The effects of rotation

Daniel R. Reese

LESIA, Observatoire de Paris

April 19, 2016

< □ > < □ > < □ > < □ > < □ > .

æ

Jupiter's rotation

- Jupiter is a rapidly rotating planet:
 - *P* = 9.925 hr (Seidelmann et al. 2007)

•
$$\varepsilon = 1 - R_{\rm pol} / R_{\rm eq} = 6.49\%$$

 rotation needs to be properly taken into account when studying its structure and pulsations

(Royal Astronomical Society of Canada)

▲ 御 ▶ → ミ ▶

Introduction	Method	Rotation and oscillations	Conclusion
0000			

Effects of rotation

- rotation introduces 2 inertial forces
 - the centrifugal force
 - the Coriolis force
- neither respects spherical symmetry
 - 2D non-separable problem (structure, oscillations)
 - oscillation modes are no longer described by a single spherical harmonic

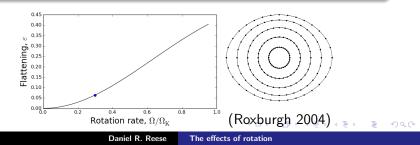
Introduction	Method	Rotation and oscillations	Conclusion
0000			

Effects of rotation

Centrifugal force

• flattening =
$$\varepsilon \propto \frac{\Omega^2 R_{eq}^3}{GM}$$

- the outer layers are the most deformed
- effect on acoustic modes $\propto rac{arepsilon}{\lambda} \propto \omega \Omega^2$
 - $\lambda = {\rm mode's}$ wavelength, $\omega = {\rm mode's}$ frequency
- smaller effect on gravito-inertial modes which tend to be deeper inside

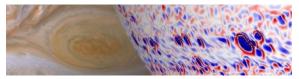


Introduction	Method	Rotation and oscillations	Conclusion
0000	0000	00000000000	

Effects of rotation

Coriolis force

- conservation of angular momentum
- intervenes in dynamic phenomena (oscillations, convection ...)
- scales as $2\Omega/\omega$ in oscillations
 - strongest effect on low frequency modes \Rightarrow gravito-inertial modes
 - inertial modes owe their existence to the Coriolis force (e.g. Papaloizou & Pringle, 1978, Rieutord et al. 2001)



(Heimpel, Gastine, & Wicht, 2016, Nat. Geo.)

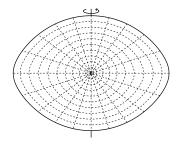
How to include rotation

Different methods

- perturbative: power series in Ω
- traditional approximation: neglects horizontal component of the Coriolis force and deformation
- two-dimensional approach: the most accurate and costly
- ray dynamics: insights into asymptotic behaviour

Introduction	Method ○●○○	Rotation and oscillations	Conclusion
Our method			

- a 2D approach
- surface fitting coordinates
- spectral methods (very accurate):
 - r: Chebyshev polynomials
 - θ , ϕ : spherical harmonics



▲ □ ▶ ▲ 三

≣ ▶

	0000	00000000000	
Model for J	upiter		

- we used an N=1 polytrope at $\Omega/\Omega_{\rm K}=0.298622$ (Kong et al. 2013)
- uniform rotation

Quantity	Jupiter	Our model	$\varepsilon_{\rm rel}$
$R_{ m eq}$ (km)	71492 ± 4	71 492	0 %
$R_{ m pol}$ (km)	66854 ± 10	66 931	0.116%
$arepsilon = 1 - rac{ extsf{R}_{ extsf{eq}}}{ extsf{R}_{ extsf{pol}}}$	0.06487(15)	0.06379	-1.67%
Mass (kg)	1.8986×10^{27}	$1.8986 imes10^{27}$	0 %
Rot. period (hr)	9.925	9.925	-0.00036%
Ω/Ω_K	0.298621(41)	0.298622	0.00036 %

(4日) (日)

æ

Introduction	Method ○○○●	Rotation and oscillations	Conclusion
A few equa	ations		

Polytropic model, N = 1

$$P_{o} = K \rho_{o}^{1+\frac{1}{N}}$$

$$\vec{0} = -\vec{\nabla} P_{o} - \rho_{o} \vec{\nabla} (\Psi_{o} + \Omega^{2} s^{2})$$

$$\Delta \Psi_{o} = 4\pi G \rho_{o}$$

Oscillations

$$\begin{split} i\omega\rho &= -\vec{\nabla}\cdot(\rho_o\vec{v})\\ i\omega\rho_o\vec{v} &= -\vec{\nabla}p + \rho\vec{g}_{\rm eff} - \rho_o\vec{\nabla}\Psi - 2\rho_o\vec{\Omega}\times\vec{v}\\ i\omega\left(p - c_o^2\rho\right) &= \frac{\rho_o c_o^2N_o^2}{\|\vec{g}_{\rm eff}\|^2}\vec{v}\cdot\vec{g}_{\rm eff}\\ \Delta\Psi &= 4\pi G\rho \end{split}$$

590

Introduction	Method	Rotation and oscillations	Conclusion
	0000		
	ations		

Polytropic model, N = 1

$$P_{o} = K \rho_{o}^{1+\frac{1}{N}}$$

$$\vec{0} = -\vec{\nabla} P_{o} - \rho_{o} \vec{\nabla} \left(\Psi_{o} + \Omega^{2} s^{2} \right)$$

$$\Delta \Psi_{o} = 4\pi G \rho_{o}$$

Oscillations

$$\begin{split} i\omega\rho &= -\vec{\nabla}\cdot(\rho_o\vec{v})\\ i\omega\rho_o\vec{v} &= -\vec{\nabla}\rho + \rho\vec{g}_{\text{eff}} - \rho_o\vec{\nabla}\Psi - \boxed{2\rho_o\vec{\Omega}\times\vec{v}}\\ i\omega\left(p - c_o^2\rho\right) &= \frac{\rho_oc_o^2N_o^2}{\|\vec{g}_{\text{eff}}\|^2}\vec{v}\cdot\vec{g}_{\text{eff}}\\ \Delta\Psi &= 4\pi G\rho \end{split}$$

Daniel R. Reese

The effects of rotation

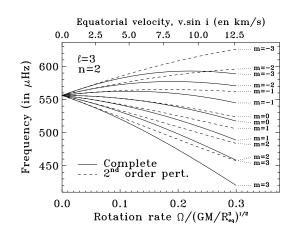
200

Method

Rotation and oscillations

Conclusion

The multiplet



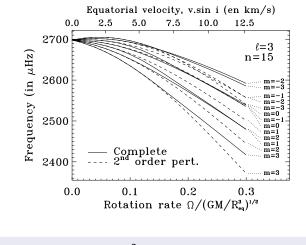
 $\omega = \omega_0 - m(1 - C)\Omega + O(\Omega^2)$ C = Ledoux's constant

Method

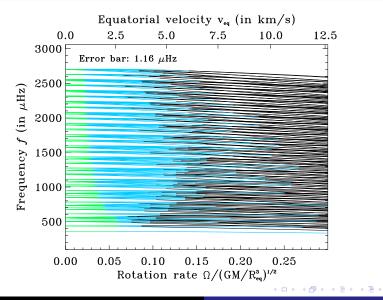
Rotation and oscillations

Conclusion

The multiplet



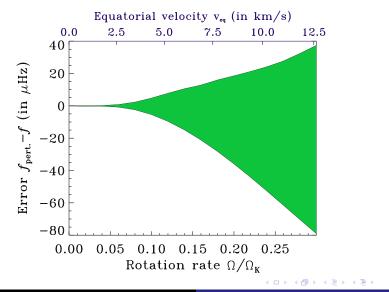
 $\omega = \omega_0 - m(1 - C)\Omega + O(\Omega^2)$ C = Ledoux's constant



æ

Introduction	Method	Rotation and oscillations	Conclusion
		00000000000	

Maximum perturbative error



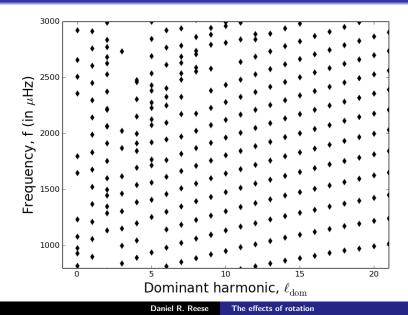
Method

Rotation and oscillations

Conclusion

э

Higher ℓ and |m| values



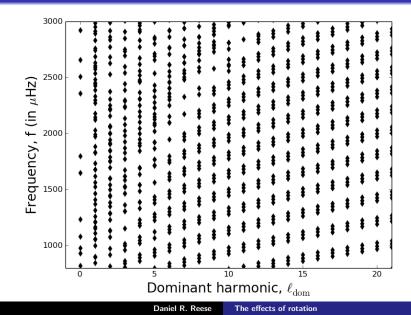
Method

Rotation and oscillations

Conclusion

æ

Higher ℓ and |m| values



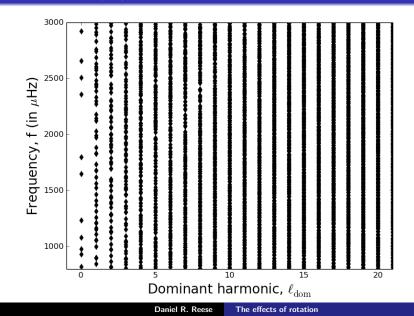
Method

Rotation and oscillations

Conclusion

æ

Higher ℓ and |m| values

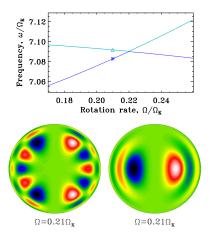


Method

Rotation and oscillations

Conclusion

Avoided crossings



- mixing of two coupled modes with close frequencies
- makes mode classification more difficult
- causes frequency deviations

(4日) (4日)

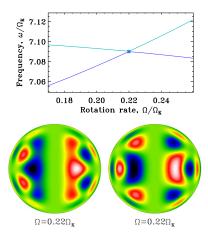
-

Method

Rotation and oscillations

Conclusion

Avoided crossings



- mixing of two coupled modes with close frequencies
- makes mode classification more difficult
- causes frequency deviations

(4日) (4日)

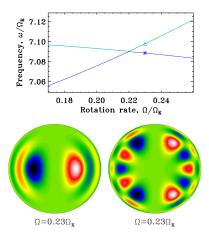
-

Method

Rotation and oscillations

Conclusion

Avoided crossings



- mixing of two coupled modes with close frequencies
- makes mode classification more difficult
- causes frequency deviations

▲ □ ► < □ ►</p>

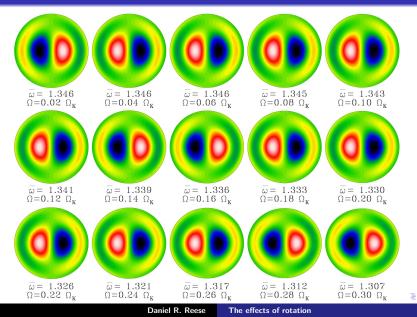
-≣->

Method

Rotation and oscillations

Conclusion

Mode transformation



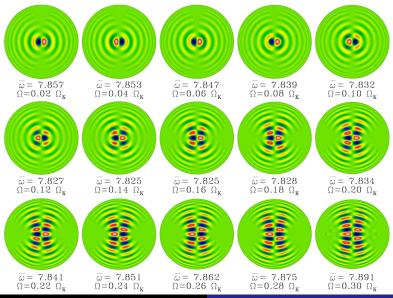
Method

Rotation and oscillations

Conclusion

æ

Mode transformation



Daniel R. Reese

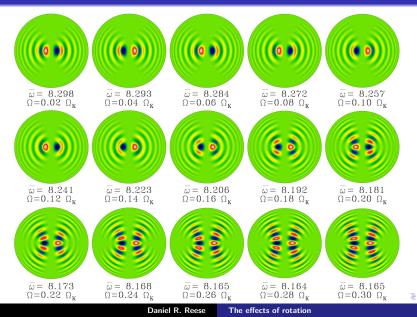
The effects of rotation

Method

Rotation and oscillations

Conclusion

Mode transformation

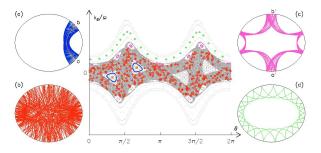


Method

Rotation and oscillations

Conclusion

New mode classification



Lignières & Georgeot, 2009

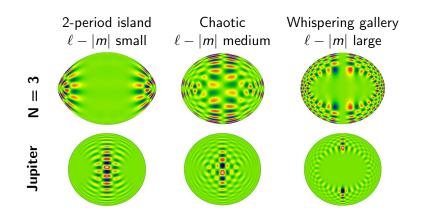
• the study of ray dynamics reveals different classes of modes (Lignières & Georgeot, 2008, 2009)

A (10) > (10)

Method

Rotation and oscillations

Conclusion

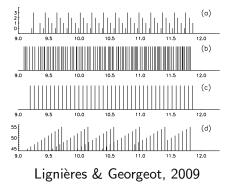


- mode classification also applies to Jupiter
- some island and chaotic modes probe the centre

イロト イヨト イヨト イヨト

æ

Method



- each class of modes has it's own frequency organisation
 - (a) 2-period island modes
 - (b) chaotic modes
 - (c) 6-period island modes
 - (d) whispering gallery modes

A ₽

Method

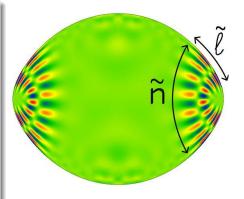
Rotation and oscillations

Conclusion

2-period island modes

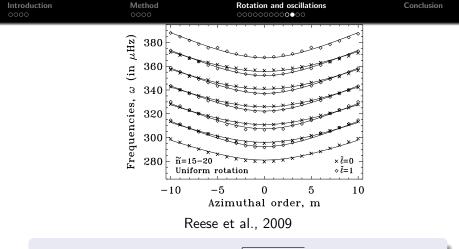
- most visible class of regular modes
- characterised by a different set of quantum numbers, (ñ, ℓ, m̃):

$$\begin{split} \tilde{n} &= 2n + \varepsilon \\ \tilde{\ell} &= \frac{\ell - |m| - \varepsilon}{2} \\ \tilde{m} &= m \\ \varepsilon &= \ell + m \text{ modulo } 2 \end{split}$$



・ロト ・回ト ・ヨト

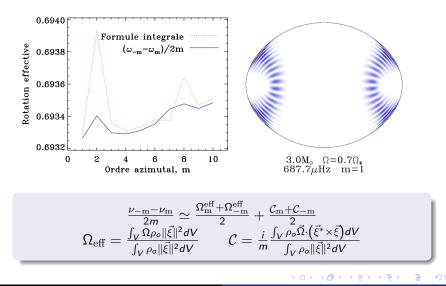
-≣->



$$\omega_{\tilde{n},\tilde{\ell},\tilde{m}} \simeq \tilde{n}\Delta_{\tilde{n}} + D_{\tilde{m}}(\tilde{\ell})\sqrt{\tilde{m}^2 + \mu(\tilde{\ell}) - \tilde{m}\Omega + \alpha(\tilde{\ell})}$$

Δ_ñ and Δ_ℓ = ω_{ℓ+1} - ω_ℓ can be calculated from travel time integrals (Lignières & Georgeot, 2008, 2009, Pasek et al. 2011, 2012)

Probing the rotation profile

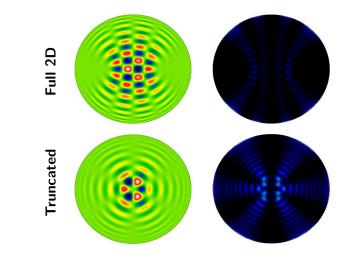


Method

Rotation and oscillations

Conclusion

Probing the rotation profile



• need for full 2D calculations

Introducti	on
0000	

Conclusion

Rapid rotation

- many additional phenomena
 - avoided crossings, new mode classification, geometry ...
- need to fully include the effects of rotation in Jupiter's pulsations
 - only a 2D approach reproduces correctly the frequencies and the geometry

Exciting prospects

- unlike in stars, modes can be identified in Jupiter
 - possibility of carrying seismology in a rapidly rotating object
 - address interesting science questions (rotation profile, size of the core)

A ■