MODELLING SUBRESOLUTION SCALES IN N-BODY SIMULATIONS

Alvaro Domínguez, Universidad de Sevilla in collaboration with Alexander Knebe, Astrophysikalisches Institut, Potsdam Rosa Domínguez–Tenreiro, Universidad Autónoma de Madrid

- Motivation
- Theoretical background: Small-Size Expansion
- N-body simulations: Density and velocity fields
 Dark–Matter Halos
- Conclusions

MOTIVATION

Structure formation in Cold Dark Matter by gravitational instability: self-gravitating, collisionless gas \Rightarrow Vlasov-Poisson eq. for $f(\mathbf{x}, \mathbf{u}, t)$

DESCRIPTION IS TOO DETAILED

- 1. Observational access to density and velocity fields only with a finite resolution $L \rightarrow hydrodynamic-like$ eqs. for $\rho(\mathbf{x}, t; L)$ and $\mathbf{u}(\mathbf{x}, t; L)$?
- 2. Limited resolution of numerical simulations

N-body simulations purport to integrate Vlasov–Poisson numerically

N-body particles = coarse, Lagrangian particles

 \rightarrow what are the evolution eqs.? (influence of subresolution scales)

THEORETICAL BACKGROUND

Newtonian evolution eqs. in an expanding background

 $\mathbf{w}(\mathbf{x},t) =$ gravity by monopolar moment of coarsening cells of size L

C(x,t) = dynamical coupling to scales below L

A model of C(x, t): Small-Size Expansion (SSE)

A. Domínguez, PRD 62 (2000) 103501
A. Domínguez, MNRAS 334 (2002) 435
T. Buchert & A. Domínguez, A&A 438 (2005) 443

SMALL-SIZE EXPANSION

Bottom-up structure formation \Rightarrow nested matter distribution

Large scales ($\gg L$) weakly coupled to small scales ($\ll L$)

Mode-mode coupling estimated by an expansion in $(L\nabla)$ (akin to Large-Eddy Simulations)

high-orders terms do not add into a relevant contribution so that the expansion can be truncated

SMALL-SIZE EXPANSION

- To order L^0 : $C(x,t) = 0 \rightarrow$ dust model, usual N-body simulations
- To order L^2 :
 - → adhesion model (in Zel'dovich + locally plane-parallel collapse)

 → exact result: velocity dispersion acts like a sink of kinetic energy for volume elements collapsing along the three axes

 \rightsquigarrow generation of vorticity by tidal torques and shear stretching

MULTILEVEL ADAPTIVE PARTICLE-MESH (MLAPM) code

Knebe, Green & Binney, MNRAS 325 (2001) 845

 $\{x_{\alpha}, u_{\alpha}\} \longrightarrow \varrho(x), u(x) \text{ in a grid} \longrightarrow w(x), C(x) \text{ in a grid} \longrightarrow \{w_{\alpha}, C_{\alpha}\}$

- purely grid—based algorithm
- automatic grid (de–)refinement according to the local density
- force resolution \sim spatial resolution
- best suited for the hydrodynamic approach

Results: Knebe, Domínguez & Domínguez–Tenreiro, submitted

HAPPI2(B = 1)

LWDM

 $N = 128^3$, box sidelength= 25 Mpc/h, concordance model

 $\mathbf{z} = \mathbf{0}$

POWER SPECTRUM of the density field

• B = 1 or WDM: clusters are smoother

MINKOWSKI FUNCTIONALS of random fields

Statistics of higher order than 2-points Excursion set \longrightarrow isodensity surface $S := \{x | \varrho(x) = threshold\}$

Minkowski functionals of the density field (relative to LCDM)

Density field $\rho(\mathbf{x})$ at z = 0 in a cubic grid of 128³ nodes

• If $C \neq 0$: more small, rounder clusters

• WDM: less voids, more filamentary–like structures

VELOCITY FIELD

Vorticity, $|\nabla \times \mathbf{u}|^2$, and divergence, $|\nabla \cdot \mathbf{u}|^2$, in a cubic grid of 128³ nodes

When $C \neq 0$

- Vorticity tends to be larger
- Divergence tends to be smaller

DARK MATTER HALOS

DM halos identified with the MLAPM halo finder Gill, Knebe & Gibson, MNRAS **351** (2004) 399

- The algorithm relies on the refined grid of the simulation to select prospective halo centers (local maxima of the density)
- Only gravitationally bound particles are collected
- The algorithm is parameter-free

Abundance of halos

Mass concentration in halos

1014

Spin parameters of halos

If $C \neq 0$:

larger angular momentum in halos, especially in low-mass halos

 $|\mathbf{L}|/M_{\mathsf{vir}}$

Density profiles of halos

Rotation curves of halos

CONCLUSIONS

- The effect of $C \neq 0$:
 - Proliferation of low-mass halos (also field halos)
 - Higher vorticity of the velocity field
 Larger angular momentum of the halos
 - However, the halo concentration is smaller if B = 1larger if B = 1/4
- The results are consistent with high-resolution simulations
- The simulations and the theoretical predictions agree qualitatively