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Jupiter’s rotation

Jupiter is a rapidly rotating
planet:

P = 9.925 hr (Seidelmann et
al. 2007)
ε = 1− Rpol/Req = 6.49%

rotation needs to be properly
taken into account when
studying its structure and
pulsations (Royal Astronomical Society

of Canada)
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Effects of rotation

rotation introduces 2 inertial forces

the centrifugal force
the Coriolis force

neither respects spherical symmetry

2D non-separable problem (structure, oscillations)
oscillation modes are no longer described by a single spherical
harmonic
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Effects of rotation

Centrifugal force

flattening = ε ∝ Ω2R3
eq

GM

the outer layers are the most deformed

effect on acoustic modes ∝ ε
λ ∝ ωΩ2

λ = mode’s wavelength, ω = mode’s frequency

smaller effect on gravito-inertial modes which tend to be
deeper inside

174 I. W. Roxburgh: Rapidly rotating stars

2.3. Solution of the structure equations

The structure Eqs. (14)−(17) were solved using a scaled down
version of my stellar evolution code, setting time derivatives
to zero, using a fixed composition (X = 0.70, Z = 0.02)
and equilibrium pp and CN cycle nuclear reactions, and in-
corporating the factors A, B,C,D. The equation of state was
OPAL EOS2001 (Rogers & Nayfonov 2001) and the opacities
a smooth blend of OPAL GN93 (Iglesias & Rogers 1996) and
Alexander & Ferguson (1994) tables; interpolation in the tables
was by local splines which ensures continuity of first deriva-
tives. Convection was described by the local mixing length
model (see Appendix A) with α = 1.8, and convective mixing
is treated as a diffusion process with the diffusion coefficient
determined by the convective model. The structure equations
are discretised to 2nd order on the mesh in M(i) and solved
by relaxation, the solution is taken as having converged when
the relative changes in all variables, δVi/Vi, are less than some
specified value, normally set as 1/N2

i where Ni is the number
of mesh points.

2.4. Surface boundary conditions

The structure of the surface layers of rotating stars is another
area where our understanding is poor and effort needs to be put
in to understand the physics of these layers. This is the case
even for a slowly rotating star like the Sun where a better un-
derstanding of the structure of outer layers is needed before we
can determine the expected shape of the solar surface. This is a
problem with a long history going back to the interpretations of
the solar oblateness measured by Dicke & Goldenberg (1967).
Osaki (1966) proposed that the distribution of angular veloc-
ity is such that there is no meridional circulation and that this
distribution differs little from that of uniform rotation. We shall
here retain the assumption of uniform rotation in the surface
layers, deferring to subsequent work a more detailed study of
the atmosphere.

Since P, T are then constant on equipotential surfaces the
surface boundary condition must also be constant on equipo-
tentials. My evolution code has a simple grey Eddington at-
mosphere which is incorporated into the model by the simple
expedient of imposing the surface boundary condition T 4 =

0.75 T 4
eff(τ + 2/3), P = gτ/κ, high up in the radiative atmo-

sphere an optical depth τ ≈ 0.01−0.001 Since in a rotating
star the flux F, and hence the local Teff, and the local value of
effective gravity |∇Ψ|, vary over an equipotential surface, we
replace them by Ts, gs, their values averaged over the surface
equipotential

T 4
s =

L
σS ψ

=
L

4πσs2A
, gs =

∫

∇Ψ.dS

S ψ

=
GM
s2

C
A

(27)

where S ψ is the area of the equipotential, and take the boundary
condition as T 4 = 0.75T 4

s (τ + 2/3), P = gsτ/κ at some τ. This
condition is then independent of the angle θ f along which we
calculate the model.

Fig. 1. Equipotential surfaces in a model of 2 M� with an angular ve-
locity Ω = 2.2 × 10−4 rad/s. The points on these equipotentials are the
fitting points (rk, θk).

2.5. Mesh resolution and accuracy

Most models were computed taking the reference angle θ f =

π/2, ie along the equator; with Ni = 1000 for the mesh in Mi,
Nk = 8 for the solution of Poisson’s equation, and N j = 360 for
the computation of the factors A, B,C,D. All of θ f ,Ni,N j,Nk

were varied to check that the accuracy of the calculations was
of the order of 1:105. Details are given in Sect. 4 below. The
advantage of taking θ f = π/2 is that it was not necessary to
extend the radial mesh beyond the surface when calculating the
gravitational potential.

3. Results

Figure 1 shows the equipotential surfaces in a zams star of 2 M�
rotating with angular velocity Ω = 2.2 × 10−4 rad/s and equa-
torial velocity of 299 km s−1. The model was computed with
the angular variation of ρ,Φ modelled by Legendre polynomi-
als P2k, k = 0, 8, fitted at angles θk = kπ/2, k = 0, 8. The refer-
ence angle along which the model was computed was θ f = π/2,
the radial mesh was Ni = 1000 and the angular mesh N j = 360.
Figure 2 shows the variation of the factors A, B,C,D with ra-
dius for this model

Tables 1–4 list the properties of a family of models with
masses 1, 2, 5, 10 M� for a range of angular velocities. In all
cases the luminosity and polar radius decreases with increasing
angular velocity. as was found to be the case in earlier work
using a two zone perturbation model (Faulkner et al. 1968).

Note that for very rapid rotation the ratio of equatorial
to polar radius Re/Rp can exceed 1.5 and the parameter α =
Ω2R3

e/GM can exceed unity. This is primarily due to the con-
tribution of the gravitational quadrupole moment, Φ1(r)P2k

which enhances the gravitational attraction in the equatorial

(Roxburgh 2004)
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Effects of rotation

Coriolis force

conservation of angular momentum

intervenes in dynamic phenomena (oscillations, convection ...)

scales as 2Ω/ω in oscillations

strongest effect on low frequency modes ⇒ gravito-inertial
modes
inertial modes owe their existence to the Coriolis force (e.g.
Papaloizou & Pringle, 1978, Rieutord et al. 2001)

(Heimpel, Gastine, & Wicht, 2016, Nat. Geo.)
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How to include rotation

Different methods

perturbative: power series in Ω

traditional approximation: neglects horizontal component of
the Coriolis force and deformation

two-dimensional approach: the most accurate and costly

ray dynamics: insights into asymptotic behaviour
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Our method

a 2D approach

surface fitting coordinates

spectral methods (very accurate):

r : Chebyshev polynomials
θ, φ: spherical harmonics
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Model for Jupiter

we used an N = 1 polytrope at Ω/ΩK = 0.298622 (Kong et
al. 2013)

uniform rotation

Quantity Jupiter Our model εrel

Req (km) 71 492± 4 71 492 0 %
Rpol (km) 66 854± 10 66 931 0.116 %

ε = 1− Req

Rpol
0.06487(15) 0.06379 −1.67 %

Mass (kg) 1.8986× 1027 1.8986× 1027 0 %
Rot. period (hr) 9.925 9.925 −0.00036 %

Ω/ΩK 0.298621(41) 0.298622 0.00036 %
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A few equations

Polytropic model, N = 1

Po = Kρ
1+ 1

N
o

~0 = −~∇Po − ρo ~∇
(
Ψo + Ω2s2

)
∆Ψo = 4πGρo

Oscillations

iωρ = −~∇ · (ρo~v)

iωρo~v = −~∇p + ρ~geff − ρo ~∇Ψ− 2ρo~Ω× ~v

iω
(
p − c2

oρ
)

=
ρoc

2
oN

2
o

‖ ~geff‖2
~v · ~geff

∆Ψ = 4πGρ
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The multiplet

ω = ω0 −m(1− C)Ω +O(Ω2) C = Ledoux’s constant
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The multiplet

ω = ω0 −m(1− C)Ω +O(Ω2) C = Ledoux’s constant
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A spectrum
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Maximum perturbative error
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Higher ` and |m| values
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Higher ` and |m| values
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Higher ` and |m| values
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Avoided crossings

mixing of two coupled
modes with close
frequencies

makes mode
classification more
difficult

causes frequency
deviations
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Mode transformation
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Mode transformation
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Mode transformation
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New mode classification

Lignières & Georgeot, 2009

the study of ray dynamics reveals different classes of modes
(Lignières & Georgeot, 2008, 2009)
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2-period island Chaotic Whispering gallery
`− |m| small `− |m| medium `− |m| large

N
=

3
J

u
p

it
er

mode classification also applies to Jupiter

some island and chaotic modes probe the centre
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F. Lignières and B. Georgeot: Asymptotic analysis of high-freq u ency acou stic modes in rapidly rotating stars 1 1 8 3

Lignières & Georgeot, 2009

each class of modes
has it’s own frequency
organisation

(a) 2-period island
modes

(b) chaotic modes
(c) 6-period island

modes
(d) whispering gallery

modes
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2-period island modes

most visible class of
regular modes

characterised by a
different set of quantum
numbers, (ñ, ˜̀, m̃):

ñ = 2n + ε

˜̀ =
`− |m| − ε

2
m̃ = m

ε = `+ m modulo 2
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Reese et al., 2009

ωñ, ˜̀, m̃ ' ñ∆ñ + Dm̃(˜̀)

√
m̃2 + µ(˜̀)− m̃Ω + α(˜̀)

∆ñ and ∆˜̀ = ω˜̀+1 − ω˜̀ can be calculated from travel time
integrals (Lignières & Georgeot, 2008, 2009, Pasek et al.
2011, 2012)
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Probing the rotation profile

ν−m−νm

2m ' Ωeff
m +Ωeff

−m

2 + Cm+C−m

2

Ωeff =
∫
V Ωρo‖~ξ‖2dV∫
V ρo‖~ξ‖2dV

C = i
m

∫
V ρo

~Ω·(~ξ∗×~ξ)dV∫
V ρo‖~ξ‖2dV
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Probing the rotation profile

F
u

ll
2

D
T

ru
n

ca
te

d

need for full 2D calculations
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Conclusion

Rapid rotation

many additional phenomena

avoided crossings, new mode classification, geometry ...

need to fully include the effects of rotation in Jupiter’s
pulsations

only a 2D approach reproduces correctly the frequencies and
the geometry

Exciting prospects

unlike in stars, modes can be identified in Jupiter

possibility of carrying seismology in a rapidly rotating object
address interesting science questions (rotation profile, size of
the core)
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