Halos and voids in a multifractal model of cosmic structure

José Gaite

Instituto de Matemáticas y Física Fundamental,

CSIC, Madrid (Spain)

Halos and voids in a multifractal model of cosmic structure - p.1/20

PLAN OF THE TALK

- 1. Motivation
- 2. Multifractals
- 3. Mass concetrations \rightarrow halos
- 4. Mass depletions \rightarrow voids
- 5. Multifractal clustering as fractal distributions of haloes.
- 6. Conclusions.

MULTIFRACTALS

- Scale invariance \Rightarrow fractals
- Mass distributed according to a highly irregular pattern + scale invariance \Rightarrow multifractals
- Mass concentrations

$$\alpha(\boldsymbol{x}) = \lim_{r \to 0} \frac{\log m[B(\boldsymbol{x}, r)]}{\log r} \iff m[B(\boldsymbol{x}, r)] \sim r^{\alpha(\boldsymbol{x})}$$

Multifractal spectrum $f(\alpha)$ is the function that gives the fractal dimension of the set of points with exponent α . Monofractal: constant $\alpha = f(\alpha)$.

Correlation moments

- Coarse multifractal analysis: put an ℓ -mesh of cubes and define $M_q(\ell) = \sum_i (m_i/\ell^3)^q/\ell^{-3} = \sum_i m_i^q/\ell^{3(q-1)} = \langle \rho^q \rangle$. Scaling: $M_q(\ell) \sim \ell^{\gamma(q)}, \quad \gamma(q) = \tau(q) - 3(q-1).$
- Multifractal spectrum: $f(\alpha) = \min_q [q \alpha \tau(q)]$, namely, $\alpha(q) = \tau'(q), \quad f(\alpha) = q(\alpha) \alpha - \tau[q(\alpha)].$

Correlation moments

• $D(q) = \tau(q)/(q-1)$ decreases with q. For a monofractal: $\alpha = f(\alpha) = D(q) = \text{constant. In general:}$ $q = 0: f(\alpha) = D(0) = -\tau(0), f'(\alpha) = q = 0 \Rightarrow \text{largest}$ fractal dimension \rightarrow measure's support. $q = 1: \alpha = f(\alpha) = D(1), f'(\alpha) = q = 1 \text{ and convex} \Rightarrow$ $f(\alpha) \leq \alpha \rightarrow$ measure's concentrate.

Spectrum of multinomial multifractal, showing measure's support and concentrate

Linear MF spectrum

MF spectrum can be linear \Rightarrow bifractal:

Example: multinomial MF

Multinomial multifractals are selfsimilar multifractals: the unit square is divided into (4) cells, the unit mass distributed among cells ($\{p_i\}$), and the process iterated.

The MF spectrum can be obtained:

$$\tau(q) = -\log_2 \sum_i p_i^q \,.$$

Random multinomial measure with distribution $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{12}\}$.

MASS CONCENTRATIONS: HALOS

Fix the coarse-graining length $\ell \to {\rm mass}$ concentrations of size ℓ with singular power-law profile $\rho(r) \propto r^{-\beta}$ ($\beta=3-\alpha$).

Cosmology: natural value for ℓ is the lower limit to scaling (lower cutoff). In N-body simulations, the largest of:

- (i) The linear size of the volume per particle.
- (ii) The gravitational softening length.

We identify mass concentrations with equal-size halos \rightarrow virialization affects scales below the lower cutoff. Halo mass-function: $N(m) \sim \ell^{-f(\alpha)}$, $\alpha = \log m / \log \ell$.

Multinomial bifractal

A bifractal can be extracted: select $\{\alpha_1, \alpha_2\} \Leftrightarrow$ $\{m_1, m_2\}.$

Multifractal models support halo populations with different levels of clustering.

Two populations in a multinomial multifractal.

Note voids.

MASS DEPLETIONS: VOIDS

Halos have singular powerlaw profile $\rho(r) \propto r^{-\beta}$ ($\beta = 3 - \alpha$). If $\alpha > 3 \Rightarrow \rho(0) = 0$ \rightarrow voids.

Boundaries of voids: points with $\alpha = 3 \Rightarrow \rho(0) > 0$ and finite. They may not be regular surfaces but fractal surfaces with D = f(3) > 2.

Fractal boundary of voids in multinomial MF: f(2) = 1.93.

BIASING AND VOIDS

Biasing: peculiar distribution of certain set of objects (galaxies \leftrightarrow halos) with respect to the total matter distribution. Bias from linear theory:

$$\frac{\delta\rho_g}{\rho_g} = b \frac{\delta\rho}{\rho} \Rightarrow \xi_{gg}(r) = b^2 \xi(r), \ b > 1.$$

Constant b bias in the nonlinear regime \Rightarrow similar voids for every population \rightarrow false in MF.

- Distribution of dark matter inside voids (Gottlöber et al, 2003).

LOGNORMAL PDF

Lognormal model: extension of the Gaussian linear theory into the linear regime (Coles and Jones, 1991).

Lognormal pdf is the basic approximation to MF spectrum \Rightarrow also to $N(m) \sim \ell^{-f(\alpha)} \sim \ell^{c(\alpha-\alpha_0)^2} \sim \exp(-c \frac{[\ln(m/m_0)]^2}{|\ln \ell|})$ (theory of *large deviations*).

Lognormal approximation to multinomial multifractal

Bad approximation to bifractal.

PRESS-SCHECHTER MASS FUNCTION

Press-Schechter spherical collapse formalism + power-law spectrum of initial (Gaussian) fluctuations \Rightarrow power law N(m) (exponential cutoff for large mass) \Leftrightarrow bifractal.

Spherical collapse \Rightarrow large m. In fact, collapse along the three axes in only 8% of regions (Doroshkevich, 1970), and they are very overdense: $P(\lambda_3 > 0|\delta)$ grows with δ and reaches 0.5 when $\delta = 1.5\sigma$ (Lee & Shandarin, 1998).

Lognormal for $m \gg m_0$ becomes power law (in a small range).

Can the real MF spectrum be more linear than its lognormal approximation?

MULTIFRACTALITY IN N-BODY SIMULATIONS

z = 0 positions in Λ CDM GIF2 simulation (Virgo Consortium): AP3M code; 400^3 particles in a volume of $(110 \ h^{-1} \ \text{Mpc})^3 \Rightarrow$ particle mass is $0.173 \ 10^{10} \ h^{-1} M_{\odot}$.

Statistics by *counts-in-cells*:

$$M_q(\ell) = \sum_{m=1}^{\infty} N(m) m^q.$$

Halos: $\ell_H = 256^{-1} > 400^{-1}$ ($\ell_H = 0.43 \ h^{-1}$ Mpc).

Distribution of 5515 haloes (cutoff 1000)

Mass-function evolution with ℓ

If MF scaling holds \Rightarrow stable MF spectrum.

For $\ell > \ell_H$ we expect a stable MF spectrum. How does it change for

Log-log plots of number of halos N versus their mass m (number of particles) at coarse-graining scales 512^{-1} (left), 256^{-1} (middle), and 128^{-1} (right). The rightmost plot shows a maximum for m = 2. Power-law (Press-Schechter) for $\ell < \ell_H \leftrightarrow$ virialization.

MF AS FRACTAL DISTRIBUTIONS OF HALOS + VOIDS

- GIF2 heavy haloes with 750 to 1000 particles (red);
- GIF2 light haloes with 100 to 150 particles (blue).

Number function $N[B(\boldsymbol{x},r)] \sim r^D$: fractal dimensions D = 1.1 and D = 1.9. Transition to homogeneity starts at $\simeq 14 \ h^{-1}$ Mpc.

Stable MF spectrum for $\ell > \ell_H$, but *full* spectrum only for larger scales.

Full multifractal spectrum $f(\alpha)$ for $\ell = 2^{\{-9, -8, -7, -6, -5\}}$ (yellow, red, green, blue, magenta).

- Entropy dimension = 2.5.
- Dimension of the support = 3.

$$\label{eq:alpha} \alpha(q=0)\simeq 3.3>3 \Rightarrow \text{sup-}$$

port dominated by voids.

Voids in the GIF2 simulation

MF spectrum shows that $f(3) \simeq 2.9 \Rightarrow$ boundary is a fractal surface with large dimension.

It is best to represent a slice to see the morphology \rightarrow no symmetry between halos and voids.

Fractal boundary of voids in a GIF2 slice

CONCLUSIONS

- Multifractals are the most general scaling mass distributions supporting halos and voids.
- Natural definition of halos ($\alpha < 3$), voids ($\alpha > 3$), and their boundary ($\alpha = 3$), which is a fractal surface.
- Halos and, therefore, galaxies have nonlinear bias w.r.t. the full dark matter distribution \rightarrow fractal debate (?)

CONCLUSIONS

- Multifractal analysis in terms of intermingled fractal populations of haloes \rightarrow good scaling.
- Non-symmetric MF spectrum \rightarrow bifractal.
- Stable MF spectrum for q > 0. Compatible with linear spectrum with *large-mass cutoff* (Press-Schechter).