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PLAN OF THE TALK

1. Motivation

2. Multifractals

3. Mass concetrations — halos

4. Mass depletions — voids

5. Multifractal clustering as fractal distributions of haloes.

6. Conclusions.
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MULTIFRACTALS

B Scale invariance = fractals

¥ Mass distributed according to a highly irregular pattern + scale

Invariance = multifractals

® Mass concentrations

I B
(o) — i 102 B@.7)
r—0 log r

& m|[B(x,r)] ~ ro®)

® Multifractal spectrum f () is the function that gives the fractal
dimension of the set of points with exponent .

Monofractal: constant & = f ().
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Correlation moments

B Coarse multifractal analysis: put an £-mesh of cubes and define
My(€) = 32, (mi/€)1/07% =37, mi /2471 = (pf) .
Scaling: M, () ~ 9 ~(q) = 7(q) — 3(qg — 1).

min,|q & — 7(q)], namely,

) =
q(a) a — Tlq(a)].

B Multifractal spectrum: f(c

a(Q) :T(Q)a f( )
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T-function and spectrum of a multinomial multifractal
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Correlation moments

" D(q) =7(q)/(q — 1) decreases with q. For a monofractal:
a = f(a) = D(q) = constant. In general:
q=0: f(a) = D(0) = —7(0), f'(a) = g = 0 = largest
fractal dimension — measure’s support.
g=1. a= f(a) = D(1), f'(a) = ¢ = 1 and convex =
f(a) < a — measure’s concentrate.

f (o)
2,

Spectrum of multinomial

1.5
multifractal, showing
1,
measure’s support and
0.5}

concentrate

005 1 1.5 2 2.5 3 3.5

Halos and voids in a multifractal model of cosmic structure — p.5/20



Linear MF spectrum

MF spectrum can be linear = bifractal:

0.5 1 1.5 2 ¢ /

Linear spectrum and 7-function. Crossover at ¢ = f'(a)

f () T(Q)
2 0. 25}
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Example: multinomial MF

Multinomial multifractals are self-
similar multifractals: the unit
square Is divided into (4) cells,
the unit mass distributed among
cells ({p;}), and the process it-

erated.

The MF spectrum can be ob-

tained:

7(q) = —logy » p!.
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Random multinomial measure

with distribution {%, i, %, %}
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MASS CONCENTRATIONS: HALOS

Fix the coarse-graining length £ — mass concentrations of size £ with

singular power-law profile ,0(7“) ox r P (b =3 — ).
Cosmology: natural value for ¢ is the lower limit to scaling (lower
cutoff). In /N-body simulations, the largest of:

(1) The linear size of the volume per particle.

(i) The gravitational softening length.

We identify mass concentrations with equal-size halos — virialization
affects scales below the lower cutoff.

Halo mass-function: N (m) ~ £~/ o = logm/log¢.
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Multinomial bifractal

. L
A Dbifractal can be ex- e
tracted: select {aq, ) <& w6 #

Multifractal models support | |
halo populations with different S i

levels of clustering. - A P

_ Two populations in a multinomial
Note voids.

multifractal.
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MASS DEPLETIONS: VOIDS

Halos have singular power- .
law profile p(1) o< =% (B =
3—a). Ifa>3= p(0) =0

— Vvoids.

200+
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Boundaries of voids: points

with « = 3 = p(0) > 0 and
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finite. They may not be reg-

ular surfaces but fractal sur- ractal boundary of voids in

faces with D = f(3) > 2. multinomial MF: f(2) = 1.93.
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BIASING AND VOIDS

Biasing: peculiar distribution of certain set of objects (galaxies <+
halos) with respect to the total matter distribution.

Bias from linear theory:
0 0
Lo —p°L o g, (r) = b2E(r), b> 1.
Pg P

Constant b bias in the nonlinear regime = similar voids for every

population —> false in MF.

% Voids not empty but harbor faint galaxies < galaxy formation
(Peebles, 2001).

@ Distribution of dark matter inside voids (Gottlober et al, 2003).

Halos and voids in a multifractal model of cosmic structure — p.11/20



LOGNORMAL PDF

Lognormal model: extension of the Gaussian linear theory into the

linear regime (Coles and Jones, 1991).

Lognormal pdf is the basic approximation to MF spectrum => also to
2
N(m) ~ £71@ ~ gela=a0)®  exp(—c BRI (theory of large

| In /|
deviations).

f (a)

2,
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75 Lognormal
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L approximation to
0.75¢
o multinomial multifractal
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Bad approximation to bifractal.
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PRESS-SCHECHTER MASS FUNCTION

Press-Schechter spherical collapse formalism + power-law spectrum
of initial (Gaussian) fluctuations =- power law /N (m) (exponential

cutoff for large mass) <= bifractal.

Spherical collapse = large m. In fact, collapse along the three axes in
only 8% of regions (Doroshkevich, 1970), and they are very overdense:
P(A3 > 0]0) grows with § and reaches 0.5 when § = 1.50 (Lee &
Shandarin, 1998).

Lognormal for m > mg becomes power law (in a small range).

Can the real MF spectrum be more linear than its lognormal

approximation?
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MULTIFRACTALITY IN N-BODY SIMULATIONS

z = 0 positions in ACDM GIF2
simulation (Virgo Consortium):
AP3M code; 400° particles in a vol- R T
ume of (110 A~! Mpc)? = particle ’
mass is 0.173 10'° =1 M. .

Statistics by counts-in-cells:

My(€) =%  N(m)m?.

m=1

Distribution of 5515 haloes
Halos: £z = 256~ > 400! (cutoff 1000)

(Yr = 0.43 h™! Mpc).
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Mass-function evolution with ¢

If MF scaling holds = stable MF spectrum.

For ¢ > /g we expect a stable MF spectrum. How does it change for
V< Vy?
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Log-log plots of number of halos /V versus their mass m (number of
particles) at coarse-graining scales 51271 (left), 256~ (middle), and
12871 (right). The rightmost plot shows a maximum for m = 2.

Power-law (Press-Schechter) for ¢ < ¢ < virialization.
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MF AS FRACTAL DISTRIBUTIONS OF HALOS + VOIDS
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¥ GIF2 heavy haloes with 750 to 1000 particles (red);
® GIF2 light haloes with 100 to 150 particles (blue).

Number function V[ B (z, )| ~ r": fractal dimensions D = 1.1 and

D = 1.9. Transition to homogeneity starts at ~ 14 h~! Mpc.
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Stable MF spectrum for £ > £, but full spectrum only for larger

scales.

Full multifractal spectrum f(«) for

f (o) f = 21—9,=8,~-7,—6,-5} (yellow, red,
2.5 green, blue, magenta).

1.5 % Entropy dimension = 2.5.

O_: ® Dimension of the support = 3.

eyt e Mg =10) ~3.3 >3 = sup-

port dominated by voids.
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Voids In the GIF2 simulation

250+

MF spectrum shows that
f(3) ~ 2.9 = boundary =
IS a fractal surface with large w0

dimension.

100+

It Is best to represent a slice

to see the morphology — no oL
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SYMELY bEteen Telos ere Fractal boundary of voids in a

voids. GIF2 slice
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Multifractals are the most general scaling mass distributions

supporting halos and voids.

¥ Natural definition of halos (¢ < 3), voids (o > 3), and their

boundary (o« = 3), which is a fractal surface.

¥ Linear MF spectrum < Press-Schechter power-law halo mass

function (bifractal).

¥ Halos and, therefore, galaxies have nonlinear bias w.r.t. the full

dark matter distribution — fractal debate (?)
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¥ Multifractal analysis in terms of intermingled fractal populations of

haloes — good scaling.
¥ Non-symmetric MF spectrum — bifractal.

B Stable MF spectrum for ¢ > 0. Compatible with linear spectrum

with large-mass cutoff (Press-Schechter).
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