [72-74]. Both
Klainerman [75] and Ohkitani [76,77] used Theorem 2 in the
following way. The choice of u© = u; gives a relation for the
vortex stretching vector

Du
w-V <—> = —Pow, (23)
Dt

(22)

D(w-Vu)
Dt n

where P is the Hessian matrix of the pressure

82
p:{p,,-j}z{ P } 24)

axiax j
This result illustrates the relative merits or demerits of
cancelling non-linearity of O (|®| |Vu|?) while being forced to
include the Hessian of the pressure.

4.2. Restricted Euler equations: Modelling the pressure
Hessian

The results of the previous subsection have shown that if the
pressure field is to remain in the calculation then it is important
to understand its Hessian matrix. Because there are numerical
difficulties in accurately computing this matrix there have been
a variety of attempts at modelling it. In effect, this produces
restricted versions of the Euler equations. Consider the gradient
matrix M;; = u; ;j which satisfies the matrix Riccati equation

DM M2y P =0 (25)
Dt 7
Tr P = —Tr (M?), (26)

where Eq. (26) has its origins in the divergence-free condition
TrM = 0 and is an economical way of writing Ap =
—u; juji. Several attempts have been made to model
the Lagrangian-averaged pressure Hessian by introducing a
constitutive closure — see [78] for a summary. The idea
goes back to Léorat [79], Vieillefosse [80], Novikov [81] and
Cantwell [82]. The Eulerian pressure Hessian P is generally
assumed to be isotropic

P = —%ITr (M%), Trl =3, (27)
which results in the “restricted Euler equations”. There is a
also a variety of literature on modelling the velocity gradient
matrix [83—-86]. The elliptic pressure constraint given in (3),
re-expressed as —Tr P = Tr (S%) — %a)2, is concerned solely
with the diagonal elements of P, whereas in computations its
off-diagonal elements turn out to be important.

An different attempt at modelling the effect of the Hessian
has been made by Constantin who derived the “distorted Euler
equations” [87]. The Euler equations for the gradient composed
with the Lagrangian path map @ — X(a,t), N = M o X are
rewritten in Lagrangian form as

aN

T N? + Q(x, )Tr(N?) = 0, (28)
3

Qij =RiRjoX,  Ri=(-M)7""2—, (29)
Xi

where R; is the Riesz transform and X represents the
Lagrangian path-map a — X(a, t). The distorted equations
arise through replacing Q;;(¢) with Q;;(0), solutions of
which have been proved to blow up [87]. Other models of
interest include the tetrad model of Chertkov, Pumir and
Shraiman [88] which has recently been developed by Chevillard
and Meneveau [89]. More ideas regarding the modelling of
the pressure Hessian through a transformation from Eulerian
to Lagrangian coordinates using a Lagrangian flow map have
recently been discussed in [78].

5. A formulation in quaternions

The material of Section 3.3 has been devoted to the issue of
the directional growth of vorticity. Ultimately, the mechanisms
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that guide this growth will determine whether the Euler
equations develop a finite-time singularity and so alternative
ways of formulating this problem may be of value. It turns out
that Hamilton’s quaternions are useful not only for this purpose
but are also ideal for understanding how fluid particles rotate
within their trajectories. Before moving on to more technical
aspects of quaternions some motivation is in order to explain
why their introduction into Euler analysis is natural.

Firstly, based on the unit vector of vorticity @, let us define
the respective scalar and 3-vector variables designated as « and

X

o=® Sk, X =® % S®. (30)

These respectively represent the rates of growth and swing
of the vorticity. Then the vortex stretching vector S can be
decomposed into components parallel and perpendicular to @

Sw=0w+ X X w, 31D
from which it is trivial to show that @ = |w| and @ satisfy

Dw D&
— = ao, -
Dt Dt
It is clear that in the evolution of a(x,t) and x(x,?) lies
the key to the growth and direction of vorticity. Given that
o and x, by definition, contain Sw, it is also clear from
(23) that material differentiation of them will introduce the
pressure Hessian P into the problem and thus the advantages
and disadvantages discussed in Section 4 regarding its use come
into play. Combining « and x into a 4-vector quaternion is
an obvious first step; thereafter we wish to exploit the elegant
algebraic properties that quaternions possess.

The second area where quaternions have an application lies
in the recent experimental advances that have made in the
detection of the trajectories of tracer and other particles in
fluid flows [90-99]. The curvature of their paths can be used
to extract statistical information about velocity gradients from
a single trajectory. Fluid particles not only take complicated
trajectories but they also rotate in motion. Recent work has
shown that Hamilton’s quaternions are applicable to this type
of problem [78,100-103]. In his lifetime Hamilton’s ideas did
not meet with the approval of his contemporaries [104—106]
but in the context of modern-day problems the crucial property
that quaternions possess — that they represent a composition
of rotations — has made them the technical foundation of
modern inertial guidance systems in the aerospace industry
where tracking the paths and the orientation of satellites and
aircraft is critical [107]. The graphics community also uses
them to control the orientation of tumbling objects in computer
animations [108] because they avoid the difficulties incurred
at the poles when Euler angles are used [108-110]. When
quaternions are applicable to a problem it is usually evidence
that geometrical structures are dominant. This aspect of the
Euler equations has been long been debated [64,103,111-114].
Given the available equations for the evolution of the vorticity
, the strain matrix S, and the Hessian matrix P, a pertinent
question to ask is whether this is enough information to make a
satisfactory formulation of this problem.

=X X Q. (32)

In the first of future subsections a general class of
Lagrangian evolution equations will be considered of which
Euler is the most important member. Then the properties of
quaternions and their association with rigid body dynamics is
summarized in Section 5.2 and applied in Section 5.3 to the
description the flight and rotation of fluid particles. In this it will
be seen how the pressure Hessian is the key factor in driving
the system. Sections 5.4 and 5.5 are devoted to some of the
properties of the Euler equations themselves.

5.1. A class of Lagrangian evolution equations

Suppose w is a contravariant vector quantity attached to
a particle following a flow along the characteristic paths
dx/dt = u of a velocity field u(x, t). Now consider the formal
Lagrangian flow equation [78]
2 aw.n) (33)
— =a(x,1),
Dt
where the material derivative is given by (2). Let us also
suppose that a itself is formally differentiable
2 b (34)
- =0, 1),
Dt
where b(x, t) is known. Together (2), (33) and (34) define a
quartet of 3-vectors

{u,w,a,b}. (35)

For a passive particle, # and w are independent vectors but for
the three-dimensional Euler equations # and w = w are tied by
the fact that @ = curl u. The quartet in (35) is now

{u7 w, ayb} = {u’ w, Sw, _Pw}’ (36)

where P is the pressure Hessian discussed in Section 4. This
is not the whole story because the divergence-free condition
means that P, S and w are not independent of each other
because of the elliptic pressure constraint

TP =Tr (32) _ %a)z. (37)

Another example that could be cast into this format are the
equations of ideal MHD in Elsasser form (see [78,100,101]
although the existence of two material derivatives requires some
generalization.

In Section 5.3 it will be shown how the quartet in (35), based
upon the pair of Lagrangian evolution equations (33) and (34),
can determine the evolution of an ortho-normal frame for a fluid
particle in a trajectory. In graphics problems the usual practice
is to consider the Frenet-frame of a trajectory. This consists
of the unit tangent vector, a normal and a bi-normal [108].
In navigational language, this represents the corkscrew-like
pitch, yaw and roll of the motion. In turn, the tangent vector
and normals are related to the curvature and torsion. While
the Frenet-frame describes the path, it ignores the dynamics
that generates the motion. Here we will discuss another ortho-
normal frame associated with the motion of each Lagrangian
fluid particle, designated the quaternion-frame. This may be



1900 J.D. Gibbon / Physica D 237 (2008) 1894—1904

envisaged as moving with the Lagrangian particles, but their
evolution derives from the Eulerian equations of motion.

5.2. Quaternions and rigid body dynamics

Rotations in rigid body mechanics have given rise to a
rich and longstanding literature in which Whittaker’s book is
a classic example [110]. This gives explicit formulae relating
the Euler angles to the Euler parameters and Cayley—Klein
parameters of a rotation. Quaternions are not only much more
efficient but they also circumvent the messy inter-relations that
are unavoidable when Euler angle formulae are involved [105,
110].

In terms of any scalar p and any 3-vector ¢, the quaternion
q = [p, q] is defined as

3
a=1[p.q1=pl =) gioi, (38)
i=1

in which Gothic fonts denote quaternions (see [78,100]). The
three Pauli spin matrices o; are defined by

=) me(00) el D) @

and [ is the 2 x 2 unit matrix. The relations between the Pauli
matrices 0;0; = —&;;1 — €;;0) then give a non-commutative
multiplication rule

g ®q =[p1p2—q1-92, p192 + p2g1 + q1 X q2]. (40)

It is not difficult to demonstrate that they are associative.

Let p = [p,q] be a unit quaternion with inverse p* =
[p, —q]: this requires p ® p* = [p? + ¢%,0] = [1,0]. For a
pure quaternion v = [0, r] there exists a transformation

t=[0,r] = R =[0,R] 41)

that can explicitly be written as

R=p@r®p* =0, (p* — q)r+2p(g xr) +24(r - q).
(42)

Choosing p and ¢ such that § = 3[cos %9, A sin %9], where n
is the unit normal to r, we find that
R=p®tr®p* =[0,rcosd + (7 x r)sind]

= 00, )r. (43)
Eq. (43) is the Euler—Rodrigues formula for the rotation
0(H, i) by an angle 0 of the 3-vector r about its normal 72 and
(0, i) are called the Euler parameters. The elements of the unit
quaternion p are the Cayley—Klein parameters which are related
to the Euler angles [110], and form a representation of the Lie

group SU(2). When § is time-dependent, the Euler—Rodrigues
formula in (43) can be rewritten as

t=p"®RO)@p (44)

and thus the time derivative R is given by

(1) = (h @ P ®R — ((F ® p*) ® W)™, (45)

where we have used the fact that R* = —9. Because p = [p, q]
is of unit length, and thus pp + gg = 0, this means that
p®p* =10, %Qo(t)] which is also a pure quaternion. The
3-vector entry in this defines the angular frequency £2¢(¢) as
20 = 2(—pq + qp — q x q) thereby giving the well-known
formula for the rotation of a rigid body

R =00 xR. (46)

For a Lagrangian particle, the equivalent of 2 is the Darboux
vector D, in Theorem 3 of Section 5.3.

5.3. An ortho-normal frame and particle trajectories

Having set the scene in Section 5.2 by describing some of
the essential properties of quaternions, it is now time to apply
them to the Lagrangian relation (33) between the two vectors
w and a. Through the multiplication rule in (40) quaternions
appear in the decomposition of the 3-vector a into parts parallel
and perpendicular to w, which is expressed as

a=aaw+Xa XW= [aaa Xa]®[05 w] (47)

The scalar o, and 3-vector x, in (47) are defined as

a=w'W-a), x,=w b xa). (48)

It is now easily seen that «, is the growth rate of the scalar
magnitude (w = |w|) which obeys

Dr = %W (49)

while x,, the swing rate of the unit tangent vector w = ww L,
satisfies

Dw
Dt

Now define the two quaternions

=X, X W. (50)

qa = [Olas Xa]v m = [07 w]’ (51)

where tv is a pure quaternion. Then (33) can automatically be
rewritten equivalently in the quaternion form

Dto
— = 10. 52
Dr Y ® (52)

Moreover, if a is differentiable in the Lagrangian sense so that
its material derivative is b, as in (34) then another quaternion ¢,
can be defined, based on the variables

ap=wW-b),  xy=w '0hxb), (53)
where
qp = [ap, Xp]. (54)

Clearly there exists a similar decomposition for b as that for a
as in (47)

D2ro
Bz = (081 =10, 0w + xp x W] = 9 @ 1v. (55)
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Using the associativity property, compatibility of (55) and
(52) implies that (w = |w| # 0)

D
(qu+qa®qa—qb)®m=o, (56)

which establishes a Riccati relation between q, and g

Dqq
Dt

whose components yield

+ qa ® qa = qp, (57)

D
10 Xl + [0 — x2, 20X 4] = [o, xp]- (58)

These lead to a general theorem on the nature of the
dynamics of the ortho-normal frame (see Fig. 1):

Theorem 3 (/78,100]). The ortho-normal quaternion-frame
W, XaoW X Xoz) € SOQ3) has Lagrangian time derivatives
expressed as (w # 0)

Dw N
E =LUg XWw, (59)
DOW x X,) N .

Dr =Dy x (WX Xy, (60)
Dx .
Dta =D, X ¥, 61)

The Darboux angular velocity vector D, is defined as

Ch A ~ ~
D,=x,+ X—w, cob=W-Xa X Xp)- (62)

a

Remark 1. The proof of Theorem 3 is simple and can be found
in [78,100]. The Darboux vector D, sits in a two-dimensional
plane and is driven by the vector b which itself sits in ¢, in (62).
The analogy with rigid body rotation expressed in (46) is clear.

Remark 2. This theorem is much more general than might be
initially apparent. It provides an elegant and simple means of
constructing the dynamic equations for an ortho-normal frame
for any system driven by a field . An example of this is
the construction of a frame for the Kepler system which is
illustrated in [114].

5.4. Relation to the Euler equations

For the three-dimensional Euler equations themselves the
scalar and vector variables «, x have already been defined in
(30) as the scalar and vector products between @ and Sw. The
variables «p, x , corresponding (53) (with a change of sign) are
defined in the same manner [101,102]

ap =0 Po, xpzé)xPé), (63)

which avoids the null points that arise in the definition in (48)
and (53). The definitions of o, ap, X, Xp were first written
down in [103]. In fact, « and «), are Rayleigh quotient
estimates for eigenvalues of § and P respectively although they
are only exact eigenvalues when @ aligns with one of their

Fig. 1. Three unit vectors [W, x,w x ] form an ortho-normal coordinate
system on a characteristic curve dx/ds = u. The two curves are drawn at times
t1 and #p: the dotted curve represents the particle trajectory.

Fig. 2. Vortex lines (solid) on which sit an ortho-normal frame @, x, @ x x for
the Euler equations. The two curves are drawn at times #; and #: the dotted
curve represents a fluid particle trajectory.

eigenvectors. Constantin [64] has a Biot—Savart formula for «.
These variables form natural tetrads associated with [0, @]

a=la, x]l,  —a=4a,=[ap x,]- (64)

Thus it is the pressure Hessian P that lies in q, and controls the
particle trajectories through

a4 G ®qta,=0 (65)
D1 q®q+qp =0.

Theorem 3 furnishes us with an equivalent set of equations for
the ortho-normal frame (@, X, @ x ) of a fluid particle through
(62) where

cp=—0- (X X X, (66)

The dynamics of the ortho-normal frame could be seen as
a competition between S and P with the divergence-free
constraint (37) applied.

5.5. The Frenet frame

Modulo a rotation around the unit tangent vector @ of Fig. 2,
with X as the unit bi-normal b and @ x ) as the unit principal
normal 7 to the vortex line, the matrix F can be formed
F=(o"@x0"1"). (67)
and (59)—(61) can be re-written as
DF 0 —X 0

—_ = AF, A=|yx 0 cpx . (68)
Dt -1
0 —cpx 0
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For a space curve parameterized by arc-length s, then the Frenet
equations relating d F'/ds to the curvature x and the torsion 7 of
the vortex line curve are

dF 0 k 0
— = NF, whereN = | —« 0 1. (69)
ds

0 —t O

It is now possible to relate the ¢ and s derivatives of F given in
(68) and (69). At any time ¢ the integral curves of the vorticity
vector field define a space-curve through each point x. The arc-
length derivative is defined by

d
ds
The evolution of the curvature « and torsion T of a vortex line

may be obtained from Ertel’s theorem in (21), expressed as the
commutation of operators

d D] d 71
ds'Dr |~ Yas
Applying this to F and using the relations (68) and (69)
establishes the following consistency relation on the matrices
N and A
DN dA

— —aN = — A, N 72
o @ ds+[ ] (72)

which relates the evolution of the curvature « and the torsion t
to , x and ¢, defined in (30) and (62).

=®-V. (70)

6. Final remarks

It is clear that despite past endeavours there is still a very
long way to go before we can say that there exists a clear
mathematical understanding of the behaviour of solutions of the
incompressible three-dimensional Euler equations. While weak
solutions in the conventional sense of Leray are not known to
exist, certain very special weak solutions have been found, such
as those constructed by Brenier [115] and Shnirelman [116].
These are obtained by relaxing the variational problem and are
not the same as weak solutions of the initial value problem for
the Euler equations themselves.

The existence or non-existence of singularities is still an
open problem. The numerical results of Hou and Li [59], which
have focused anew on Kerr’s numerical calculations performed
fourteen years ago [48], suggest that a new generation of
numerical experiments may be needed to look more carefully
at not only the amplitude but also the direction of vorticity
at high amplitudes. Even with a combination of analysis, as
in [59,66-69], and with potentially much greater computing
power, we may still have to wait some time until this matter is
settled decisively. Much of the literature in modern mechanics
has stressed that the three-dimensional Euler equations have
inherent geometrical properties [11,64,66,111-113]. It is thus
possible that the open problem of the regularity of solutions
may become clearer after using a combination of geometrical
and topological fluid mechanics [10—15] in combination with
analysis and large-scale numerical computations. However,

it is not clear what theorem might emerge from these
considerations. Until then, the singularity problem will remain
as one of the great challenges in modern applied mathematics.

A further area of endeavour has lain in the modelling of
the pressure Hessian and the velocity gradient matrix. The
traditional view in fluid mechanics holds that the pressure
should be treated as an auxiliary variable. The alternative is to
treat the Hessian P on an equal footing with the strain matrix
S. Out of necessity this is certainly the case when quaternions
are used to describe the problem. The elliptic equation for the
pressure

—Ap=-TrP="Tr (52) — %a)z, (73)
is by no means fully understood and locally holds the key to
the formation of vortical structures through the sign of Tr P.
In this relation, which is often thought of as a constraint,
may lie a deeper knowledge of the geometry of both the
Euler and Navier—Stokes equations. In turn, this may lead to
a better understanding of the role of the pressure. Eq. (73)
certainly plays a role in three-dimensional Navier—Stokes
turbulence calculations in which the vortical topology has
the classic signature of what are called “thin sets”, where
the vorticity concentrates into quasi-two-dimensional vortex
sheets which later have a tendency to roll up into quasi-one-
dimensional tubes. These tubes have a complicated topology
and a finite lifetime, vanishing in one location and reappearing
in another [22]. The fact that these thin sets are dynamically
favoured may be explained by inherent geometrical properties
of the Euler equations but little is known about these features.

Let us end with an analogy: if work on the Euler equations,
beginning as a spring of water in the hills 250 years ago, has
now become a mature river in full flow, it is probable that it still
has far to go before it reaches its distant estuary and ocean. Will
the participants at the meeting Euler 500 years on in the year
2257 be able to testify that sufficient progress has been made
that many of the outstanding problems in this area have been
solved?
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Abstract

We present an a-regularization of the Birkhoff-Rott equation, induced by the two-dimensional Euler-o equations, for the vortex sheet
dynamics. We show that an initially smooth self-avoiding vortex sheet remains smooth for all times under the a-regularized dynamics, provided
the initial density of vorticity is an integrable function over the curve with respect to the arc-length measure.
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1. Introduction

One of the novel approaches for subgrid scale modeling
is the o-regularization of the Navier—Stokes equations (NSE).
The inviscid Euler-o model was originally introduced in
the Euler-Poincaré variational framework in [1,2]. In [3—
7] the corresponding Navier—Stokes-o (NS-«) [also known
as the viscous Camassa—Holm equations or the Lagrangian-
averaged Navier—Stokes-a (LANS-«)] model was obtained
by introducing the appropriate viscous term into the Euler-
a equations. The extensive research into the a-models (see,
e.g., [3-24]) stems from the successful comparison of their
steady state solutions to empirical data, for a large range of
huge Reynolds numbers, for turbulent flows in infinite channels
and pipes. On the other hand, the a-models can also be
viewed as numerical regularizations of the original, Euler or
Navier—Stokes, systems. The main practical question arising is
that of the applicability of these regularizations to the correct
predictions of the underlying flow phenomena.

* Corresponding author. Tel.: +972 8 9342761; fax: +972 8 9342945.
E-mail addresses: bardos @ann.jussieu.fr (C. Bardos),
jasmine.tal @weizmann.ac.il (J.S. Linshiz), etiti@math.uci.edu,
edriss.titi@weizmann.ac.il (E.S. Titi).

0167-2789/$ - see front matter (©) 2008 Elsevier B.V. All rights reserved.
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In this paper we present some results concerning the o-
regularization of the two-dimensional (2D) Euler equations
in the context of vortex sheet dynamics. A vortex sheet is a
surface of codimension 1 (a curve in the plane) in inviscid
incompressible flow, across which the tangential component
of the velocity has a jump discontinuity, while the normal
component is continuous. The evolution of the vortex sheet
can be described by the Birkhoff-Rott (BR) equation [25-
27]. This is a nonlinear singular integro-differential equation,
which can be obtained formally from the Euler equations
assuming that the evolution of a vortex sheet retains a curve-like
structure. However, the initial data problem for the BR equation
is ill-posed due to the Kelvin—Helmholtz instability [25,28].
Numerous results show that an initially real analytic vortex
sheet can develop a finite time singularity in its curvature. This
singularity formation was studied with asymptotic techniques
in [29,30] and numerically in [30-32]. Specific examples of
solutions were constructed in [33,34], where the development,
in a finite time, of curvature singularity from initially analytic
data was rigorously proved.

The problem of the evolution of a vortex sheet can also be
approached, in the general framework of weak solutions (in the
distributional sense) of the Euler equations, as a problem of
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evolution of the vorticity, which is concentrated as a measure
along a surface of codimension 1. The general problem of
existence for mixed-sign vortex sheet initial data remains an
open question. However, in 1991, Delort [35] proved a global
in time existence of weak solutions of the 2D incompressible
Euler equation for the vortex sheet initial data with initial
vorticity being a Radon measure of a distinguished sign; see
also [36—41]. This result was later obtained as an inviscid limit
of the Navier—Stokes regularizations of the Euler equations [37,
39], and as a limit of vortex methods [38,40]. The Delort result
was also extended to the case of mirror-symmetric flows with
distinguished sign vorticity on each side of the mirror [42].
However, the problem of uniqueness of a weak solution with
fixed sign vortex sheet initial data is still unanswered; numerical
evidence of non-uniqueness can be found, e.g., in [43,44].
Furthermore, the structure of weak solutions given by Delort’s
theorem is not known, while the Birkhoff-Rott equations
assume a priori that a vortex sheet remains a curve at a
later time. A proposed criterion for the equivalence of a weak
solution of the 2D Euler equations with vorticity being a Radon
measure supported on a curve, and a weak solution of the
Birkhoff-Rott equations can be found in [45]. Also, another
definition of weak solutions of Birkhoff—Rott equation has been
proposed in [46,47]. For a recent survey of the subject, see [48].

The question of global existence of weak solutions for the
three-dimensional Euler-o equations is still an open problem.
On the other hand, the 2D Euler-o equations were studied
in [49], where it has been shown that there exists a unique
global weak solution to the Euler-o equations with initial
vorticity in the space of Radon measures on R?, with a unique
Lagrangian flow map describing the evolution of particles. In
particular, it follows that the vorticity, initially supported on a
curve, remains supported on a curve for all times.

We present in this paper an analytical study of the o-
analogue of the Birkhoff-Rott equation, the Birkhoff-Rott-
o (BR-o) model, which is induced by the 2D Euler-o
equations. The BR-o model was implemented computationally
in [50], where a numerical comparison between the BR-«
regularization and the existing regularizing methods, such as
a vortex blob model method [38,51-54], has been performed.
We remark that, unlike the vortex blob methods that regularize
the singular kernel in the Birkhoff—Rott equation, the c-model
method regularizes instead the Euler equations themselves to
obtain a smoother kernel.

We report in Section 4 our main result, which states that the
initially smooth self-avoiding 2D vortex sheet, evolving under
the BR-o equation, remains smooth for all times. In this short
communication we only report the results and sketch some of
their proofs; the full details will be reported in a forthcoming
paper. In Section 2 we describe the BR-« equation. Section 3
studies the linear stability of a flat vortex sheet with uniform
vorticity density for the 2D BR-o model. The linear stability
analysis shows that the BR-« regularization controls the growth
of high wavenumber perturbations, which is the reason for the
well-posedness. This is unlike the case for the original BR
problem which exhibits the Kelvin—Helmholtz instability, the
main mechanism for its ill-posedness.

2. Birkhoff-Rott-a equation

The incompressible Euler equations in R? in the vorticity
form are given by

M 0. vyg=0
— v - =0,
ot 1

v=K xgq, QY
q(x,0) = g™ (x),

where K (x) = %VLlog |x], v is the fluid velocity field,
g = curl v is the vorticity, and ¢'” is the given initial vorticity.

The 2D Euler-o model [1,2,5,55-57] is an inviscid
regularization of the Euler equations, such that the vorticity is
governed by the system

dq

= ‘V)g =0,

8t+(u )q

u=K*xgq, 2

q(x,0) = q" (x).

Here u represents the “filtered” fluid velocity, and « > 0 is a
length scale parameter, which represents the width of the filter.
At the limit ¢ = 0, we formally obtain the Euler equations (1).
The smoothed kernel is K¢ = G % K, where G is the Green
function associated with the Helmholtz operator (I — a2A),
given by

G® (x)—ic(f) 11y (M) 3)
a2 \a) T T2 e )

where x = (x1, x2) € R? and Ky is a modified Bessel function

of the second kind [58].

Let M(R?) denote the space of Radon measures on R2; G
denote the group of all homeomorphisms of R? which preserve
the Lebesgue measure; and n = n(-, t) denote the Lagrangian
flow map induced by (2) and obeying the equation 9,7 (x, t) =
u(n(x,t),t),nx,0) =x.

Oliver and Shkoller [49] showed global well-posedness of
the Euler-o equations Eq. (2) with initial vorticity in M (R?)
(which includes point-vortex data).

Theorem 1 (Oliver and Shkoller [49]). For initial data q'" €
M (Rz), there exists a unique global weak solution (in the sense
of distribution) to (2) with

wec(rc(r?)),

geC (R; M(Rz)) .

neC (R; G,

The Birkhoff-Rott-o equation, based on the Euler-o
equations, is derived similarly to the original Birkhoff—Rott
equation. Detailed descriptions of the Birkhoff—Rott equation
as a model for the evolution of the vortex sheet can be found,
e.g., in [27,41,59]. We remark that while the BR equations
assume a priori that a vortex sheet remains a curve at a
later time, in the 2D Euler-« case, if the vorticity is initially
supported on a curve, then due to the existence of the unique
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Lagrangian flow map given by Theorem 1, it remains supported
on a curve for all times. Hence the BR-a equation gives a
description of the vortex sheet evolution equivalent to the
description given by the 2D Euler- equations. It is described
in the following proposition.

Proposition 2. Let g be the solution of (2) in the sense
of Theorem 1. Assume, furthermore, that q has the
density y(o,t) supported on the sheet (curve) X(t) =
{x =x(0,1) € R?|og (1) <0 < 0y (t)}, that is, the vorticity
q(x, t) satisfies

o1 (1)

f p(x)dg(x, 1) = f ¢ (x(0,1)) y(0,1)|xs (0,1) |do,
R2 op(t)

for every ¢ € C° (Rz). Then this sheet evolves according to

the equation

? (0,1)
—x (o,
ot

o1 (1)
=/ K* (x(o,l)—x(o/,t))y(a’,t) |xa (a/,t)|da/.
o0 (1)

Additionally, if T (0,1) = f:* y (o/, t) |xa (0’, t)| do’, where
x (o*,t) is some fixed reference point on X(t), defines a
strictly increasing function of o (e.g., as in the case of
positive vorticity), then the evolution equation is given by the
Birkhoff-Rott-o (BR-«) equation

I
2. (I, z)=f K*(x (I, 1) —x (I",1))dl” 4
at Ty

with y = 1/|xr| being the vorticity density along the sheet.
Here o, o1 (and, consequently, I, I'1) can represent either
a finite length curve, or an infinite one. In our existence
Theorem 3, stated in Section 4, we will make the assumption
that y (-, 1) € L' (|x,|do), i.e., |To|, |I'1] < oo.
Notice that

1 xt
K% (x) =V=9%(x|) = —D ¥ (|x]),

| x|
where
1 r
o e — —
) = o [Ko (a) +10gr]
and
dy“ 1 1 r 1
DW“ = = — | ——K — —1.
(r) =~ (1) 271[ - l(a)+r}

Ko and K; denote modified Bessel functions of the second
kind of orders zero and one, respectively. For details on Bessel
functions, see, e.g., [58]. We remark that the smoothed kernel

K% (x) is a bounded continuous function, that for % —- 0

behaves as K% (x) = —#D}—le log % + 0 (%) That is, it
is non-singular kernel. The assumption y (-, 1) € L' (Jx | do)

allows us to show the integrability of the relevant terms, even
though |K (x)| is decaying like |x|~! at infinity.

3. Linear stability of a flat vortex sheet with uniform
vorticity density for 2D BR-o model

The initial data problem for the BR equation is highly
unstable due to an ill-posed response to small perturbations
called Kelvin—Helmholtz instability [25,28]. The linear stability
analysis of the BR-a equation shows that the ill-posedness of
the original problem is mollified, and the Kelvin—Helmholtz
instability of the original system now disappears.

When the vortex sheet can be parameterized as a graph of a
function in the form xo = x» (x1, ¢) the BR-« system (4) takes
the form

dx __0x , 5
o 8x1u1+u2 &)
ay a

5 = —B—(J/Ml),

with velocity u = (u1, us)" given by
u(xy,t) = p.V./ K* (x (x1, 1) — x (x}, 1)) v (x]. 1) dx],
R

where x (x1,1) = (x1,x2 (x1,1))". The flat sheet x) = 0 with
uniformly concentrated intensity yq is a stationary solution of
(5). By linearization about the flat sheet we obtain the following
linear system:

X2 .

W =uz,

oy onq
E = —VOE,
where

0X2

iy (x1,1) = —ypo(sgn (x1) D (|x1])) * P
X

iy (x1,1) = (sgn (x1) DY (Ix1])) % 7,

and (X3, y) is a small perturbation about the flat sheet.
Consequently, the equation for the Fourier modes is given by

(’2> . (6)
Y

’

i
d (5 0 5 sen(k)d (k)
a\7) | .»w
Y —i70k2 sgn(k)d (k) 0

where

L\l
d(k)=<]+_a2k2> 1

Observe that in order to calculate the Fourier transform
i
F(sgn (x1) DP (|x1])) (k) = 3 sgn(k)d (k),

we used the integral representation of the modified Bessel func-
tion of the second kind K (x1) = xy [ ™ (12 — 1)1/2 dt
(see, e.g., [58]). The eigenvalues of the coefficient matrix, given
in (6), are

1 1 —-1/2
M) = =3 Il K (1— (”W) ) )
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To conclude, the «-regularization mollifies the Kelvin—
Helmholtz instability as follows: we have an algebraic decay
of the eigenvalues to zero of order Ol%“{‘, as k — oo (« fixed),
while, for « — 0, for fixed k, we recover the eigenvalues of the
original BR equations :t% [vol [k| (see, e.g., [60]).

For the sake of comparison, we observe that for the vortex
blob regularization of Krasny [32], where the singular BR

kernel, K (x), was replaced with the smoothed kernel

x> 1 xt

Ks (x) =K (x) = — ,
’ X2 +82 27 |x|? + 82

the eigenvalues are
1 _
Ay = £~ Iyl Ik|

with an exponential decay to zero, as k — oo (§ > 0 is fixed).
As § — 0, for fixed k, one recovers again the eigenvalues of the
original BR equations.

The behavior of the eigenvalues of the linearized system
(6) indicates that high wavenumber perturbations grow
exponentially in time with a rate that decays to zero as k — oo,
which is the reason for the well-posedness of the a-regularized
model. This is unlike the case for the original BR problem
which exhibits the Kelvin—Helmholtz instability. It is worth
mentioning that the «-regularization is “closer” to the original
system than the vortex blob method at the high wavenumbers,
due to the algebraic decay instead of the exponential one
in the vortex blob method. This result was also evaluated
computationally in [50].

4. Global regularity for BR-« equation

In this section we present the global existence and
uniqueness of solutions of the BR-o equation (4) in the
appropriate space of functions. We show that initially smooth
solutions of (4) remain smooth for all times.

Let us first describe the Holder space cmh (E C R; ]R2),
0 < B < 1, which is the space of functions x : X’ C R — R2,
with finite norm

n

dF”x‘ ’
B(X)

>l
||x||cn,ﬂ(2) = ‘—kx + '
=014 o)

where
IXlcosy = sup |x (1)
ey

and || is the Holder semi-norm

) ()]

lxlg(xy = sup
P I.I'es |\ — 178

r#I"

We also use the notation

I —x (I
|x], = inf —‘x() x( )|
r.r'ex | — 1|

rr’

Next we state our main result.

Theorem 3. Letn > 1,0 < 8 < I, x(I',0) = xo(I') €
c™P (Iy, I)N{|x|, > 0}; thenforany T > O there is a unique
solution x € C ([—T, T1; C"P (I, I') N {|xl, > 0}) of (4).

In particular, if xo € C* (I, I'1) N {|x|, > 0} then x €
C' (=T, TL: €% (Io, I'1) N {Ix], > O).

We remark that, although the kernel K% is a continuous
bounded function, its derivatives are unbounded near the origin,
and the condition |x|, > 0, which generally means self-
avoiding curves, allows us to show the integrability of the
relevant terms. Furthermore, it is also worth mentioning that
|x|« being bounded away from zero is similar to the chord arc
hypothesis [61], used later in [46,47].

Now we sketch the main steps involved in the proof of
Theorem 3. First, we apply the Contraction Mapping Principle
to the BR-« equation (4) to prove the short time existence and
uniqueness of solutions in the appropriate space of functions.
We show that initially C!'-# smooth solutions of (4) remain C-#
smooth for a finite short time. Next, we derive an a priori bound
for the controlling quantity for continuing the solution for all
time. Then we extend the result for higher derivatives. The full
details will be reported in a forthcoming paper.

Sketch of the proof. We consider the BR-o equation as an
evolution functional equation in the Banach space C"#

ox i o ! /
5(F,z):/ﬂ) K® (x (I',t) —x (I, 1)) dI", ®

x(I",0) = xo (I') € C™P N {|x], > 0}

with y = 1/|xp| being the vorticity density along the sheet.
Notice that the initial density is well defined for the subset
{lxl, > O}.

Step 1. We show the local existence and uniqueness of
solutions. To apply the Contraction Mapping Principle to the
BR-« equation (8) we first prove the following proposition:

Propositiond4. Let 1 < M < oo, —o0 < Iy < I, and let sM
be the set

1
{F > x (I e CYP (I, 1), |xrlco < M, |x], > M} .

Then the mapping x (I', t) —
I

u(x(F,t),t):/ K*(x(I',0) —x (I, 1)) dI”

Iy

defines a locally Lipschitz continuous map from S™ into C1-P.

This implies the local existence and uniqueness of solutions:

Proposition 5. Given xo (I") € CL8 (I, I') N {|x|, > 0},
there exists | < M < oo and a time T (M) such that the system
(8) has a unique local solution x € C'((=T (M), T (M)); SM).

Step 2. The local solutions obtained can be continued in

time provided that we have global, in time, bounds on m
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and |xp (-, 1)|g. To control these quantities we need to bound

S IV (e 1), Dl oo (1. 1y de. We sketch the proof of this
bound. We write V,u (x(I', 1), 1) as

I

Veu(x(,t),t) = /
T

0
Es (FOvFl)\Es
where

E. = {F’e(ro,n): (@0 = x (17 1)] <e},

VK (x (I, 1) — x (I, 1)) dI”

o

for a fixed small 0 < & < 1, to be further refined later. Let n
denote the unique Lagrangian flow map given by Theorem 1.
Denote the distance between two points n(x, t) and n(x’, ) by
r(t) = |r; (x,t) —n (x’, t)’ where r (0) = |x — x’|.

Then, using the estimate (2.14) of [49], we have

d < K“ K% (x' d
57O _A;} (x, ) = K* (', y)[ g (v, DI dy

1 r (1)
< Cafp (T) g1l (r2)

cly (ﬁ) la
o o

in

M(R2)’
where
0, r=0,
p(r)y=4qr(l—logr), O0<r <1,
1, r>1.

By comparison with the solution of the differential equation

d B Cl r(t)
a V=" &"’(T)“’

we can choose ¢ = ¢ (l, é
I't)—x(I",t
IOl

in

M(R?)’

g™ M(R2)) small enough such
that, for

|x (1) —x (I, 1)]

o

1Cy

. <|x (I, 0) —x(F’,O)|) e ©

a ,
where C; = % g™ ||M(R2)' Now, using also that |xgl is
bounded away from zero, we can bound w from
below, which in turn implies the bound

in

1
]1§C(t,—, ‘1
o

M(R2) 1) |x0|*) k]
while to bound I, we use the boundedness of |V, K% (x ([, t),
X, )| in {I" € (T, Iy + BED=AO] 5 ) pence

T
/ Vxu (X, 1), D)l Loy, ryy At
0

1
§C<57T3 M(R2)9|x0|*>' (10)

in

q

Now, by the Gronwall inequality the bound (10) provides
bounds on m and |xp (-, )|co on [0, T]. The bound on
lxr (-, t)lﬁ on [0, T'] is a consequence of

%xp(F,t)=qu(x(F,t),t)~xp(F,t),

1
|qu (-x (7t)7t)|ﬂ = C (&’ |-XF|LOO ) |x|*,F1 _F0> 5

(10) and the Gronwall inequality.
This yields global in time existence and uniqueness of C!-#
solutions of (8).

Step 3. To provide an a priori bound for higher derivatives in
terms of lower ones, we show that for x € SM N C"# (Io, 1),

1
|M (x ('7 t) ) t)'n,ﬂ S C (;7 Mv |x ('7 t)ln],ﬂ) |-x (" t)|n,ﬂ )

and hence by the Gronwall inequality and the induction
argument, it is enough to control |x (-, 7)[, and |xp (-, £)[g, to
guarantee that x (I', 1) € cnp (I'y, I7), for all n > 1 (and
consequently in C*° (I, I'), whenever xg € C*® (Ip, I'1) N
{lxl, >0h. O

5. Conclusions

The 2D Euler- model [1,2,5,55-57] is an inviscid
regularizatio