Halos and voids in a multifractal model of cosmic structure

José Gaite

Instituto de Matemáticas y Física Fundamental,

CSIC, Madrid (Spain)

Halos and voids in ^a multifractal model of cosmic structure – p.1/20

PLAN OF THE TALK

- 1. Motivation
- 2. Multifractals
- 3. Mass concetrations \rightarrow halos
- 4. Mass depletions \rightarrow voids
- 5. Multifractal clustering as fractal distributions of haloes.
- 6. Conclusions.

MULTIFRACTALS

- Scale invariance \Rightarrow fractals
- Scale invariance \Rightarrow fractals
Mass distributed according to
invariance \Rightarrow multifractals Mass distributed according to a highly irregular pattern + scale
invariance \Rightarrow multifractals
Mass concentrations invariance \Rightarrow multifractals
- Mass concentrations

$$
\alpha(\boldsymbol{x}) = \lim_{r \to 0} \frac{\log m[B(\boldsymbol{x}, r)]}{\log r} \Leftrightarrow m[B(\boldsymbol{x}, r)] \sim r^{\alpha(\boldsymbol{x})}
$$

ifractal spectrum $f(\alpha)$ is the function that gives the fractal

 $$ dimension of the set of points with exponent $\alpha.$ *Multifractal spectrum* $f(\alpha)$ is the function that gives the fractal dimension of the set of points with exponent α .
Monofractal: constant $\alpha = f(\alpha)$. Monofractal: constant $\alpha=f(\alpha)$.

Correlation moments

- Coarse multifractal analysis: put an ℓ -mesh of cubes and define Coarse multifractal analysis: put an ℓ -mesh of cubes and define
 $M_q(\ell) = \sum_i (m_i/\ell^3)^q / \ell^{-3} = \sum_i m_i^q / \ell^{3(q-1)} = \langle \rho^q \rangle$.

Scaling: $M_q(\ell) \sim \ell^{\gamma(q)}, \quad \gamma(q) = \tau(q) - 3(q-1)$. $(\ell) = \sum_{\ell}$ $\frac{1}{2}$ / $\frac{\beta}{9}$ / $\frac{\beta}{7}$ - $\frac{3}{2}$ - $\frac{3}{2}$ $\frac{q}{7}$ / $\frac{\beta}{9}$ / $\frac{q-1}{2}$ - $\frac{q}{9}$ -
-
C Scaling: $M_q(\ell) \sim \ell^{\gamma(q)}, \quad \gamma(q) = \tau(q) - 3(q-1)$
- Multifractal spectrum: $f(\alpha) = \min_q [q \alpha \tau(q)],$ namely, Multifractal spectrum: $f(\alpha) = \tau'(q), \quad f(\alpha) =$

Correlation moments

 $D(q) = \tau(q)/(q-1)$ decreases with q . For a monofractal: $f(z) = \Gamma(z)$ constant. In general:
= $-\tau(0)$, $f'(\alpha)$ = $q = 0$: $f(\alpha) = D(0) = -\tau(0)$, $f'(\alpha) = q = 0 \Rightarrow$ largest fractal dimension \rightarrow measure's support. $q = 1$: $\alpha = f(\alpha) = D(1)$, $f'(\alpha) = q = 1$ and convex $\alpha_0<\alpha\to$ measure's concentrate.

Spectrum of multinomial multifractal, showing measure's support and concentrate

Linear MF spectrum

MF spectrum can be linear \Rightarrow bifractal:

Example: multinomial MF

Multinomial multifractals are selfsimilar multifractals: the unit square is divided into (4) cells, the unit mass distributed among cells $(\{p_i\})$, and the process iterated.

The MF spectrum can be obtained:

$$
\tau(q) = -\log_2 \sum_i p_i^q.
$$

Random multinomial measure with distribution $\{\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{12}\}$
Halos and voids in a multifractal model of cosmic $\frac{2}{3}$ $\frac{1}{6}$, $\frac{1}{6}$.

MASS CONCENTRATIONS: HALOS

Fix the coarse-graining length $\ell\to$ mass concentrations of size ℓ with

singular power-law profile $\rho(r) \propto r^{-\beta}$ ($\beta = 3 - \alpha$).
Cosmology: natural value for ℓ is the lower limit to scandidary cutoff). In N -body simulations, the largest of:
(i) The linear size of the volume per particle Cosmology: natural value for ℓ is the lower limit to scaling (lower cutoff). In N -body simulations, the largest of:

- **(i)** The linear size of the volume per particle.
- **(ii)** The gravitational softening length.

We identify mass concentrations with equal-size halos \rightarrow virialization affects scales below the lower cutoff.

Halo mass-function: $N(m) \sim \ell^{-f(\alpha)}$, $\alpha = \log m / \log \ell$

Multinomial bifractal

A bifractal can be extracted: select $\{\alpha_1, \alpha_2\}$ m_1, m_2

Multifractal models support halo populations with different levels of clustering.

Two populations in ^a multinomial multifractal.

Note voids.

MASS DEPLETIONS: VOIDS

Halos have singular powerlaw profile $\rho(r) \propto r^{-\beta}$ $(\beta=0)$
a) $=0$
points $-\alpha$). If $\alpha > 3 \Rightarrow \rho(0) = 0$ \rightarrow voids.

 finite. They may not be reg-Boundaries of voids: points with $\alpha = 3 \Rightarrow \rho(0) > 0$ and ular surfaces but fractal surfaces with $D=f(3)>2$

deg-

Sur-

Fractal boundary of voids in

multinomial MF: $f(2) = 1.9$ Fractal boundary of voids in multinomial MF: $f(2) = 1.93$.

BIASING AND VOIDS

Biasing: peculiar distribution of certain set of objects (galaxies \leftrightarrow halos) with respect to the total matter distribution. Bias from linear theory:

$$
\frac{\delta \rho_g}{\rho_g} = b \frac{\delta \rho}{\rho} \Rightarrow \xi_{gg}(r) = b^2 \xi(r), \ b > 1.
$$

Constant *b* bias in the nonlinear regime \Rightarrow similar voids for every

population \rightarrow false in MF.

- \blacksquare Voids not empty but harbor faint galaxies \leftrightarrow galaxy formation Voids not empty but harbor faint galaxies \leftrightarrow galaxy formation
(Peebles, 2001).
Distribution of dark matter inside voids (Gottlöber et al, 2003). (Peebles, 2001).
- Distribution of dark matter inside voids (Gottlöber et al, 2003).
Halos and voids in a multifractal model of cosmic structure.

LOGNORMAL PDF

Lognormal model: extension of the Gaussian linear theory into the linear regime (Coles and Jones, 1991).

Lognormal pdf is the basic approximation to MF spectrum \Rightarrow also to $m) \sim \ell^{-f(\alpha)} \sim \ell^{c(\alpha-\alpha_0)^2} \sim \exp(\alpha)$
 n exp($c \frac{[\ln(m/m_0)]^2}{\ln|n|}$ $\frac{m_f m_0}{\ln |\ell|}$) (theory of *large* deviations).

Lognormal approximation to multinomial multifractal

Bad approximation to bifractal.

PRESS-SCHECHTER MASS FUNCTION

Press-Schechter spherical collapse formalism + power-law spectrum of initial (Gaussian) fluctuations \Rightarrow power law (exponential cutoff for large mass) \Leftrightarrow bifractal.

Spherical collapse \Rightarrow large m . In fact, collapse along the three axes in only 8% of regions (Doroshkevich, 1970), and they are very overdense: $\alpha > 0 |\delta)$ grows with δ and reaches 0.5 when 1.5σ (Lee & Shandarin, 1998).

Lognormal for $m\gg m_0$ becomes power law (in a $\gg m_0$ becomes power law (in a small range).

лохитано Can the real MF spectrum be more linear than its lognormal approximation?

MULTIFRACTALITY IN $N\text{-}\mathsf{B}\mathsf{OD}\mathsf{Y}$ SIMULATIONS

 $z = 0$ positions in ACDM GIF2 simulation (Virgo Consortium): AP3M code; 400^3 particles in a vol-
Mpc)³ \Rightarrow particle
¹⁰ $h^{-1}M_{\odot}$. ume of ($110\ h^ ^1$ Mpc) 3 \Rightarrow particle
.0¹⁰ $h^{-1}M_{\odot}$.
ints-in-cells: Mpc) 3
) 10 h^{-1}
nts-in-c mass is $0.173\ 10^{10}\ h$ $\mathbf{1}$

 $\frac{1}{100}$.
 $\frac{1}{100}$. Statistics by *counts-in-cells*:

$$
M_q(\ell) = \sum_{m=1}^{\infty} N(m) m^q.
$$

 Halos: $\ell_H = 256^{-1} > 400^{-1}$ $(\ell_H = 0.43 h^ \frac{1}{1}$ Mpc).

Distribution of 5515 haloes (cutoff 1000)

Mass-function evolution with ℓ

If MF scaling holds \Rightarrow stable MF spectrum.

For $\ell > \ell_H$ we expect a stable MF spectrum. How does it change for

Log-log plots of number of halos N versus their mass m (number of particles) at coarse-graining scales $512^{-1}\,$ (left), 25
maximun
 \leftrightarrow virializ $\frac{1}{2}$ (middle), and
or $m=2$.
ion. 28^{-1} (right). The rightmost plot shows a maximum for $m=2$.

Nower-law (Press-Schechter) for $\ell < \ell_H \leftrightarrow$ virialization. Power-law (Press-Schechter) for $\ell < \ell_H \ \leftrightarrow$ virialization.

MF AS FRACTAL DISTRIBUTIONS OF HALOS ⁺ VOIDS

- GIF2 heavy haloes with 750 to 1000 particles (red);
- GIF2 light haloes with 100 to 150 particles (blue).

GIF2 heavy haloes with 750 to 1000 particles (red);
GIF2 light haloes with 100 to 150 particles (blue).
Imber function $N[B(\bm{x},r)] \sim r^D$: fractal dimension GIF2 light haloes with 100 to 150 particles (blue).

umber function $N[B(\bm x, r)] \sim r^D$: fractal dimension
 $D=1.9$. Transition to homogeneity starts at \simeq Number function $N[B(\bm x, r)] \sim r^D$: fractal dimensions $D=1.1$ and $D=1.9$. Transition to homogeneity starts at $\simeq 14\ h^{-1}$ Mpc. -
-
-
-
-
-
-

 ^{1.9} . Transition to homogeneity starts at $\simeq 14\;h^ \frac{1}{\log \frac{1}{100}}$ Mpc.

Stable MF spectrum for $\ell > \ell_H$, but *full* spectrum only for larger scales.

Full multifractal spectrum $f(\alpha)$ for -2^{-} $\overline{7}$ $\boldsymbol{6}$ $5\}$ (yellow, red,
 $a = 2.5$.
support = 3. green, blue, magenta).

-
-

\n- Entropy dimension = 2.5.
\n- Dimension of the support = 3.
\n- $$
\alpha(q = 0) \simeq 3.3 > 3 \Rightarrow \text{sup-port dominated by voids.}
$$
\n

port dominated by voids.

Voids in the GIF2 simulation

MFspectrum shows that $3) \approx 2.9 \Rightarrow$ boundary is a fractal surface with large dimension.

It is best to represent a slice to see the morphology \rightarrow no symmetry between halos and voids.

Fractal boundary of voids in ^a GIF2 slice

CONCLUSIONS

- \blacksquare Multifractals are the most general scaling mass distributions Multifractals are the most general scaling mass distributions
supporting halos and voids.
Natural definition of halos ($\alpha < 3$), voids ($\alpha > 3$), and their supporting halos and voids.
- Natural definition of halos ($\alpha < 3$), voids ($\alpha > 3$), and their
boundary ($\alpha = 3$), which is a fractal surface.
Linear MF spectrum \leftrightarrow Press-Schechter power-law halo ma boundary ($\alpha = 3$), which is a fractal surface.
- **Letter Linear MF** spectrum \leftrightarrow Press-Schechter power-law halo mass Linear MF spectrum \leftrightarrow Press-Schechter power-law halo mass
function (bifractal).
Halos and, therefore, galaxies have *nonlinear bias* w.r.t. the full function (bifractal).
- Halos and, therefore, galaxies have *nonlinear bias* w.r.t. the full
dark matter distribution \rightarrow fractal debate (?) dark matter distribution \rightarrow fractal debate (?)

CONCLUSIONS

- Multifractal analysis in terms of intermingled fractal populations of
haloes \rightarrow good scaling.
Non-symmetric MF spectrum \rightarrow bifractal. haloes \rightarrow good scaling.
-
- Non-symmetric MF spectrum \rightarrow bifractal.
Stable MF spectrum for $q>0.$ Compatib
with *large-mass cutoff* (Press-Schechter). Stable MF spectrum for $q > 0$. Compatible with linear spectrum
with *large-mass cutoff* (Press-Schechter). with *large-mass cutoff* (Press-Schechter).