Mass transport in adhesive flows

Andreĭ Sobolevskiĭ

Physics Department M.V. Lomonosov University of Moscow

Nonlinear Cosmology Workshop, Nice 2006

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 1 / 21

 2990

 $\mathcal{A} \equiv \mathcal{B} \rightarrow \mathcal{A} \equiv \mathcal{B}$

Outline

[Can shocks in solutions to the Burgers](#page-1-0) [equation model collapsed structures](#page-1-0) [adequately?](#page-1-0)

Outline

- [Can shocks in solutions to the Burgers](#page-1-0) [equation model collapsed structures](#page-1-0) [adequately?](#page-1-0)
- ² [Yes! \(A variational construction of mass](#page-23-0) [transport in shocks\)](#page-23-0)

 Ω

Collapsed structures

- Clusters
- **o** Filaments
- Walls

(Weinberg, Gunn 1990)

 QQ

Collapsed structures

- Clusters
- Filaments
- Walls

(Melott, Shandarin 1989)

 QQ

The Burgers equation

• Fluid particles move ballistically:

$$
\frac{d\,u}{dt}=\frac{\partial\,u}{\partial\,t}+(u\cdot\nabla)\,u=0\quad(\nabla\times\,u=0)
$$

• (Zel'dovich 1970, ... many others)

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 4 / 21

 2990

 $\mathbf{A} \equiv \mathbf{A} \mathbf{A}$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 5 / 21

つくへ

 \leftarrow

Crossing of trajectories

After crossing: multi-valued solution?

The Burgers equation revisited

• Fluid particles move ballistically:

$$
\frac{d\,u}{dt}=\frac{\partial\,u}{\partial\,t}+(u\cdot\nabla)\,u=0\quad(\nabla\times\,u=0)
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 6 / 21

The Burgers equation revisited

• Fluid particles move ballistically:

$$
\frac{du}{dt} = \frac{\partial u}{\partial t} + (u \cdot \nabla) u = 0 \quad (\nabla \times u = 0)
$$

• $u = \nabla \Phi: \quad \frac{\partial \Phi}{\partial t} + \frac{1}{2} |\nabla \Phi|^2 = 0$

つくへ

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 6 / 21

The Hamilton-Jacobi equation

$$
\frac{\partial \Phi}{\partial t} + H(\nabla \Phi) = 0
$$

 2990

$H(p)=\frac{1}{2}\left\vert p\right\vert ^{2}$ is the Hamiltonian

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 7 / 21

The Hamilton-Jacobi equation

$$
\frac{\partial \Phi}{\partial t} + H(\nabla \Phi) = 0
$$

 $H(p)=\frac{1}{2}\left\vert p\right\vert ^{2}$ is the Hamiltonian The Lagrangian: $L(\emph{v}) = \textrm{max}$ p $\left(\,\overline{v}\cdot\overline{p}-H(\overline{p})\right)$

 209

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 7 / 21

The Hamilton-Jacobi equation

$$
\frac{\partial \Phi}{\partial t} + H(\nabla \Phi) = 0
$$

 $H(p)=\frac{1}{2}\left\vert p\right\vert ^{2}$ is the Hamiltonian The Lagrangian: $L(\emph{v}) = \textrm{max}$ p $\left(\,\overline{v}\cdot\overline{p}-H(\overline{p})\right)$ \bullet $L(v) + H(p) > v \cdot p$: equality if $v = \nabla_p H(p)$

 QQ

 $\mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow \ \ \mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow$

Φ is the action function

$$
\frac{\partial \Phi}{\partial t} + H(\nabla \Phi) = 0
$$

つくへ

Directional derivative of Φ if $r = v$.

$$
\frac{d\Phi}{dt}[v]=v\cdot \nabla \Phi + \frac{\partial \Phi}{\partial t}
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 8 / 21

Φ is the action function

$$
\frac{\partial \Phi}{\partial t} + H(\nabla \Phi) = 0
$$

Directional derivative of Φ if $r = v$.

$$
\frac{d\Phi}{dt}[v]=v\cdot\nabla\Phi-H(\nabla\Phi)
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 8 / 21

Φ is the action function

$$
\frac{\partial \Phi}{\partial t} + H(\nabla \Phi) = 0
$$

Directional derivative of Φ if $r = v$:

$$
\begin{aligned} \frac{d\Phi}{dt}[v] &= v\cdot\nabla\Phi - H(\nabla\Phi) \\ &= L(\dot{r}) \quad \text{if}\,\ v = \dot{r} = \nabla_p H(\nabla\Phi) \end{aligned}
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 8 / 21

The Min Action principle. . .

$$
\frac{\partial \Phi}{\partial t} + H(\nabla \Phi) = 0
$$

$$
\Phi(r,t)=\min_{x(s):\,x(t)=r}\biggl(\Phi(x(s=0),0)\\+\int_0^t L(\dot{x}(s))\,ds\biggr)
$$

÷,

 QQ

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 9 / 21

. . . and how it works

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows $\qquad \qquad \text{NCW 2006} \qquad \text{10 / 21}$

 \leftarrow

E \mathbf{p}

. . . and how it works

E \mathbf{p}

 \leftarrow

"Cutting" of trajectories

A "collapsed structure" appears:

 QQ

"Cutting" of trajectories

A "collapsed structure" appears:

Trajectories extendable?

Question

Can one extend the trajectories of fluid particles beyond crossing the shock or do particles disappear on shocks?

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 12 / 21

 Ω

Outline

- [Can shocks in solutions to the Burgers](#page-1-0) [equation model collapsed structures](#page-1-0) [adequately?](#page-1-0)
- ² [Yes! \(A variational construction of mass](#page-23-0) [transport in shocks\)](#page-23-0)

The viscous limit

$$
\frac{\partial\Phi^\mu}{\partial t}+\frac{1}{2}\left|\nabla\Phi^\mu\right|^2=\mu\Delta\Phi^\mu
$$

As $\mu \rightarrow 0$, Φ^{μ} tends to the minimal action solution

 2990

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 14 / 21

The viscous limit

$$
\frac{\partial\Phi^\mu}{\partial t}+\frac{1}{2}\left|\nabla\Phi^\mu\right|^2=\mu\Delta\Phi^\mu
$$

- As $\mu \rightarrow 0$, Φ^{μ} tends to the minimal action solution
- Where do the particle trajectories $\dot{r} = u^{\mu}(r,t) = \nabla \Phi^{\mu}(r,t)$ tend?

Ilya Bogaevsky (math-ph/0407073) The limiting trajectories of fluid particles as $\mu \rightarrow 0$ define a velocity field within collapsed structures. This velocity field can be constructed explicitly from $\Phi(r, t)$.

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 15 / 21

Flow around a discontinuity in the r space:

Velocities in the v space:

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 16 / 21

 QQ

Center of the smallest circle (sphere) containing v', v'', v'''

Center of the smallest circle (sphere) containing v', v'', v'''

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 16 / 21

 Ω

Question Why the smallest circle?

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 16 / 21

Structure of Φ at shocks

At a shock, Φ is a minimum of several branches:

Structure of Φ at shocks

$$
\Phi = \min(\Phi_1, \dots, \Phi_m)
$$

$$
\frac{\partial \Phi_i}{\partial t} + H(\nabla \Phi_i) = 0
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 17 / 21

÷,

 299

COL

• A trajectory coming to a shock no longer minimizes the action

- A trajectory coming to a shock no longer minimizes the action
- *Idea:* try extending the trajectory so that its "surplus action" is min:

$$
L(\,v\,)-\frac{d\,\Phi}{dt}[\hskip.7pt v\hskip.7pt]\to{\rm min}
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 18 / 21

 QQ

\bullet The velocity v is determined from

$$
\max_i \left(L(v) - \frac{d\,\Phi_i}{dt}[v]\right) \to \min
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 19 / 21

 QQ

• The velocity v is determined from

$$
\max_i \left(L(v) - \frac{d\,\Phi_i}{dt}[v]\right) \to \min
$$

SALE AND

÷,

 QQ

 $\bullet \, d\Phi/dt[v] = v \cdot \nabla \Phi - H(\nabla \Phi)$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows NCW 2006 19 / 21

$$
\max_i (L(v) + H(\nabla \Phi_i) - v \cdot \nabla \Phi_i) \rightarrow \min
$$

 $\leftarrow \equiv$

 QQ

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows $\qquad \qquad \text{NCW 2006} \qquad 20 \;/ \;21$

$$
\max_i (L(v) + H(\nabla \Phi_i) - v \cdot \nabla \Phi_i) \rightarrow \min
$$

For
$$
H(p) = \left|p\right|^2/2
$$
, $L(v) = \left|v\right|^2/2$:
$$
\max_i \frac{1}{2} \left|v - \nabla \Phi_i\right|^2 \to \min_i
$$

Andreĭ Sobolevskiĭ (U. Moscow) Transport in adhesive flows $\qquad \qquad \text{NCW 2006} \qquad 20 \;/ \;21$

 $\leftarrow \equiv$

 QQ

Open questions

- Describe the limiting mass distribution within shocks
- Prove this result for general convex $H(p)$

 QQ