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Heavy Elements in Interior

Internal Structure Models
Consistent with Observed Gravitational Field
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| Fig. from Fortney & Nettelmann (2010)

Total Mass of Heavy Elements in Envelope [Earth Mass]

How massive is the core?

How much heavy elements are contained in the interior?

How are heavy elements distributed in the interior?



Proto-Solar System
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Giant Planet Formation
Core Accretion Model
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| | | & Growth in separate phases
1) Critical-mass core formation
I 1 via planetesimal accretion

2)Envelope formation via
runaway gas accretion
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(@ At the critical point, the core
and envelope masses are
comparable with each other.

" O ‘,/' 1 < Most of the envelope accretes

_ A 1 {1 in the runaway gas accretion
} phase.
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Mass (Earth mass)
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When Heavy Elements Accrete?

[ 1) Core-forming stage

2) Late runaway accretion
phase (see S. Idas talk)
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Critical Core Mass [Earth mass]

Critical Core Mass

Ikoma et al. (2000)
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(& The critical core mass depends

Possible range on core accretion rate
at Jupiters location

=» The mass of the core is
linked with planet accretion
process
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Time Constraint

Ikoma & Genda (2006); Hori & Ikoma (2010)
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(& The gas accretion timescale

=) No Nebula increases rapidly as the core
> 10 mass decreases.

=

= 108 (& The mass of the core must be
E more than 1-2 Earth masses;
D 107 otherwise, the envelope

> Typical nebula lifetimed  formation is not completed by
< nebular dispersal.
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Planetesimals of small size evaporate
on the way toward the core

Chelyabinsk meteor tom wikipedia

Heavy elements are deposited in the envelope
=> polluting the envelope



Envelope Pollution

Capfur‘e radius Tkoma & Kobayashi (2016, in prep.)
1 g Case of Mars-mass Core
1 2=0.7 0.1MEarth
OO} L=1019W, /=0.01 ]
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(o Planetesimals of <~ 100m are

Capture Radius [core radius = 1]

captured and ablated in the [ I, N
solar-composition envelope. 10cm Im 10m 100m 1km 10km 100km
=» polluting the envelope Planetesimal Size

(& Capture radius becomes
large rapidly with pollution =» polluting the envelope more



EXtect of Envelope Pollution
on the critical core mass

Venturini, Alibert, Benz, & Ikoma (2015)
see also Hori & Ikoma (2011)

100 (& The critical core mass is

reduced greatly by addition
of heavy elements in the
envelope.
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(W Highly polluted envelopes
result in critical mass of as
small as Martian mass.
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New Picture for Growth

Small core (of e.g. Mars-mass) is surrounded
) by highly polluted envelope.
The polluted envelope contracts and collects H/He

nebula gas, which results in slowing gas accretion

Gas accretion proceeds in balance with
the rate of planetesimal accretion.

Once planetesimal accretion becomes
unable to catch up with nebula gas
accretion, the nebula gas accretion
becomes runaway, forming a massive
envelope.




Predicted Internal Structure

Conventional Picture New Picture
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Other effects to be taken into account
Late stage solid accretion (see S. Idas talk)
Sedimentation or mixing of heavy elements
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