
Algorithmic aspects of MAK
reconstruction ∗

M. Hénon
C.N.R.S., Observatoire de Nice, B.P. 229,

06304 Nice, France

November 23, 2004

Exposé au workshop “Large-scale reconstruction”, August
30 – September 3, 2004, Nice.

1 Introduction

As has been explained by UF, in the MAK approach, the
reconstruction problem can be reduced to the following form:
we are given N initial points qj and N final points xi, and
we want to find a one-to-one correspondence between these
points, defined by [a function] j(i), which minimizes the sum
of the squares of the distances:

N∑
i=1

|xi − qj(i)|2. (1)

∗Fichier cosmo/Workshops/workshop04.tex

1

This is a classical optimization problem, known as the as-
signment problem. The general form of the problem is to
minimize a quantity

N∑
i=1

cij(i) (2)

where cij is a given cost matrix.

I will report on the work done here in Nice in relation to
this assignment problem. The main objective was to develop
a program sufficiently fast to be able to treat a large number
of objects [; “large” being as much as one million or more]. It
is known that assignment problems can be solved in a time of
order N3; this, however, is not fast enough for our problem.

The actual work of programming and testing was done
essentially by 3 people: Roya Mohayaee, Andrei Sobolevskii,
and me †, but we have benefitted from discussions with a title page
number of colleagues.

2 Testing the algorithms

A number of algorithms were tried. They were tested on two
different categories of problems. First, we ran N -body simu-
lations, [typically with N = 2 million bodies,] starting with
the objects uniformly distributed in a volume. We selected a
subset of these initial objects, and we computed the optimal
assignment between them and the corresponding final posi-
tions. [Incidentally, this was also a test of the MAK method.]

The second category of problems came from real catalogs
of galaxies. In that case, the initial positions are of course un
known, and they were assumed to be uniformly distributed.

2

3 Bertsekas’ auction algorithm

The first algorithms which we tried were too slow. But pro-
gressively we discovered and adapted faster algorithms. I will
concentrate on the fastest algorithm which we have found.
This is the auction algorithm, invented by Dimitri Bertsekas.

[There are several ways to describe this algorithm; here I
choose one which follows closely the actual program.]

The xi are considered as persons, and the qj as objects;
and the persons compete for the objects in an auction-like
fashion.

First, we define the assignment problem in terms of bene-
fits instead of costs: we wish to maximize a quantity

N∑
i=1

bij (3)

where bij is a given benefit matrix. We pass from one formu-
lation to the other simply by taking

bij = −cij (4)

or, if you prefer to work with positive numbers:

bij = C − cij (5)

where C is a large number. [These two formulations of the
assignment problem are a frequent source of confusion.]

We assume now that each object j has a price pj. This
price varies during the course of the computation. Then we
define the value of object j for person i as

bij − pj. (6)

3

Now we try to fix the prices and to assign the persons to
objects (i.e. determine a one-to-one correspondence) in such
a way that each person is assigned to the object with maximal
value for that person, i.e.

biji
− pji

= max
j

(bij − pj). (7)

If we succeed in doing this, we say that we have achived eco-
nomic equilibrium. Now a remarkable property can be proved:
this equilibrium solves the assignment problem for the bene-
fits bij.

3.1 Naive auction algorithm

A first algorithm for finding an equilibrium is called the naive
auction algorithm.

The computation proceeds in rounds. At the beginning
of a round, there is a set of prices, and a partial assignment:
some persons are assigned to objects which verify (7), while
other persons are unassigned. Then the round proceeds as
follows:

1. We select one unassigned person i.

2. We find the object ji which offers maximum value, and
we assign person i to object ji.

3. If another person was assigned to ji, it becomes unas-
signed.

4. We now increase the price of object ji by the largest
possible amount such that it still offers the best value
to person i. (This in order to discourage competition!).

4

This is done as follows: we consider the best object
value:

vi = max
j

(bij − pj) (8)

which occurs for j = ji, and we determine also the sec-
ond best object value:

wi = max
j 6=ji

(bij − pj). (9)

Finally, we replace the present price pji
by

pji
+ vi − wi. (10)

This is continued until all persons are assigned.

3.2 Auction algorithm

Unfortanely, this simple algorithm sometimes gets stuck. This
happens if more than one object offers best value. Then the
price does not change and the computation never ends.

To avoid this, we define a [small] parameter ε, and instead
of (10) we define the new price by

pji
+ vi − wi + ε. (11)

It can then be shown that the computation ends always in
a finite number of rounds. However, what we obtain is not
the exact economic equilibrium: the condition (7) may be
verified only within ε. If ε is small, it can be shown that the
end result is in a sense close to the economic equilibrium. In
particular, an important result can be proved: If the benefits
bij are integer, and if

ε <
1

N
(12)

then we do reach the economic equilibrium, and the problem
is solved.

5

3.3 ε-scaling

If we start with a small ε, the computation is likely to take
a long time. The program does not quite get stuck, but it
proceeds by very small steps, and the computation time tends
to be proportional to 1/ε.

To avoid this, we introduce a final refinement: ε-scaling.
The program executes a succession of phases, with progres-
sively decreasing values of ε, until a last value satisfying (12).
The initial value of ε can be quite large; experience suggests
that it should be of the same order as the benefits.

The successive values of ε are controlled by a few parame-
ters. Experience shows that these parameters should be care-
fully adjusted for best results.

4 Sparse version

So far I have described the dense version of Bertsekas’ algo-
rithm, in which all assignments are a priori allowed. However,
the algorithm is naturally adapted to the case of sparse prob-
lems, in which only a subset of the (i, j) pairings are allowed.
In our case, it is natural to suppose that a xi will be paired
with a qj only if their distance is comparatively small. Thus,
we define a critical distance dcrit, and we allow only pairings
with a distance less than dcrit.

One practical problem with the sparse version is that we
have in principle to compute and store in advance the allowed
pairings. This requires a table with dimensions O(N2), which
might be too large.

This table can be avoided if the initial positions lie on a

6

cubic lattice; more precisely, if the initial positions are all the
vertices of a cubic lattice lying inside a simple surface, such
as a sphere or a cube. In that case, for a given final point
xi, the list of the allowed pairings can be easily generated at
run time. Fortunately, this is a case frequently encountered,
since the initial distribution of mass is usually assumed to be
homogeneous.

The figure † shows some results. It is a log-log plot; the fig5
horizontal axis is N , number of objects, and the vertical axis is
computing time divided by N3. The upper points correspond
to an algorithm of Burkard and Derigs, which was our second
best [on rimsky]. The next points below are for the dense
auction algorithm; it can be seen to be about 10 times faster
than BD. Finally, the lower points are for the sparse version.
The improvement in computing time is spectacular: about a
factor 50!

[Using the sparse version, a computation with N = 106

could be done in 17 days [on debussy 1]].

However, a problem is that the choice of the critical dis-
tance is quite delicate. If we take it too small, we may miss
the optimal assignment. (In fact, if it is really too small, the
program may be unable to find an assignment at all.) If the
critical distance is too large, the computing time increases
rapidly and we lose the advantage of the sparse algorithm.

5 Constant volume and constant

density

I mention a last point. These computations were done at
constant volume: the initial points are selected randomly in a

7

given volume. It can be seen that the asymptotic behaviour
of the sparse algorithm is approximately in N3.

However, one can also proceed in a different way, and keep
the density constant when N is increased: for smaller N, the
points are selected from a smaller volume, in such a way that
the density remains the same. The results are then quite
different: the time dependence for large N appears to be of
the order of N1.5.

I stop here; but this afternoon, Andrei will continue on
the same subject and describe refinements of the auction al-
gorithm adapted to the case of real catalogs of galaxies.

8

