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Planets embedded in a planetesimal disk will migrate as a result of angular momentum and
energy conservation as the planets scatter the planetesimals that they encounter. A surprising
variety of interesting and complex dynamics can arise from this apparently simple process. In
this Chapter, we review the basic characteristics of planetesimal-driven migration. We discuss
how the structure of a planetary system controls migration. We describe how this type of
migration can cause planetary systems to become dynamically unstable and how a massive
planetesimal disk can save planets from being ejected from the planetary system during this
instability. We examine how the Solar System’s small body reservoirs, particularly the Kuiper
belt and Jupiter’s Trojan asteroids, constrain what happened here. We also review a new model
for the early dynamical evolution of the outer Solar System that quantitatively reproduces much
of what we see. And finally, we briefly discuss how planetesimal driven migration could have
affected some of the extra-solar systems that have recently been discovered.

1. INTRODUCTION

Our understanding of the origin and evolution of planets
has drastically transformed in the last decade. Perhaps the
most fundamental change was the realization that planets, in
general, may not have formed in the orbits in which we see
them. Indeed, planets may have migrated huge distances af-
ter they were born, as many of the extra-solar planetary sys-
tems show (Moorhead and Adams, 2005; Papaloizou and
Terquem, 2006),

There are three main dynamical mechanisms that can
cause such a wholesale evolution in planetary orbits. First,
at early times when the natal proto-planetary gas disk is still
in existence, gravitational interactions between the disk and
a planet could cause a significant amount of orbital evo-
lution (see the chapter by Papaloizou et al. for a discus-
sion). Second, after the gas disk is gone, if there still is
a significant number of planetesimals in the system, the
planets can migrate as a result of gravitational encounters
with these objects. In particular, if a planet is immersed in
a sea of small bodies, it will recoil every time it gravita-
tionally scatters one of these objects. In general, since the
small objects can come in from any direction, this will force
the planets to undergo a small random walk in semi-major
axis. However, since the sinks for these objects, for exam-
ple ejection from the system or encountering a neighboring

planet, tend to lie on one side of the planet in question or
another, there will be a net flux of material inward or out-
ward. The planet must move in the opposite direction in
order to conserve energy and angular momentum. In the ab-
sence of strong gravitational perturbations from other plan-
ets, the semi-major axis of planet in question will smoothly
change with time. In the remainder of this chapter, we refer
to this type of migration as simple migration. Third, plan-
etary systems can suffer a dynamical instability (Levison et
al. 1998) that can lead to a short, but violent period of or-
bital evolution during which the planetary eccentricities are
increased to large values (Rasio and Ford, 1996). If the in-
stability can be damped by some process (like dynamical
friction with a disk), the planets can once again evolve onto
nearly circular orbits, but in very different locations from
where they formed. It has been suggested that this kind of
instability occurred in the outer parts of our planetary sys-
tem (Thommes et al., 1999; Levison et al., 2001; Tsiganis
et al., 2005).

The primary foci of this chapter are the second and the
third mechanisms described above; namely migration in
planetesimal disks. Although we claimed at the opening of
this chapter that the role that planetesimal-driven migration
played in the evolution of planetary systems was only ac-
knowledged within the last decade, the idea itself is over 20
years old. The first discussion of this process was presented
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by Fernández and Ip, (1984). Their paper describes the re-
sponse of Jupiter, Saturn, Uranus, and Neptune to a rem-
nant disk of planetesimals. Although much of the details
have changed as our ability to perform orbital integrations
has improved, these authors found the basic result which is
still held true today.

The importance of the work by Fernández and Ip was
not really appreciated until the discovery of the Kuiper belt
nearly a decade later, with its numerous objects on eccen-
tric orbits in mean motion resonances with Neptune. Mal-
hotra (1993, 1995) first showed that these orbits could be
the natural result of Neptune’s outward migration and con-
cluded that Neptune must have migrated about 7 AU in or-
der to explain the eccentricities that we see (c.f. Section 3).

Much work as been done on this topic since Fernández
and Ip’s and Malhotra’s groundbreaking papers. This liter-
ature is the topic of the remainder of the chapter, although
it should be noted that this chapter is intended more as dis-
cussion of the current state-of-the-art than a review paper.
In Section 2 and Section 3 we describe some of the basic
physics that governs planet migration and resonant capture,
respectively. In Section 4, we examine simple planetesimal-
driven migration in the Solar System. In Section 5 we look
at how instabilities in the orbits of the planets, coupled with
gravitational interactions with a massive planetesimal disk,
could lead to significant changes in the orbits of the plan-
ets. We review a new model for the early dynamical evo-
lution of the giant planets of the Solar System in Section 6,
and planetesimal-driven migration in extra-solar systems in
Section 7. In Section 8 we discuss some caveats and lim-
itations of the N -body simulations on which most of the
content of this chapter is based. We present our concluding
remarks in Section 9.

2. BASIC PRINCIPLES OF SIMPLE MIGRATION

The migration history for each individual planet is com-
plicated because it is dependent on the details of how an-
gular momentum flows through the system, namely on the
distribution and the evolution of the mass and the angular
momentum of the planet crossing objects. These quantities,
in turn, are determined by the sources and sinks for these
particles. As a result, attempts to develop analytic theories
for migration have studied very simple systems consisting
of a single planet in a dynamically cold disk (Murray et
al., 1998; Ida et al., 2000, hereafter IBLT00). So, the goal
of this section is not to develop a comprehensive analyti-
cal model, but to develop a toy model to help a qualitative
understanding of some of the important physical processes
involved. Much of what we present is based on the work
in Gomes et al., (2004), hereafter GML04. We start with a
very simple model.

2.1. A Simple Model
IBLT00 shows that the rate of change of a planet’s semi-

major axis, a is

da

dt
= − 2

Mp

√
aḢ×, (1)

where Mp is the mass of the planet, and Ḣ× is the rate
of transfer of angular momentum from the planetesimals
to the planet. This equation assumes that the eccentric-
ity of the planet is small and G ≡ 1. Using the particle-
in-a-box approximation, it is possible to show that Ḣ× =
εk̄M(t)a−1, where ε is a quantity that contains funda-
mental constants and information about the geometry of
the planet-encountering region, M(t) is the total mass in
planet-encountering orbits, and k̄ is the average change of
angular momentum per encounter, per unit mass planetesi-
mal. Thus,

da

dt
= −2εk̄

M(t)

Mp

1√
a
. (2)

The evolution of M(t) can be approximated by the equa-
tion

Ṁ(t) = −M(t)/τ + 2πa|ȧ|Σ(a) , (3)

where the first term in the r.h.s. represents the decay of the
planetesimal population due to the planetesimal’s finite dy-
namical lifetime, and the second term stands for the plan-
etesimals that, because of the change in the planet’s posi-
tion, enter the region where they can be scattered by the
planet for the first time. In (3) Σ(a) is the surface density
of the ‘virgin’ (i.e. not yet scattered) planetesimal disk at
heliocentric distance a. Substituting (2) into (3) we get

Ṁ(t) =
(

−τ−1 + 4πε|k̄|
√

aΣ(a)/Mp

)

M(t) . (4)

Let’s assume for simplicity that the term α ≡ −τ−1 +
4πε|k̄|√aΣ(a)/Mp does not significantly change with time
— an approximation that is clearly not true, but it allows us
to get the essence of the planet’s behavior. Under this as-
sumption, Eq. (4) becomes an exponential equation, which
is solvable and thus will allow us to get some insight into
how the planet migrates.

If α is negative, then M(t) decays exponentially to 0
and the planet (from Eq. 1) stops migrating. In this case,
the loss of planetesimals due to their finite dynamical life-
time is not compensated by the acquisition of new planetes-
imals into the scattering region. Therefore, the planet runs
‘out of fuel’. GML04 called this migration mode damped
migration. Conversely, if α is positive, M(t) grows expo-
nentially and the planet’s migration accelerates. In this case
the acquisition of new planetesimals due to the migration
exceeds the losses, and the migration is sustained. Thus,
we will call this migration mode sustained migration.

2.2. The Direction of Migration
One of the limitations of the above description is that it

does not contain any direct information about the direction
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of migration. This information is hidden in k̄. Recall that
the migration process is driven by gravitational encounters
between planets and disk particles. To zeroth order, dur-
ing an encounter the two objects are in a Kepler orbit about
one another. Since the energy of this orbit must be con-
served, all the encounter can do is rotate the relative veloc-
ity vector between the pair. Thus, the consequences of such
an encounter can be effectively computed in most of the
cases using an impulse approximation (Opik, 1976; also see
IBLT00). Using this approach, it is easy to compute that on
average (that is averaged on all impact parameters and rel-
ative orientations) the planetesimals that cause a planet to
move outward are those whose z-component of the angular
momentum H =

√

a(1 − e2) cos i is larger than that of the
planet (Hp). The opposite is true for the planetesimals with
H < Hp (Valsecchi and Manara, 1997). In these formulæ
a, e and i are the semi-major axis, eccentricity and inclina-
tion of the planetesimal. Thus, k̄ is a function of the angular
momentum distribution of objects on planet-encountering
orbits, and it is positive if more material has H > Hp, zero
if the average H is the same as HP , and negative otherwise.

The main physical effect that was not included in the
derivation of Eq. (4) was the influence that the particles
both entering and leaving the planet-encountering region
can have on k̄. For a single planet in a disk, there are two
main sinks for the particles. Particles can hit the planet (this
is the only sink that IBLT00 considered). Since the chance
of hitting the planet is roughly independent of the sign of
H − HP , in general this sink will not effect k̄ and thus it is
migration neutral. In addition, a planet can eject particles.
These particles remove energy and thus the planet must
move inward in response. The ability of a planet to eject
particles depends on the dynamical excitation of the disk.
We characterize the latter by the parameter v′ ≡ venc/vc,
where venc is the typical encounter velocity of disk parti-
cles with the planet, and vc is the planets’s circular velocity.
No matter how massive a planet is, it cannot eject a particle
if the particle’s v′<v?, where v? =

√
2− 1≈0.4. However,

v′ is only conserved if the planet is on a circular orbit. In
cases where that is not true, ejection can occur even if the
disk is initially cold.

Multiple planet systems allow for another sink — par-
ticles can be tranferred from one planet to another. The
best example is provided by the Solar System’s four giant
planets. Numerical experiments show that in the interac-
tion with a disk of planetesimals Jupiter moves inward, but
the other 3 giants move outward (Fernández and Ip, 1984;
Hahn and Malhotra, 1999; Gomes et al., 2003). We can
illustrate why Neptune moves outward with the following
hand-waving argument. An object’s velocity in an inertial
frame is ~v = ~vc + ~venc. Assuming that after the encounter
~venc is pointing in a random direction, the probability of
ejection is

peject =

(

v′
2
+ 2v′ − 1

4v′

)

(5)

(the black curve in Figure 1).
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Fig. 1.— The probability of a particular dynamical outcome resulting
from an encounter between a small body and Neptune, as a function of the
encounter velocity. The black curve shows the probability of ejection as
determined by Equation 5. The colored curves show the probability that
the encounter will lead to the object being scattered onto a bound ‘Uranus-
crossing’ orbit for different semi-major axes of Uranus. These curves were
determined from simple analytic arguments or simple numerical experi-
ments, see text.

The probability that an object is transferred to Uranus
(i.e. acquires an orbit with perihelion distance q < aUra)
depends on v′ and on the ratio of Uranus’ semi-major axis
to that of Neptune (aUra/aNep). It can be evaluated using a
Monte Carlo method, if the assumption used to derive Equa-
tion 5 is again made. The colored curves in Figure 1 show
the results for five different values of aUra/aNep. Currently
aUra/aNep = 0.64 (orange curve). Figure 1 shows that if
aUra/aNep & 0.3 and v′ . 0.5 Neptune is more likely to
transfer objects to Uranus then to eject them. This explains
why this planet moves outwards.

So far we have considered only the planetesimal sinks
in the planet migration process. In addition to these, there
are two ways in which new particles can be added to the
planet-crossing population. The first of these is actually a
source/sink pair caused by the migration process itself. As
the planet moves, so does the planet-encountering region
and thus some particles leave this region while new particles
enter it. If the planet is moving outward, the particles that
leave have H < Hp, while those that enter have H > Hp.
The opposite is true if the planet is moving inward. Thus,
this process tends to support any migration that was started
by another mechanism.

Resonances with the planet are another source for parti-
cles. Objects originally in the chaotic regions of these res-
onances can have their eccentricities pumped until their or-
bits start to encounter the planet (c.f. Duncan et al., 1995).
The effect that this source has on k̄ depends on the plan-
etesimal surface density profile and on the strength of the
resonances.
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To summarize, the actual migration behavior of planets
depends on a competition between the various sources and
sinks. If the material in the planet encountering region is
removed faster than it is replenished, the planet’s migra-
tion rate will decay to zero. We call this behavior damped
migration. If the planet-encountering region is replenished
faster than it is depleted, the migration is said to be sus-
tained. Sustained migration is divided into two types. If the
migration is nourished by particles being fed into planet-
encountering region by the migration itself and the sinks do
not require the presence of other planets, we refer to it as
runaway migration. If other planets are required, we name
the migration mode forced migration.

3. RESONANT CAPTURE DURING PLANET MI-
GRATION

One consequence of a planet’s orbital migration is that
the mean motion resonances (MMRs) with the planet also
move. During this process, disk planetesimals that are
‘swept’ by a MMR can be captured in it. Resonance capture
is a complicated process and an active subject of research
in the field of non-linear dynamics (see for instance Wig-
gins, 1991; Neishtadt, 1975, 1987, 1997; Henrard, 1982;
Malhotra, 1993, 1995). The evolution of a particle interact-
ing with a moving resonance depends sensitively on initial
conditions, the nature of the resonance, the rate of evolu-
tion due to dissipative effects, etc. A model that has been
studied in detail is that of a single resonance in the so-
called adiabatic approximation. In the framework consid-
ered in this chapter, this model would correspond to a single
planet on a circular orbit, migrating slowly and monotoni-
cally. The adiabatic condition is met if the time required
for a resonance to move by a heliocentric distance range
comparable to the resonance width is much longer than
the libration timescale inside the resonance (which itself is
much longer than the orbital timescale). In this case, the
probability of resonance capture has been calculated semi-
analytically (Henrard and Lemaitre, 1983; Borderies and
Goldreich, 1984).

In essence, resonance capture can occur only in exterior
MMRs (which for the resonance called the ‘j : j +k MMR’
implies k > 0) if the planet is moving outwards, and in
interior MMRs (k < 0) if the planet is moving inwards
(Henrard and Lemaitre, 1983; Neishtadt, 1987; Tsiganis et
al., 2005). However, if the particle is swept in the correct
direction, capture into the resonance is not guaranteed. For
instance, in the adiabatic approximation, capture into the
2:3 MMR with Neptune (where many Kuiper belt objects
are seen, including Pluto) is certain only if Neptune is mi-
grating outward and the initial eccentricity of the particle is
less that ∼ 0.03. The capture probability decreases mono-
tonically (but not linearly!) for higher initial eccentricities:
it is less than 10% for e > 0.15.

If the object is captured into the resonance, it then moves
with the resonance as the planets continues in its migra-
tion. During this evolution, the eccentricity of the object

increases monotonically at a rate determined by the migra-
tion rate of the planet, which gives the relationship (Malho-
tra, 1995):

e2
final = e2

initial +
j

j + k
ln

ap,final

ap,initial

(6)

where ap,initial is the semi-major axis of the planet when the
body enters into resonance, einitial is the eccentricity of the
body at that time, ap,final is the semi-major axis of the planet
at the time of consideration and efinal is the eccentricity of
the object at the same instant.

Resonances however are not stable at all eccentricities. If
the eccentricity is large enough, the resonance cannot pro-
tect the objects from close encounters with the planet. Thus,
in this picture (see Malhotra, 1995), as the planet migrates,
planetesimals are captured into MMRs, move together with
the resonances while growing their orbital eccentricities un-
til they reach the instability limit, and start to be scattered
by the planet. The resonant population remains in roughly
a steady-state as long as the resonance remains in the disk,
because new objects enter into the resonance while large
eccentricity objects leave it. If the resonance passes be-
yond the edge of the disk, it is no longer refilled with new
objects. The resonant population decays as the resonance
moves away from the edge, while the minimum eccentricity
of the resonant population grows, so that the low eccentric-
ity portion of the resonance becomes empty.

The formula in Equation 6 is useful to deduce some
properties of the migration. For instance, if a resonance
is populated with objects up to an eccentricity equal to
emax (and the latter is smaller than the threshold value for
instability), it means that the planet migrated a distance
δap = exp

[

((j + k)/j) e2
max

]

. Malhotra (1995), observ-
ing that the eccentricity of Kuiper belt objects in the 2:3
MMR is smaller than 0.32, deduced that Neptune migrated
at least 7 AU (i.e. it formed at a.23 AU).

Unfortunately, reality is not as simple as the adiabatic
model predicts. If the resonance is surrounded by a chaotic
layer, as it is the case if the planet’s eccentricity is not zero
or the inclination of the particle is large, the computation
of the capture probability with semi-analytic techniques is
essentially impossible, because it depends also on the dif-
fusion speed inside the chaotic layer (Henrard and Mor-
bidelli, 1993). Numerical simulations of migration of Nep-
tune in more realistic models of the planetary system show
that the capture probability is much less sensitive on the par-
ticles orbital eccentricity than the adiabatic theory predicts,
and resonance capture is quite likely also at large eccentric-
ity (Chiang et al., 2003; Gomes, 2003; Hahn and Malho-
tra, 2005).

Another difference between reality and the adiabatic
model concerns the eccentricity growth of resonant objects
during the migration. While in the adiabatic model the ec-
centricity grows monotonically, in reality there can be sec-
ular terms forcing large amplitude oscillations of the ec-
centricity in resonant objects. For example, Levison and
Morbidelli (2003) showed that if a sufficiently large amount
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of planetesimal mass has been accumulated in a MMR,
the planet feels perturbations from this material that cause
new frequencies to appear in the planet’s precession spec-
trum. These frequencies are near those of the resonant ob-
jects. Thus, the particles can resonate with frequencies in
the planetary motion that they, themselves, induced, which
produces large oscillations in their eccentricity. In this sit-
uation, Levison and Morbidelli (2003) showed that the res-
onant population can extend down to e∼ 0 even when the
resonance has moved 10 AU passed the edge of the disk.

Another complication to this story occurs if there are rel-
atively large objects in the planetesimal disk that the planets
are migrating through. Resonant capture requires that the
migration of the planet is smooth. If the planet has jumps in
semi-major axis due to the encounters with other planets or
massive planetesimals, the locations of its mean motion res-
onances jump as well. If the amplitude of these jumps is of
order of the resonance width or larger, the particles trapped
in the resonances will be released. A model of stochastic
migration in planetesimal disks has been recently developed
by Murray-Clay and Chiang (2005).

4. SIMPLE MIGRATION IN THE SOLAR SYSTEM.
As described above, the magnitude and direction of plan-

etesimal driven migration is determined by a complex inter-
action of various dynamical sources and sinks of disk par-
ticles. Thus, this migration process is best studied through
numerical experiments. In this section, we review what we
know about the migration of the four giant planets of the So-
lar System. Many researchers have studied this issue (Hahn
and Malhotra, 1999; Gomes, 2003; GML04), however we
base our discussion on that in GML04.

4.1. Migration in Extended Disks
The simulations that follow all start with the following

initial conditions. Jupiter, Saturn, Uranus and Neptune are
5.45, 8.7, 15.5 and 17.8 AU, respectively. The planets are
surrounded by a massive disk which extends from 18 AU to
50 AU and has a surface density variation as r−1, which is
the typically assumed value for proto-planetary disks (c.f.
Hayashi, 1981). The disk’s outer edge was chosen to cor-
respond to current edge of the classical Kuiper belt (Allen
et al., 2001a, 2001b; Trujillo and Brown, 2001). The initial
disk mass was varied between 40 M⊕ and 200 M⊕. The
systems were evolved using the techniques in GML04 (see
Section 8).

Figure 2a shows a snapshot of the semi-major axis – ec-
centricity distribution of the planets and the planetesimals
for the 50 M⊕ simulation. Figure 2b shows the semi-major
axes of the four giant planets with time. As discussed
in Section 2, Neptune, Uranus and Saturn move outward,
while Jupiter moves inwards.

The black curves in Figure 3 show the temporal evo-
lution of Neptune’s semi-major axis for runs of different
disk masses. The 40 M⊕ and 45 M⊕ runs are example of
damped migration (Section 2). After a fast start, Neptune’s

Fig. 2.— Migration simulation from GML04 of the four giant planets in
a 50 Earth-mass disk that extends to 50 AU. A) A snapshot of the system
at 330 Myr. Semi-major axis and eccentricity of the planets (filled dots)
and of the planetesimals (points). The solid lines define the limits for plan-
etary crossing orbits, while the dotted lines show where H = Hp for zero
inclination orbits. B) Evolution of the semi-major axes of the four giant
planets.

outward motion slows down, and well before 109 y, the
planet reaches a quasi-asymptotic semi-major axis that is
well within the outer edge of the disk. The part of the disk
outside the orbit of Neptune preserves its original surface
density, while the part interior to this distance is completely
depleted.

Fig. 3.— The temporal evolution of Neptune’s semi-major axis for six
different simulations based on GML04. In all cases the disk was truncated
at 50 AU, but the disk mass and the mass of the ice giants varied from
run to run. In particular, the black curves show runs where the ice giants
are their normal mass, while the one gray shows a run with Uranus and
Neptune 1/3 of their current masses.

A major change in Neptune’s behavior occurs when the
disk mass is increased & 50 M⊕. As before, Neptune expe-
riences a fast initial migration, after which it slows down.
Then it undergoes an approximately linear migration be-
tween 100 and 600 My. Finally, Neptune’s migration ac-
celerates towards the disk’s edge where it eventually stops.
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This evolution suggests that the surface density of this disk
is near a critical value that separates damped migration from
sustained migration (see Section 2). In all cases with more
massive disks, Neptune final location was near the edge of
the disk.

The transition from the linear to the accelerating phase in
the 50 M⊕ run is due to the variations in the number of par-
ticles trapped in Neptune’s MMRs. Recall from Section 3,
as Neptune migrates, disk particles become trapped in its
MMRs. The resonant particles effect migration because
they effectively increase Neptune’s inertial mass. During
adiabatic migration, the number of particles in the reso-
nances is roughly constant as long as the resonance is still
in the disk. In this run, Neptune accelerates as its 1:2 mean
motion resonance moves out of the disk probably because
the number of objects in the resonance drops, new particles
not being captured.

There is another important transition in Neptune’s be-
havior when the disk mass is increased to values larger than
∼ 100 M⊕ — the migration passes from a ‘forced’ to a
‘runaway’ mode. This change leads to a very interesting
new phenomenon — Neptune migration is no longer mono-
tonic. Figure 3 shows that in the case of the highest-mass
disk, Neptune reaches ∼ 50 AU in less than 3 My, and then
comes back to within 30 AU almost equally as fast. Sim-
ilar episodes of acceleration and return are also visible in
other high-mass runs. This type of bounce is possible be-
cause, in runaway migration, objects are left behind in an
excited disk as Neptune moves outward, instead of being
transferred to the inner planets or ejected. When Neptune
reaches the edge of the disk, the number of objects with
H > HNep drops, and so the remaining objects interior to
Neptune can pull the planet inward. Thus, Neptune reverses
direction and starts a runaway inward migration. The same
argument described above applies, so that this migration
ends only when the region of the disk partially depleted by
Uranus is encountered again. Notice however, that neptune
always ends up near the original edge of the disk at 50 AU.

Finally, the gray curve in the figure 3 shows a run in
a 40 M⊕ disk, but where the masses of the ice giants are
1/3 of their current values. Note that while migration is
damped in a 40 M⊕ disk when the ice giants are at their
current mass, it is runaway in this case. This result shows
that the transition between these two forms of migration oc-
curs at a smaller disk mass for smaller planetary masses.
This result gives an important constraint on the formation
time of Uranus and Neptune. Levison and Stewart, (2001)
showed that standard planet formation scenarios cannot
form Uranus and Neptune in their current orbits, so, these
planets probably formed much closer to the Sun. However,
if the ice giants would have migrated to their current or-
bits when they were much smaller then they are now, as
the gray curve in the figure 3 suggests, how did they reach
their current masses? This conundrum has a solution if
the planets were fully formed when there was still enough
gas in the system that the gravitational interactions with the
gas prevented the planets from moving outward. This im-

plies that these planets formed very early (. 10 Myr, Po-
dosek and Cassen, 1994; Hollenbach et al., 2000; Thi et
al., 2001), and is consistent with the capture of a primordial
atmosphere of several earth masses of H and He (Pollack et
al., 1996).

4.2. Constraints from the Kuiper belt
The question naturally arises whether we can determine

what kind of migration actually occurred in the Solar Sys-
tem, and from this the mass and structure of the original
proto-planetary disk. In addition to the current orbits of the
giant planets, the structure of the Kuiper belt supplies cru-
cial clues to the Solar System’s ancient history because this
structure still carries the signatures of early evolution of the
planetary system.

Three characteristics of the kuiper belt are important:
1) The Kuiper belt only contains about 0.1 M⊕ of mate-
rial (Jewitt et al., 1996; Chiang and Brown, 1999; Trujillo
et al., 2001; Gladman et al., 2001; Bernstein et al., 2004).
This is surprising given that accretion models predict that
& 10 M⊕ must have existed in this region in order for the
objects that we see to grow (Stern, 1996; Stern and Col-
well, 1997a; Kenyon and Luu, 1998, 1999). 2) The Kuiper
belt is dynamically excited. Again, this is unexpected since
accretion models predict that relative velocities between ob-
jects must have originally been small in order for the objects
that we see to grow. 3) The Kuiper belt apparently ends
near 50 AU (Trujillo and Brown, 2001; Allen et al., 2001a,
2001b).

If we assume that the primordial Kuiper belt must have
contained at least ∼ 10M⊕ between 40–50 AU in order to
grow the observed objects, the above simulations suggest a
scenario first proposed by Hahn and Malhotra (1999). In
this model the disk contained ∼ 45M⊕ of material between
20 and 50 AU. Neptune started at ∼ 22AU and migrated
to ∼ 30 AU, where it stopped because its migration was
damped. This left enough mass in the Kuiper belt to account
for the growth of the known objects there. This scenario has
a problem, however. If Neptune stopped at 30 AU because
its migration was damped, how did the Kuiper belt loose
> 99% of its mass? Two general ideas have been proposed
for the mass depletion of the Kuiper belt: (1) the dynami-
cal excitation of the vast majority of Kuiper belt objects to
the Neptune-crossing orbits after which they were removed,
and (2) the collisional comminution of most of the mass of
the Kuiper belt into dust.

GML04 studied Scenario (1), including the dynami-
cal effects of the escaping Kuiper belt objects on Nep-
tune. They concluded that any reasonable dynamical de-
pletion mechanism would have forced Meptune to migrate
into the Kuiper belt. Thus, Scenario (1) can be ruled
out. Scenario (2) is also faced with some significant prob-
lems. These include: (i) the orbital excitation of the cold
classical Kuiper belt does not seem to be large enough
to remove as much mass as is required (Stern and Col-
well, 1997b); (ii) substantial collisional grinding does not
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occur unless the physical strength of small Kuiper belt
objects are extremely small (Kenyon and Bromley, 2004),
much smaller than predicted by SPH collision calculations;
and (iii) most of the wide binaries in the cold population
would not have survived the collisional grinding phase (Pe-
tit and Mousis, 2003). These problems led GML04 to con-
clude that the collisional grinding scenario is also probably
not viable.

4.3. Migration in Disks Truncated at 30 AU
GML04 argued that the current location of Neptune and

the mass deficiency of the Kuiper belt imply that the proto-
planetary disk possessed an edge at about 30 AU. In their
study of migration in such a disk, they found that a planet
does not necessarily stop at the exact location of the edge.
Indeed, since angular momentum must be conserved during
the migration process, the final location of the planets de-
pends more on the total angular momentum in the disk than
on the location of the edge. To illustrate this, Figure 4 shows
Neptune’s migration in 6 disks that are initially spread be-
tween 10 and 30 AU, but with masses varying from 20 to
100 M⊕.

Fig. 4.— Examples of Neptune’s migration in disks with an outer edge
at 30 AU and masses equal to between 20 and 100 M⊕. Reproduced from
GML04 Figure 10. Note that a direct comparison cannot be made between
these total masses and those in the runs shown in Figures 2 and 3 because
the disk was larger in the earlier runs.

The disk with 20 M⊕ has a subcritical surface density.
Neptune exhibits a damped migration and stalls well within
the disk. Therefore a massive annulus is preserved between
a few AU beyond the planet’s location and the original outer
edge of the disk. The disks with 30 M⊕ and 35 M⊕ have
a surface density close to the critical value. In both cases,
when the planet reaches∼ 26 AU, the unstable region of the
disk (which extends up to a distance of about 1/6th of the
planet’s semi-major axis; Duncan et al., 1995) reaches the
edge of the disk. The planet starts to feel the disk truncation
and its migration is rapidly damped. The final location is
2 AU inside the original disk edge, but the entire region
beyond the planet has been depleted. More massive disks
have supercritical densities. In the case of 50 M⊕ the planet

stops almost exactly at the disk’s edge, while in the other
cases it goes several AUs beyond it.

Thus, GML04 concluded that a disk with an outer edge
close to 30 AU, the exact value depending on the disk’s
mass, can explain Neptune’s current semi-major axis. There
are at least five mechanisms that could have truncated the
disk at such a small heliocentric distance, prior to plane-
tary accretion: 1) A passing star tidally strips the Kuiper
belt after the observed Kuiper belt objects formed (Ida et
al., 2000; Kobayashi and Ida, 2001; Levison et al., 2004).
2) An edge formed prior to planetesimal formation due to
aerodynamic drag (Youdin and Shu, 2002). 3) An edge
formed during planet accretion due to size-dependent radial
migration caused by gas drag (Weidenschilling, 2003). 4)
Nearby early-type stars photo-evaporated the outer regions
of the solar nebula before planetesimals could form (Hol-
lenbach and Adams, 2003). 5) Magneto-hydrodynamic
instabilities in the outer regions of the disk prevented
the formation of planetesimals in these regions (Stone et
al., 1998). We stress that a small truncation radius is not
in contradiction with the existence of the Kuiper belt be-
yond 40 AU. In fact, the entire Kuiper belt could have been
pushed out from within the disk’s edge during Neptune’s
migration. We return to the issue of the Kuiper belt in
Section 6.

5. DYNAMICAL INSTABILITIES AS A MIGRA-
TION PROCESS

Up to this point we have been discussing ‘simple’ migra-
tion. However, there is another way in which the interac-
tion between planets and small bodies can result in a large
change in the planetary radial distribution. First, a global
instability in the planetary system increases the planets’ ec-
centricities and semi-major axis separations; and then, the
interaction between the disk particles and the planets cir-
cularize the planetary orbits. Eventually, a final phase of
‘simple’ migration can follow.

The above idea was first suggested by Thommes et al.
(1999). They postulated that the four giant planets formed
in such a compact configuration that their orbits were dy-
namically unstable. Figure 5 shows four snapshots from
one of Thommes et al. (1999)’s simulations, where the ice
giants were hypothesized to have formed between Jupiter
and Saturn. Almost immediately (∼ 104 yr), the ice giants
are scattered out from between Jupiter and Saturn into a pre-
existing planetesimal disk, where gravitational interactions
with the disk particles eventually circularize their orbits.
The gravitational interaction between the planetesimals and
the scattered cores comes in two flavors. First, there is a
secular response by the disk to the eccentricities of the ice
giants. This can clearly be seen in the lower left panel of
the figure (t = 180, 000 yr), where the objects between 20
and 30 AU have their eccentricities systematically pumped.
Since this region of the disk is more massive than the ice
giants, this secular response lifts the perihelion distances
of the ice giants away from Saturn’s orbit, thus saving them
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Fig. 5.— Four snapshots of the dynamical evolution of a system
where Uranus and Neptune (red) are originally between Jupiter and Sat-
urn (green), and there originally is a 200 M⊕ planetesimal disk (black)
beyond Saturn. The run was taken from Thommes et al. (1999). For the
planets, the errorbars show the range of heliocentric distances that their
orbits cover, and thus are a function of eccentricity.

from ejection into interstelar space. Second, dynamical fric-
tion, that occurs as a large object is moving through a sea of
background particles (Chandrasekhar, 1943; although see
Binney and Tremaine, 1987 for a discussion) further circu-
larizes the ice giants’ orbits. The problem with the evolu-
tion illustrated in Figure 5 is that disks massive enough to
circularize the ice giants, typically force them to migrate
too far. We address this issue in the next section.

6. THE NICE MODEL OF THE EARLY DYNAMI-
CAL EVOLUTION OF THE GIANT PLANETS

A new model of the dynamical evolution of the outer
Solar System has been presented in a recent series of pa-
pers (Tsiganis et al., 2005, hereafter TGML05; Morbidelli
et al., 2005a, hereafter MLTG05; and Gomes et al., 2005,
hereafter GLMT05). This is the most comprehensive model
to date and it reproduces most of the characteristics of the
outer planetary system at an unprecedented level. We refer
to this model as the Nice model because it was developed
at the Nice Observatory. Since it makes use of many of the
ideas explored in this chapter, we describe it in detail below.

6.1. The Dynamical Evolution of Giant Planet Orbits
The initial motivation for the Nice model was the desire

to understand the orbital eccentricities and inclinations of
Jupiter and Saturn, which can reach values of ∼ 10% and
∼ 2◦, respectively. Planetary formation theories suggest
that these planets should have formed on circular and copla-
nar orbits. In addition, the final stage of planetesimal driven
migration, which is the topic of the chapter, quickly damps
any preexisting eccentricities and inclinations. Thus, the
initial work that led to the Nice model was a set of simula-
tions intended to solve the mystery of the origins of Jupiter
and Saturn’s eccentricities and inclinations.

In particular, the hypothesis studied in TGML05 was that
orbital excitation could take place if, during migration, two
planets crossed a low-order mean motion resonance. Saturn
is currently located interior to the 2:5 MMR and exterior
to the 1:2 MMR with Jupiter. If the initial planetary con-
figuration was initially sufficiently compact then — given
that these two planets had to migrate on opposite directions
— they would have crossed their 1:2 MMR, which is the
strongest of the MMRs.

TGML05 performed a series of numerical integrations
of the above idea. In all these simulations the four giant
planets were started on nearly circular and coplanar orbits,
with Saturn placed a few tenths of an AU interior to the 1:2
MMR. Starting Saturn interior to the resonance is a basic
assumption of the Nice model. However, recent hydrody-
namical simulations of two planets embedded in a gaseous
disk (Morbidelli et al., 2005b) not only suggest that this
assumption is reasonable, but may even be required if one
wants to avoid migrating Jupiter into the Sun via planet-
gas disk interactions. However, whether reasonable or not,
the Nice model can only valid if this assumption is true.
TGML05 initially placed the ice giants just outside Saturn’s
orbit. The planets were surrounded by massive disks con-
taining between 30 and 50 M⊕ of planetesimals, truncated
at ∼ 30 AU.

Fig. 6.— Orbital evolution of the giant planets from one of TGML05’s
N−body simulations. The values of a, q, and Q are plotted for each
planet. The separation between the upper and lower curves is a measure
of the eccentricity of the orbit. The maximum eccentricity of each orbit,
computed over the last 2 Myr of evolution, is noted on the plot. The ver-
tical dotted line marks the epoch of 1:2 MMR crossing. The planetesimal
disk contained initially 35 M⊕. Reproduced from TGML05’s Figure 1.

The typical evolution from TGML05 is shown in Fig-
ure 6. After a phase of slow migration, Jupiter and Sat-
urn encounter the 1:2 MMR, at which point their eccentric-
ities jumped to values comparable to the ones currently ob-
served, as predicted by adiabatic theory. The sudden jump
in the eccentricities of Jupiter and Saturn has a drastic ef-
fect on the planetary system as a whole. The perturbations
that Jupiter and Saturn exert on Uranus and Neptune force
the ice giants’ orbits to become unstable. Both ice giants
are scattered outward and penetrate the disk (although less
violently than in the simulation presented in Section 5).
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Then the eccentricities and inclinations of the ice giants are
damped by the disk as described in Section 5, and the plan-
etary system is stabilized. The planets stop migrating when
the disk is almost completely depleted. As shown in Fig-
ure 6, not only their final semi-major axes, but also their
final eccentricities are close to the observed values. In this
run, the two ice giants exchange orbits. This occurred in
∼50% of TGML05’s simulations.

TGML05 found that in roughly 70% of their simulations
both ice giants were saved from ejection by the planetesimal
disk and evolved onto nearly-circular orbits. They divided
these successful runs into two groups: (i) those in which
there were no encounters between an ice giant and a gas gi-
ant, and (ii) those in which Saturn suffered encounters with
one or both ice giants. Figure 7 shows the mean and stan-
dard deviation of the orbital elements for group (i), in gray,
and group (ii), in black. The orbital elements for the real
planets are also shown as black dots. When no encounters
with Saturn occur, the final eccentricities and inclinations
of the planets, as well as the semi-major axis of Uranus,
tend to be systematically smaller than the observed values.
On the other hand, when distant encounters between Sat-
urn and one of the ice giants also occurs, the final planetary
system looks very similar to the actual outer Solar System.
This is the first time that a numerical model has quantita-
tively reproduced the orbits of the giant planets of the Solar
System.

Although there are many free parameters in the initial
conditions of the Nice model (for example, the initial or-
bits of the planets, the mass of the disk, and the inner and
outer edges of the disk), there are only two that effect the
final location of the planets. The first is the assumption
that the disk was truncated near 30 AU. As described above,
TGML05 made this assumption in order to circumvent the
Kuiper belt mass depletion problem. The only other param-
eter important in determining the orbits of the planets is the
initial mass of the disk. All other parameters mainly affect
the timing of the resonance crossing, a fact used in Sec-
tion 6.3, but not the final orbits of the planets themselves.

TGML05 also found a systematic relationship between
final orbital separation of Jupiter and Saturn at the end of
migration and the initial mass of the disk. For disk masses
larger than ∼ 35–40 M⊕, the final orbital separation of
Jupiter and Saturn tends to be larger than is actually ob-
served. Indeed, for disks of 50 M⊕, Saturn was found to
cross the 2:5 MMR with Jupiter. In addition, the final ec-
centricities of the two gas giants were too small, because
they had experienced too much dynamical friction. Thus,
an initial disk mass of ∼35 M⊕ was favored. The fact both
the semi-major axes and the eccentricities/inclinations of
Jupiter and Saturn are reproduced in the same integrations
strongly supports this model: there is no reason a priori,
that a, e, and i should all be matched in the same runs.
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Fig. 7.— Comparison of TGML05’s synthetic final planetary systems
with the outer Solar System. A) Proper eccentricity vs. semi-major axis.
B) Proper inclination verses semi-major axis. Proper eccentricities and
inclinations are defined as the maximum values acquired over a 2 Myr
timespan and were computed from numerical integrations. The inclina-
tions are measured relative to Jupiter’s orbital plane. These values for the
real planets are presented with filled black dots. The open gray dots mark
the mean of the proper values for the runs of group (i) (no encounters for
Saturn), while the open black dots mark the same quantities for the runs of
group (ii). The error bars represent one standard deviation of the measure-
ments. This is a reproduction of TGML05’s Figure 2.

6.2. Small Body Reservoirs
Further support for the Nice model comes from the

small body reservoirs. Indeed, Jovian Trojans, which are
small objects in the 1:1 MMR with Jupiter, supply an
important test for TGML05’s scenario. Gomes (1998)
and Michtchenko et al. (2001) studied the effects of
planetesimal-driven migration on the Trojan asteroids.
They found that the Trojans where violently unstable if
Jupiter and Saturn crossed the 1:2MMR with one another.
Thus, these authors concluded the Jupiter and Saturn could
not have crossed this resonance. So, is TGML05 wrong?

The issue was addressed in the second of the three Nice
model papers, MLTG05. The authors of this paper pointed
out that the dynamical evolution of any gravitating system
is time reversible. So, if the planetary system evolves into
a configuration so that trapped objects can leave the Tro-
jan points, it must be possible that other bodies can enter
the same region and be temporally trapped. Consequently,
a transient Trojan population can be created if there is a
source for these objects. In this case, the source is the
very bodies that are forcing the planets to migrate. When
Jupiter and Saturn get far enough from the 2:1 MMR, so
that co-orbital region becomes stable again, the population
that happens to be there at that time remains trapped, be-
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coming the population of permanent Jovian Trojans.
MLTG05 performed a series of N-body simulations to

study this idea and found that bodies can indeed be perma-
nently captured in Trojan orbits. Assuming that the orig-
inal planetesimal disk contained 35 M⊕ (as in TGML05),
they predict that there should be between ∼ 4 × 10−6M⊕

and ∼ 3 × 10−5M⊕ of Trojans with libration amplitude
D<30◦. This can be favorably compared to the total mass
of the Trojans which, using data from the Sloan Digital Sky
Survey and updated numbers on density and albedo, was
re-evaluated by MLTG05 to be 1.1× 10−5 (also see the
discussions by Jewitt et al., 2000 and Yoshida and Naka-
mura, 2005). One of the surprising aspects of the Trojan
population is its broad inclination distribution, which ex-
tends up to ∼ 40◦ and cannot be explained by traditional
capture scenarios. MLTG05 finds that they can reproduce
this as well. Since this model is the only one available that
can explain these features, the Trojans represent observa-
tional evidence for the 1:2 resonance crossing proposed by
TGML05.

Jupiter is not the only planet in the outer Solar System
that has Trojan asteroids. Neptune currently is known to
have two such objects: 2001 QR322 (Pittichova et al., 2003)
and 2004 UP10 (Parker et al., 2005). These objects are also
explained by the Nice model. TGML05 found that objects
can be trapped in Neptune’s 1:1 MMR during the time when
Neptune’s eccentricity is being damped by the planetesimal
disk.

Fig. 8.— The eccentricity – semi-major axis distribution of objects in
the Kuiper belt. The dots show the objects. The two vertical gray lines
show Neptune’s 2:3 MMR and 1:2 MMR. The gray curve shows a stability
limit determined by Duncan et al. (1995). A) The real multi-opposition
Kuiper belt objects, as released by the MPC in November 2005 B) Result-
ing distribution 200 My after the 1:2 MMR planetary instability, from our
new dynamical model based on the Nice scenario.

The Kuiper belt also presents an important test of the
Nice model. Any model of the outer Solar System evolu-
tion must explain the main orbital properties of the Kuiper
belt objects, which are (see Morbidelli et al. 2003. for a
review): 1) The presence of objects trapped in Neptune’s
MMRs (some shown as gray vertical lines in figure 8a); 2)
the abrupt end of the classical Kuiper belt at or near the lo-
cation of the 1:2 MMR (we define the classical Kuiper belt
the collection of objects that are non-resonant and fall bel-

low the stability limit determined by Duncan et al. (1995),
shown by a grey curve in figure 8a); 3) The dearth of ob-
jects with 45.a.48 AU and e<0.1. 4) The co-existence
in the classical Kuiper belt apparently of two populations:
a dynamically cold population — made of objects on orbits
with inclinations i < 4◦ — and a hot population — whose
inclinations can be as large as 30◦, and possibly larger
(Brown, 2001). These populations have different size dis-
tribution (Levison and Stern, 2001; Bernstein et al., 2004)
and different colors (Tegler and Romanishin, 2003; Trujillo
and Brown, 2002).

The investigation of the formation of the Kuiper belt in
the framework of the Nice model is in progress, and we
briefly discuss here the preliminary, unpublished results.

For reasons discussed above, the Nice model assumes
that the proto-planetary disk was truncated near ∼ 30 AU.
This implies that the Kuiper belt that we see today had to
be pushed outward from the initial disk during Neptune’s
orbital evolution. The envisioned mechanism is the follow-
ing. When Neptune becomes eccentric (eN ∼0.3) many of
its mean motion resonances are very wide. Numerical sim-
ulations show that for eN > 0.2, the entire region inside
of the 1:2 MMR is covered with overlapping resonances
and thus is entirely chaotic. Consequently, it fills with disk
particles scattered by Neptune. As Neptune’s eccentricity
damps many of these particles become permanently trapped
in the Kuiper belt. Resonances do not overlap beyond the
1:2 MMR and thus this resonance forms a natural outer
boundary for the trapped population.

Figure 8B shows the result of this process according to
a set of new numerical simulations we performed to study
the above idea. First note that most of the particles above
the stability curve would be lost if the simulation were car-
ried until 4 Gyr. Given this, there is remarkably good agree-
ment between the two populations. There is an edge to the
main Kuiper belt at the location of the 1:2MMR. In addi-
tion, the resonance populations are clearly seen. The latter
are not acquired by the resonances via the standard migra-
tion capture scenario of Malhotra (1993, 1995), but by the
mechanism proposed by Gomes (2003). The model in Fig-
ure 8B also reproduces the dearth of low-eccentricity ob-
jects beyond ∼ 45 AU. The inclination distribution of the
main Kuiper belt is also a reasonable match to the data. And
finally, there is a crude correlation between the formation
location in the planetesimal disk and the final Kuiper belt
inclination for a particle. This relationship might be able
to explain the observed relationship between physical char-
acteristics and Kuiper belt inclination. This work is not yet
complete. However, it seems to explain many of the charac-
teristics of the Kuiper belt with unprecedented quality, thus
also supporting the framework of the Nice model.

6.3. The Lunar Late Heavy Bombardment
The ‘Late Heavy Bombardment’ (LHB) was a phase in

the impact history of the Moon that occurred roughly 3.9
Gyr ago, during which the lunar basins with known dates
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formed. There is an ongoing debate about whether the LHB
was either the tail-end of planetary accretion or a spike in
the impact rate lasting . 100 Myr (‘terminal cataclysm,’
Tera et al. 1974). Although the debate continues, we be-
lieve that there is growing evidence that the LHB was in-
deed a spike. The LHB was recently reviewed in Hartmann
et al. (2000) and Levison et al. (2001).

A spike in the impact flux in the inner Solar System most
likely required a major upheaval in the orbits of the planets
that destabilized a small body reservoir, which, until that
time, had been stable (c.f. Levison et al., 2001). The Nice
model, naturally provides such an upheaval when Jupiter
and Saturn cross the 1:2 MMR. The problem investigated
in GLMT05 (the third paper in the Nice trilogy) was how to
delay the resonance crossing for ∼ 700 My. In the simula-
tions in TGML05, planet migration started immediately be-
cause planetesimals were placed close enough to the planets
to be violently unstable. While this type of initial condi-
tion was reasonable for the goals of that work, it is unlikely.
Planetesimal driven migration is probably not important for
planet dynamics as long as the gaseous massive solar nebula
exists. The initial conditions for the migration simulations
should represent the system that existed at the time the neb-
ula dissipated, i.e. one in which the dynamical lifetime of
the disk particles is longer than the lifetime of the nebula.
GLMT05 found that for planetary systems like those used
as initial conditions in the Nice model, this inner edge of
the planetesimal disk is roughly 1 AU beyond the orbit of
the outermost ice giant.

In this configuration, GLMT05 found that the 1:2 MMR
crossing was delayed by from between 350 My and 1.1 Gyr,
depending on various parameters. They concluded that
the global instability caused by the 1:2 MMR crossing of
Jupiter and Saturn could be responsible for the LHB, since
the estimated date of the LHB falls in the range of the cross-
ing times that they found. GMLT05 also found that, for an
initial disk mass of 35 M⊕ (as in TGML05), after the res-
onance crossing roughly 8 × 1021g of cometary material
impacted the Moon. This value is consistent with the esti-
mate of ∼ 6 × 1021 g from the observed basins (Levison et
al., 2001). Moreover, the asteroid belt would have been per-
turbed during this event thereby supplying additional im-
pactors. Overall, this material arrived over a relatively short
period of time of ∼ 50 Myr. Thus, this model produces a
spike in the impact rate of about the correct duration.

One of the requirements of GLMT05’s model is that the
mass of external planetesimal disk not significantly evolve
between the time when the solar nebula disperses and the
time of the LHB. In principle, the disk mass can change as
a result of either the action of dynamics or the action of col-
lisions, although the simulations in GLMT05 already show
that dynamics is not a factor. A preliminary study of the
collisional evolution of such a disk by O’Brien et al. (2005)
suggests that there is a reasonable range of parameters over
which the primordial trans-Neptunian disk is able to remain
massive (∼ 35 M⊕) for 700 Myr. In addition, the final size
distribution of trans-Neptunian bodies in these calculations

is consistent with that inferred for the Kuiper belt by Bern-
stein et al. (2004). However, it should be noted that O’Brien
et al. studied only a small fraction of the available parame-
ter space and thus more such studies are necessary in order
to settle this issue.

At this juncture, let us take stock of the Nice model. It
quantitatively reproduces the semi-major axes, eccentrici-
ties, and inclinations of the giant planets. In addition, it
reproduces the Trojan asteroids of both Jupiter and Nep-
tune. Indeed, it reproduces, for the first time, the orbits of
Jupiter’s Trojans and quantitatively predicts the amount of
material that should be in this population. It also is the most
successful model to date at reproducing the orbital distribu-
tion of the Kuiper belt. It accomplishes all this with very
few important free parameters. As described in Section 6.1,
if one accepts the need to truncate the initial planetesimal
disk at 30 AU, the initial disk mass is the only parameter
that significantly effects these results. It is a strength of
the Nice model that a single value of disk mass (35 M⊕)
can produce all of the characteristics we just listed. And
finally, as GLMT05 has shown, this model quantitatively
reproduces the so called Late Heavy Bombardment of the
Moon. These accomplishments are unparalleled by any
other model. Not only is there no other model that can
explain all these characteristics, but the level of agreement
between the model and observations is unprecedented.

7. MIGRATION IN EXTRA-SOLAR PLANETESI-
MAL DISKS

In this section we discuss some behaviors that planets
might have followed in extra-solar planetesimal disks. It is
very difficult, if not impossible, to be exhaustive because, as
we saw in Section 2, planet migration in planetesimal disks
depends crucially on the specific features of the system: the
number of planets, their separations, their masses and mass
ratios, the disk’s mass and radial extend, its radial surface
density profile, etc. Thus, we concentrate only on four main
aspects: the origin of warm Jupiters, the evolution of two
planet systems, the runaway of medium-mass planets out to
very large distances from the parent star, and the triggering
of late instabilities.

7.1. Planetesimal-Driven Migration and the Origin of
Hot and Warm Jupiters

We have seen in Section 2 that a single giant planet
(of about one Jupiter mass or more), embedded in a plan-
etesimal disk migrates inwards, because it ejects most of
the planetesimals that it interacts with. Assuming a min-
imal mass planetesimal disk (the solid component of the
Hayashi, (1981) minimum mass nebula), Murray et al.
(1998) found that Jupiter would have had a very damped
migration, so that it would not have moved significantly.
However, if the density of the disk is enhanced by a large
factor (15 – 200) Murray et al. showed that the migration
can be in a runaway mode. This can push the planet in-
ward to distances from the central star that are comparable
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to those observed in extra-solar systems.
Although extremely massive disks are required to pro-

duce the so-called ‘hot Jupiters’ ((a . 0.1 AU)), more
moderate (but still massive) disks can produce the ‘warm
Jupiters’ ((a ∼ 1 AU)). In particular, the advantage of
planetesimal-driven migration over gas-driven migration
for the origin of warm Jupiters is that the stopping mech-
anism is much more natural. If the radial surface density
profile of the planetesimal disk is shallower than 1/r2, the
runaway migration turns eventually into a damped migra-
tion, as the planet moves inwards. Thus, the planet suddenly
stops.

7.2. Migration in Two Planet Systems.
Two planet systems are interesting because they have

many of the characteristics of systems with a larger number
of planets. Thus, insight into the behavior of systems, in
general, can be gained by studying systems with two plan-
ets. Unfortunately, as explained above, it is not possible to
completely explore this issue because of the large number
of parameters involved. In this subsection, we investigate
with new, unpublished simulations the case of two giant
planets in the current orbits of Jupiter and Saturn with a disk
stretching from 6 to 20 AU containing a total mass of 1.2
times that of the sum of the masses of the planets. Thus, in
all cases the system is in the forced migration mode. When
Jupiter and Saturn have their current masses, Jupiter mi-
grates inward and Saturn outward (the black curves in Fig-
ure 9A), just like in the four planet case.

Fig. 9.— The temporal evolution of the semi-major axes of the two giant
planets in our two planet simulations. Each color represents a different run.
A) Runs where the masses of the planets and disk are scaled by the same
value. The black curve shows a run with Jupiter and Saturn at their current
masses. The red and blue curves shows runs where the masses were scaled
by a factor of three and ten, respectively. B) Runs where the total mass of
the planets remained fixed, but the mass ratio of the planets varied from
run to run. Red, purple, green, orange, and brown refer to runs where the
inner to outer mass ratio was 3.3, 2, 1.5, 1, and 0.5, respectively.

In the first series of runs, we looked at the effect that
the total mass of the planets has on migration. It might
be expected that in a system with two massive planets, the
outer one ejects more particles than it passes to the inner

one and thus both planets migrate inward. However, our
simulations show that the above expectation is not correct.
By scaling the mass of the disk and of the planets by a factor
of three and ten, we obtain the evolutions shown by the blue
and red curves in Figure 9A, respectively. These behaviors
are similar to one another, the migration timescale being
the only significant difference. We believe that the above
argument is wrong because, although encounters are more
common for larger planets due to their larger gravitational
cross-sections, the relative distribution of velocity changes
is roughly independent of mass. The larger gravitational
cross-sections for the more massive planets lead to the faster
migration times, not to a different evolutionary pattern.

In the second series of runs, we kept the total mass of the
planets constant (three times the summed masses of Jupiter
and Saturn), but varied their mass ratio. The results of these
simulations are shown in Figure 9B for systems where the
ratio of the mass of the inner planet to that of the outer
ranged from 0.5 to 3.3. We find that for mass ratios & 2,
the outer planet always migrates outward. However, for
mass ratios less than roughly 2, the inner planet becomes
less effective at removing particles crossing the orbit of the
outer planet, and thus the outer planet is more likely to eject
them. Thus, after a short period of outward migration, the
outward planet migrates inward. Also note that, for at least
the conditions studied here, the outer planet inward migra-
tion is faster than that of the inner planet. This results sug-
gests that planetesimal migration can lead to resonant trap-
ping between giant planets, as is observed in many extra so-
lar planetary systems (Schneider, 2004). It also could also
drive a planetary system into an unstable configuration.

7.3. Driving Planets Far From Their Star
Most of the observed debris disks show features like

gaps, warps, asymmetric clumps and even spiral waves,
usually attributed to the presence of embedded planets. For
instance Wyatt (2003) showed that the features of the Vega
disk could be due to a Neptune-mass planet migrating from
40 to 65 AU in 56 My. Similarly Wyatt et al. (2005) mod-
eled the observations of the η Corvi disk with a Neptune
mass planet moving from 80 to 105 AU in 25 My. Other
featurs in the β Pictoris (Wahhaj et al., 2003) and ε Eri-
dani disks (Ozernoy et al., 2000; Greaves et al., 2005) have
been modeled with planets at several tens of AUs. In the
most extreme model, the spiral features of the HD141569
disk have been modeled with one planet of 0.2–2 Jupiter-
masses at ∼ 250 AU and a Saturn-mass planet at 150 AU
(Wyatt, 2005). These models call for an exploration of the
possibility that planets migrate very far from the central star.

We have seen in Section 4 that if our planetary system
had been embedded in a massive disk truncated at 50 AU,
Neptune would have had migrated very quickly in the run-
away mode to the edge of the disk. Figure 10 shows the evo-
lution of Neptune if the same disk were extended to 200 AU,
with a radial surface density profile∝ 1/r. Neptune reaches
a heliocentric distance larger than 110 AU. Then, without
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Fig. 10.— The migration of Neptune in a very massive planetesimal
disk, extended from 20 to 200 AU and with 6 Earth masses of material in
each AU-wide annulus. From GML04.

having reached the edge of the disk it bounces back, revers-
ing its migration direction. This abrupt change in the mi-
gration behavior happens because, when the planet migrates
sufficiently fast, the timescale for planetesimals encounter-
ing the planet becomes comparable to, or longer than, that
for passing through the planet-crossing region due to the
migration of the planet itself. So, in coordinates that move
with the planet, most particles simply drift inward while
keeping their eccentricities roughly constant. The net result
is that k̄ in Equation (2) gradually decreases with time.

The planet does not respond to the reduction of k̄ by
gradually slowing down its migration because, contempo-
raneously, the amount of mass in the planet-crossing region
(M in Equation (2)) increases at a faster rate than k̄ de-
creases. Consequently, the magnitude of ȧp does not de-
crease with time. However, when k̄ = 0, ȧp becomes zero
and the migration abruptly stops. When this happens, the
planet finds itself in an unstable situation. If the excited disk
interior to planet slightly overpowers the particles from the
outer disk, the planet initiates a runaway migration inward.

It is worth stressing, however, that the kind of migration
illustrated in Figure 10 most likely only works for medium-
mass planets, like Neptune. Moving a planet as large as
Jupiter with a planetesimal disk probably requires a disk
that is too massive to be believable.

7.4. Late instabilities
The striking success of the Nice model for the early evo-

lution of the Solar System (see Section 6) suggests that
gravitational instabilities can be very important in the his-
tory of a planetary system. Another piece of evidence
comes from outside the Solar System. Many of the known
extra-solar planets are on very eccentric orbits. It has been
argued the most natural explanation for this astonishing
result is that these systems also suffered from a violent,
global rearrangement of their planets’ orbits (Rasio and
Ford, 1996; Weidenschilling and Marzari, 1996; Levison et
al., 1998; Papaloizou and Terquem, 2001; Moorhead and

Adams, 2005).
Why do planetary systems go unstable? There is noth-

ing in the physics of the planet formation process that
guarantees that a planetary system will be stable on a
timescale longer than that characterising planet formation
itself. Thus, a planetary system could remain quiescent for
hundreds of millions of years and then go completely un-
stable (Levison et al., 1998).

As the Nice model and the runs in Section 7.2 illustrate,
it is also possible that the gravitational interaction between
the planets and a massive small body reservoir could drive
a planetary system into an unstable configuration. In fact,
it could be quite generic that, at the end of the gas-disk
phase, planetesimals are only on orbits with dynamical life-
time longer than the nebula dissipation time, hence driving
a slow migration that leads, at some point, to instability.
Thus, late heavy bombardments may not be the rule, but
we can expect them to occur in a fairly good fraction of the
multi-planet systems.

Indeed, the recent Spitzer observation of the SEDs of
nearby main sequence A stars (Rieke et al., 2005) and
solar-type stars (Kim et al., 2005) revealed some main se-
quence systems with ages between 100 My and 3 Gy that
have unexpectedly bright infrared excesses indicating large
amounts of circumstellar dust. The A star sample included
systems with ages in the few times 100 Myr range that
have 24 µm flux densities 1.5-2x brighter than predicted for
the stellar photospheres alone. Those excesses correspond
to bolometric fractional luminosities Ldust/Lstar of a few
times 10−4 for estimated dust temperatures of 75 to 175 K,
i.e. the dust intercepts that fraction of the central star’s total
output and re-radiates the energy into the thermal IR. For A
stars those dust temperatures correspond roughly to radii of
10 to 60 AU. The minimum mass of dust required to pro-
duce those excesses is of order only 1020 kg, equivalent to
a single object a few hundred km in diameter.

Similarly the solar-type star sample showed that more
than 15% of systems with ages into the Gyr-range have IR
excesses prominent at 70 µm, corresponding to tempera-
tures of roughly 40 to 75 K and “Kuiper Belt-like” radii
of 20 to 50 AU. Note that minimum dust masses required
to produce prominent excesses at lower temperatures and
longer wavelengths around the solar-type stars are typically
10−3 to 10−2 M⊕, two orders of magnitude larger than for
the A stars. A total planetesimal mass of 3-10 M⊕ is re-
quired to produce that much dust in collisional equilibrium
for a belt with dimensions like our Kuiper Belt. That mass
range is deduced by either scaling limits on KB mass from
IR flux limits for a regime in which P-R drag dominates
dust dynamics (Backman et al., 1995), or by scaling dust
mass to parent body mass for a collision-dominated regime.

An inferred belt mass of 3-10 Earth-masses is significant
because evolution solely by collisional grinding of a Kuiper
Belt-sized system cannot produce both the amount of dust
that we see and a massive a remnant after a Gyr: to produce
this much dust the planetesimals have a collisional evolu-
tion time scale an order of magnitude shorter than the sys-
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tem age. Thus, the exceptional systems observed in these
samples are certainly not the late stages of ordinary evolu-
tion of originally super-massive planetesimal belts. Instead
they must represent either recent single large collisions of
lunar-mass bodies, or possibly more common late-epoch in-
stabilities like our solar system’s LHB (see also the chapter
by Meyer et al.).

8. CAVEATS AND LIMITATIONS OF NUMERICAL
SIMULATIONS

Much of the information presented in this chapter is
based on examples taken from numerical simulations.
Thus, a natural question arises about the reliability of such
calculations. Modern simulations of planet migration are
performed using symplectic N -body integrators (Duncan
et al., 1998; Chambers, 1999), which have very good con-
servation properties for energy and angular momentum,
even during close encounters. However, even with mod-
ern computers some simplifications are required in order to
make these calculations feasible. In particular, the disk is
usually modeled with only 1,000–10,000 equal mass parti-
cles, which interact gravitationally with the planets but do
not interact with each other. This method of handling the
disk has three main limitations.

First, the typical mass of an individual disk particle in the
simulation is of order 0.005—0.1M⊕, depending on the to-
tal mass of the disk and the number of particles used. Even
if we cannot exclude the presence of bodies with the mass
of the Moon (0.01M⊕) or even of Mars (0.1M⊕) in the
disk, they probably carry only a small fraction of the to-
tal disk mass. Thus, the individual particle mass used in
these simulations is definitely unrealistic. As we have seen
in Section 3, large disk particles lead to a stochastic com-
ponent of planet migration, and thus if the disk particles are
unreasonably large, there could be a spurious component to
the migration. This stochasticity affects the capture of parti-
cles in resonances and their subsequent release. In turn this
has an impact not only on the disk’s structure, but also on
the mean planet migration rate. In addition, the stochastic
oscillation of the planet’s semi-major axis tends to sustain
the migration even in cases where, in reality, the migration
should be damped. GML04 showed examples where Nep-
tune’s migration is damped in 40M⊕ or 45M⊕ disks mod-
eled with 10,000 particles (see figure 3), but is in a forced
mode when the same disks are modeled using only 1,000
particles. GML04 argued, however, that a disk of a few
thousand particles is most likely adequate for most simula-
tions.

In any case, whenever an interesting dynamical phe-
nomenon is observed in the disk, it is good practice to check
if the phenomenon persists in a simulation where the disk’s
particles are massless, and the planets are forced to migrate
by including a suitable drag term in the planets equations of
motion (e.g., Malhotra, 1993). If the phenomenon persists,
then it is most likely real. However, if it disappears, then

it should be viewed with some skepticism and further tests
should be done.

A second limitation with our techniques is the lack of
gravitational interactions among the disk particles. We see
two possible implications of this simplification. First, the
precession rates of the orbits of the particles are incorrect,
and thus the locations of secular resonances are wrong. It is
very difficult to prevent this error, unless the mutual inter-
actions among the particles are taken into account. But this
option is often prohibitively time consuming. Thus, our ad-
vice is to be very suspicious of the results, if the latter heav-
ily rely on specific secular resonances. Another implication
is that, if the disk is dynamically excited at a specific loca-
tion (for instance by a resonance), this excitation does not
propagate as a wave through the disk, as it might if the par-
ticles’ collective effects were correctly modeled (Ward and
Hahn, 1998, 2003). In turn this lack of propagation does
not damp the excitation at the location where it is triggered.
However, wave propagation is possible only if the excita-
tion of the disk is very small (e < 0.01, i < 0.3◦; Hahn,
2003). Thus, the relevance of this phenomenon remains to
be proven in a realistic model of the Solar System primor-
dial disk, which is stirred by a number of processes, includ-
ing the gravitational scattering from a number of Pluto-mass
bodies embedded in the disk. In any case, neither of these
processes are likely to have a major effect on the planet mi-
gration situations discussed in this chapter because the main
dynamical driver of migration is relatively close encounters
between planets and disk particles. They could have sec-
ondary effects, however. For example, if they are active,
collective effects could modify the state of the disk parti-
cles being fed into the planet-crossing region.

A third limitation is the lack of collisional interaction
between the disk particles. At some level, inelastic colli-
sions necessarily damp the dynamical excitation of the disk.
However, the importance of this process is a function of
many parameters including the surface density of the disk,
its dynamical state, and the sizes of individual disk parti-
cle. The potential importance of this process was recently
pointed out by Goldreich et al. (2004), who considered a
case in which the collisional damping is so efficient that any
dynamical excitation of the disk due to the planets is almost
instantaneously dissipated. Thus, the disk of planetesimals
acts as an infinite sink of orbital excitation. Goldreich et al.
argue that this mechanism can have a huge impact on the
process of planet formation and presumably also of planet
migration. The disk particle size distribution required for
this to happen, however, is rather extreme — essentially all
planetesimals need to be of ∼ 1 cm in diameter.

One of the fundamental issues with the Goldreich et al.
scenario is whether such an extreme size-distribution could
actually arise in nature and, if it did, whether it could last
long enough to be dynamically important before evolving,
either by coagulation (e.g. formation of larger objects) or
collisional grinding itself to dust. However, the existence of
both the asteroid and the Kuiper belts, suggest that, at least
by the time the planets formed, the planetesimals had a full
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size distribution ranging up to the sizes of Ceres and Pluto,
which, at first glance, seems to be inconsistent with the ba-
sic Goldreich et al. scenario. So, although there are many
intriguing aspects to this scenario, we believe that it needs
to be studied in more detail before its viability can be deter-
mined. (In this book, Chiang et al. presented a new scenario
for the formation of the Kuiper belt based on Goldreich et
al.’s ideas. However, our ongoing numerical simulations
of this scenario have shown that it is not viable, because it
leads to a Solar System structure that is inconsistent with
observations. In particular, we are finding that it leads to
planetary systems with too many ice giants, at least one of
which is on a nearly circular orbit beyond 30 AU.)

There are published works that will allow us to evalu-
ate whether collisions are important in planetary migration
situations when more moderate size-distributions are con-
sidered. For instance, using a self-consistent planetesimal
collision model that includes fragmentation and accretion
of debris, Leinhardt and Richardson (2005) showed that
the runaway growth of planetary embryos is virtually in-
distinguishable from that obtained in simulations that do
not take collisions into account. Considering a realistic size
distribution of the disk’s planetesimals, Charnoz and Mor-
bidelli (2003) showed that the collisional evolution of parti-
cles ejected from the Jupiter-Saturn region is moderate, and
would affect only a minor portion of the mass. And finially
Charnoz and Brahic (2001) studied the process of scatter-
ing of planetesimals by a jovian mass planet taking the ef-
fect of collisions on the dynamics into account. They found
that Jupiter can still eject particles from its neighbourhood
and produce a scattered disk of bodies. These results seem
to indicate that collisions are probably not important in the
overall dynamical evolution of the disk, and consequently
on the migration process.

In conclusion, despite the fact that collective effects and
collisions are definitely important and must effect, at some
level, the evolution of an evolving planetary system, we be-
lieve that their role is not significant in the type of planet
migration studied in this chapter. Thus, the simulations pre-
sented in this chapter should capture the essence of real evo-
lution. We stress that the fact that the simulations presented
to support the Nice model reproduce the observed structure
of the Solar System so well argues that the neglected phe-
nomena only play a secondary role.

9. CLOSING COMMENTS

In this chapter we reviewed the many ways in which
massive planetesimal disks can drive changes in the orbits
of planets. A planet’s orbit can be modified as a result of
gravitational encounters with objects from this disk. In par-
ticular, if a planet is immersed in a sea of small bodies, it
will recoil every time it gravitationally scatters one of these
objects. This process allows for the exchange of angular
momentum and orbital energy between the planets and the
disk. If the disk mass is on the order of the mass of the
planets, the planetary orbits can be profoundly modified.

Although there are many ideas in the literature concern-
ing how planetesimal-migration could have occurred in the
Solar System, there is general agreement that it did indeed
happen. At the very minimum, the orbital element distribu-
tion of objects in the Kuiper belt says that Neptune migrated
outward by at least ∼ 7 AU (Malhotra, 1995). Our under-
standing of this process in other systems is very limited,
however. This is primarily due to the very large number of
unknown parameters. However, some of the strange config-
urations of the extra-solar planetary systems so far discov-
ered could be the result of planetesimal driven migration.
Thus, this field is ripe for further study.
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